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Abstract— This paper studies a resilient control problem
for discrete-time, linear time-invariant systems subject to state
and input constraints. State measurements and control laws
are transmitted over a communication network and could be
corrupted by human adversaries. In particular, we consider a
class of human adversaries, namely correlated jammers, who
are modeled as rational decision makers and whose strategies
are highly correlated to the control system operator. The
coupled decision making process is modeled as a two-level
receding-horizon dynamic Stackelberg (leader-follower) game.
We propose a receding-horizon Stackelberg control law for the
operator, and analyze the resulting performance and closed-loop
stability of the system under correlated attacks. We observe
that, with full information of his follower, the operator is still
able to maintain regional stability of the control system.

I. INTRODUCTION

The recent convergence of sensing, wireless communi-
cation, and computing technologies has boosted the emer-
gence of modern control systems (also termed cyber-physical
systems) where information networks are tightly coupled
to physical processes and human intervention. Engineering
examples include sensor-actuator networks, autonomous ve-
hicles, and transportation systems. Such sophisticated sys-
tems create a wealth of new opportunities at the expense of
increased complexity and system vulnerability. In particular,
malicious attacks in the cyber world are a current practice
and a major concern for the deployment of cyber-physical
systems. Thus, the ability to analyze their consequences
becomes of prime importance in order to enhance resilience
of these new-generation control systems.

In this paper, we consider a single-loop remotely-
controlled system, where the plant, together with a sensor and
an actuator, and the system operator are spatially distributed
and connected via a communication network. In particular,
state measurements are communicated from the sensor to
the system operator through the network; then, the generated
control policies are transmitted to the actuator through the
same network. This model is an abstraction of a variety
of existing cyber-physical systems, including supervisory
control and data acquisition (SCADA) networks in critical
infrastructures (e.g., power systems and water management
systems) and remotely piloted unmanned aerial vehicles
(UAVs). We consider a class of cyber attacks, produced by
correlated jammers, where state measurements and control
laws are intentionally tampered with. This extends the ap-
proach taken in the literature of networked control systems,
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where measurement and actuation errors are modeled as
identically and independently distributed random variables.
The previous model is reasonable if errors are induced by
communication channel noises. However, this model fails to
capture the features of human adversaries and the introduc-
tion of deceptive information by them. With this in mind,
we model jammers as decision makers endowed with two
important features. The first one is that the decisions of
jammers are made in a real-time and feedback fashion, being
highly correlated with the operator. The second one is that
jammers are rational so that they attempt to destabilize the
control system and/or degrade its performance while aiming
to save their own attacking cost.

Literature review. The first set of references relevant to the
topic and approaches of this work can be found in the litera-
ture of information-technology network security. Here, (non-
cooperative) game theory [5], [9] has been widely used as a
quantitative framework to model the interconnection between
malicious attackers and system administrators. In this way, a
variety of learning algorithms have been developed to predict
the behavior of attackers and assess system jeopardy; see the
(survey) references [1], [10], [19] and citations therein. These
works do not consider the system-theoretic issues associated
with dynamic systems to be controlled.

On the other hand, the problem of control and estimation
over unreliable communication channels has received consid-
erable attention over the last decade [11]. Key issues include
quantization [14], packet dropout [3], [17], delay [7], and
sampling [15]. However, these papers do not examine the
potential consequences of intentional and rational attacks.

More recent efforts aim to address jointly the problem
of control design and system security. The main approach
consists of adding a detection mechanism to the control
strategy to determine the presence of an intruder. For ex-
ample, the papers [16], [18] determine conditions under
which consensus multi-agent systems can detect misbehaving
agents. A different, but related effort is [4], where the authors
study ways in which a SCADA water management system
can remain stable or not under a class of switching attacks.

Contributions. We consider two correlated attackers tam-
pering with the wireless sensor and communication network
of a remotely-operated system: a measurement jammer and a
control jammer. The two jammers and the operator are ratio-
nal decision makers and the coupled decision making process
is novelly modeled as a two-level, constrained, receding-
horizon and dynamic Stackelberg game. We propose a
receding-horizon Stackelberg control law which allows the
operator to maintain situational awareness. We quantitatively
investigate two cases: in one, both types of jammers are
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present; in the other one, the control jammer is the only
attacker. For the first case, we determine conditions for which
the closed-loop system is regionally practically stable and
derive an upper bound on the average infinite-horizon closed-
loop system performance. For the second case, the results
are refined to guarantee the closed-loop, regional exponential
stability of the system, and we find a bound on the infinite-
horizon closed-loop system performance. Due to the space
limitation, the technical proofs are omitted and provided in
the extended version [20] of this paper.

Notations. The set of all eigenvalues of matrix M ,
the spectrum of M , is denoted by σ(M), and λmax(M)
(resp. λmin(M)) stands for the maximum (resp. minimum)
eigenvalue of M . Consider the shorthands ‖x‖2M := xTMx
for the norm weighted by the matrix M and 〈x, y〉M =
xTMy for the inner product weighted by the matrix M .
Recall that λmin(M)‖x‖2 ≤ ‖x‖2M ≤ λmax(M)‖x‖2. Finally,
u(k, τ) is used to denote a sequence of control laws from k
to k+τ ; i.e., u(k, τ) := [u(k|k), u(k+1|k), · · · , u(k+N−
1|k)]. For a given horizon N > 0, and when it is clear from
the context, we will use u(k) ≡ u(k,N). The notations of
uvir(k, τ) and uvir(k) are defined in an analogous way.

II. PROBLEM FORMULATION

A. Architecture of the controlled system

Consider the following discrete-time LTI system:

x(k + 1) = Ax(k) +Bu(k), (1)

where x(k) ∈ X ⊆ Rn is the system state, and u(k) ∈
U ⊆ Rm is the system input; which are to remain in
some constraint sets X and U for each time k ≥ 0. The
matrices A ∈ Rn×n and B ∈ Rn×m represent the state
and the input matrix, respectively. We assume that the pair
(A,B) is stabilizable. The quantities ‖x(k)‖2P and ‖u(k)‖2Q
are running state and input costs, respectively, for some P
and Q positive-definite and symmetric matrices.

In the network, there are a measurement jammer and a
control jammer. More precisely, the communication channel
between the sensor and the operator involves the operator,
the sensor, and the jammers, and it is modeled as:

xc(k) = x(k) + xa(k), (2)

where x(k) is the system state sent from the sensor, xa(k)
is the measurement jammer’s signal, and xc(k) is the cor-
rupted measurement received by the operator and the control
jammer at time k ≥ 0. The attacking cost associated with
the measurement jammer is modeled by ‖xa(k)‖2Qmsr

, where
Qmsr = QTmsr > 0. Similarly, the communication channel
between the operator and the actuator, involving the operator,
the actuator and the control jammer, is modeled as:

uc(k) = u(k) + ua(k), (3)

where u(k) is the control command sent from the operator,
ua(k) is the control jammer’s signal, and uc(k) is the
corrupted control law received by the actuator at time k.
The attacking cost of the control jammer is modeled by

‖ua(k)‖2Qcnt
with Qcnt = QTcnt > 0. With the signals of the

jammers, system (1) becomes:

x(k + 1) = Ax(k) +Buc(k)

= Ax(k) +Bu(xc(k)) +Bua(k). (4)

We model the process of sequential decision making
on xa(k), u(k) and ua(k) as a finite-horizon two-level
Stackelberg (or leader-follower) game. More precisely, the
measurement jammer first declares his decision xc(k) before
the operator and control jammer choosing their own actions,
and enforces xc(k) on the other two decision makers. In this
way, the operator and the control jammer are followers of
the measurement jammer, and they are only aware of xc(k)
without knowing x(k). After observing xc(k), the operator
then announces his decision on u(k) to the control jammer.
As a result, besides acting as a follower of the measurement
jammer, the operator functions as a leader to the control
jammer. Once he knows xc(k) and u(k), the control jammer
responds to his leaders by taking the action ua(k).

B. Models of decision makers

We now proceed to describe how each player in the game
makes his decision in more detail. It is worth mentioning
that A, B, P and Q are common information for all decision
makers. The control jammer is assumed to be rational and
has two partly conflicting objectives: on the one hand, he
aims to steer the system state as far away from the origin
as possible; on the other hand, he would like to reduce his
attacking cost ‖ua(k)‖2Qcnt

. This translates into the quadratic
program parameterized by (xc(k), u(k)) ∈ Rn ×Rm:

max
ua(k)∈Rm

‖x(k + 1|k)‖2P − ‖ua(k)‖2Qcnt
,

s.t. x(k + 1|k) = Axc(k) +Bu(k) +Bua(k),

where x(k+ 1|k) is the state at time k+ 1 predicted by the
control jammer at time k based on xc(k) and u(k). We refer
to this program as QPcnt(xc(k), u(k)). The set of solutions to
QPcnt(xc(k), u(k)) is denoted as ORcnt(x(k), u(k)), where
ORcnt : Rn × Rm → 2R

m

is referred to as the optimal
response map of the control jammer.

The operator is at the middle level of the Stackelberg
game, acting as the leader of the control jammer and simul-
taneously as the follower of the measurement jammer. Then
the operator knows the map QPcnt and the state xc(k), but
he is unaware of the strategy of the measurement jammer.
We denote the control law of the operator as the set-valued
map ORop : X → 2R

m

, which will be defined later.
The measurement jammer is located at the high level

of the hierarchy and thus has full information, including
the uncorrupted state x(k) and the decision maps of his
followers; i.e., ORcnt and ORop. The measurement jammer
is endowed with two partly conflicting objectives as well:
he seeks to destabilize the system and increase actuation
costs by manipulating the measurements while avoiding a
high attacking cost ‖xa(k)‖2Qmsr

, for some Qmsr = QTmsr > 0.
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This can be modeled by the following quadratic program
QPmsr(x(k)) parameterized by x(k) ∈ Rn:

max
xa(k)∈Rn

‖u(k)‖2Q + ‖x(k + 1)‖2P − ‖xa(k)‖2Qmsr
,

s.t. x(k + 1) = Ax(k) +Bu(k) +Bua(k),

xa(k) ∈ Ωmsr(x(k)),

where u(k) ∈ ORop(x(k) + xa(k)) and ua(k) ∈
ORcnt(x(k) + xa(k), u(k)). Here, Ωmsr(x(k)) is the feasible
solution set of the measurement jammer given x(k) where
the set-valued map Ωmsr : X → 2R

n

could depend upon
ORop and will be defined later. It is noticed that the measure-
ment jammer can exactly determine x(k+1) in QPmsr(x(k)).

The above process to determine xa(k), u(k) and ua(k) se-
quentially consists of a finite-horizon constrained Stackelberg
game. That is, at any given time instant k, the measurement
jammer adopts a Stackelberg equilibrium strategy as the
leader of the operator and the control jammer, and the
control jammer exploits the optimal response to its leaders’
decisions. This procedure is repeated at the next time instant
by shifting the horizon forward. We term the collection of
these finite-horizon games over the infinite horizon as a
two-level receding-horizon constrained dynamic Stackelberg
game. The readers are referred to [5], and references therein,
for additional information on Stackelberg games. The objec-
tive of this paper is to design the control law ORop of the
operator and characterize the class of correlated jamming
attacks parameterized by Qmsr and Qcnt under which the
control law can maintain (practical) stability of system (4).
We would like to mention that X and U are hard constraints
for the operator, while the jammers have no incentive to
enforce them. Thus, the operator has to maintain states and
control laws in these regions through the devise of ORop.
We assume the following holds for the constraint sets:

Assumption 2.1 (Constraint set assumption): If only
the control jammer is present, the set X (resp. U )
is any convex set in Rn (resp. Rm). Under both
jammers, the constraint set has the form X := {x ∈
Rn | xmin ≤ x ≤ xmax}, where xmin ≤ x ≤ xmax
(resp. U := {u ∈ Rm | umin ≤ u ≤ umax}, where
umin ≤ u ≤ umax) are vectors in Rn (resp. Rm)1.

Here we would like to make some remarks to justify our
model. Dynamic non-cooperative games without constrained
sets have been extensively studied; e.g., in [5] and references
therein. These games have been used to study behavior
of self-interested agents in economics and communication
networks; see [2], [8]. Existing solutions involve solving a
set of linear matrix equations and require some stabilizability
and detectability properties of the limiting solutions of linear
matrix equations. As pointed out in [5], solving the set of
linear matrix equations and further satisfy the stabilizability
and detectability properties is quite hard. Secondly, the
presence of constraint sets hampers the use of the approaches
in [5]. Thirdly, multiple levels introduce another challenge
to find the solutions of dynamic games. Lastly, existing

1Inequalities are understood component-wise.

solutions to dynamic games require that decision makers
are able to share their private information (e.g., payoffs or
strategies) with opponents. Yet, this information exchange
is not reasonable to expect in hostile environments. To
overcome these challenges, our proposed model exploits a
receding-horizon methodology to provide an approximation
to the infinite-horizon dynamic Stackelberg game.

In the structure of the closed-loop control system, at
each time instant, decision makers choose their actions
sequentially. This motivates us to employ Stackelberg game
to model this process. In an adversarial context, we argue
that this is a more reasonable model than by Nash games
where decisions are made simultaneously. Furthermore, the
leader-follower framework allows us to capture possible
information asymmetry between the control system operator
and the jammers. This would facilitate the assessment of the
value of information (equivalently, the price of the lack of
information) in resilient control: how the decision makers
play against opponents to maximize their own interests by
means of manipulating the information they possess.

III. RECEDING-HORIZON STACKELBERG CONTROL LAW

This section is devoted to the design of a receding-horizon
Stackelberg control law. Fix a time horizon N > 0. Next, we
introduce a virtual control jammer, and define his optimal
response map ORN

vir : X ×UN → 2R
m×N

as follows. Given
xc(k) ∈ X and ũ(k) ∈ UN , we define ũvir(k) sequentially.
Consider x(k+τ |k) and ũ(k+τ |k) for some 0 ≤ τ ≤ N−1,
we define optimization problem QPvir(x(k+τ |k), ũ(k+τ |k))
for the virtual control jammer in the following form:

max
uvir(k+τ |k)∈Rm

‖x(k + τ + 1|k)‖2P − ‖uvir(k + τ |k)‖2Qcnt
,

s.t. x(k + τ + 1|k) = Ax(k + τ |k)

+Bũ(k + τ |k) +Buvir(k + τ |k).

Let ũvir(k + τ |k) be a solution of QPvir(x(k + τ |k), ũ(k +
τ |k)) and then we have x(k + τ + 1|k) = Ax(k + τ |k) +
Bũ(k + τ |k) + Bũvir(k + τ |k). This process is repeated
for all 0 ≤ τ ≤ N . The set of solutions ũvir(k) =
[ũvir(k|k), ũvir(k + 1|k), · · · , ũvir(k + τ |k)] ∈ Rm×N to the
above N -horizon sequential optimization problem is denoted
by ORN

vir(xc(k), ũ(k)).
With ORN

vir defined above, we are now in a position to
construct a N -horizon minimax problem (N -MINI, for short)
parameterized by xc(k) ∈ Rn for the operator:

VN (xc(k)) := min
u(k)∈Rm×N

max
uvir(k)∈ORNvir(xc(k),u(k))

N−1∑
τ=0

(
‖x(k + τ |k)‖2P + ‖u(k + τ |k)‖2Q

)
+ ‖x(k +N |k)‖2P

s.t. x(k + τ + 1|k) = Ax(k + τ |k)

+Bu(k + τ |k) +Buvir(k + τ |k),

x(k|k) = xc(k), x(k + τ + 1|k) ∈ X0,

u(k + τ |k) ∈ U, 0 ≤ τ ≤ N − 1.

In the N -MINI, the set X0 ⊆ X is some convex set and will
be specified later. The set of solutions to the above minimax
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problem is denoted by ORN
op(xc(k)), where the set-valued

map ORN
op : X → 2U

N

. The optimal response map of the
operator ORop : X → 2U is defined in such a way that if
u(k) ∈ ORN

op(xc(k)) then u(k|k) ∈ ORop(xc(k)).

Remark 3.1: In the N -MINI parameterized by xc(k), the
quantity x(k+τ |k) (resp. u(k+τ |k), uvir(k+τ |k)) represents
the future system state (resp. the input of the operator, the
input of the virtual control jammer) at time k + τ predicted
by the operator and the virtual control jammer at time k.
This prediction starts from the corrupted state xc(k), and
thus prediction errors on system states are propagated and
amplified along the prediction horizon. •

We now formally state the receding-horizon Stackelberg
control law, namely ψN , in the table. To do so, it is assumed
that the operator has a choice on the running state matrix P ,
the input cost matrix Q, and the constraint set U .

Algorithm 1 The receding-horizon Stackelberg control law
Initialization: The operator executes the following steps:

(I.1) Choose P such that Qcnt −BTPB > 0.
(I.2) Choose K such that σ(Ā) is contained in the unit
circle, where Ā := (I+Λ(Qcnt))(A+BK) and the linear
operator Λ : Rm×m → Rn×n is defined as Λ(Qcnt) :=
B(Qcnt −BTPB)−1BTP .
(I.3) Choose any Q̄ = Q̄T > 0, solve the following
Lyapunov equation to obtain its solution P̄ = P̄T > 0:

ĀT P̄ Ā− P̄ = −Q̄. (5)

(I.4) If only the control jammer is present, choose the
largest c > 0 such that the level set X0 := {x ∈
Rn |W (x) ≤ c} is contained in X where W (x) := ‖x‖2

P̄
.

If both jammers are present, then choose X0 = X . After
that, choose U such that Kx ∈ U for all x ∈ X0.

Iteration: At each time k ≥ 0, the decision makers choose
their own actions sequentially:

1: The measurement jammer first corrupts the measurement
x(k) by adding the signal xa(k) ∈ ORmsr(x(k)); i.e.,
xc(k) = x(k) + xa(k).

2: After receiving xc(k), the operator then chooses u(k) =
u(k|k) ∈ ORop(xc(k)), and then sends u(k) to the
actuator through the communication channel.

3: The control jammer corrupts u(k) by adding its signal
ua(k) ∈ ORcnt(xc(k), u(k)); i.e., uc(k) = u(k)+ua(k).

4: The actuator receives and then implements the corrupted
control law uc(k).

We conclude this section with some remarks. The N -MINI
parameterized by xc(k) is equivalent to the following N -
horizon quadratic program, namely N -QP, parameterized by

xc(k) ∈ X:

VN (xc(k)) = min
u(k)∈Rm×N

N−1∑
τ=0

(
‖x(k + τ |k)‖2P

+ ‖u(k + τ |k)‖2Q
)

+ ‖x(k +N |k)‖2P ,
s.t. x(k + τ + 1|k) = (I + Λ(Qcnt))(Ax(k + τ |k)

+Bu(k + τ |k)), x(k|k) = xc(k), x(k + τ + 1|k) ∈ X0,

u(k + τ |k) ∈ U, 0 ≤ τ ≤ N − 1,

and then ũvir(k) can be obtained through ũvir(k) =
ORN

vir(xc(k), ũ(k)). This equivalence allows the operator to
find the solution to the N -MINI by solving the N -QP. The
verification can be found in the extended version.

The operator employs a receding-horizon control method-
ology and its use is motivated by the advantages of receding-
horizon control: suboptimal control and its unique ability to
explicitly handle hard constraints. The paper [12] provides
an excellent survey on recent advances in receding-horizon
control. The control law for the operator is of mixed nature:
on the one hand, it is an optimal plan at equilibrium with the
leading Stackelberg strategy of the measurement jammer; on
the other hand, the follower policy of the control jammer is
at equilibrium with it. This control law takes advantage of
the operator being the leader of the control jammer, and the
information of the control jammer is utilized in the choices of
the matrices of P , Ā, P̄ , Q̄, and constraint sets of X0 and U .
This allows the operator to maintain situational awareness.
However, the operator does not have information on the cost
of the measurement jammer, which could result in a greater
damage to the system.

IV. STABILITY AND PERFORMANCE ANALYSIS

We now proceed to analyze stability and infinite-horizon
performance of system (4) under ψN . As before, we consider
two cases depending on type of jammer present. We start
by introducing some additional notation as follows: λ :=
1− λmax(Q̄)/λmax(P̄ ) and

αN :=
λmax(KTQK + ĀTPĀ)

λmin(P )
×
N−1∏
κ=0

(1− λmin(P )

φκ+1
),

φN :=
λmax(P̄ )λmax(P +KTQK)

λmin(P̄ )

1− λN+1

1− λ
,

φ∞ :=
λmax(P̄ )λmax(P +KTQK)

λmin(P̄ )

1

1− λ
.

It follows from [13] that λ ∈ (0, 1), and clearly, 1 ≤ φN ≤
φ∞ for any N ∈ Z>0. Observe that the following holds for
any κ ∈ Z>0:

λmin(P )

φκ+1
≥ λmin(P )

λmax(P +KTQK)

λmin(P̄ )

λmax(P̄ )
(1− λ) ∈ (0, 1).

This ensures the monotonicity of αN that αN ↘ 0 as N ↗
+∞. Let ĉ > 0 the largest positive constant such that the
level set X̂0 := {x ∈ Rn | W (x) ≤ ĉ} is contained in
X . Let R ∈ (0, ĉλmin(P )

φ∞λmax(P̄ )
) the largest constant such that

BR := {x ∈ Rn | ‖x‖2 ≤ R} is a subset of X̂0.
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A. The presence of both jammers

We first examine the more general case where the mea-
surement jammer is taken into account. It is worthy to recall
that X and U are polyhedra as defined in Assumption 2.1.
Notice that the following property holds:

λmin(P )

φN
=

λmin(P )

λmax(P +KTQK)

λmin(P̄ )

λmax(P̄ )

1− λ
1− λN+1

< 1.

Recall αN ↘ 0 as N ↗ +∞. Then there is a smallest
positive integer N∗ such that (1 +αN∗−1)(1− λmin(P )

φN∗
) < 1.

We then choose any N ≥ N∗, and start our analysis by in-
vestigating the continuity and piecewise quadratic properties
of VN , and piecewise affinity of ψN .

Lemma 4.1: (Continuity and piecewise quadratic
property of VN and piecewise affinity of ψN ) Let u(k)
be the solution to the N -QP parameterized by xc(k).
Then VN (xc(k)) is continuous and piecewise quadratic, and
u(k|k) is piecewise affine. That is, if xc(k) is in the critical
region CR` := {x ∈ Rn | H`x ≤ Ĥ`}, then VN (xc(k)) =
‖xc(k)‖2M`

+ 〈R`, xc(k)〉+ S` and u(k|k) = F`xc(k) +G`
where F`, G`, H`, Ĥ`, M`, R` and S` are matrices (or
vectors, scalars) with appropriate dimensions.

Proof: This is a direct result of Corollary 1 and 2 in [6]
by letting C = I and ymin = −∞, ymax = +∞.
By [6], we know that the collection of critical regions
CR` consists of a partition of X and the total number
ncr of critical regions is finite. For any x ∈ X , let `x ∈
{1, · · · , ncr} be the index such that x ∈ CR`x . Consider
now the constants λ̂ := max`∈{1,··· ,ncr} λmax(M`) and β̂ :=
max`∈{1,··· ,ncr} ‖R`‖. For the partition, we choose the largest
α > 0 such that

(1 +
α

λmin(P )

ncr∑
`=1

λmax(M`))(1 + αN−1)

× (1− λmin(P )

φ∞
)(1 +

αλ̂

λmin(P )
) < 1. (6)

The existence of α can be verified by noting that (1 +

αN∗−1)(1− λmin(P )
φN∗

) < 1 and N ≥ N∗.
In the following, we enforce two restrictions on the

strategies of the measurement jammer. These conditions are
sufficient to guarantee system practical stability if the cost
of the jammer is sufficiently high. First, xa(k) is to be linear
in x(k). Second, we require that the corrupted state xc(k) is
in the same critical region as x(k). This is formalized in the
following assumption:

Assumption 4.1: In QPmsr(x(k)), the set-valued map
Ωmsr is defined as Ωmsr(x(k)) = {xa ∈ Rn | xa =
αx(k), α ∈ R} ∩ CR`x(k) .

With the piecewise affine property of ψN and the restric-
tion xa(k) ∈ CR`x(k) , QPsmr(x(k)) is equivalent to the one

restricted in critical region `x(k), which is given as follows:

max
αa(k)∈R

‖F`x(k)(x(k) + xa(k)) +G`x(k)‖
2
Q

+ ‖x(k + 1)‖2P − ‖xa(k)‖2Qmsr

s.t. x(k + 1) = (I + Λ(Qcnt))

× (Ax(k) +BF`x(k)(x(k) + xa(k)) +BG`x(k))

xa(k) = αa(k)x(k),

H`x(k)xa(k) ≤ Ĥ`x(k) −H`x(k)x(k).

The following assumption ensures that the quadratic program
QPmsr(x(k)) is well defined:

Assumption 4.2: It holds that Qmsr − 〈F`, F`〉Q − 〈(I +
Λ(Qcnt))BF`, (I + Λ(Qcnt))BF`〉P > 0 for all ` ∈
{1, · · · , ncr}.

Roughly speaking, Assumption 4.2 requires that the cost
of the measurement jammer is relatively high given the costs
of his followers and the control law of the operator. Then,
one can see that, when system state x(k) is outside the unit
circle, ‖xa(k)‖ is upper bounded by a linear function of
x(k); otherwise, ‖xa(k)‖ is uniformly bounded.

Lemma 4.2 (Boundedness of xa(k)): If ‖x(k)‖ ≥ 1,
then ‖αa(k)‖ ≤ η, for some positive η. Furthermore, if
‖x(k)‖ ≤ 1, then ‖xa(k)‖ ≤ η.

The following lemma shows that VN (xc) is bounded above
by a scaled version of VN (x) added by a square function of
‖xa‖ where xc is x perturbed by xa.

Lemma 4.3: (Sensitivity analysis of the optimal value
function VN ) Let x, xa, xc ∈ Rn, with xc = x+ xa. Then,
we have VN (xc) ≤ ϑaVN (x) + ϑb‖xa‖2 + ϑc‖xa‖.

Before stating the main result of this section, we introduce
several notations and an assumption. Denote constants Θ and
Π as follows:

Θ :=
(
ϑa(1 + αN−1)(1−

λmin(P )

φN
)(1 +

λ̂

α
)

+ ϑbλmax(AT (I + Λ(Qcnt))
T (I + Λ(Qcnt))A)

) (ηa + ηb)2

η2c

+
(
ϑa(1 + αN−1)(1−

λmin(P )

φN
)β̂

+ ϑc‖(I + Λ(Qcnt))A‖
)ηa + ηb

ηc
,

Π := ϑa(1 + αN−1)(1−
λmin(P )

φN
)(1 +

αλ̂

λmin(P )
) +

Θ

λmin(P )
.

Choose ε ∈ (0, 1−(ϑa(1+αN−1)(1− λmin(P )
φN

)(1+ αλ̂
λmin(P ) ))).

Assumption 4.3: It holds that Π < 1 − ε, and there is
r > 0 such that the following holds for some ε′ ∈ (0, ε):

(1 +
(ηa + ηb)

2

η2
c

)r ≤ R

2
− (ηa + ηb)

2

η2
c

,

(1 +
(ηa + ηb)

2

η2
c

)
(φNr + Θ

ε′ )
2

λmin(P )2
≤ R

2
− (ηa + ηb)

2

η2
c

.

Denote the ball Br := {x ∈ Rn | ‖x‖2 ≤ r}. The following
theorem is the main result of the section, and characterizes
the practical stability of ψN with its average infinite-horizon
performance under both jammers.
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Theorem 4.1: (Regionally practical exponential stabil-
ity and the average of the infinite-horizon performance)
Consider the receding-horizon Stackelberg control law ψN
in the presence of both jammers. If Assumptions 2.1, 4.1, 4.2
and 4.3 hold, then system (4) under ψN is practically
exponentially stable in Br with geometric convergence rate

1− ε+ ε′ and lim sup
k→+∞

‖x(k)‖ ≤

√
Θ

λmin(P )ε′
. Furthermore,

the average of the infinite-horizon performance of ψN is
estimated in the following way:

lim sup
K→+∞

∑K
k=0(‖x(k)‖2P + ‖uc(k)‖2Q)

K
≤ 2γφN (

ηa + ηb
ηc

+
ηa + ηb + ηc

ηc

Θ

ε′λmin(P )
) +

γλmax(P )Θ

ε′λmin(P )

+ 4|(Qcnt −BTPB)−1BTPA|2λmax(Q)
(ηa + ηb)

2

η2
c

.

B. The presence of the control jammer

Here, we assume there is no measurement jammer in the
network; i.e., Qmsr = +∞I and xa(k) = 0. In this way,
xc(k) = x(k) and x(k + 1|k) = x(k + 1). Choose c′ > 0
such that Xint,N := {x ∈ Rn | VN (x) ≤ c′} ⊆ X0.

The following theorem characterizes regionally exponen-
tial stability and infinite-horizon performance of system (4)
under ψN when the measurement jammer is absent.

Theorem 4.2: (Regionally exponential stability and
infinite-horizon performance) Assume the measurement
jammer is absent. Let N∗ to be the smallest integer such
that (1 +αN∗−1)(1− λmin(P )

φN∗
) < 1. Then, if Assumption 2.1

holds, for any N ≥ N∗, system (4) under ψN is exponen-
tially stable in Xint,N and an estimate of the exponential
convergence rate is (1 + αN−1)(1 − λmin(P )

φN
). Furthermore,

the infinite-horizon performance of system (4) under ψN is
bounded above by λmin(P )

1−(1+αN−1)(1−λmin(P )

φN
)
‖x(0)‖2.

Remark 4.1: Recall that αN is strictly decreasing in N
and φN is strictly increasing in N . Theorem 4.2 then reveals
that, a larger horizon N in φN improves convergence rate and
infinite-horizon performance of the closed-loop system. On
the other hand, it follows from the monotonicity of VN that
Xint,∞ ⊆ Xint,N+1 ⊆ Xint,N . This means that the domain
of attraction Xint,N shrinks as N increases. •

Remark 4.2: At each iteration, the measurement jammer,
the operator and the control jammer face their correspond-
ing optimization problems; i.e., QPsmr(x(k)), N -QP and
QPcnt(x(k) +xa(k), u(k)) respectively. It should be noticed
that these are all quadratic programs and there are a number
of efficient algorithms (e.g., interior-point methods) to solve
these problems. •

V. CONCLUSIONS

In this paper, we have studied a resilient control prob-
lem where a linear dynamic system is subject to cyber
attacks launched by correlated jammers. We have proposed
a novel leader-follower game formulation to model the

interdependency between the operator and adversaries. We
devised a receding-horizon Stackelberg control law to main-
tain situational awareness, and further analyzed closed-loop
system stability and performance. Future work will address
distributed versions of the proposed algorithm.
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