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Abstract—In this paper, we investigate the problem of spectrum
leasing in cognitive radio (CR) networks, while incorporating two
advanced physical-layer technologies, i.e., multiple-input multiple-
output (MIMO) and distributed interference alignment. We
present a cooperative spectrum leasing scheme for primary and
secondary users to balance the tension between data transmission
and revenue collection/payment. A Stackelberg game is formu-
lated, where the primary user is the leader, and secondary users
are followers. With backward induction, we derive the optimal
strategies for primary and secondary users that can achieve the
unique Stackelberg equilibrium, where no player can gain by a
unilaterally changing strategy. We find that spectrum leasing is al-
ways beneficial to enhancing the utilities of primary and secondary
users. The proposed scheme outperforms a no-spectrum-leasing
scheme and a cooperative scheme presented in the literature with
considerable gains, which demonstrate the benefits of spectrum
leasing and distributed interference alignment and validates the
efficacy of the proposed scheme.

Index Terms—Cognitive radio (CR) networks, distributed
interference alignment, interference alignment, multiple-input
multiple-output (MIMO), Stackelberg game.

I. INTRODUCTION

A. Background and Motivation

DUE TO the tremendous increase in wireless data traffic, a

usable radio spectrum is quickly being depleted. However,

according to the Federal Communications Commission report

[2], while some licensed bands are overcrowded, many others are

underutilized. Under the traditional fixed spectrum allocation

policy, when licensed users (or primary users) are not active,

the channels assigned to them are wasted (termed as spectrum

opportunities). Cognitive radios (CRs) are proposed as a new

wireless paradigm for exploiting such spectrum opportunities,

to enable flexible and efficient access to a radio spectrum [3]. In

CR networks, unlicensed users (or secondary users) are allowed

to access the licensed band opportunistically, whereas primary

users gain by collecting revenue for spectrum leasing.

Such a CR paradigm has been shown to have high potentials

for enhancing spectrum efficiency [4]. As significant advances
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are made in many aspects of CR research, such as spectrum

sensing and dynamic spectrum access, it is also desirable to

incorporate advanced physical-layer techniques into CR net-

works. One of such techniques is multiple-input multiple-output

(MIMO), which can be used to reduce the bit error rate,

transmit more packets, or strengthen the signal-to-interference-

and-noise ratio. In the past decade, MIMO has evolved from

a theoretic concept to a technology that can be widely used

in practice [5]. It is desirable to exploit MIMO for enhanced

primary and secondary transmissions.

The second physical-layer technology is interference align-

ment, which is a significant breakthrough that exploits interfer-

ence in interference-limited wireless networks [6]. Traditionally,

if interference is small, it is simply treated as background

noise; if interference is large, it can be decoded first and

then removed from the received signal (i.e., interference can-

celation); if interference is comparable to the desired signal,

we usually try to avoid it by orthogonalizing the channels

or adopting a medium access control mechanism. Unlike tra-

ditional approaches, interference alignment casts interference

to half of the received signal space to achieve a normalized

degree of freedom (DoF) of K/2, where K is the number of

interfering users.1 Since an interference-free channel only has

a normalized DoF of 1, substantial system throughput gain can

be achieved with interference alignment when K is large. For

interference alignment, a strong requirement is the availability

of global channel state information (CSI) at every node. To

relax this requirement, distributed interference alignment is

investigated, and an iterative algorithm is proposed in [7] to

achieve interference alignment with local CSI.

B. Approach

In this paper, we investigate how to incorporate these two ad-

vanced physical-layer technologies, i.e., MIMO and distributed

interference alignment, in CR networks. The CR network con-

sists of a primary user and multiple secondary users, each with

N antennas. Time is divided into time slots of equal length

with a normalized length. The primary user has some data to

send and requires a certain nonzero data rate in each time slot.

It also leases a spectrum to secondary users for more revenue.

Secondary users pay the primary user for data transmission in

the time slot [1].

A key observation is that the licensed users usually have

a finite amount of data to send. After a period of high rate

1If the capacity can be written as C(SNR)=d log(SNR)+o(log(SNR)),
then the channel is said to have a DoF of d [6].
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transmission, they might be interested in leasing the spectrum to

unlicensed users so that revenue can be collected. On the other

hand, the unlicensed users desire the opportunities for data

transmission if the associated cost is acceptable. Therefore, in

the proposed cooperative spectrum leasing scheme, the primary

user divides each time slot into three phases: i) In Phase I,

only the primary user transmits with MIMO; ii) in Phase II,

the primary user and a selected set of secondary users simulta-

neously transmit using distributed interference alignment; and

iii) in Phase III, only the selected secondary users transmit with

distributed interference alignment. The primary user decides

the division of the three phases, selects the set of secondary

users for spectrum leasing, and collects a revenue from the

selected secondary users proportional to their transmit powers

(or data rates).

We find that such a cooperative spectrum leasing frame-

work fits well with the Stackelberg game theory [19]. In the

formulated Stackelberg game, the primary user is the leader,

and the secondary users are followers. The leader decides the

division of a time slot into three phases and the selection of

followers, aiming to balance its own data transmission and

revenue collection by leasing a spectrum. Once the leaders’

decisions are made, a follower can choose a transmit power

(and thus the corresponding data rate) based on how much it

is willing to pay. We define the Stackelberg equilibrium, where

neither the primary user nor any secondary user could gain by

a unilateral change of strategy. We present a rigorous analysis

with the backward induction method [19] and derive the unique

Stackelberg equilibrium for the cooperative spectrum leasing

game.

We find that the most desirable scenario for secondary users

is to have only Phase III in the time slot with only three players.

The strategy for the primary user depends on the number of

secondary users. With more than 2N − 2 secondary users,

exactly 2N − 2 secondary users will be selected, each having

one interference-free channel, and there will be only Phase II

in the time slot. With less than 2N − 2 secondary users,

all secondary users will be selected, and there will be only

Phases II and III in the time slot. Therefore, spectrum leasing is

always helpful in increasing the utilities of both the primary and

secondary users. In the simulation study, we first compare the

proposed scheme with a scheme without spectrum leasing to

demonstrate the benefits of spectrum leasing. We then compare

the proposed scheme with the cooperative scheme presented

in [8] to demonstrate the efficacy of distributed interference

alignment. Significant performance gains are achieved by the

proposed scheme in these simulations.

C. Related Work

This paper is closely related to the research on CR networks.

(For a general survey of CRs, see [4].) In a CR network, the

primary user is either aware or unaware of the existence of

secondary users. This paper falls under the first category. The

primary user not only is aware of the existence of secondary

users but also knows the impact of the rules on secondary-

user behavior. Most of the previous work, such as [8]–[12],

only considered the single-antenna case, whereas we con-

sider multiple antennas and exploit multiplexing gain in this

paper.

This paper is also related to the research on interference

alignment. In [6], Cadambe and Jafar introduced the interfer-

ence alignment technique. The significance of their work is that,

by adopting interference alignment, the system is no longer

interference limited. With symbol extension, the system could

achieve a normalized DoF of K/2. Another important issue,

i.e., the feasibility condition, was investigated in [13] for struc-

tureless generic wireless channels. For wireless channels with

a structure, such as diagonal channels, our recent paper [14]

investigated the application of interference alignment in mul-

tiuser orthogonal frequency-division multiplexing networks. To

address the concern on the global CSI requirement, a dis-

tributed interference alignment algorithm was proposed in [7],

which only requires local CSI. In [15], interference alignment

and cancelation were integrated to enhance the throughput of

MIMO Wi-Fi networks. In [16], Li et al. proposed a general

algorithm for the multihop mesh networks. This work was

motived by these interesting papers. However, much of the

related work mainly focused on physical-layer issues. This

paper considers how to adopt distributed interference alignment

in a MIMO CR network with a novel Stackelberg-game-based

approach.

Recent works, i.e., [17] and [18], have considered the prob-

lem of incorporating interference alignment in CR networks

under the same one-primary-user–multiple-secondary-user sce-

nario. In [17], Amir et al. characterized the achievable DoF for

the secondary users and an iterative algorithm to achieve the

DoF. In [18], Zhou et al. optimized both the precoding vectors

and power allocation to enhance the rates of secondary users,

where a gradient method is used. However, the prior work does

not take into consideration the fact that the primary user has

a finite amount of data to send in practice. This paper mainly

considers how to use distributed interference alignment in the

MIMO CR network and focuses on the case of finite demand of

the primary user.

D. Organization

The remainder of this paper is organized as follows: In

Section II, we introduce the preliminaries and system model.

We define the Stackelberg game in Section III and derive the

Stackelberg equilibrium in Section IV. Simulation results are

presented in Section V. Section VI concludes this paper. The

notations used in this paper are summarized in Table I.

II. PRELIMINARIES AND SYSTEM MODEL

A. MIMO and Distributed Interference Alignment

This paper is closely related to MIMO and distributed inter-

ference alignment. We briefly review the preliminaries in this

section. More details can be found in [5] and [7]. (For recent

developments in MIMO techniques, see [20]–[22].)

1) MIMO Capacity Basics: With the advance of antenna

technology, it is now feasible to equip wireless devices with

multiple antennas. In general, three types of performance gains
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TABLE I
NOTATION TABLE

can be achieved with MIMO, namely, diversity gain, multiplex-

ing gain, and antenna gain.

For a MIMO system with N ≥ 2 antennas, assume that the

CSI H is known at the transmitter. Since the MIMO channel can

be decomposed into d parallel channels, the channel capacity is

given by [23]

C = max
pi:
∑

i
pi≤P

d∑

i=1

log

(

1 +
σ2
i pi
N0

)

(1)

where P denotes the total transmitter power limit, pi is the

power allocated to the ith parallel channel, σ2
i = λi, and λi is

the ith largest eigenvalue of matrix HHH . Note that bandwidth

is normalized throughout this paper.

In the high-SNR region, equal power allocation is shown

to be suboptimal but is easier for mathematical modeling than

waterfilling. When the transmit power is P/d for each parallel

channel, the total capacity can be approximated as

C ≈
d∑

i=1

log

(

1 +
Pσ2

i

dN0

)

≈
d∑

i=1

log

(
Pσ2

i

dN0

)

= d log(SNR) +

d∑

i=1

log

(
σ2
i

d

)

. (2)

The second item in (2) is negligible when the SNR is high. We

thus ignore this term in the following analysis.

2) Distributed Interference Alignment: The basic idea of

interference alignment is to cast the interference to no more

than half of the received signal space and leave the other half

clean and recognizable. If there are K users, in total, K/2

normalized DoF could be achieved. The system throughput

can be greatly enhanced when K is large. For K = 0 and 1,

there is no interference; for K = 2, the normalized DoF is

1, which is another trivial case. Therefore, we only consider

the case where the number of interfering nodes K satisfies

K ≥ 3. It is worth noting that, to align interference perfectly,

global CSI is required at every participating node. To overcome

this challenge, an iterative distributed interference alignment

algorithm was proposed in [7], which only requires local CSI

at each interfering node. By utilizing the reciprocity of wireless

networks, it works as follows [7].

First, compute the interference covariance at each receiver.

Thus

Qk =

K∑

j=1,j �=k

Pj

dj
HjkVjV

H
j HH

jk (3)

where Pj is the total transmitting power of user j, Vj is the

precoding matrix at transmitter j, and Hjk is the channel gain

from transmitter j to receiver k. Minimizing the interference

leakage at each receiver, the interference cancelation matrix Uk

is given as

�uki
= νi[Qk], i = 1, . . . , d (4)

where �uki
is the ith column of Uk, and νi[Qk] is the ith

smallest eigenvalue’s corresponding eigenvector.

Then, reverse the direction of communication, and let
←−
Vk =

Uk. The interference at the reverse link’s receiver is

←−
Qk =

K∑

j=1,j �=k

←−
Pj

dj

←−
Hjk

←−
Vj

←−
V

H

j

←−
H

H

jk. (5)

Minimizing the interference leakage at each receiver of the

reverse link, the interference cancelation matrix is given as

←−
�u ki

= νi

[
←−
Qk

]

, i = 1, . . . , d. (6)

Then, reverse the direction again, and let Vk =
←−
Uk. These

steps are repeated until convergence is achieved.

The general feasibility condition for interference alignment

is given by

UH
k HjkVj = 0, forj �= k (7)

rank
(
UH

k HkkVk

)
= dk, for all k. (8)

In [13], a system is called proper if it satisfies the following

condition:

d ≤ 2N/(K + 1). (9)

Since distributed interference alignment should also satisfy the

conditions given in (7) and (8), to simplify the discussion,
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Fig. 1. Three-phase operation of the MIMO CR network with distributed
interference alignment.

we consider a proper system to be feasible for distributed

interference alignment.

B. System Model and Assumptions

The MIMO CR network is shown in Fig. 1. There are one

primary user and KT secondary users sharing the licensed

spectrum, each with N antennas. We consider a time-slotted

system, where each time slot is normalized to 1 unit in length

and is divided into three phases, with lengths αβ, α(1 − β), and

(1 − α), respectively, for fractions 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1.

In Phase I, the primary user transmits its packets at the

highest rate using MIMO, and the secondary users remain

silent. The DoF for the primary user is dI = N . The achievable

rate of the primary user in Phase I is

RI
P = dI log(SNR) (10)

where SNR is assumed to be constant during a time slot.

We assume that the primary user always has a finite amount

of packets to send in each time slot. After a period of high data

rate transmission (with length αβ), the primary user has the

incentive to lease the spectrum to secondary users to increase

its utility, by collecting revenue from selected secondary users

(but with a lower data rate for itself). In Phase II, the primary

user and K ∈ [0,KT ] selected secondary users simultaneously

transmit using distributed interference alignment, with a DoF

of dII = ⌊(2N/K + 2)⌋. A selected secondary user makes

payments that are proportional to its transmit power (i.e., its

data rate), and the primary user collects payments from all

selected secondary users. The achievable rate of the primary

user in Phase II is

RII
P = dII log(SNR). (11)

The achievable rate of secondary user Si in Phase II is

RII
Si

= dII log(SNRi) (12)

where SNRi = Pi/N0 is the SNR for each selected secondary

user, which is assumed to be constant in a time slot.

In Phase III, the primary user stops its transmission and

leases the spectrum to selected secondary users, which trans-

mit using distributed interference alignment with dIII =
⌊(2N/K + 1)⌋. In Phase III, the achievable rate of secondary

user Si is

RIII
Si

= dIII log(SNRi). (13)

As in prior work [12], [24], we assume a common control

channel for the primary user and secondary users to exchange

precoding and interference cancelation matrices, weight factor

information, and fractions α and β. Channel estimation is

completed before data transmissions.

III. STACKELBERG GAME FORMULATION

In the MIMO CR network, the primary user decides the

division of a time slot into three phases (some could be of

zero length if α or β is set to zero) and selection of secondary

users, while balancing its own data transmission and revenue

collection by leasing a spectrum. Once decisions are made

by the primary user, a secondary user can choose a transmit

power (and the corresponding data rate) based on how much

it is willing to pay. Such interactions fit perfectly with the

Stackelberg game model [19].

A. Stackelberg Game Formulation

Here, we formulate a Stackelberg game for the MIMO CR

network with distributed interference alignment. The primary

user is the leader, and the secondary users are followers. The

strategy of the primary user is given by

SP = {α, β,K|0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 3 ≤ K ≤ KT } (14)

where KT is the total number of secondary users in the system.

The secondary-user strategy is to find a transmit power Pi.

Thus

SSi
= {Pi|0 ≤ Pi ≤ Pmax}, for all i. (15)

Here, we assume that the maximum power of each secondary

user is very large, i.e., Pmax ≥ 2wSN/C0, where C0 is the unit

price for secondary-user transmit power [see (16)], and wS is

the weight factor for secondary-user utility [see (17)].

The primary user transmits its data in Phases I and II and

collects revenue in Phases II and III. The utility of the primary

user is the sum of data transmitted and revenue collected, as

UP = wP fP (RP ) +

K∑

k=1

C0Pi (16)

where RP = αβRI
P + α(1 − β)RII

P is the amount of primary-

user data transmitted, wP is a weight factor, C0 is the unit

price for secondary-user power, and fP (x) is the satisfaction

function of the primary user with respect to data transmission.

Since the primary user always has some data to send, it requires

a minimum data rate. Naturally, we choose fP (x) = ln(x),
x ≥ 0. The negative value for very small x serves as a penalty

that forces the primary user to achieve a minimum data rate.
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From the shape of fP (x), we know that at the initial stage,

the primary user is enthusiastic about data transmission. After

a period of transmission, even a great increase in the data trans-

mission can only result in a small increase in the satisfaction.

Note that we assume the primary user always has some data to

send in each time slot. If the primary user has no data to send,

it will provide all the time and spectrum to the secondary users

and merely collect revenues. This way, the primary user is in

fact serving as a service provider rather than as a service user.

We exclude this case in the following analysis, while focusing

on the case when the primary user is also a spectrum user.

Since the primary user is rational and selfish, it aims to

maximize UP by controlling the lengths of the three phases

and selecting secondary users to participate in the game. By

adjusting weight wP , the primary users can trade off between

data transmission and revenue collection. This could be related

to the content type that the primary user is transmitting. If the

primary user is transmitting a high-resolution video, it may

assign a large number to wP . That is, the primary user currently

values data transmission much more than revenue collection.

To maximize UP , the primary user can simply set α = 1 and

β = 1 (i.e., there are no Phases II and III). If the primary user

is surfing the Internet and is delay tolerant, it may assign wP

a small number to make revenue collection more important for

maximizing UP .

Selected secondary users transmit their data during Phases II

and III and make a one-time payment to the primary user in

each time slot. The utility of the secondary user is given by

USi
= wSfS(RSi

)− C0Pi (17)

where RSi
= α(1 − β)RII

Si
+ (1 − α)RIII

Si
, fS(x) is the satis-

faction function of the secondary user, and wS is the weight

factor. As in prior work [8], we assume identical wS for all

the secondary users to simplify notation. The solution could

be easily extended to the case of heterogeneous wS values.

Since the essence of CR is to opportunistically exploit an un-

derutilized spectrum, we choose fS(x) = x, indicating that the

secondary users operate in a best effort manner. By assigning a

large value to wS , the secondary user cares more about its data

transmission. On the contrary, if a small value is assumed for

wS , the secondary user is more concerned about the payment

to the primary user. The weight wS allows a secondary user to

trade off between data transmission and payment.

Therefore, we define a Stackelberg game, with players, their

roles, strategies [see (14) and (15)], and utilities [see (16) and

(17)] specified. We provide a thorough analysis of the game

with respect to the existence and uniqueness of the Stackelberg

equilibrium and optimal strategies in Section IV.

B. Discussion

From a secondary user’s point of view, it prefers to transmit

more data while keeping the cost as low as possible. If there are

fewer players, the DoF can be increased. Since the DoF is a pre-

log factor [see (12) and (13)], transmitting with a larger power

when the DoF is high is definitely a better choice. At the same

time, since the primary user will not participate in Phase III,

the DoF could be further increased with one less player in this

phase. Once the one-time payment is made, the secondary users

can transmit during both Phases II and III and prefer longer

periods for these phases. To sum up, with the unit price fixed,

the secondary users favor fewer players and longer duration of

Phase II or Phase III, preferably Phase III.

As the leader, the primary user has the advantage of making

a tradeoff between data transmission and revenue collection.

In Phase I, the primary user’s transmission rate is high. More

primary user data could be transmitted if Phase I is longer.

In Phase II, the primary user could collect revenue while

transmitting data, although at a lower data rate. With more

secondary users selected, more players are paying the primary

user, which is helpful in maximizing its utility. However, if too

many secondary users are selected, the DoF for each player will

also be drastically decreased. Under this situation, there is no

revenue since no one could transmit, and thus, no one would

pay. Therefore, K should be carefully decided. In summary, the

primary users’ strategy should consider the tradeoff between

data transmission and revenue collection. Since in Phase II,

the primary user can transmit while collecting revenue, and the

choices of α, β, and K are dependent, the primary-user decision

is highly complicated.

IV. PERFORMANCE ANALYSIS AND SOLUTION STRATEGY

Here, we analyze the formulated Stackelberg game to find a

strategy set for the primary user and secondary users such that

no one could gain by a unilateral change of strategy. Let �P ∗ be

the vector of secondary-user power and �P ∗
−i =

�P ∗\Pi. We first

define Stackelberg equilibrium as follows.

Definition 1 (Stackelberg Equilibrium): A strategy set {α∗,

β∗, K∗, �P ∗} is a Stackelberg equilibrium of the game defined

in Section III if the following conditions are satisfied:

1) UP (α
∗, β∗,K∗, �P ∗)≥UP (α, β,K, �P ∗) for all α∈ [0, 1],

β ∈ [0, 1], and K ∈ [0,KT ].

2) USi
(P ∗

i ,
�P ∗
−i, α

∗, β∗,K∗) ≥ USi
(Pi, �P

∗
−i, α

∗, β∗,K∗)
for all α∈ [0, 1], β ∈ [0, 1], K ∈ [0,KT ], and i ∈ [1,K].

Using the backward induction method [19], we prove the

uniqueness of the Stackelberg equilibrium and derive the

unique Stackelberg equilibrium (and the optimal strategy) for

the game defined in Section III in the remainder of this section.

A. Secondary-User Utility Maximization

From (17), the utility of the secondary user is given by

USi
(Pi) =wSfS(RSi

)− C0Pi

=wS [α(1 − β)dII log(Pi/N0) + (1 − α)

×dIII log(Pi/N0)]− C0Pi. (18)

To maximize its utility, the secondary user solves the following

maximization problem:

max
0≤Pi≤Pmax

USi
(Pi). (19)
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For given α and β, USi
(Pi) is a concave function of Pi.

Setting (dUSi
/dPi) = 0, we derive the unique maximizer of

(19), which is

P ∗
i =

wSα(1 − β)dII + wS(1 − α)dIII
C0

. (20)

Since 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, and dII ≤ dIII ≤ 2N , we

have

P ∗
i ≤ wSdIII/C0 ≤ 2wSN/C0 ≤ Pmax (21)

indicating that the P ∗
i given in (20) is a feasible solution. It

follows that the maximum utility of the secondary user is

U ∗
Si

= Y log (Y/[2C0N0]) , i ∈ [1,K] (22)

where Y = wS [α(dII − dIII)− αβdII + dIII ].
Since U ∗

Si
is a monotonically increasing function of Y , and

dII ≤ dIII , it can be verified that U ∗
Si

is a monotonically

decreasing function of α and β. Since α(1 − β) ≥ 0 and (1 −
α) ≥ 0, U ∗

Si
is a monotonically increasing function of dII and

dIII . From a secondary user’s perspective, the best scenario is

α = 0, β = 0, and K = 3, i.e., the entire time slot is Phase III

with the minimum number of followers. The selected secondary

users enjoy the highest data rate during the entire time slot. The

primary user can only collect revenue from the three secondary

users. This is consistent with our conjectures in Section III-B.

Note that this is the best case as only the secondary users

are concerned. From later discussions, we can see that the

primary user, who also tries to maximize its utility, may set

the parameters in part but not completely according to the

secondary users’ preference.

B. Primary-User Utility Maximization

Given the optimal strategies of all the secondary users, we

substitute fP (RP ) and P ∗
i into (16). It follows that

UP (α, β,K) = wP ln
[
αβRI

P + α(1 − β)RII
P

]

+ KwS [α(1 − β)dII + (1 − α)dIII ] . (23)

The primary user solves the following problem to maximize its

utility:

max
0≤α≤1,0≤β≤1,3≤K≤KT

UP (α, β,K, �P ∗). (24)

Maximization of the primary-user utility is more compli-

cated. We examine the problem for different parameter ranges

and derive the local maximizer in each range. The global

optimum is found by comparing the local maximizers. This is

similar to finding the maximum element in a matrix: We first

find the largest element in each column; then, we compare these

elements from different columns to find the largest element in

the matrix. Without loss of generality, we assume that wP =
wS .2 The analysis can be extended to the case when wP �= wS .

2There are some special cases for wP and wS . For instance, if wP = ∞,
the primary user will not lease a spectrum to secondary users, which is a
degenerated case. We focus on the general cases when wP = wS .

a) Case I—When KT ≥ (2N − 1):
When 3 ≤ K ≤ (2N − 1): First, let us consider K ∈

[3, 2N − 1]. UP can be rewritten as follows:

UP = wP ln

{

log(SNR)

[

αβN + α(1 − β)

⌊
2N

K + 2

⌋]}

+ KwS

[

α(1 − β)

⌊
2N

K + 2

⌋

+ (1 − α)

⌊
2N

K + 1

⌋]

. (25)

Note that K and β are dependent variables. If β = 1, there is

no Phase II. We next consider β = 1 and β ∈ [0, 1).
Case (a)—β = 1: We denote the utility of the primary user

as U0
P in this case, which is given by

U0
P =wP ln (αN log(SNR)) +KwS(1 − α)

⌊
2N

K + 1

⌋

≤wP ln (αN log(SNR)) + wS(1 − α)
2N

1 + 1
K

≤wP ln (αN log(SNR)) + wS(1 − α)(2N − 1). (26)

The two equalities hold true when K = 2N − 1. We then have

the following optimization problem:

max
0≤α≤1

U0
P (α, 1, 2N− 1) (27)

where U0
P (α, 1, 2N−1)=wP ln(αN log(SNR))+wS(2N−1)

(1−α). Since U0
P is concave with respect to α, problem (27)

can be solved with convex programming [25]. U0
P achieves

its maximum when α = (1/2N − 1), and its maximum is

given by

U ∗0
P

(
1

2N − 1
, 1, 2N − 1

)

= wP ln

(
N

2N − 1
log(SNR)

)

+ wS(2N − 2). (28)

Case (b)—β ∈ [0, 1): Relaxing K to a continuous variable

and ignoring the floor functions, we have

∂UP

∂K
= wP

{

−
2(1 − β)

(K + 2)2β + 2(K + 2)(1 − β)

+
4Nα(1 − β)

(K + 2)2
+

2N(1 − α)

(K + 1)2

}

.

The first item is irrelevant to α, whereas the last two items

are linear in α. If for both α = 0 and α = 1, (∂UP /∂K) ≥ 0

holds true for any β, then for any 0 ≤ α ≤ 1 and 0 ≤ β < 1,

(∂UP /∂K) ≥ 0.

We prove this conjecture as follows. When α = 0, we have

∂UP

∂K
=

2NwP

(K + 1)2
−

(
wP

K + 2

)(
2(1 − β)

βK + 2

)

≥
2NwP

(K + 1)2
−

wP

K + 2
≥ wP

[
1

K + 1
−

1

K + 2

]

≥ 0.

The first inequality occurs because β ≥ 0, such that (2(1 −
β)/βK + 2) ≤ 1. The second inequality is due to the fact that

2N ≥ (K + 1).
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When α = 1, we have

∂UP

∂K
=wP

(1 − β)

(K + 2)2

[

4N − (K + 2)
2

βK + 2

]

≥wP

(1 − β)

(K + 2)2
[4N − (K + 2)] ≥ 0.

The first inequality is due to β ≥ 0, such that (2/βK + 2) ≤ 1.

The second inequality is due to the fact that 2N ≥ (K + 1).
Therefore, if we treat K as a continuous variable and ignore

the floor functions, UP is a monotonically increasing function

of K. To maximize UP , we should have K = 2N − 1. Now,

consider K as an integer and take the floor functions into

account. We show that we should have K = 2N − 2 in this

case.

If K = 2N − 1, denote the utility of the primary user in this

case as U1
P . Since ⌊(2N/K + 2)⌋ = 0 and ⌊(2N/K + 1)⌋ = 1,

we have

U1
P =wP ln (αβN log(SNR))+wS(2N−1)(1 − α). (29)

It can be verified that U1
P is an increasing function of β for

β ∈ [0, 1). Thus, we have U1
P < U0

P . It follows that

U ∗1
P < U ∗0

P . (30)

Given (30), we no longer need to examine the maximiza-

tion of U1
P ; K = 2N − 1 can be discarded for β ∈ [0, 1).

As a matter of fact, we could see from later discussion

that maxα,β UP (α, β, 2N − 1) < maxα,β UP (α, β, 2N − 2).
Since K = 2N − 1 is excluded, we only need to consider K ≤
2N − 2. Rewrite (25) as

UP =wP ln

(

Nβ + (1 − β)

⌊
2N

K + 2

⌋)

+KwS

[

α(1 − β)

⌊
2N

K + 2

⌋

+ (1 − α)

⌊
2N

K + 1

⌋]

+ wP ln (α log(SNR)) . (31)

Defining f1(K)=ln(Nβ+(1−β)⌊(2N/K+2)⌋) and f2(K)=
K[α(1−β)⌊(2N/K+2)⌋+(1−α)⌊(2N/K + 1)⌋], we have

the following Lemma for f2(K).
Lemma 1: argmaxK∈[3,2N−2] f2(K) = 2N − 2.

Proof: For the first item in f2(K), we have

K

⌊
2N

K + 2

⌋

≤ K
2N

K + 2
≤ 2N −

4N

K + 2
≤ 2N − 2.

The equalities hold true only for K = 2N − 2. For the second

item in f2(K), if there is no constraint on K, K⌊(2N/K +
1)⌋ = 0 for K > 2N − 1. For K ≤ 2N − 1, we have

K

⌊
2N

K + 1

⌋

≤ K
2N

K + 1
≤ 2N −

2N

K + 1
≤ 2N − 1.

The equalities hold true only for K = 2N − 1. When the con-

straint K ≤ 2N − 2 is enforced, if K = 2N − 2, K⌊(2N/K +
1)⌋ = 2N − 2. Since K⌊(2N/K + 1)⌋ can only be integers,

and 2N − 2 is only 1 less than 2N − 1, 2N − 2 is the largest

number we can have for K⌊(2N/K + 1)⌋ when K ≤ 2N − 2.

Since both K⌊(2N/K + 2)⌋ and K⌊(2N/K + 1)⌋ are max-

imized at K = 2N − 2, f2(K) attains its maximum at K =
2N − 2. �

Lemma 2: For K ′ ∈ (N − 2, 2N − 2), UP (α, β,K
′) <

UP (α, β, 2N − 2).
Proof: For K ′∈(N−2, 2N−2), we always have ⌊(2N/

K ′ + 2)⌋ = 1. When K = 2N − 2, ⌊(2N/K + 2)⌋ = 1. Thus,

f1(K
′)=f1(2N−2). On the other hand, K ′⌊(2N/K ′+2)⌋ <

(2N − 2)⌊(2N/(2N − 2) + 2)⌋. For K ′ ∈ (N − 2, 2N − 2),
it can be verified that K ′⌊(2N/K ′ + 1)⌋ ≤ (2N − 2)⌊(2N/
(2N − 2) + 1)⌋ for N ≥ 2. We thus have f2(K

′)<f2(2N−
2). Summing up f1(K) and f2(K), we have UP (α, β,K

′) <
UP (α, β, 2N − 2). �

The insight from Lemma 2 is that if 2N is not divisible by

K + 2, this K value is not useful for the optimization and can

be safely discarded. We have the following corollary.

Corollary 2.1: Assume 2N is divisible by (K1+2), (K2+2),
. . . , (Kn + 2), and K1 > K2 > · · · > Kn, for any K ′′ ∈

(K2,K1), . . . ,K

n
︷︸︸︷
′′ · · ·′ ∈ (Kn,Kn−1), we have

UP

⎛

⎜
⎝α, β,K

i
︷︸︸︷
′′ · · ·′

⎞

⎟
⎠ < UP (α, β,Ki−1), ∀i = 2, . . . , n.

(32)

According to Corollary 2.1, to find the value of K that

maximizes UP , we only need to consider the K values such

that 2N is divisible by K + 2.

Lemma 3: If K0 = N − 2 is feasible, it follows that

UP (α, β, 2N − 2) > UP (α, β,N − 2).
Proof: K0 = N − 2 is feasible if K0 ≥ 3. It follows that

N ≥ 5 in this case. Therefore, we have

⌊
2N

K0 + 1

⌋

=

⌊
2N

N − 1

⌋

= 2 +

⌊
2

N − 1

⌋

= 2.

It follows that

UP (2N − 2)− UP (N − 2)

= wP

[

ln

(
Nβ + (1 − β)

Nβ + 2(1 − β)

)

+ 2(1 − αβ)

]

≥ wP

[

ln

(
Nβ + (1 − β)

Nβ + 2(1 − β)

)

+ 2(1 − β)

]

.

The inequality is because UP (2N − 2)− UP (N − 2) is a

monotonically decreasing function of α. For β = 0, UP (2N −
2)− UP (N − 2) = wP [2 − ln(2)] > 0. For β ∈ (0, 1), define

f3(N) = ln(Nβ + (1 − β)/Nβ + 2(1 − β)) and treat N as a

continuous variable. We have

∂f3(N)

∂N
=

β

Nβ + (1 − β)
−

β

Nβ + 2(1 − β)
> 0

which indicates that f3(N) is a strictly monotonically increas-

ing function of N . Since, currently, N ≥ 5, we have f3(N) >
f3(1) = − ln(2 − β). That is

UP (2N − 2)− UP (N − 2) > wP [− ln(2 − β) + 2(1 − β)] .
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Define f4(β)=−ln(2−β)+2(1−β). Since (∂2f4/∂β
2) =

(1/(2 − β)2) > 0, f4(β) is a convex function. The domain

{β|β ∈ (0, 1)} is also a convex set. Suppose β can be equal

to 0 and 1. Solving the following problem:

min
0≤β≤1

− ln(2 − β) + 2(1 − β)

we have minβ∈[0,1] f4(β) = 0, and the minimum is achieved at

β = 1. We conclude that f4(β) > 0 for β ∈ (0, 1).
It follows that UP (α, β, 2N − 2)− UP (α, β,N − 2) ≥

wP [f3(N)+2(1−β)] > wP [f3(1)+2(1−β)]>0. The proof is

completed. �

Lemma 4: Consider K1,K2, . . . ,Kn, such that 2N is divis-

ible by K1 + 2, K2 + 2, . . ., and Kn + 2, and if (2N/K1 +
2) = 3, (2N/K2 + 2) = 4, . . . , (2N/Kn + 2) = N , it follows

that UP (α, β, 2N − 2) > UP (α, β,Ki), i = 1, 2, . . . , n.

Proof: For K1, we have

UP (N − 2)− UP (K1)

= wP

[

ln

(
Nβ + 2(1 − β)

Nβ + 3(1 − β)

)

+ 2(1 − αβ)

]

≥ wP

[

ln

(
Nβ + 2(1 − β)

Nβ + 3(1 − β)

)

+ 2(1 − β)

]

> wP

[

ln

(
Nβ + (1 − β)

Nβ + 2(1 − β)

)

+ 2(1 − β)

]

> 0.

The first inequality is due to the fact that UP (N − 2)−
UP (K1) is a monotonically decreasing function of α. The

second inequality is due to ln(Nβ + 2(1 − β)/Nβ + 3(1 −
β)) > ln(Nβ + (1 − β)/Nβ + 2(1 − β)) for β ∈ [0, 1), and

the last inequality is proved in Lemma 3. Thus, we have

UP (2N − 2) > UP (N − 2) > UP (K1).

For K2, we have

UP (K1)− UP (K2)

= wP

[

ln

(
Nβ + 3(1 − β)

Nβ + 4(1 − β)

)

+ 2(1 − αβ)

]

≥ wP

[

ln

(
Nβ + 3(1 − β)

Nβ + 4(1 − β)

)

+ 2(1 − β)

]

> wP

[

ln

(
Nβ + 2(1 − β)

Nβ + 3(1 − β)

)

+ 2(1 − β)

]

> 0.

Repeat the given steps for K3, . . . ,Kn. The proof is completed.

�

Theorem 1: When KT ≥ 2N − 1, 3 ≤ K ≤ 2N − 1, and

0 ≤ β < 1, UP is maximized when K = 2N − 2.

Proof: We have shown in Lemma 3 that if K0 exists,

UP (2N − 2) > UP (K0). We have also shown in Lemma 4

that if Ki, i = 1, . . . , n exists, UP (2N − 2) > UP (Ki). In

addition, considering Corollary 2.1, K = 2N − 2 is the

maximizer. �

Substitute K = 2N − 2 into (31), we have

UP (2N − 2) = wP {ln [(α log(SNR)) (Nβ + (1 − β))]}

+ wS(2N − (2)(1 − αβ).

We next divide the range of α into three ranges and examine

each of them in the following.

Case (a)—α ∈ [0, 1/2N ]: Denoting the utility of the pri-

mary user in this case as U2
P , we have

∂U2
P

∂β
=wP

N − 1

Nβ + (1 − β)
− wS(2N − 2)α

≥wP

[
N − 1

(N − 1)β + 1
−

N − 1

N

]

>wP

[
N − 1

(N − 1) + 1
−

N − 1

N

]

= 0.

The first inequality occurs because (∂U2
P /∂β) is a monoton-

ically decreasing function of α, and the second inequality

is due to β < 1. Hence, UP is a monotonically increasing

function of β. For α ∈ [0, (1/2N)], we have U2
P <

wP ln[Nα log(SNR)] + wS(2N − 2)(1 − α) < U0
P ≤ U ∗0

P .

This case can be safely discarded.

Case (b)—α ∈ [(1/2), 1]: Denoting the utility of the pri-

mary user in this case as U3
P , we have

∂U3
P

∂β
=wP

N − 1

Nβ + (1 − β)
− wS(2N − (2)α

≤wP

[
N − 1

(N − 1)β + 1
− (N − 1)

]

≤ 0.

The first inequality occurs because (∂U3
P /∂β) is a monotoni-

cally decreasing function of α, and the second inequality is due

to β ≥ 0. Hence, UP is a nonincreasing function of β. Letting

β = 0, we have the following maximization problem:

max
1
2
≤α≤1

U3
P = wP ln (α log(SNR)) + wS(2N − 2). (33)

Since U3
P is now a monotonically increasing function of α,

letting α = 1, we have

U ∗3
P (1, 0, 2N − 2) = wP ln (log(SNR)) + wS(2N − 2). (34)

For N ≥ 2, we have U ∗3
P − U ∗0

P = wP ln(2N − 1/N) > 0.

Recall that U ∗1
P < U ∗0

P , as previously stated. It follows that

U ∗1
P < U ∗3

P . The case of K = 2N − 1 can be also safely

discarded.

Case (c)—α ∈ ((1/2N), (1/2)): Denote the utility of the

primary user in this case as U4
P . U4

P is a concave function of β.

Letting (∂U4
P /∂β) = 0, we have β̂ = (1/2α− 1)(1/N − 1).

Since α > (1/2N), β̂ < 1. Since α < (1/2), β̂ > 0. Hence,

β̂ = ((1/2α)− 1)(1/N − 1) is feasible. Substitute β̂ into U4
P ,

we have

U4
P = wP ln

(
1

2
log(SNR)

)

+ wS(2N + 2α− 3).

Since U4
P is a monotonically increasing function of α, U ∗4

P <
wP ln((1/2) log(SNR)) + wS(2n− 2) < U ∗0

P < U ∗3
P . There-

fore, we have the following lemma.
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Lemma 5: For KT ≥2N−1 and K≤2N−1, UP achieves

its maximum when α = 1,β = 0,K = 2N − 2, and the maxi-

mum value is given by (34).

a) When K > (2N − 1): For K > 2N − 1, we always

have ⌊(2N/K + 2)⌋ = 0 and ⌊(2N/K + 1)⌋ = 0. Denote the

utility of the primary user in this case as U5
P , we have

U5
P = wP ln (Nαβ log(SNR)) .

Obviously, U5
P is a monotonically increasing function of α and

β. Hence, the maximum is achieved when α = 1 and β = 1.

Thus

U ∗5
P = wP ln (N log(SNR)) . (35)

Note that under this condition, there are no Phases II and III.

There is no spectrum leasing, and the transmission rates of all

the secondary users are 0.

Comparing U ∗5
P with U ∗3

P , we have

U ∗3
P − U ∗5

P = − wP ln(N) + wS(2N − (2)

>wP [(2N − (2)−N ] ≥ 0. (36)

The first inequality is due to ln(x) < x for x > 0, and the

second inequality is due to N ≥ 2. Therefore, U ∗3
P > U ∗5

P . The

implication of (36) is that leasing a spectrum to secondary users

is helpful in maximizing the utility of the primary user.3

Compared with Lemma 5, we summarize the given analysis

as a lemma as follows.

Lemma 6: For KT ≥ 2N − 1, UP achieves its maximum

when α = 1, β = 0, K = 2N − 2, and the maximum of UP

is given in (34).

2) Case II—When KT = (2N − 2): It can be readily con-

cluded that the conclusion given in Section IV-B1 still holds.

Hence, we finally have the following theorem.

Theorem 2: When KT ≥ 2N − 2, UP is maximized when

α = 1, β = 0, K = 2N − 2, and the maximum of UP is given

in (34).

Note that when K = 2N − 2, dII = 1, dIII = 1. Theorem 2

indicates that when there are plenty of secondary users, to

maximize the primary user’s utility, we should select 2N − 2

out of them so that each of the selected secondary user can

have exactly one interference-free channel. Since α = 1 and

β = 0, there is no Phase I and Phase III. To maximize the

primary-user utility, there is no need for the primary user to use

MIMO transmission alone. Transmitting data with distributed

interference alignment while collecting revenue from spectrum

leasing is the best strategy for the primary user.

3) Case III—When 3 ≤ KT ≤ (2N − 3): Here, we con-

sider the case when 3 ≤ KT ≤ 2N − 3. Hence, the number of

antennas must satisfy 2N − 3 ≥ 3, which indicates that N ≥ 3.

For simplicity, we assume that 2N is divisible by both KT +
2 and KT + 1. That is, ⌊(2N/KT + 2)⌋ = (2N/KT + 2), and

⌊(2N/KT + 1)⌋ = (2N/KT + 1). Using similar arguments as

in Section IV-B1, to maximize UP , we should let K = KT .

3One may note that if wP ≫ wS , the inequality does not hold. However, as
we noted before, we focus on the generic case where wP = wS .

Given the strategies of all the secondary users, the primary

user tries to maximize its own utility by solving the following

problem:

max
0≤α≤1, 0≤β≤1

UP (α, β). (37)

Plug in KT and P ∗
i , we have

UP (α, β) = wP ln
{
α
[
β
(
RI

P −RII
P

)
+RII

P

]}

+ KTwS {α [(1 − β)dII − dIII ] + dIII} . (38)

We also assume that wP = wS . To find the maximum, we

divide the α-axis into three adjacent intervals: [0, (1/2N)],
[(1/2N), (KT + 2/4N)] and [(KT + 2/4N), 1]. Note that for

KT ≥ 3, (1/2N) < (KT + 2/4N).
Case (a)—0 ≤ α ≤ (1/2N): Denote the utility of the pri-

mary user as U6
P , we have

∂U6
P

∂β
=wP

RI
P −RII

P

βRI
P + (1 − β)RII

P

−KTwSαdII

≥wP

[
dI − dII

dI
−KTαdII

]

=wP

[
KT

KT + 2
−KTα

2N

KT + 2

]

≥ 0 (39)

where the first inequality is due to maxβ∈[0,1] βdI + (1 −
β)dII = dI , and the second inequality is due to α ≤ (1/2N).

Hence, for 0 ≤ α ≤ (1/2N), UP (α, β) is a monotonically

increasing function of β. That is, UP (α, β) ≤ UP (α, 1). To

maximize the utility, the primary user solves the following

problem:

max
0≤α≤ 1

2N

U6
P (α, 1)=wP ln

(
αRI

P

)
+KTwS(1 − α)dIII . (40)

Using convex programming, it can be found that UP achieves

its maximum when α = (1/2N). Moreover, the maximum

value is

U ∗6
P

(
1

2N
, 1

)

=wP ln

(
RI

P

2N

)

+KTwS

(
2N − 1

2N

)

dIII

=wP ln

(
log(SNR)

2

)

+KTwS

2N−1

KT + 1
. (41)

Case (b)—(KT + 2/4N) ≤ α ≤ 1: Denote the utility of the

primary user as U7
P , we have

∂U7
P

∂β
=wP

[
dI − dII

βdI + (1 − β)dII
−KTαdII

]

≤wP

[
dI − dII

dII
−KTαdII

]

=wP

[
KT

2
−KTα

2N

KT + 2

]

≤ 0 (42)

where the first inequality is due to minβ∈[0,1] βdI + (1 −
β)dII = dII , and the last inequality is due to α ≥ (KT +
2/4N).
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Thus, for (KT + 2/4N) ≤ α ≤ 1, U7
P (α, β) is a monotoni-

cally decreasing function of β, which indicates that U7
P (α, β) ≤

U7
P (α, 0). To maximize utility, the primary user solves the

following problem:

max
KT +2

4N
≤α≤1

UP (α, 0) = wP ln(αRII
P )

+ KTwS [αdII + (1 − α)dIII ] . (43)

Using convex programming, it can be found that UP achieves

its maximum when α = ((KT + 1)(KT + 2)/2NKT ). No-

tice that, since we assume that 2N is divisible by

both KT + 1 and KT + 2, ((KT + 1)(KT + 2)/2N) ≤ 1.

That is, α = ((KT + 1)(KT + 2)/2NKT ) < 1. On the other

hand, ((KT + 1)(KT + 2)/2NKT ) > (KT + 2/4N); hence,

((KT + 1)(KT + 2)/2NKT ) is a feasible point. The maxi-

mum value is given by

U ∗7
P

(
(KT + 1)(KT + 2)

2NKT

, 0

)

=wP ln

[

log(SNR)
KT + 1

KT

]

+KTwS

(
2N

KT + 1
−

1

KT

)

. (44)

Case (c)—(1/2N) ≤ α ≤ (KT + 2/4N): Denote the util-

ity of the primary user as U8
P . For any fixed α, U8

P is a concave

function with respect to β. We could maximize U8
P by first

maximizing it with respect to β and then with respect to α. We

have

∂U8
P

∂β
= wP

RI −RII

βRI + (1 − β)RII

−KTwSαdII . (45)

Setting (∂U8
P /∂β) = 0 results in

β =
1

KTαdII
−

dII
dI − dII

. (46)

Since α≥(1/2N), β≤(1/KT (2N/KT +2)(1/2N))−((2N/
KT +2)/N−(2N/KT +2))=1; α ≤ (KT + 2/4N), β ≥
(1/KT (2N/KT + 2)(KT + 2/4N))− (2/KT ) = 0. Hence,

the value of β given by (46) is a feasible point. Under this

condition, we have

U8
P =wP ln

(

wP

(
RI

P −RII
P

)

KTwSdII

)

+KTwS

×

{

dIII−
wP

KTwS

+α

[(

1 +
RII

RI−RII

)

dII−dIII

]}

=wP ln

(
log(SNR)

2

)

+ wPα
2N

(KT + 1)
− wP +KTwP dIII (47)

which is monotonically increasing function of α. When α =
(KT + 2/4N), the maximum is attained. Plug the value of

α into (46), we have β = 0. Hence, the maximum value is

given by

U ∗8
P

(
KT +2

4N
, 0

)

=wP

[

ln

(
log(SNR)

2

)

+
KT (4N − 1)

2(KT + 1)

]

.

(48)

It can be readily concluded that U ∗6
P < U ∗8

P , we only need to

compare U ∗7
P with U ∗8

P , then we could find the maximum value

of UP . We have

U ∗7
P − U ∗8

P = wP

[

ln

(

2 +
2

KT

)

−
1

2
−

1

2(KT + 1)

]

. (49)

Denote f5(KT ) = ln(2(KT + 1/KT ))− (KT + 2/2(KT +
1)). Consider KT as a continuous variable, we have

∂f5
∂KT

=
−(KT + 2)

2KT (KT + 1)2
< 0. (50)

Hence, f5(KT ) is a monotonically decreasing function of KT ,

which means that f5(KT ) > f5(+∞). Therefore, we have

U ∗7
P − U ∗8

P > wP

[

ln(2)−
1

2

]

= 0.193 > 0. (51)

Since U ∗7
P > U ∗6

P and U ∗7
P > U ∗8

P , we readily have the fol-

lowing theorem.

Theorem 3: For 3 ≤ KT ≤ 2N − 3, UP achieves its max-

imum when α = ((KT + 1)(KT + 2)/2NKT ), β = 0,K =
KT , and the maximum of UP is given by (44).

It would still be interesting to compare U ∗7
P with U ∗5

P for

which there is no spectrum leasing. We have

U ∗7
P − U ∗5

P

= wP

[

ln

(
KT + 1

KT

)

+ 2N
KT

KT + 1
− 1 − ln(N)

]

> wP

[

2N
KT

KT + 1
− 1 − ln(N)

]

≥ wP

[
3

2
N − 1 − ln(N)

]

> wP

[
1

2
N − 1

]

> 0 (52)

where the first inequality is due to ln(1 + x) > 0 for x > 0, the

second inequality is because (KT /KT + 1) is a monotonically

increasing function of KT , the third inequality is due to ln(x) <
x for x > 0, and the last inequality is due to N ≥ 3.

This indicates that even with an insufficient number of sec-

ondary users, leasing a spectrum to the secondary users is still

beneficial for the primary user to increase its utility.

C. Unique Stackelberg Equilibrium

We now summarize the analysis in Section IV-A and B.

The unique Stackelberg equilibrium of the game defined in

Section III is given in the following theorem.

Theorem 4: The unique Stackelberg equilibrium is given by

(α∗, β∗,K∗)

=

{
(1, 0, 2N − 2), if KT ≥ 2N − 2
(

(KT+1)(KT+2)
2NKT

, 0,KT

)

, if 3 ≤ KT ≤ 2N − 3

(53)

P ∗
i

= [wSα
∗(1 − β∗)dII + wS(1 − α∗)dIII ] /C0, for all i.

(54)

Since we can rewrite (54) as P ∗
i = wS [α(dII − dIII)−

αβdII + dIII ]/C0 and dII ≥ dIII , P ∗
i is a monotonically
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Fig. 2. Utility of the primary user in log scale.

decreasing function of α and β. On the other hand, P ∗
i is a

monotonically increasing function of dII and dIII , indicating

that P ∗
i is a monotonically decreasing function of K. The

secondary users will adjust their transmitter power in light of

α, β, and K. The best scenario for them is α = 0, β = 0,

and K = 3, for which there is only Phase III with the fewest

players.

Knowing the optimal strategies of the secondary users, the

primary user will set α = 1, β = 0, and K = 2N − 2 when

there is a sufficient number of secondary users. Each selected

secondary user has exactly one interference-free channel, and

there is only Phase II in the time slot. In this case, the primary

user can collect as much revenue as possible while keeping

a relatively low-rate data transmission. The secondary users’

claim is satisfied in part. If there are not as many secondary

users as needed, the primary user will set the parameters

carefully according to (53). Under this condition, the primary

user selects all the secondary users, discards Phase I, and makes

a tradeoff between Phase II and Phase III according to how

many secondary users are there in the system.

V. SIMULATION STUDY

Simulations are conducted to validate the performance of the

proposed scheme. We first compare the proposed scheme with

a scheme without spectrum leasing to demonstrate the benefits

of spectrum leasing. We then compare the proposed scheme

with the cooperative scheme presented in [8] to demonstrate

the efficacy of MIMO and distributed interference alignment.

A. With or Without Spectrum Leasing

We first consider the case when there is a sufficient number

of secondary users, i.e., KT ≥ 2N − 2, since in many real-

world applications, there are usually more secondary users than

the number of antennas at each node. In Fig. 2, we plot the

primary-user utility U ∗
P versus the number of antennas N and

SNR. In the simulation, the weight factors are wP = wS =
0.8. The noise spectral density is N0 = 0.1. The unit price is

C0 = 0.001. Note that the maximum utility of the primary user

without spectrum leasing is given in (35). It is shown in Fig. 2

that there is a huge gap between the proposed scheme and the

Fig. 3. Utility of the primary user when KT ≥ 2N − 2.

scheme without spectrum leasing. Note that the utility increase

due to SNR is less obvious than that due to N , since the impact

of SNR is diminished by the logarithm functions in (10) and

(11). This clearly indicates that under the same setting, leasing

a spectrum to secondary users can greatly improve the primary-

user utility. In addition, note that, from (36), the utility of the

proposed scheme is strictly larger than that of no spectrum

leasing, for any feasible values of wP , N , and SNR.

In Fig. 3, we examine the impact of weight wP on the

primary-user utility U ∗
P . We plot the results with or without

spectrum leasing and for N = 2, 4, and 6. It can be seen that

when wP is increased, the gap between the proposed scheme

and the scheme without spectrum leasing becomes larger. Al-

though with increased wP , the primary user emphasizes more

on data transmission, the revenue is still increased at a higher

speed with spectrum leasing. The gap also becomes larger when

the number of antennas for each node is increased. This is also

because the revenue increases faster with spectrum leasing than

the no-leasing scheme as N is increased.

We then consider the case of an insufficient number of

secondary users. In the simulation, there are KT = 3 secondary

users. The number of antennas is N = 20. We plot the primary-

user utility for the proposed scheme and the no-spectrum-

leasing scheme in Fig. 4. There is also a big gain achieved

by the proposed scheme. This is consistent with our previous

discussions. In this case, the primary user should still lease its

spectrum to secondary users to maximize its own utility.

B. With or Without Distributed MIMO and Distributed

Interference Alignment

Next, we compare our proposed scheme with the cooperative

scheme in [8]. To make fair comparisons, replace the satis-

faction function fP (RP ) = (1/1 + e−a(RP−R0)) in [8] with

fP (RP ) = ln(RP ). We first derive an upper bound of the utility

of the primary user (denoted by U9
P ) in [8] using our notation

and then compare our proposed scheme with the upper bound.

Thus

U9
P = wP ln(RP ) +

wS(1 − α)(K − 1)
∑

i

(
1

RSi

) (55)
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Fig. 4. Utility of the primary user when KT ≤ 2N − 3.

where RP=min{αβRPS , α(1−β)RSP }, RPS=log(1+(mini |
hPS,i|

2P/N0)), RSP=log(1+(|hP |
2P/N0)+

∑

i(mini |hSP,i|
2P/

N0)), RSi
= log(1 + (|hSi

|2P/N0)), and all the h’s are chan-

nel states. Since
⎧

⎪⎪⎨

⎪⎪⎩

RP = min {αβRPS , α(1 − β)RSP }

≤ α RPSRSP

RPS+RSP
< αRPS ≤ α log

(

1 + P
N0

)

·

RSi
≤ log

(

1 + P
N0

)

.

(56)

It follows from (55) and (56) that U9
P < wP ln[α log(1 +

SNR)]+(wS(1−α)(K−1)/K) log(1+SNR). Denote f6(α) =
ln[α log(1+SNR)]+((1 − α)(K − 1)/K) log(1 + SNR). For

SNR ≥ 3, f6(α) is maximized at α̂ = (K/(K − 1) log(1 +
SNR)). Since we consider a high-SNR region, the condition

of SNR ≥ 3 is easily satisfied. Plugging in α̂, we have

U9
P < wP ln

(
K

K − 1

)

+ wS

[
K − 1

K
log(1 + SNR)− 1

]

(57)

indicating that the utility of the cooperative scheme is up-

per bounded by wP ln(K/K − 1) + wS [(K − 1/K) log(1 +
SNR)− 1].

In Fig. 5, we plot the simulation results for the proposed

scheme, the cooperative scheme, and the no-spectrum-leasing

scheme. Recall that in [8], all the primary user and secondary

users are equipped with a single antenna. To make fair compar-

isons, we choose K, which is the number of secondary users

selected, as the variable in the simulation. In the simulations,

since the number of antennas must satisfy ⌊(2N/K + 2)⌋ ≥ 1,

as the value of K varies, we set N = ⌈(K + 2/2)⌉. Hence, we

are actually comparing the lower bound of our proposed scheme

with the upper bound of the cooperative scheme. It is shown in

Fig. 5 that both spectrum leasing schemes outperform the no-

spectrum-leasing scheme. Furthermore, the proposed scheme

outperforms the cooperative scheme with considerable gains.

Such gains justify the efficacy of MIMO and distributed inter-

ference alignment, which greatly enhances the overall system

capacity.

Finally, we compare the proposed scheme with the coopera-

tive scheme in [8] in terms of aggregate secondary-user utility

Fig. 5. Comparison of the proposed scheme with the cooperative scheme.

and average secondary-user utility. We first derive an upper

bound for the secondary-user utility in [8] and then compare

it with the secondary-user utility achieved with the proposed

scheme with an identical number of selected secondary users

and identical transmission power. Note that, under the scenario

of no spectrum leasing, the secondary-user utility is always 0.

Therefore, we do not include this case in the comparison.

From Theorem 4, we obtain the maximum utility for each

secondary user and the aggregate maximum utility for all the

secondary users as

⎧

⎨

⎩

U ∗
S_Average_1 = wS log

(
wS

2C0N0

)

U ∗
S_Aggregate_1 = KwS log

(
wS

2C0N0

)

.
(58)

The utility for each secondary user in [8] is given by

max
ci

ui(ci) = max
ci

{

wS(1 − α)ciRi
∑

j cj
− ci

}

(59)

where Ri = log(1 + (|hSi
|2PS/N0)). Since we assume perfect

channel and consider a high SNR, Ri ≈ R = log(PS/N0). The

maximum is achieved at

c∗i = wS(1 − α)(K − 1)

⎡

⎣
∑

j

1

Rj

−
K − 1

Ri

⎤

⎦

⎛

⎝
∑

j

1

Rj

⎞

⎠

−2

.

(60)

Letting Xi=(K−1)[
∑

j(1/Rj)−(K−1/Ri)]/(
∑

j(1/Rj))
2,

we have c∗i =wS(1−α)Xi. The maximum aggregate secondary-

user utility denoted by U ∗
S_Aggregate_2 is derived as follows:

U ∗
S_Aggregate_2 =

∑

i

ui (c
∗
i ) ≤ wS

[∑

i XiRi

Xi

−
∑

i

Xi

]

<wS

∑

i XiRi

Xi

≈wSR = wS log

(
PS

N0

)

(61)

where the first inequality is due to 0 ≤ α ≤ 1, and the second

inequality is due to Xi > 0.
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Fig. 6. Aggregate secondary-user utility comparison of the proposed scheme
with the cooperative scheme.

Fig. 7. Average secondary-user utility comparison of the proposed scheme
with the cooperative scheme.

Substituting P ∗
i from Theorem 4, we have

⎧

⎨

⎩

U ∗
S_Aggregate_2 = wS log

(
wS

C0N0

)

U ∗
S_Average_2 = wS

K
log
(

wS

C0N0

)

≤ wS

3 log
(

wS

C0N0

) (62)

where the inequality is due to K ≥ 3.

It is shown in Figs. 6 and 7 that the proposed scheme out-

performs the cooperative scheme, in both cases of the average

secondary-user utility and the total secondary-user utility.

VI. CONCLUSION

In this paper, we have investigated the behaviors of the

primary user and secondary users in a MIMO CR network. We

proposed a three-phase cooperative spectrum leasing scheme

with distributed interference alignment. The system was mod-

eled as a Stackelberg game. With backward induction, we

derived the unique Stackelberg equilibrium. Through rigorous

analysis, we found the best strategies for the primary user

and secondary users under a broad range of conditions and

parameters and discussed practical implications. We also found

that leasing a spectrum to secondary users is always help-

ful in enhancing the primary-user utility. Simulation results

demonstrated that the proposed scheme outperformed a no-

spectrum-leasing scheme and a cooperative scheme from prior

work. For future work, it would be interesting to implement the

proposed scheme in a programmable wireless platform and test

its performance in a practical setting.
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