
Stackelberg Network Pricing Games

Patrick Briest ∗ Martin Hoefer † Piotr Krysta ‡

Abstract

We study a multi-player one-round game termed Stackelberg Network Pricing Game, in which a
leader can set prices for a subset of m pricable edges in a graph. The other edges have a fixed cost.
Based on the leader’s decision one or more followers optimize a polynomial-time solvable combinatorial
minimization problem and choose a minimum cost solution satisfying their requirements based on the
fixed costs and the leader’s prices. The leader receives as revenue the total amount of prices paid by
the followers for pricable edges in their solutions. Our model extends several known pricing problems,
including single-minded and unit-demand pricing, as well as Stackelberg pricing for certain follower
problems like shortest path or minimum spanning tree. Our first main result is a tight analysis of a single-
price algorithm for the single follower game, which provides a (1+ε) log m-approximation for any ε > 0.
This can be extended to provide a (1 + ε)(log k + log m)-approximation for the general problem and k
followers. The latter result is essentially best possible, as the problem is shown to be hard to approximate
within O(logε k + logε m). If followers have demands, the single-price algorithm provides a (1 + ε)m2-
approximation, and the problem is hard to approximate within O(mε) for some ε > 0. Our second
main result is a polynomial time algorithm for revenue maximization in the special case of Stackelberg
bipartite vertex cover, which is based on non-trivial max-flow and LP-duality techniques. Our results can
be extended to provide constant-factor approximations for any constant number of followers.

∗Department of Computer Science, The University of Liverpool, United Kingdom. patrick.briest@liverpool.ac.uk.
Supported by DFG grant Kr 2332/1-2 within Emmy Noether program.

†Department of Computer & Information Science, Kosntanz University, Germany. hoefer@inf.uni-konstanz.de. Sup-
ported by DFG Graduiertenkolleg “Explorative Analysis and Visualization of Large Information Spaces”.

‡Department of Computer Science, The University of Liverpool, United Kingdom. p.krysta@csc.liv.ac.uk.

1 Introduction

Algorithmic pricing problems model the task of assigning revenue maximizing prices to a retailer’s set of
products given some estimate of the potential customers’ preferences in purely computational [14], as well
as strategic [3] settings. Previous work in this area has mostly focused on settings in which these preferences
are rather restricted, in the sense that products are either pure complements [2, 7, 15, 16] and every customer
is interested in exactly one subset of products or pure substitutes [1, 8, 10, 14, 15, 16], in which case each
customer seeks to buy only a single product out of some set of alternatives. A customer’s real preferences,
however, are often significantly more complicated than that and therefore pose some additional challenges.

The modelling of consumer preferences has received considerable attention in the context of algorithmic
mechanism design [18] and combinatorial auctions [12]. The established models range from relatively sim-
ple bidding languages to bidders that are represented by oracles allowing certain types of queries, e.g., reveal-
ing the desired bundle of items given some fixed set of prices. The latter would be a somewhat problematic
assumption in the theory of pricing algorithms, where we usually assume to have access to a rather large num-
ber of potential customers through some sort of sampling procedure and, thus, are interested in preferences
that allow for a compact kind of representation.

In this paper we focus on customers that have non-trivial preferences, yet can be fully described by their
types and budgets and do not require any kind of oracles. Assume that a company owns a subset of the links
in a given network. The remaining edges are owned by other companies and have fixed publicly known
prices and some customer needs to purchase a path between two terminals in the network. Since she is acting
rational, she is going to buy the shortest path connecting her terminals. How should we set the prices on the
pricable edges in order to maximize the company’s revenue? What if there is another customer, who needs
to purchase, e.g., a minimum cost spanning tree?

This type of pricing problem, in which preferences are implicitly defined in terms of some optimization
problem, is usually referred to as Stackelberg pricing [23]. In the standard 2-player form we are given a
leader setting the prices on a subset of the network and a follower seeking to purchase a min-cost network
satisfying her requirements. We proceed by formally defining the model before stating our results.

1.1 Model and Notation

In this paper we consider the following class of multi-player one-round games. Let G = (V, E) be a multi-
graph. There are two types of players in the game, one leader and one or more followers. We consider two
classes of edge and vertex games, in which either the edges or the vertices have costs. For most of the paper,
we will consider edge games, but the definitions and results for vertex games follow analogously. In an edge
game, the edge set E is divided into two sets E = Ep ∪ Ef with Ep ∩ Ef = ∅. For the set of fixed-price
edges Ef there is a fixed cost c(e) ≥ 0 for each edge e ∈ Ef . For the set of pricable edges Ep the leader can
specify a price p(e) ≥ 0 for each edge e ∈ Ep. We denote the number of pricable edges by m = |Ep|. Each
follower i = 1, . . . , k has a set Si ⊂ 2E of feasible subnetworks. The weight w(S) of a subnetwork S ∈ Si

is given by the costs of fixed-price edges and the price of pricable edges,

w(S) =
∑

e∈S∩Ef

c(e) +
∑

e∈S∩Ep

p(e).

The revenue r(S) of the leader from subnetwork S is given by the prices of the pricable edges that are
included in S, i.e.,

r(S) =
∑

e∈S∩Ep

p(e).

1

Throughout the paper we assume that for any price function p every follower i can in polynomial time find
a subnetwork S∗i (p) of minimum weight. Our interest is to find the pricing function p∗ for the leader that
generates maximum revenue, i.e.,

p∗ = arg max
p

k∑

i=1

r(S∗i (p)).

We denote this maximum revenue by r∗. To guarantee that the revenue is bounded and the optimization
problem is non-trivial, we assume that there is at least one feasible subnetwork for each follower i that
is composed only of fixed-price edges. In order to avoid technicalities, we assume w.l.o.g. that among
subnetworks of identical weight the follower always chooses the one with higher revenue for the leader.
It is not difficult to see that in the 2-player case we also need followers with a large number of feasible
subnetworks in order to make the problem interesting.

Proposition 1 Given follower j and a fixed subnetwork Sj ∈ Sj , we can compute prices p with w(Sj) =
minS∈Sj w(S) maximizing r(Sj) or decide that such prices do not exist in polynomial time. In the 2-player
game, if |S| = O(poly(m)), revenue maximization can be done in polynomial time.

Proof: Fix follower j and subnetwork Sj ∈ Sj . We formulate the problem of extracting maximum revenue
from Sj as the following LP, where variable xe defines the price of edge e ∈ Ep:

max.
∑

e∈Sj∩Ep

xe (1)

s.t.
∑

e∈Sj∩Ep

xe +
∑

e∈Sj∩Ef

c(e) ≤
∑

e∈S∩Ep

xe +
∑

e∈S∩Ef

c(e) ∀S ∈ Sj (2)

xe ≥ 0 (3)

Constraints 2 require that Sj is the cheapest feasible network for follower j, formally w(Sj) ≤ w(S) for all
feasible networks S ∈ Sj . Clearly the number of these constraints might be exponential in m. However,
by our assumption we can compute the min-cost subnetwork for any given set of prices and, thus, have a
poly-time separation oracle.

Now assume that |S| = O(poly(m)) in the 2-player case. By enumerating all s ∈ S and optimizing revenue
for each subnetwork separately, we obtain a poly-time algorithm. ¤

In general we will refer to the revenue optimization problem by STACK. Note, that our model extends the
previously considered pricing models and is essentially equivalent to pricing with general valuation functions,
a problem that has independently been considered in [4]. Every general valuation function can be expressed
in terms of Stackelberg network pricing on graphs (of potentially exponential size) and our algorithmic results
apply in this setting, as well.

1.2 Previous Work and New Results

The single-follower shortest path Stackelberg pricing problem (STACKSP) has first been considered by Labbé
et al. [17], who derive a bilevel LP formulation of the problem and prove NP-hardness. Roch et al. [19]
present a first polynomial time approximation algorithm with a provable performance guarantee, which yields
logarithmic approximation ratios. Bouhtou et al. [5] extend the problem to multiple (weighted) followers

2

and present algorithms for a restricted shortest path problem on parallel links. For an overview of most of
the initial work on Stackelberg network pricing the reader is referred to [22]. A different line of research has
been investigating the application of Stackelberg pricing to network congestion games in order to obtain low
congestion Nash equilibria for sets of selfish followers [11, 20, 21].

More recently, Cardinal et al. [9] initiated the investigation of the corresponding minimum spanning tree
(STACKMST) game, again obtaining a logarithmic approximation guarantee and proving APX-hardness.
Their single-price algorithm, which assigns the same price to all pricable edges, turns out to be even more
widely applicable and yields similar approximation guarantees for any matroid based Stackelberg game.

The first result of our paper is a generalization of this result to general Stackelberg games. The previous
limitation to matroids stems from the difficulty to determine the necessarily polynomial number of candidate
prices that can be tested by the algorithm. We develop a novel characterization of the small set of threshold
prices that need to be tested and obtain a polynomial time (1+ ε)Hm-approximation (where Hm denotes the
m’th harmonic number) for arbitrary ε > 0, which turns out to be perfectly tight for shortest path as well as
minimum spanning tree games. This result is found in Section 2.

We then extend the analysis to multiple followers, in which case the approximation ratio becomes (1 +
ε)(Hk + Hm). This can be shown to be essentially best possible by an approximation preserving reduction
from single-minded combinatorial pricing [13]. Extending the problem even further, we also look at the case
of multiple weighted followers, which arises naturally in network settings where different followers come
with different routing demands. It has been conjectured before that no approximation essentially better than
the number of followers is possible in this scenario. We disprove this conjecture by presenting an alternative
analysis of the single-price algorithm resulting in an approximation ratio of (1 + ε)m2. Additionally, we
derive a lower bound of O(mε) for the weighted player case. This resolves a previously open problem from
[5]. The results on multiple followers are found in Section 3.

The generic reduction from single-minded to Stackelberg pricing yields a class of networks in which we can
price the vertices on one side of a bipartite graph and players aim to purchase minimum cost vertex covers for
their sets of edges. This motivates us to return to the classical Stackelberg setting and consider the 2-player
bipartite vertex cover game (STACKVC). As it turns out, this variation of the game allows polynomial-time
algorithms for exact revenue maximization using non-trivial algorithmic techniques. We first present an
upper bound on the possible revenue in terms of the min-cost vertex cover not using any pricable vertices
and the minimum portion of fixed cost in any possible cover. Using iterated max-flow computations, we
then determine a pricing with total revenue that eventually coincides with our upper bound. These results are
found in Section 4

The rest of the paper is organized as follows. Sections 2 through 4 contain our results on the single-price
algorithm and the bipartite vertex cover game. Some of the proofs have been moved to the appendix due to
space limitations. Section 5 concludes and presents several intriguing open problems for further research.

2 A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower and let c0 denote the cost of a cheapest feasible sub-
network for the follower not containing any of the pricable edges. Clearly, we can compute c0 by assigning
price +∞ to all pricable edges and simulating the follower on the resulting network. The single-price algo-
rithm proceeds as follows. For j = 0, . . . , dlog c0e it assigns price pj = (1 + ε)j to all pricable edges and
determines the resulting revenue r(pj). It then simply returns the pricing that results in maximum revenue.
We present a logarithmic bound on the approximation guarantee of the single-price algorithm.

3

Theorem 1 Given any ε > 0, the single-price algorithm computes an (1+ε)Hm-approximation with respect
to r∗, the revenue of an optimal pricing.

2.1 Analysis

The single-price algorithm has previously been applied to a number of different combinatorial pricing prob-
lems [1, 15]. The main issue in analyzing its performance guarantee for Stackelberg pricing is to determine
the right set of candidate prices. We first derive a precise characterization of these candidates and then ar-
gue that the geometric sequence of prices tested by the algorithm is a good enough approximation. Slightly
abusing notation, we let p refer to both price p and the assignment of this price to all pricable edges. If there
exists a feasible subnetwork for the follower that uses at least j pricable edges, we let

θj = max
{

p
∣∣∣ |S?(p) ∩ Ep| ≥ j

}

be the largest price at which such a subnetwork is chosen. If no feasible subnetwork with at least j pricable
edges exists, we set θj = 0. As we shall see, these thresholds are the key to prove Theorem 1.

We want to derive an alternative characterization of the values of θj . For each 1 ≤ j ≤ m we let cj refer
to the minimum sum of prices of fixed-price edges in any feasible subnetwork containing at most j pricable
edges, formally

cj = min
{ ∑

e∈S∩Ef

fe

∣∣∣S ∈ S : |S ∩ Ep| ≤ j
}

,

and ∆j = c0− cj . For ease of notation let ∆0 = 0. Consider the point set (0,∆0), (1,∆1), . . . , (m,∆m) on
the plane. By H we refer to a minimum selection of points spanning the upper convex hull of the point set.
It is a straightforward geometric observation that we can define H as follows:

Fact 1 Point (j, ∆j) belongs to H if and only if mini<j
∆j−∆i

j−i > maxj<k
∆k−∆j

k−j .

We now return to the candidate prices. By definition we have that θ1 ≥ θ2 ≥ · · · ≥ θm. We say that θj is
true threshold value if θj > θj+1, i.e., if at price θj the subnetwork chosen by the follower contains exactly
j pricable edges. Let i1 < i2 < · · · < i` denote the indices, such that θik are true threshold values and for
ease of notation define i0 = 0.

Lemma 1 θj is true threshold value if and only if (j,∆j) belongs to H.

Proof: ”⇒” Let θj be true threshold value, i.e., at price θj the chosen subnetwork contains exactly j pricable
edges. We observe that at any price p the cheapest subnetwork containing j pricable edges has cost cj+j ·p =
c0 − ∆j + j · p. Thus, at price θj it must be the case that ∆j − j · θj ≥ ∆i − i · θj for all i < j and
∆j − j · θj > ∆k − k · θj for all j < k. It follows that

min
i<j

∆j −∆i

j − i
≥ θj > max

j<k

∆k −∆j

k − j
,

and, thus, we have that (j, ∆j) belongs to H.

”⇐” Assume now that (j,∆j) belongs to H and let

p = min
i<j

∆j −∆i

j − i
.

4

∆ j θ1 θ3

��

��

θ

θ

5

6

1 2 3 4 5 6
16

11

9

s

t

5
4

1

��

��

��

��

Figure 1: A geometric interpretation of (true) threshold values θj . The follower seeks to purchase a shortest
path from s to t, dashed edges are fixed-cost.

Consider any k < j. It follows that ∆k − k · p = ∆j − j · p − (∆j −∆k) + (j − k)p ≤ ∆j − j · p, since
p ≤ (∆j −∆k)/(j − k) and, thus, the network chosen at price p cannot contain less than j pricable edges.
Analogously, let k > j. Using p > (∆k−∆j)/(k−j) we obtain ∆k−k·p = ∆j−j·p+(∆k−∆j)−(k−j)p <
∆j − j · p, and, thus, the subnetwork chosen at price p contains exactly j pricable edges. We conclude that
θj is a true threshold. ¤

It is not difficult to see that the price p defined in the second part of the proof of Lemma 1 is precisely the
threshold value θj . Let θik be any true threshold. Since points (i0,∆i0), . . . , (i`, ∆i`) define the convex hull
we can write that mini<ik(∆ik −∆i)/(ik − i) = (∆ik −∆ik−1

)/(ik − ik−1). We state this important fact
again in the following lemma.

Lemma 2 For all 1 ≤ k ≤ ` it holds that θik =
∆ik

−∆ik−1

ik−ik−1
.

From the fact that points (i0, ∆i0), . . . , (i`, ∆i`) define the convex hull we know that ∆i` = ∆m, i.e., ∆i` is
the largest of all ∆-values. On the other hand, each ∆j describes the maximum revenue that can be made
from a subnetwork with at most j pricable edges and, thus, ∆m is clearly an upper bound on the revenue
made by an optimal price assignment.

Fact 2 It holds that r∗ ≤ ∆i` .

By definition of the θj’s it is clear that at any price below θik the subnetwork chosen by the follower contains
no less than ik pricable edges. Furthermore, for each θik the single-price algorithm tests a candidate price that
is at most a factor (1 + ε) smaller than θik . Let r(pik), r(θik) denote the revenue that results from assigning
price pik or θik to all pricable edges, respectively.

Fact 3 For each θik there exists a price pik with (1 + ε)−1θik ≤ pik ≤ θik that is tested by the single-price
algorithm. Especially, it holds that r(pik) ≥ (1 + ε)−1r(θik)

Finally, we know that the revenue made by assigning price θik to all pricable edges is r(θik) = ik · θik . Let r

5

Figure 2: An instance of Stackelberg Shortest Path, on which the analysis of the approximation guarantee of
the single-price algorithm is tight. Bold edges are pricable, vertex labels of regular edges indicate cost. The
instance yields tightness of the analysis also for Stackelberg Minimum Spanning Tree.

denote the revenue of the single-price solution returned by the algorithm. We have:

(1 + ε) ·Hm · r = (1 + ε)
m∑

j=1

r

j
≥ (1 + ε)

∑̀

k=1

ik∑

j=ik−1+1

r

j
≥ (1 + ε)

∑̀

k=1

ik∑

j=ik−1+1

r(pik)
j

≥
∑̀

k=1

ik∑

j=ik−1+1

r(θik)
j

≥
∑̀

k=1

ik∑

j=ik−1+1

ik · θik

j

≥
∑̀

k=1

(ik − ik−1)
ik · θik

ik
=

∑̀

k=1

(∆ik −∆ik−1
) , by Lemma 2

= ∆i` −∆0 = ∆i` ≥ r∗.

This concludes the proof of Theorem 1.

2.2 Tightness

The example in Figure 2.1 shows that our analysis of the single-price algorithm’s approximation guarantee
is tight. The follower wants to buy a path connecting vertices s and t. In an optimal solution we set the price
of edge ej to m/j. Then edges e1, . . . , em form a shortest path of cost mHm. On the other hand, assume
that all edges e1, . . . , em are assigned the same price p. If p ≤ 1 the leader’s revenue is clearly bounded by
m, if p > m the shortest path does not contain any pricable edge at all. Let then m/(j + 1) < p ≤ m/j
for some 1 ≤ j ≤ m − 1. It is straightforward to argue that at this price a shortest path from s to t does
not contain any of the pricable edges ej+1, . . . , em and, thus, it contains at most j pricable edges. It follows
that the leader’s revenue is at most j · p ≤ m. Similar argumentation clearly holds if the follower seeks to
purchase a minimum spanning tree instead of a shortest path.

The best known lower bound for 2-player Stackelberg pricing is found in [9], where APX-hardness is shown
for the minimum spanning tree case. To the authors’ best knowledge, up to now no non-constant inapprox-
imability results have been proven. We proceed by extending our results to multiple followers, in which case
previous results on other combinatorial pricing problems yield strong lower bounds.

3 Extension to Multiple Followers

In this section we extend our results on general Stackelberg network pricing to scenarios with multiple fol-
lowers. Recall that each follower j is characterized by her own collection Sj of feasible subnetworks and k

6

denotes the number of followers. Section 3.1 extends the analysis from the single follower case to prove a
tight bound of (1 + ε)(Hk + Hm) on the approximation guarantee of the single-price algorithm. Section 3.2
presents an alternative analysis that applies even in the case of weighted followers and yields approximation
guarantees that do not depend on the number of followers. Section 3.3 derives (near) tight inapproximability
results based on known hardness results for combinatorial pricing.

3.1 An (1 + ε)(Hk + Hm)-Approximation for Multiple Followers

Let an instance of Stackelberg network pricing with some number k ≥ 1 of followers be given. We extend the
analysis from Section 2 to obtain a similar bound on the single-price algorithm’s approximation guarantee.

Theorem 2 The single-price algorithm computes an (1 + ε)(Hk + Hm)-approximation with respect to r∗,
the revenue of an optimal pricing, for STACK with multiple followers.

Proof: Consider graph G = (V, E), E = Ef ∪ Ep with |Ep| = m, and k followers defined by collections
S1, . . . ,Sk of feasible subnetworks. We transform this instance into a single follower pricing game as fol-
lows. Let G1, . . . , Gk be identical copies of G and define G∗ = G1 ∪ . . .∪Gk. Furthermore, define a single
follower by

S∗ = {S1 ∪ . . . ∪ Sk |S1 ∈ S1 ∩G1, . . . , Sk ∈ Sk ∩Gk} ,

i.e., for every follower j in the original instance our new follower seeks to purchase a subnetwork from Sj in
copy Gj of the original graph. Clearly, the maximum possible revenue in the new instance is an upper bound
on the maximum revenue in the multiple follower case, since we can always assign the same price to every
copy of a pricable edge in G1, . . . , Gk. Furthermore, every pricing returned by the single-price algorithm
on G1 ∪ . . . ∪ Gk translates naturally into a corresponding pricing of identical revenue in G, since again
all copies of an edge from G are assigned identical prices. Finally, since the number of pricable edges in
G1 ∪ . . . ∪Gk is k ·m, we obtain an approximation ratio of (1 + ε)Hkm by Theorem 1 as desired. ¤

The reduction from the multiple to single follower case in the proof of Theorem 2 relies essentially on the
fact that we are considering the single-price algorithm. Thus, the above does not imply anything about the
relation of these two cases in general.

3.2 A (1 + ε)m2-Approximation for Weighted Followers

We now turn to an even more general variation of Stackelberg pricing, in which we allow multiple weighted
followers. This model, which has been previously considered in [5], arises naturally in the context of network
pricing games with different demands for each player. Formally, for each follower j we are given her demand
dj ∈ R+

0 . Given followers buying subnetworks S1, . . . , Sk, the leader’s revenue is defined as

k∑

j=1

dj

∑

e∈Sj∩Ep

p(e).

It has been conjectured before that in the weighted case no approximation guarantee essentially beyond
O(k · log m) is possible [19]. We show that an alternative analysis of the single-price algorithm yields ratios
that do not depend on the number of followers.

7

Theorem 3 The single-price algorithm computes an (1+ε)m2-approximation with respect to r∗, the revenue
of an optimal pricing, for STACK with multiple weighted followers.

Proof: Let again graph G = (V, E), E = Ef ∪ Ep with |Ep| = m, and k followers defined by S1, . . . ,Sk

and demands d1, . . . , dk be given and consider the optimal pricing p∗. For each pricable edge, let F (e) refer
to the set of followers purchasing e under price assignment p∗ and denote by r∗(e) =

∑
j∈F (e) djp

∗(e) the
corresponding revenue. Clearly,

∑
e∈Ep

r∗(e) = r∗.

Fix some pricable edge e and define a corresponding price pe = p∗(e)/m. By r(pe) we denote the revenue
from assigning price pe to all pricable edges. Let j ∈ F (e) and assume that follower j buys subnetwork
Sj under price assignment p∗. By w∗(Sj), we(Sj) and c(Sj) we refer to the total weight of Sj under price
assignments p∗ and pe and the weight due to fixed price edges only, respectively. It holds that

we(Sj) ≤ c(Sj) + m
p∗(e)
m

= c(Sj) + p∗(e) ≤ w∗(Sj).

Let c0
j denote the cost of a cheapest feasible subnetwork for follower j consisting only of fixed price edges.

It follows that we(Sj) ≤ w∗(Sj) ≤ c0
j and, thus, follower j is going to purchase a subnetwork containing at

least one pricable edge under price assignment pe, resulting in revenue at least djpe = djp
∗(e)/m from this

follower. We conclude that r(pe) ≥ r∗(e)/m and, thus

m2 max
e∈Ep

r(pe) ≥ m
∑

e∈Ep

r(pe) ≥
∑

e∈Ep

r∗(e) = r∗.

Finally, observe that for each price pe the single-price algorithm checks some candidate price that is smaller
by at most a factor of (1 + ε), which finishes the proof. ¤

3.3 Lower Bounds

Hardness of approximation of Stackelberg pricing with multiple followers follows immediately from known
results about other combinatorial pricing models, which have received considerable attention lately. The-
orem 4 is based on a reduction from the (weighted) unit-demand envy-free pricing problem with uniform
budgets, which is known to be inapproximable within O(mε) (m denotes the number of products) [6]. In
this problem we are given a universe of products and a collection of (weighted) customers, each of which
buys the cheapest product out of some set of alternatives with a price not exceeding her budget. The result-
ing Stackelberg pricing game is an instance of the so-called river tarification problem, in which each player
needs to route her demand along one out of a number of parallel links connecting her respective source and
sink pair. One direct fixed price connection determines her maximum budget for purchasing a pricable link.
Theorem 4 resolves an open problem from [5]. The construction is depicted in Figure 3(a), a formal proof is
omitted due to space limitations.

Theorem 4 The Stackelberg network pricing problem with multiple weighted followers is hard to approx-
imate within O(mε) for some ε > 0, unless NP ⊆ ⋂

δ>0 BPTIME(2nδ
). The same holds for the river

tarification problem.

Theorem 5 is based on a reduction from the single-minded combinatorial pricing problem, in which each
customer is interested in a subset of products and purchases the whole set if the sum of prices does not
exceed her budget. Single-minded pricing is hard to approximate within O(logε k + logε m) [13], where k
and m denote the numbers of customers and products, respectively. Theorem 5 shows that the single-price
algorithm is essentially best possible for multiple unweighted followers.

8

(a) (b)

Figure 3: Reductions from pricing problems to Stackelberg pricing. (a) Unit-demand reduces to directed
STACKSP. Bold edges are pricable, edge labels indicate cost. Regular edges without labels have cost 0.
Vertex labels indicate source-sink pairs for the followers. (b) Single-minded pricing reduces to bipartite
STACKVC. Filled vertices are pricable, vertex labels indicate cost. For each customer there is one follower,
who strives to cover all incident edges.

Theorem 5 The Stackelberg network pricing problem with multiple unweighted followers is hard to approx-
imate within O(logε k + logε m) for some ε > 0, unless NP ⊆ ⋂

δ>0 BPTIME(2nδ
). The same holds for

bipartite Stackelberg Vertex Cover Pricing (STACKVC).

The idea for the proof of Theorem 5 is illustrated in Figure 3(b). We define an instance of STACKVC in
bipartite graphs. Vertices on one side of the bipartition are pricable and represent the universe of products,
vertices on the other side encode customers and have fixed prices corresponding to the respective budgets.
For each customer we define a follower in the Stackelberg game with edges connecting the customer vertex
and all product vertices the customer wishes to purchase. Now every follower seeks to buy a min-cost vertex
cover for her set of edges.

We proceed by taking a closer look at this special type of Stackelberg pricing game and especially focus on
the interesting case of a single follower.

4 Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game, however, the approximation results for the single-price
algorithm continue to hold. Note that in general the vertex cover problem is hard, hence we focus on settings,
in which the problem can be solved in polynomial time. In bipartite graphs the problem can be solved
optimally by using a classic and fundamental max-flow/min-cut argumentation. If all pricable vertices are
in one side of the partition, then for multiple followers there is evidence that the single-price algorithm is
essentially best possible. Our main theorem in this section states that the setting with a single follower can
be solved exactly. As a consequence, general bipartite STACKVC can be approximated by a factor of 2.

Theorem 6 If for a bipartite graph G = (A ∪ B, E) we have Vp ⊆ A, then there is a polynomial time
algorithm computing an optimal price function p∗ for STACKVC.

We denote n = |Vp| and again use the values cj for 1 ≤ j ≤ n to denote the minimum sum of prices of
fixed-price vertices in any feasible subnetwork containing at most j pricable vertices. Then, ∆j = c0 − cj

are again upper bounds on the revenue that can be extracted from a network that includes at most j pricable

9

(a) (b) (c)

Figure 4: Construction to solve bipartite STACKVC with pricable vertices in one partition and a single fol-
lower. Filled vertices are pricable, vertex labels indicate cost. (a) A graph G; (b) The flow network obtained
from G. Grey parts are source and sink added by the transformation. Edge labels indicate a suboptimal
s-t-flow; (c) An increasing path P indicated by bold edges and the resulting flow. Every path P starts with a
pricable vertex, and all pricable vertices remain in the optimum cover at all times.

vertices. We thus have r∗ ≤ ∆n. Now consider STACKVC under the condition that the graph G is bipartite,
i.e. that the vertex set can be partitioned into V = A ∪ B with A ∩ B = ∅ and there are no edges within A
and B. Thus, for each e ∈ E, e = (u, v) there is u ∈ A and v ∈ B.

Algorithm 1: Solving STACKVC in bipartite graphs with Vp ⊆ A

Construct the flow network Gf by adding nodes s and t1

Set p(v) = 0 for all v ∈ Vp2

Compute a maximum s-t-flow φ in Gd3

while there is v ∈ Vp s.t. increasing p(v) yields an augmenting path P do4

Increase p(v) and φ along P as much as possible5

Suppose all pricable vertices are located in one partition Vp ⊆ A and consider Algorithm 1. Recall that for a
bipartite graph G the LP-dual can be captured by a maximum flow problem on an adjusted flow network Gd

constructed as follows. We add a source s and a sink t to G and connect s to all vertices v ∈ A with directed
edges (s, v), and t to all vertices v ∈ B with directed edges (v, t). Each such edge gets as capacity the price
of the involved original vertex - i.e. p(v) for v ∈ Vp or c(v) if v ∈ Vf . Furthermore, we direct all original
edges of the graph from A to B and set their capacity to infinity. It is well-known that the maximum s-t-flow
in this network equals the cost of a minimum cost vertex cover of the graph G. For an example see Figure 4.
An augmenting path in Gd is a path traversing only forward edges with slack capacity and backward edges
with non-zero flow. The optimum vertex cover includes a vertex v ∈ A if the maximum flow allows no
augmenting path from s to v. We denote by CALG the cover calculated by Algorithm 1.

Now consider a run of the algorithm. When computing the maximum flow on Gd holding all p(v) = 0,
we get a flow of cn. We first note that in the following while-loop we will never face a situation, in which
there is an augmenting s-t-path starting with a fixed-price vertex. We call such a path a fixed path, while an
augmenting s-t-path starting with a pricable vertex is called a price path.

Lemma 3 Every augmenting path considered in the while-loop of Algorithm 1 is a price path.

Proof: We prove the lemma by induction on the while-loop and by contradiction. Suppose that in the
beginning of the current iteration there is no fixed path. In particular, this is true for the first iteration of
the while-loop. Then, suppose that after we have increased the flow over a price path Pp, a fixed path Pf is
created. Pf must include some of the edges of Pp. Consider the vertex w at which Pf hits Pp. By following

10

Pf from s to w and Pp from w to t there is a fixed path, which must have been present before flow was
increased on Pp. This is a contradiction and proves the lemma. ¤

Note that we may include a vertex v ∈ A into the cover C if there is no augmenting path from s to v. In
particular, this means that for a vertex v ∈ A ∩ C the following two properties are fulfilled:

1. the flow over edge (s, v) equals the capacity and

2. there is no augmenting path from s over a different vertex v′ ∈ A that reaches v by decreasing flow
over one of the original edges (v, w) for w ∈ B.

As the algorithm always adjusts the price of a vertex v to equal the current flow on (s, v), we can assume that
there is never any slack capacity on edges (s, v) for any v ∈ Vp. Thus, only the violation of property 2 can
force a vertex v ∈ Vp to leave the cover. In particular, such an augmenting path must start with a fixed-price
vertex. We call such a path a fixed v-path.

Lemma 4 Algorithm 1 creates no fixed v-path for any pricable vertex v ∈ Vp.

Proof: The proof is similar to the proof of the previous lemma. Suppose in the beginning of an iteration there
is no fixed path, and additionally for a vertex v ∈ Vp there is no fixed v-path. Then suppose such a path P v

f

is created by increasing flow over a price path Pp. Note that P v
f cannot include any edge from Pp, because

this would create a fixed path Pf as noted in the previous lemma. Furthermore, v must be included in Pp,
because otherwise P v

f would have existed initially. Now we can again use the same argument as before.
Create a fixed path by following P v

f from s to v and then Pp from v to t. This yields fixed path must have
existed initially, which is a contradiction to the assumption. ¤

As there is no augmenting path from s to any pricable vertex at any time of the algorithm, the following
lemma is now obvious.

Lemma 5 CALG includes all pricable vertices.

Proof of Theorem 6. Finally, we can proceed to argue that the computed pricing is optimal. Suppose that
after executing Algorithm 1 we increase p(v) over φ(s, v) for any pricable vertex v. As we are at the end of
the algorithm, it does not allow us to increase the flow in the same way. Thus, the adjustment creates slack
capacity on all the edges (s, v) for any v ∈ Vp and causes every pricable vertex to leave CALG. The new
cover must be the cheapest cover that excludes every pricable vertex, i.e. it must be C0 and have cost c0.
As we have not increased the flow, we know that the cost of CALG is also c0. Note that before starting the
while-loop the cover was Cn of cost cn. As all flow increase in the while-loop was made over price paths
and all the pricable vertices stay in the cover, the revenue of CALG must be c0 − cn = ∆n. This is an upper
bound on the optimum revenue, and hence the price function pALG derived with the algorithm is optimal.
Finally, notice that adjusting the price of the pricable vertices in each iteration is not necessary. We can start
with computing Cn and for the remaining while-loop set all prices to +∞. This will result in the desired
flow, which directly generates the final price for every vertex v as flow on (s, v). Hence, we can get optimal
prices with an adjusted run of the standard polynomial time algorithm for maximum flow in Gd. This proves
Theorem 6. ¤

Algorithm 2 is a very natural extension of Algorithm 1 to the case of pricable vertices being located on both
sides of the bipartition. Theorem 7 states that the algorithm achieves a 2-approximation in this situation.

11

Algorithm 2: A 2-approximation algorithm for STACKVC in bipartite graphs

Fix pA(v) = ∞ for all v ∈ Vp ∩B1

Fix pB(v) = ∞ for all v ∈ Vp ∩A2

Run Algorithm 1 to determine pA(v) for v ∈ Vp ∩A3

Run Algorithm 1 to determine pB(v) for v ∈ Vp ∩B4

Return pA or pB , depending on which one yields more revenue5

Theorem 7 Algorithm 2 is a 2-approximation algorithm for bipartite STACKVC, and the analysis of the
ratio is tight.

Proof: Note that by setting pA(v) = ∞ for all pricable vertices of B, we increase their price over the prices
in the optimum solution. This obviously allows us to extract more revenue from the vertices in A than p∗.
The same argument applies for the vertices in B and pB . Hence, the sum of both revenues is an upper bound
on r∗, and our algorithm delivers a 2-approximation by preserving the greater of the two.

For a tight example consider a path (v1, v2, v3, v4, v5). The first vertex v1 is a pricable vertex, then there are
two fixed-price vertices v2 and v3 of cost 1 and 0, respectively. v4 is pricable vertex, and v5 has fixed cost 1.
The optimum prices are p(v1) = p(v3) = 1. This yields the cover C∗ = {v1, v3, v4} and generates a revenue
of 2. A solution returned by the algorithm, however, is e.g. p(v1) = 1 and p(v2) = ∞ (or vice versa), and
hence generates only a revenue of 1. ¤

Note that Algorithm 2 can be used to obtain a 2k-approximation for any number of k followers on general
bipartite STACKVC. In contrast, the analysis of the single-price algorithm is tight even for one follower in the
case, in which all pricable vertices are in one partition. Note further that a simple reduction from the highway
pricing problem [7] can be used to show that bipartite STACKVC for at least two followers is NP-hard.

5 Open problems

In the model of Stackelberg games there are a number of important open problems that arise from our work.
First, and foremost, we believe that the single-price algorithm is essentially best possible even for the single
follower case and general Stackelberg pricing games. However, there is no matching logarithmic lower bound
known for this case. The best lower bound remains APX-hardness from [9]. In addition, we believe that for
the most general case of weighted followers a better bound than m2 is possible. It remains an open problem
how to tighten the gap between this bound and the Ω(mε) lower bound we observed.

We have experimented with problems that allow to be solved by dynamic programming, like certain classes of
minimum knapsack or vertex cover on trees. It turns out that these algorithms can be modified to optimally
solve Stackelberg revenue optimization. It would be interesting to see, whether a dynamic programming
approach can be used for more general classes of problems.

More generally, extending other fundamental algorithm design techniques to cope with pricing problems is a
major open problem. We have presented how ideas related to LP-duality can be used in the case of bipartite
vertex cover. It remains to be shown if these ideas can be adjusted to cope with minimum cut or more general
graph partitioning problems.

12

References

[1] G. Aggarwal, T. Feder, R. Motwani, and A. Zhu. Algorithms for Multi-Product Pricing. In Proc. of
31st ICALP, 2004.

[2] N. Balcan and A. Blum. Approximation Algorithms and Online Mechanisms for Item Pricing. In
Proc. of 7th EC, 2006.

[3] N. Balcan, A. Blum, J. Hartline, and Y. Mansour. Mechanism Design via Machine Learning. In
Proc. of 46th FOCS, 2005.

[4] M. Balcan, A. Blum, and Y. Mansour. Single Price Mechanisms for Revenue Maximization in
Unlimited Supply Combinatorial Auctions. Technical Report CMU-CS-07-111, Carnegie Mellon
University, 2007.

[5] M. Bouhtou, A. Grigoriev, S. van Hoesel, A. van der Kraaij, and M. Uetz. Pricing Network Edges
to Cross a River. In Proc. of 2nd WAOA, 2004.

[6] P. Briest. Towards Hardness of Envy-Free Pricing. ECCC Technical Report TR06-150, 2006.

[7] P. Briest and P. Krysta. Single-Minded Unlimited-Supply Pricing on Sparse Instances. In Proc. of
17th SODA, 2006.

[8] P. Briest and P. Krysta. Buying Cheap is Expensive: Hardness of Non-Parametric Multi-Product
Pricing. In Proc. of 18th SODA, 2007.

[9] J. Cardinal, E. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Weimann. The
Stackelberg Minimum Spanning Tree Game. In Proc. of 10th WADS, 2007. To appear.

[10] S. Chawla, J. Hartline, and R. Kleinberg. Algorithmic Pricing via Virtual Valuations. In Proc. of 8th
EC, 2007.

[11] R. Cole, Y. Dodis, and T. Roughgarden. Pricing Network Edges for Heterogeneous Selfish Users.
In Proc. of 35th STOC, 2003.

[12] P. Cramton, Y. Shoham, and R. Steinberg (Editors). Combinatorial Auctions. MIT Press, 2006.

[13] E.D. Demaine, U. Feige, M.T. Hajiaghayi, and M.R. Salavatipour. Combination Can Be Hard:
Approximability of the Unique Coverage Problem. In Proc. of 17th SODA, 2006.

[14] P. Glynn, P. Rusmevichientong, and B. Van Roy. A Non-Parametric Approach to Multi-Product
Pricing. Operations Research, 54(1):82–98, 2006.

[15] V. Guruswami, J.D. Hartline, A.R. Karlin, D. Kempe, C. Kenyon, and F. McSherry. On Profit-
Maximizing Envy-Free Pricing. In Proc. of 16th SODA, 2005.

[16] J. Hartline and V. Koltun. Near-Optimal Pricing in Near-Linear Time. In Proc. of 8th WADS, 2005.

[17] M. Labbé, P. Marcotte, and G. Savard. A Bilevel Model of Taxation and its Application to Optimal
Highway Pricing. Management Science, 44(12): 1608–1622, 1998.

[18] N. Nisan and A. Ronen. Algorithmic Mechanism Design. In Proc. of 31st STOC, 1999.

13

[19] S. Roch, G. Savard, and P. Marcotte. An Approximation Algorithm for Stackelberg Network Pric-
ing. Networks, 46(1): 57–67, 2005.

[20] T. Roughgarden. Stackelberg Scheduling Strategies. SIAM Journal on Computing, 33(2): 332–350,
2004.

[21] C. Swamy. The Effectiveness of Stackelberg Strategies and Tolls for Network Congestion Games.
In Proc. of 18th SODA, 2007.

[22] S. van Hoesel. An Overview of Stackelberg Pricing in Networks. Research Memoranda 042, ME-
TEOR, Maastricht, 2006.

[23] H. von Stackelberg. Marktform und Gleichgewicht (Market and Equilibrium). Verlag von Julius
Springer, Vienna, 1934.

14

