
Stackelberg Scheduling Strategies

Tim Roughgarden
∗

Department of Computer Science
Cornell University
Ithaca, NY 14853

timr@cs.cornell.edu

ABSTRACT
We study the problem of optimizing the performance of a
system shared by selfish, noncooperative users. We consider
the concrete setting of scheduling jobs on a set of shared
machines with load-dependent latency functions specifying
the length of time necessary to complete a job; we measure
system performance by the total latency of the system.
Assigning jobs according to the selfish interests of individ-

ual users (who wish to minimize only the latency that their
own jobs experience) typically results in suboptimal system
performance. However, in many systems of this type there is
a mixture of “selfishly controlled” and “centrally controlled”
jobs; as the assignment of centrally controlled jobs will in-
fluence the subsequent actions by selfish users, we aspire to
contain the degradation in system performance due to self-
ish behavior by scheduling the centrally controlled jobs in
the best possible way.
We formulate this goal as an optimization problem via

Stackelberg games, games in which one player acts a leader
(here, the centralized authority interested in optimizing sys-
tem performance) and the rest as followers (the selfish users).
The problem is then to compute a strategy for the leader (a
Stackelberg strategy) that induces the followers to react in
a way that (at least approximately) minimizes the total la-
tency in the system.
In this paper, we prove that it is NP-hard to compute the

optimal Stackelberg strategy and present simple strategies
with provable performance guarantees. More precisely, we
give a simple algorithm that computes a strategy inducing a
job assignment with total latency no more than a constant
times that of the optimal assignment of all of the jobs; in the
absence of centrally controlled jobs and a Stackelberg strat-
egy, no result of this type is possible. We also prove stronger
performance guarantees in the special case where every ma-
chine latency function is linear in the machine load.

∗Supported by an NSF Graduate Fellowship, a Cornell Uni-
versity Fellowship, and ONR grant N00014-98-1-0589.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

1. INTRODUCTION

Coping with selfishness
One of the most basic problems arising in the management of
a set of resources is that of optimizing system performance.
A concrete example of such a problem is as follows: given a
large set of jobs to be assigned to a set of machines with load-
dependent latency functions (specifying the length of time
necessary to complete a job), find the allocation of jobs to
machines minimizing the total latency of the system.
In many such systems, including the Internet and other

large-scale communication networks, there is no central au-
thority controlling the allocation of shared resources; in-
stead, system users are free to act in a selfish manner [5].
This observation has led many authors (e.g., [8, 16, 19, 22,
27, 29]) to model the behavior of users in such a system by a
noncooperative game and to study the resulting Nash equi-
libria (see [23] for an introduction to basic game-theoretic
concepts).
Motivated by the well-known fact that Nash equilibria

may be inefficient (i.e., they need not optimize system per-
formance [11, 23]), researchers have proposed several differ-
ent approaches for coping with selfishness – that is, for en-
suring that selfish behavior results in a desirable outcome.
For example, two recent papers by Korlis et al. [17, 18] give
methods for improving system performance by adding ad-
ditional capacity to system resources, Cocchi et al. [7] in-
vestigate the control of selfish users through various pricing
policies, and Shenker [29] demonstrates that an appropriate
(centralized) protocol at a network switch induces selfish
users to exhibit good flow control behavior. An area of re-
search that typically does not study Nash equilibria but is
nevertheless concerned with controlling selfish behavior is
that of algorithmic mechanism design [13, 20, 21, 26]. In
this setting, an algorithm is designed to collect data from
users and compute an outcome using this data (e.g., based
on the bids of the users of the system, compute the set of
users that will receive some good, such as a movie multicast
over the Internet). The difficulty of these problems stems
from the assumptions that the algorithm is publicly known
and that users are selfish and may report false data (if doing
so improves their personal objective function); this problem
is typically resolved via a payment scheme (i.e., after com-
puting an outcome, the algorithm distributes payments to
users according to the outcome and the data collected) that
induces all users to report truthful data.
In this paper, we pursue a different approach. In many

systems, there will be a mix of “selfishly controlled” and

104

“centrally controlled” jobs – i.e., the shared resource is used
by both selfish individuals and some central authority (two
examples are given below). We investigate the following
question: given such a system, how should centrally con-
trolled jobs be assigned to resources to induce “good” (albeit
selfish) behavior from the noncooperative users? This ap-
proach has several appealing aspects: no communication is
required between the system users and an algorithm, no no-
tion of currency is needed, and the assignment of centrally
controlled jobs is easily modified to adapt to evolving usage
patterns.
One example of such a system arises in networks that al-

low a large customer to set up a so-called virtual private net-
work consisting of guaranteed and preassigned virtual paths
for ongoing use [4, 16]. The bandwidth needed for the vir-
tual private network may be viewed as centrally controlled
(its routes may be chosen by the network manager) while in-
dividual users of the network continue to behave in a selfish
and independent fashion. As another example, we note that
the owner of a large network will typically require network
bandwidth for any number of administrative tasks, such as
checking for hardware failures, measuring response time be-
tween different regions of the network, updating routing ta-
bles, and so on [6, 15]; here again, the shared resource is used
both by selfish individuals and by some central authority.

Stackelberg games
We are thus led to consider a type of game in which the roles
of different players are asymmetric. One player (responsible
for assigning the centrally controlled jobs to resources and
interested in optimizing social welfare) acts as a leader, in
that it may hold its assignment (its strategy) fixed while all
other agents (the followers) react independently and self-
ishly to the leader’s strategy, reaching a Nash equilibrium
relative to the leader’s strategy. These types of games, called
Stackelberg games, and the resulting Stackelberg equilibria
have been well-studied in the game theory literature (see,
e.g., [1, §2.3] or [2, §3.6] for an introduction and [30] for
their origin) and have been previously studied in the con-
texts of both competitive facility location [25] and network-
ing [9, 10, 12, 16]. With the exception of [16], however, the
leader/follower hierarchy has been used to model classes of
selfish agents with different priority levels; this setting dif-
fers from ours in that no agent is interested in optimizing
system performance.1 The paper of Korlis et al. [16], while
more similar in spirit to ours, focuses on deriving necessary
and sufficient conditions (on the number of selfish users, the
fraction of the job traffic that is centrally controlled, etc.)
for the existence of a leader strategy inducing an optimal
assignment of jobs to resources; moreover, only one type of
latency function is considered. By contrast, we are inter-
ested in simple leader strategies that always induce optimal
or near-optimal behavior from the system users for any set
of latency functions.

Problems studied in this paper
We focus on the problem described at the beginning of the
paper, of scheduling jobs on a set of machines with load-
dependent latencies in order to minimize the total latency.

1Typically, Stackelberg games model selfish agents with
asymmetric roles; our use of them is somewhat unconven-
tional.

In addition to being one of the most commonly studied mod-
els [12, 16, 19, 20, 21, 26] (occasionally in the equivalent
formulation of routing on a set of parallel links), the sim-
ple setting of scheduling jobs on machines permits a study of
the effects of different leader strategies in Stackelberg games
without any additional complications, such as the issue of
path-selection in a complicated network. We also focus on
a scenario in which there is a large number of jobs, each of
very small size. This assumption is consistent with a large
body of existing literature on Nash equilibria in congested
systems (e.g., [3, 8, 27, 28]) and allows us to model assign-
ments of jobs to m machines in a continuous way (i.e., by a
vector in Rm

+); this in turn implies the existence and essen-
tial uniqueness of the equilibrium reached by selfish users
relative to any Stackelberg strategy.
We may now restate our central questions quantitatively:

(1) among all leader strategies for a given set of machines
and jobs, can we characterize and/or compute the strat-
egy inducing the Stackelberg equilibrium – i.e., the equi-
librium of minimum total latency?

(2) what is the worst-case ratio between the total latency
of the Stackelberg equilibrium and that of the optimal
assignment of jobs to machines?

Our results
We give a simple polynomial-time algorithm for computing
a leader strategy that induces an equilibrium with total la-
tency no more than 1

α
times that of the optimal assignment

of jobs to machines, where α denotes the fraction of the jobs
that are centrally controlled. We also exhibit, for each α,
an instance in which no strategy can achieve a better per-
formance guarantee. This result stands in sharp contrast
to known results about Nash equilibria in this model; in
particular, the total latency of the Nash equilibrium may
be arbitrarily larger than that of the optimal assignment of
jobs to machines [27].
In the well-studied special case where every machine pos-

sesses a latency function linear in the congestion, we give a
simple O(m2) algorithm for computing a strategy inducing
an equilibrium with total latency no more than 4

3+α
times

that of the optimal assignment (where α is the fraction of
centrally controlled jobs, and m is the number of machines).
We again give instances in which no strategy can provide a
stronger guarantee.
Finally, we consider the optimization problem of comput-

ing the strategy inducing the Stackelberg equilibrium and
show that it is NP-hard, even in the special case where ev-
ery latency function is linear.
We note that our results give a (sharp) trade-off between

the optimal assignment and the Nash equilibrium (as a func-
tion of the fraction of centrally controlled jobs) in the fol-

lowing sense. In previous work by the author and Éva Tar-
dos [27] (motivated by a paper of Koutsoupias and Papadim-
itriou [19]) it is shown that in general the Nash equilibrium
can be arbitrarily more costly than the optimal assignment,
but if every machine latency function is linear then the to-
tal latency of the Nash equilibrium is no more than 4

3
times

that of the optimal assignment. Thus, our results reduce
to those of [27] when α = 0, give the trivial result that the
Stackelberg equilibrium for α = 1 is the optimal assignment,
and quantify the worst possible ratio between the cost of the
Stackelberg equilibrium (in some sense, a “mixture” of the

105

Nash equilibrium and the optimal assignment) and the cost
of the optimal assignment for all intermediate values of α.
Our approach also adds an algorithmic dimension to the

existing studies comparing Nash equilibria and optimal so-
lutions [19, 27], in that one aspect of our analysis of Stack-
elberg equilibria is the design of algorithms for efficiently
computing good Stackelberg strategies. Further, while Nash
and optimal assignments can be characterized and computed
efficiently via convex programming [8, 27], our hardness re-
sult for computing Stackelberg equilibria implies that no
such characterization is possible. With the central approach
of [27] ruled out, new techniques are required for our results.

Organization
In Section 2 we formalize our model and state several pre-
liminary lemmas. In Section 3 we introduce three simple
algorithms for computing Stackelberg strategies. In Sec-
tions 4 and 5, we prove that our third algorithm achieves
the best-possible worst-case performance guarantee for in-
stances with general and linear latency functions, respec-
tively. In Section 6, we prove that computing the optimal
strategy is NP-hard, even when every latency function is
linear. Section 7 concludes with directions for future work.

2. PRELIMINARIES

2.1 The Model
We consider a set M of m machines 1, 2, . . . , m, where ma-

chine i is endowed with a latency function �i(·) that measures
the (load-dependent) time required to complete a job. We
require that each latency function be nonnegative, contin-
uous, and nondecreasing in its argument. We also impose
the very weak condition that x · �i(x) is a weakly convex
function for each i.2 We assume a rate r of job arrivals;
an assignment of the jobs to the machines is an m-vector
x ∈ Rm

+ such that
Pm

i=1 xi = r. When we are interested
in the total load on a subset M ′ ⊆ M of the machines,
we write x(M ′) =

P
i∈M′ xi. We measure system perfor-

mance via the cost of total latency C(x) of an assignment
x, defined by C(x) =

Pm
i=1 xi�i(xi). We note that all jobs

assigned to the same machine experience the same latency;
this differs from much of the traditional scheduling literature
but agrees with common models of equilibria in congested
systems (e.g., [8, 16, 22, 27]), where a particular allocation
of resources represents a “steady-state solution” with jobs
arriving continuously over time.
We will consider instances with and without centrally con-

trolled jobs. We denote an instance with machines M , rate
r, and no centrally controlled jobs by (M, r). An instance
with centrally controlled jobs (a Stackelberg instance) will be
denoted by (M, r, α), where the third parameter α ∈ (0, 1)
indicates the fraction of the overall traffic that is centrally
controlled.

2.2 Nash Equilibria and Optimal Assignments
If jobs are generated and assigned to machines by selfish,

noncooperative agents (who wish to minimize the amount
of time it takes for their work to complete), we expect the
assignment to be “stable” or “at equilibrium” in the follow-
ing sense: no job can strictly decrease the latency it expe-

2Thus, �i(x) may be any weakly convex function, or log(1+
x), etc.

riences by changing machines. The following definition is
motivated by this notion of a stable assignment by nonco-
operative agents.

Definition 2.1. An assignment x to M is at Nash equi-
librium (or is a Nash assignment) if whenever i, j ∈ M with
xi > 0, �i(xi) ≤ �j(xj).

In particular, all machines in use by an assignment at
Nash equilibrium have equal latency. We may thus express
the cost of an assignment at Nash equilibrium in the follow-
ing simple form.

Lemma 2.2. If x is an assignment at Nash equilibrium for
(M, r) such that all machines in use have common latency
L, then

C(x) = rL.

It is worth noting that an assignment at Nash equilib-
rium does not in general optimize the system performance.
To see this, consider a two-machine example, in which the
first machine has constant latency function �1(x) = 1 and
the second has latency function �2(x) = x. If we put r = 1,
we see that the (optimal) assignment (1

2
, 1

2
) has total latency

3
4
whereas the (unique) assignment at Nash equilibrium as-

signs all work to the second machine, thereby incurring a
total cost of 1.
We end our preliminary discussion of Nash assignments

by noting that they exist and are essentially unique.

Lemma 2.3 ([3, 8, 27]). Suppose M is a set of machines
with continuous, nondecreasing latency functions. Then:

(a) For any rate r ≥ 0 of job traffic, there exists an as-
signment of jobs to M at Nash equilibrium.

(b) If x, x′ are assignments at Nash equilibrium for (M, r),
then �i(xi) = �i(x

′
i) for each machine i.

In particular, Lemmas 2.2 and 2.3(b) imply that any two
Nash assignments for an instance (M, r) have equal cost.
For our final preliminary result, we give an analogous

characterization of optimal assignments. Define �∗i (x) by
(x · �i(x))

′ = �i(x)+ x · �′i(x) — that is, as the marginal cost
of increasing the load of machine i. We will say that �∗i (xi)
is the gradient of machine i (with respect to the assignment
x). Then, the following lemma holds.

Lemma 2.4 ([3, 8, 27]). Suppose M is a set of machines
with latency functions �, and that xi · �i(xi) is a weakly con-
vex function for each machine i. Then an assignment x to
M is optimal if and only if whenever i, j ∈ M with xi > 0,
�∗i (xi) ≤ �∗j (xj). Moreover, the optimal assignment can be
computed in polynomial time.

It should be plausible that Lemma 2.4 gives a characteri-
zation of locally optimal assignments (if the condition fails,
switching jobs from a machine with a large gradient to a
machine with a small gradient yields a new assignment with
smaller cost). That it also characterizes globally optimal so-
lutions follows from the fact that the optimal assignment
minimizes a convex function (C(x)) over a convex set (the
polytope of assignments) and that the local and global min-
ima of a convex function on a convex set coincide (see for
example [24, Thm 2.3.4]). This observation also implies that
the optimal solution can be computed in polynomial time via
convex programming.

106

2.3 Stackelberg Strategies and Induced Equi-
libria

In this subsection we define our notion of a Stackelberg
game and consider two examples. Recall we desire a hierar-
chical game, where a leader assigns centrally controlled jobs
to machines and, holding this strategy fixed, the selfish users
of the system react in a noncooperative and selfish manner.
This idea is formalized in the next two definitions.

Definition 2.5. A (Stackelberg) strategy for the Stack-
elberg instance (M, r, α) is an assignment feasible for (M, αr).

Definition 2.6. Let s be a strategy for Stackelberg in-
stance (M, r, α) where machine i has latency function �i,

and let �̃i(x) = �i(si + x) for each i ∈ M . An equilibrium
induced by strategy s is an assignment t at Nash equilib-
rium for the instance (M, (1− α)r) w.r.t. latency functions

�̃. We then say that s+ t is an assignment induced by s for
(M, r, α).

The next fact is immediate from Lemmas 2.2 and 2.3.

Lemma 2.7. Let s be a strategy for a Stackelberg instance
with continuous, nondecreasing latency functions. Then there
exists an assignment induced by s, and any two such induced
assignments have equal cost.

The following simple observation will be useful in sec-
tions 4 and 5.

Lemma 2.8. Let s be a strategy for Stackelberg instance
(M, r, α) inducing equilibrium t. Let M ′ denote the ma-
chines on which ti > 0. Then s+t, restricted to M ′, is an as-
signment at Nash equilibrium for the instance (M ′, s(M ′) +
t(M ′)). In particular, all machines on which ti > 0 have a
common latency w.r.t. s+ t.

We next consider two examples that demonstrate both
the usefulness and the limitations of Stackelberg strategies.
First consider the two machine example of the previous sub-
section (one machine with latency function �1(x) = 1, the
other with latency function �2(x) = x). Recall that in the
absence of any jobs under centralized control, the assign-
ment at Nash equilibrium is 4

3
as costly as the optimal as-

signment. Suppose that half of the jobs are controlled by the
system manager (i.e., that α = 1

2
) and consider the strategy

s = (1
2
, 0). Then, as all remaining jobs will be assigned to

the second machine in the equilibrium induced by s, the as-
signment induced by s is precisely the optimal assignment.
Thus, in this particular instance, system performance can
be optimized via a Stackelberg strategy.
Now consider a small modification to the previous exam-

ple, in which we replace the latency function of the second
machine with the latency function �2(x) = 2x. The assign-
ment at Nash equilibrium puts half of the jobs on each ma-
chine (for a cost of 1) while the optimal assignment is (3

4
, 1

4
)

(with a cost of 7
8
). On the other hand, if we again allow the

system manager to assign half of the jobs, we see that for
any strategy s, the assignment induced by s is (1

2
, 1

2
) and

hence is not optimal. In this example, there is no available
strategy by which the system manager can improve system
performance.

3. THREE STACKELBERG STRATEGIES

3.1 Two Natural Strategies
We begin our investigation of Stackelberg strategies by

considering two natural approaches that provide subopti-
mal performance guarantees. To motivate our results in the
simplest possible way, throughout this subsection we will
consider examples in which all latency functions are linear
and half of the jobs are centrally controlled (α = 1

2
). We are

thus hoping for strategies that always induce an equilibrium
of cost at most 8

7
times that of the optimal assignment (this

is best possible by the second example of subsection 2.3).
First consider the following strategy for an instance (M, r, 1

2
):

if x∗ is the optimal assignment for instance (M, 1
2
r), put

s = x∗. In words, we choose the strategy of minimum cost
(ignoring the existence of jobs that are not centrally con-
trolled). We call this the Aloof strategy since it refuses to
acknowledge the rest of the jobs in the system. The exam-
ple of subsection 2.2 (two machines with latency functions
�1(x) = 1 and �2(x) = x) shows that this strategy performs
quite poorly: the strategy is (0, 1

2
) and the induced assign-

ment is (0, 1), an assignment that we have seen to incur total
latency 4

3
times that of the optimal assignment.

A second attempt for a good strategy might be as follows:
if x∗ is the optimal assignment for (M, r), put s = 1

2
x∗. We

call this the Scale strategy, since it is simply the optimal
assignment of all the jobs, suitably scaled. Unfortunately,
a simple example shows that the Scale strategy also fails to
provide the performance guarantee of 8

7
that we are looking

for: in a two-machine example with latency functions 1 and
3
2
x and rate 1, the optimal assignment is (2

3
, 1

3
) (with total

cost 5
6
) and thus the Scale strategy will be (1

3
, 1

6
) which

induces the equilibrium (1
3
, 2

3
) having cost 1. Hence, the

Scale strategy may result in an induced equilibrium with
total latency 6

5
times the cost of the optimal assignment.3

3.2 The Largest Latency First (LLF) Strategy
Intuitively, both the Aloof and Scale strategies suffer from

a common flaw: both allocate jobs to machines that will be
subsequently inundated in any induced equilibrium while
assigning too little work to machines that selfish users are
prone to ignore. This observation suggests that a good strat-
egy should give priority to the machines that are least ap-
pealing to selfish users — machines with relatively high la-
tency. With this intuition in mind, the following strategy for
a Stackelberg instance (M, r,α) (which we call the Largest
Latency First or LLF strategy) should seem natural:

(1) Compute the optimal assignment x∗ for (M, r)

(2) Index the machines of M so that �1(x
∗
1) ≤ · · · ≤ �m(x∗

m)

(3) Let k ≤ m be minimal with
Pm

i=k+1 x∗
i ≤ αr

(4) Put si = x∗
i for i > k, sk = αr−Pm

i=k+1 x∗
i , and si = 0

for i < k

We will say that a machine i is saturated by a strategy s if
si = x∗

i . Thus, the LLF strategy saturates machines one-
by-one (in order from the largest latency w.r.t. x∗ to the

3In addition, both of the strategies of this subsection can
perform arbitrarily badly for instances with general latency
functions.

107

smallest) until there are no centrally controlled jobs remain-
ing. Note that Lemma 2.4 implies that the LLF strategy
can be computed in polynomial-time (the bottleneck is step
(1)); in Section 5 we will see that it can be computed in
O(m2) time when every latency function is linear.
The next two sections are devoted to proving that the LLF

strategy always induces an assignment with near-optimal
total latency.

4. A 1
α

PERFORMANCE GUARANTEE FOR
ARBITRARY LATENCY FUNCTIONS

In this section we prove that the LLF strategy induces
a near-optimal assignment for any set of latency functions
and any number of machines. We note that no performance
guarantee is possible in the absence of centrally controlled
jobs: without additional restrictions on machine latency
functions, the Nash assignment may incur arbitrarily more
latency than the optimal assignment [27]. Thus, the bene-
fit of a leader (and of a carefully chosen leader strategy) is
particularly striking in this general setting.
A simple variation on previous examples demonstrates

the limits of Stackelberg strategies. In a two-machine in-
stance with α = 1

2
and latency functions �1(x) = 1 and

�2(x) = 2kxk for k ∈ Z+, any Stackelberg strategy induces
the assignment (1

2
, 1

2
) (having total latency 1) while the op-

timal assignment is (1
2
+δk, 1

2
−δk) having cost

1
2
+εk, where

δk, εk → 0 as k → ∞. Thus the best induced assignment
may be (arbitrarily close to) twice as costly as the optimal
assignment. Similar examples show that for any α ∈ (0, 1),
the best induced assignment may be 1

α
times as costly as

the optimal assignment.
The main result of this section is that the LLF strategy

always induces an assignment of cost no more than 1
α
times

that of the optimal assignment. A rough outline of the proof
is as follows. Our goal is to exploit the iterative structure
of the LLF strategy and proceed by induction on the num-
ber of machines. If the LLF strategy first saturates the mth
machine, a natural idea is to apply the inductive hypothesis
to the remainder of the LLF strategy on the first m− 1 ma-
chines (note that the job rate and fraction of centrally con-
trolled jobs in the inductive instance will be smaller than
in the original instance) to derive a performance guaran-
tee. This idea nearly succeeds, but there are two difficulties.
First, it is possible that the LLF strategy fails to saturate
any machines; we will see below that this case is easy to
analyze and causes no trouble. Second, in order to obtain
a clean application of the inductive hypothesis to the first
m − 1 machines, we require that the the optimal and LLF-
induced assignments place the same amount of jobs on these
machines — i.e., that the LLF-induced equilibrium eschews
the mth machine.4 We resolve this difficulty with the follow-
ing lemma, which states that if the LLF strategy saturates
the mth machine, then some induced equilibrium assigns
all jobs to the first m− 1 machines (this is good enough for

4To see that this does not always occur, put r = 1, α = 1
2

and consider the trivial example of two machines each with
the constant latency function �(x) = 1. One particular opti-
mal assignment is (1

3
, 2

3
), and the corresponding LLF strat-

egy is (1
3
, 1

6
); one particular induced assignment is (2

3
, 1

3
).

Even though the LLF strategy saturated the first machine,
the induced equilibrium uses it.

our purposes, since different induced assignments have equal
cost).

Lemma 4.1. Let (M, r,α) denote a Stackelberg instance
with optimal assignment x∗ and index the machines of M
so that �m(x∗

m) ≥ �i(x
∗
i) for all i. If s is a strategy with

sm = x∗
m and si ≤ x∗

i for all i, then there exists an induced
equilibrium t with tm = 0.

Proof. Consider an arbitrary induced equilibrium t and
suppose tm > 0. Roughly speaking, the idea is to prove
that this scenario only occurs when several latency functions
(that of the mth machine, and others) are locally constant;
then, jobs assigned to machine m in the induced equilibrium
can be evacuated to other machines with locally constant
latency functions to provide a new induced equilibrium.
Formally, let L = �m(x∗

m+tm) denote the common latency
w.r.t. s + t of every machine with ti > 0 (see Lemma 2.8).
We must have �m(x∗

m) ≥ L; otherwise �i(x
∗
i) < L for all

i yet �i(si + ti) ≥ L for all i, contradicting that x∗ and
s + t are assignments at the same rate. Thus, since �m is
nondecreasing, �m is locally constant: �m(x) = L for x ∈
[x∗

m, x∗
m + tm].

Next, let M ′ denote the machines on which si + ti < x∗
i ;

since sm + tm > x∗
m, M ′ is non-empty. For each i ∈ M ′,

x∗
i > 0 and hence �i is equal to L on [si + ti, x

∗
i] (since we

know that �i(si + ti) ≥ L, �i(x
∗
i) ≤ �m(x∗

m) = L, and �i is
nondecreasing). Since x∗ and s + t are assignments for the
same rate, we must have

P
i∈M′ [x

∗
i −(si+ti)] ≥ tm. Finally,

consider modifying t as follows: move all jobs previously
assigned to machine m to machines in M ′, subject to the
constraint si+ti ≤ x∗

i . We have already observed that there
is sufficient “room” on machines in M ′ for this operation,
and that all latency functions are constant in the domain of
our modifications. We have thus exhibited a new induced
equilibrium with no jobs assigned to machine m, completing
the proof.

We are now prepared to prove the main result of this
section.

Theorem 4.2. Let I = (M, r, α) denote a Stackelberg in-
stance. If s is an LLF strategy for I inducing equilibrium
t and x∗ is an optimal assignment for the instance (M, r),
then C(s+ t) ≤ 1

α
C(x∗).

Proof. We proceed by induction on the number of ma-
chines m (for each fixed m, we will prove the theorem for
arbitrary �, r, and α). The case of one machine is trivial.
Fix a Stackelberg instance I = (M, r, α) with at least

two machines, let x∗ denote an optimal assignment to the
instance (M, r) and s the corresponding LLF strategy. Index
the machines so that �1(x

∗
1) ≤ �2(x

∗
2) ≤ · · · ≤ �m(x∗

m). By
scaling, we may assume that r = 1 (use latency functions

�̃ with �̃i(x) = �i(rx)). Let L denote the common latency
w.r.t. s + t of every machine with ti > 0 (see Lemma 2.8).

Case 1: Suppose tk = 0 for some machine k. Let M1

denote the machines i for which ti = 0 and M2 the machines
for which ti > 0; both of these sets are non-empty. For
i = 1, 2 let αi denote the amount of centrally controlled jobs
assigned to machines in Mi (i.e., αi = s(Mi)) and Ci the cost
incurred by s + t on machines in Mi. By Lemma 2.8, C2 =

108

(1 − α1)L and C1 ≥ α1L. Now, x∗ restricted to M2 is an
optimal assignment for (M2, 1−α1) and hence s restricted to
M2 is an LLF strategy for the instance I2 = (M2, 1−α1, α

′)
where α′ = α2

1−α1
. The inductive hypothesis and the fact

that x∗
i ≥ si = si + ti for all i ∈ M1 implies that

C(x∗) ≥ C1 + α′C2.

Proving that C(s + t) ≤ 1
α

C(x∗) thus reduces to showing

α(C1 + C2) ≤ C1 + α′C2.

Since α ≤ 1 and C1 ≥ α1L, it suffices to prove this inequality
with C1 replaced by α1L. Substituting for C2 and α′ and
dividing through by L, we need only check that

α(α1 + (1− α1)) ≤ α1 +
α2

1− α1
(1− α1)

which clearly holds (both sides are equal to α).

Case 2: Suppose ti > 0 for every machine i, so C(s +
t) = L. We may assume that the LLF strategy failed to
saturate machine m (otherwise, by Lemma 2.7, we can finish
by applying the previous case to the better-behaved induced
assignment guaranteed by Lemma 4.1). Thus, α < x∗

m.
As in the proof of Lemma 4.1, we must have �m(x∗

m) ≥ L;
otherwise, �i(x

∗
i) < L for all machines i while �i(si+ ti) = L

for all i, contradicting that x∗ and s + t are assignments
at the same rate. Having established that machine m has
large latency w.r.t. x∗ and that x∗

m is fairly large, it is now
a simple matter to lower bound C(x∗):

C(x∗) ≥ x∗
m�m(x∗

m) ≥ αL = αC(s + t).

5. A 4
3+α

PERFORMANCE GUARANTEE FOR
LINEAR LATENCY FUNCTIONS

5.1 Properties of the Nash and Optimal As-
signments

In this subsection we undertake a deeper study of the Nash
and optimal assignments for instances with linear latency
functions. The results of this subsection will be instrumental
in proving strengthened performance guarantees for the LLF
strategy in these instances.
Fix a set of machines M with latency functions �i(x) =

aix + bi for each i (ai, bi ≥ 0) and index them so that b1 ≤
b2 ≤ · · · ≤ bm. We may assume that at most one machine
has a constant latency function (ai = 0) since all but the
fastest may be safely discarded; under this assumption, the
Nash and optimal assignments are always unique. We may
similarly assume that a machine with a constant latency
function is the last machine.
Our first goal is to understand the structure of the Nash

assignment x̄ as a function of the rate r. It is useful to
imagine r increasing from 0 to a large value, with the corre-
sponding Nash assignment changing in a continuous fashion;
an intuitive description of this process is as follows. Initially,
when r is nearly zero, all jobs will be assigned to the machine
having the smallest constant term. Once the first machine is
sufficiently loaded, the second machine looks equally attrac-
tive (this occurs when a1x̄1+b1 = b2 – i.e., when the load on
machine 1 is b2−b1

a1
). At this point, new jobs will be assigned

to both of the first two machines, at rates proportional to

1
a1

and 1
a2

(jobs will be assigned so that these two machines

continue to have equal latency). Once (b3−b2)(
1

a1
+ 1

a2
) fur-

ther units of work have arrived and been assigned to the first
two machines, machine 3 will be equally attractive and new
jobs will be spread out among the first three machines, and
so on. We may thus envision the Nash assignment as being
constructed in phases: within phase i jobs are assigned to
the first i machines according to fixed relative proportions
and at the end of the phase (after enough new jobs have
been assigned) an additional machine is put into use.
We now formalize this intuitive description of the Nash

assignment x̄. For i = 1, . . . , m, let vi denote the m-vector
(1

a1
, 1

a2
, . . . , 1

ai
, 0, 0, . . . , 0) ∈ Rm

+ ; if am = 0 put vm =

(0, 0, . . . , 1). The vector vi should be interpreted as a spec-
ification of the way jobs are assigned to the first i machines
during the ith phase. Next, define δi for i = 0, 1, . . . , m− 1
inductively by δ0 = 0 and δi = min{(bi+1 − bi)‖vi‖1, r −Pi−1

j=0 δi} ≥ 0 (where ‖·‖1 denotes the L1 norm of a vector).

We also put δm = r −Pm−1
j=0 δi. The scalar δi should be

interpreted as the total amount of jobs assigned in the ith
phase. We can then describe x̄ as follows.

Lemma 5.1. Let I be an instance with linear latency func-
tions, as above. Then the Nash assignment for I is given
by

x̄ =
mX

i=1

δi
vi

‖vi‖1

.

Our characterization of optimal assignments (Lemma 2.4)
yields an analogous result for computing them by an explicit
formula. Note that when a latency function has the form
�i(x) = aix + bi, the corresponding gradient or marginal
cost function is �∗i (x) = 2aix + bi. Recalling that in an
optimal assignment the gradients of all used machines are
equal (Lemma 2.4), we see that the optimal assignment is
created by the same process as the Nash assignment, except
that new machines are incorporated at a more rapid pace so
as to spread jobs over a larger range of machines (and thus
achieve a smaller overall total latency).
Formally, let vi be as above and define δ∗i inductively by

δ∗0 = 0, δ∗i = min{ 1
2
(bi+1 − bi)‖vi‖1, r−

Pi−1
j=0 δ∗i }, and δ∗m =

r −Pm−1
j=0 δ∗i . Letting x∗ denote the optimal assignment to

(M, r), the analog of Lemma 5.1 is as follows.

Lemma 5.2. Let I be an instance with linear latency func-
tions, as above. Then the optimal assignment for I is given
by

x∗ =
mX

i=1

δ∗i
vi

‖vi‖1

.

Lemmas 5.1 and 5.2 have several useful corollaries. We
summarize them below.

Corollary 5.3. Let M be a set of machines with latency
functions {�i(x) = aix + bi}i∈M and at most one machine
with a constant latency function. Let bi be nondecreasing in
i. Then:

(a) If x∗ is the optimal assignment for (M, r1) and y∗ is
the optimal assignment for (M, r2) with r1 ≥ r2, then
x∗

i ≥ y∗
i for each i.

109

(b) If x∗ and x̄ denote the optimal and Nash assignments
to (M, r) and x̄i > 0, then x∗

i > 0.

(c) If x∗ and x̄ denote the optimal and Nash assignments
to (M, r), then x∗

1 ≤ x̄1 ≤ 2x∗
1.

(d) If x∗ and x̄ denote the optimal and Nash assignments
to (M, r), then x∗

m ≥ x̄m.

(e) For any rate r, the optimal and Nash assignments of
(M, r) can be computed in O(m2) time.

Corollary 5.3(e) implies that the LLF strategy can be com-
puted in O(m2) time for instances with linear latency func-
tions.

5.2 Analysis
In subsection 2.3 we saw an example with linear latency

functions and α = 1
2
in which no strategy can induce an

assignment with cost less than 8
7
times that of the optimal

assignment. This example is easily modified (by giving the
second machine a latency function of 1

1−α
x) to show that,

for any α ∈ (0, 1), the minimum-cost induced assignment
for a Stackelberg instance (M, r,α) may be 4

3+α
as costly as

the optimal assignment for (M, r). The main result of this
section is a matching upper bound for the LLF strategy.
Before proving this result, we give an alternative descrip-

tion of LLF that is more convenient for our analysis. This
description is based on the following lemma.

Lemma 5.4. Let x∗ be an optimal assignment for (M, r)
where machine i has latency function �i(x) = aix+bi. Then
�i(x

∗
i) ≥ �j(x

∗
j) if and only if bi ≥ bj .

Proof. The lemma is clear when x∗
i = x∗

j = 0. If exactly
one of x∗

i , x∗
j is 0 (say x∗

i), then by Lemma 2.4 we know that
�∗i (x

∗
i) = �(0) = bi is at least �∗j (x

∗
j) = 2ajx

∗
j + bj . Thus we

necessarily have both bi ≥ bj and �i(x
∗
i) ≥ �j(x

∗
j). Finally, if

x∗
i , x∗

j > 0 then by Lemma 2.4 we have 2aix
∗
i + bi = 2ajx

∗
j +

bj = L∗ for some L∗; thus bi ≥ bj if and only if aix
∗
i ≤

ajx
∗
j . The lemma follows by writing �(x∗

i) = L∗ − aix
∗
i and

�(x∗
j) = L∗ − ajx

∗
j .

Lemma 5.4 implies the following equivalent description of
the LLF strategy: saturate machines one-by-one, in decreas-
ing order of constant terms, until no centrally controlled jobs
remain. It may seem surprising that the LLF strategy makes
no use of the ai-values in ordering the machines; however,
this is consistent with our observation in subsection 5.1 that
the order in which the optimal assignment begins to use
machines (if we think of the rate as increasing from 0 to
some large value) depends only on the constant terms of the
machines’ latency functions.
We are finally prepared to prove a 4

3+α
performance guar-

antee for the LLF strategy for instances with linear latency
functions. The general approach is similar to that of The-
orem 4.2 and is again by induction on the number of ma-
chines. However, new difficulties arise in proving a stronger
performance guarantee. The case in which there is some
machine k on which the induced equilibrium assigns no jobs
(tk = 0) is nearly identical to the first case of Theorem 4.2
(the desired performance guarantee can be easily extracted
from the inductive guarantee for the smaller instance of ma-
chines on which ti > 0), but the second case (in which the

induced equilibrium assigns jobs to all machines) is substan-
tially more complicated. In particular, the simple approach
in the proof of Theorem 4.2 does not use any inductive guar-
antee in this case and is thus not strong enough to prove a
guarantee better than 1

α
. For this reason, much of the proof

is devoted to defining an appropriate smaller instance that
allows for clean application of the inductive hypothesis and
extending the inductive guarantee into one for the original
instance.

Theorem 5.5. Let I = (M, r, α) denote a Stackelberg in-
stance with linear latency functions. If s is an LLF strategy
for I inducing equilibrium t and x∗ is an optimal assignment
for (M, r), then C(s + t) ≤ 4

3+α
C(x∗).

Proof. We proceed by induction on the number of ma-
chines m (for each fixed m, we will prove the theorem for
arbitrary (linear) �, r, and α). The case of one machine is
trivial.
Fix a Stackelberg instance I = (M, r, α) with at least two

machines and let �i(x) = aix + bi (with ai, bi ≥ 0). Let
x∗ denote an optimal assignment to (M, r). We begin with
several simplifying assumptions, each made with no loss of
generality. As in Theorem 4.2, we may assume that r = 1.
We assume (as usual) that there is at most one machine
with a constant latency function. It will also be convenient
to assume that some machine i has constant term 0 (i.e.,
bi = 0). To enforce this assumption we may subtract mini bi

from every latency function before applying our argument:
assuming r = 1, this modification decreases the cost of every
assignment by precisely mini bi and will only increase the
ratio in costs between any two assignments. We also assume
that no machine has latency function �(x) = 0 (otherwise
the instance is trivial) and that every machine is used by
the optimal assignment x∗ (using Corollary 5.3(b), other
machines may be discarded without affecting our argument).
Let s denote the LLF strategy for I and t the induced

equilibrium. Let L denote the common latency of every
machine used by t. Index the machines of M as in the
second description of the LLF strategy, so that 0 = b1 ≤
b2 ≤ · · · ≤ bm and a1 > 0. We will need to apply the
inductive hypothesis in two different ways, and our analysis
breaks into two cases.

Case 1: Suppose tk = 0 for some k. As in the proof of
Theorem 4.2, let M1 denote the machines on which ti = 0
and M2 the machines on which ti > 0. For i = 1, 2, let αi

denote the amount of centrally controlled jobs on machines
in Mi, so αi = s(Mi). For i = 1, 2 let Ci denote the cost
incurred by s+t on machines in Mi. Observe that C1 ≥ α1L
and C2 = (1−α1)L (see Lemma 2.8). Since x∗ restricted to
M2 is an optimal assignment for (M2, 1 − α1), s restricted
to M2 is an LLF strategy for I2 = (M2, 1 − α1, α

′), where
α′ = α2

1−α1
. The inductive hypothesis (applied to I2) and

the fact that x∗
i ≥ si = si + ti for all i ∈ M1 implies that

C(x∗) ≥ C1 +
3 + α′

4
C2.

Proving that C(s+ t) ≤ 4
3+α

C(x∗) thus reduces to showing

(3 + α)(C1 + C2) ≤ 4C1 + (3 + α′)C2.

Since α ≤ 1 and C1 ≥ α1L, it suffices to prove this inequal-
ity with C1 replaced by α1L. Substituting for C2, α

′ and
dividing through by L verifies the result.

110

Case 2: Suppose ti > 0 for all machines i ∈ M . This implies
that s+t is a Nash assignment for (M, 1); by Corollary 5.3(d)
we have sm < sm + tm ≤ x∗

m. It follows that the LLF
strategy s failed to saturate machine m, so sm = α and
si = 0 for i < m.
Our first goal is to show that s is an LLF strategy not

only for I but also for I′ = (M ′, 1− t1,
α

1−t1
), where M ′ =

M \ {1} (we may then apply the inductive hypothesis to s
in this smaller instance). Toward this end, let y∗ denote
the optimal assignment to the instance (M ′, 1 − t1). Since
s+ t restricted to M ′ is a Nash assignment for (M ′, 1− t1),
we must have y∗

m ≥ sm + tm (see Corollary 5.3(d)); since
α = sm < sm+tm ≤ y∗

m, the LLF strategy for I′ is precisely
s (restricted to M ′).
Let C∗

1 , C∗
2 denote the total latency incurred by x∗ on

machine 1 and in M ′, respectively. The next claim gives
a lower bound on C∗

2 , as a function of the amount of jobs
assigned to machines in M ′ in the optimal assignment.

Claim: If r ≥ 1− t1, then the cost of the optimal assign-
ment for (M ′, r) is at least

3 + α′

4
(1− t1)L + (r − 1 + t1)L

where α′ = α
1−t1

.

Proof of Claim: The claim is proved for r = 1 − t1
by applying the inductive hypothesis to the instance I′ =
(M ′, 1 − t1, α

′) and using the fact that the LLF strategy s
induces an assignment in M ′ of cost (1− t1)L. Suppose now
that r > 1−t1. We again denote the optimal assignment for
(M ′, 1− t1) by y∗. Since y∗ and s+ t (restricted to M ′) are
assignments at the same rate (namely, 1− t1) and the com-
mon latency of every machine w.r.t. s+ t is L, there is some
machine i with y∗

i > 0 and �i(y
∗
i) ≥ L. Since the gradient

of a machine is at least its latency, Lemma 2.4 implies that
the gradient of every machine in M ′ is at least L w.r.t. y∗.
By Corollary 5.3(a) and the observation that gradients are
nondecreasing functions of congestion, extending y∗ from an
optimal assignment for (M ′, 1−t1) to an optimal assignment
for (M ′, r) involves the assignment of r − (1 − t1) units of
jobs, all assigned at a marginal cost of at least L. Thus, the
overall cost of an optimal assignment to (M ′, r) must be at

least C(y∗) + (r − 1+ t1)L ≥ 3+α′
4

(1− t1)L+ (r − 1+ t1)L.

With the claim in hand, we have reduced the proof of the
theorem to proving the inequality

(3 + α)L ≤ (3 + α′)(1− t1)L + 4(t1 − x∗
1)L + 4a1(x

∗
1)

2

where α′ = α
1−t1

(recall that �1(x) = a1x). For any fixed

value of t1, x∗
1 ∈ [1

2
t1, t1] (see Corollary 5.3(c)). Using the

identity a1t1 = L and differentiating, we find that the right-
hand side is minimized by x∗

1 = 1
2
t1. Since the left-hand

side is independent of x∗
1, it suffices to prove that

(3 + α)L ≤ (3 + α′)(1− t1)L + 2t1L + a1t
2
1.

Substituting for α′, using the identity a1t1 = L, and dividing
by L gives

3 + α ≤ (3 +
α

1− t1
)(1− t1) + 3t1

which clearly holds, proving the theorem.

We remark that Theorem 5.5 was proved for α = 0 (in a
more general setting) in [27].

6. THE COMPLEXITY OF COMPUTING OP-
TIMAL STRATEGIES

Thus far, we have measured the performance of a Stack-
elberg strategy by comparing the cost of the corresponding
induced assignment to the cost of the optimal assignment of
all of the jobs. Another natural approach for evaluating a
strategy is to compare the cost of the induced assignment to
that of the least costly assignment induced by some Stack-
elberg strategy, i.e., to the cost of the assignment induced
by the optimal strategy. Motivated by the latter measure, in
this section we study the optimization problem of computing
the optimal Stackelberg strategy.
We have seen that the LLF strategy provides the best pos-

sible (worst-case) performance guarantee relative to the cost
of the optimal assignment, and in particular that the algo-
rithm of subsection 3.2 may be viewed as a 1

α
-approximation

algorithm for computing the optimal strategy (or a 4
3+α

-
approximation algorithm when every latency function is lin-
ear). However, simple examples (one is given in the Ap-
pendix) show that the LLF strategy is not always the opti-
mal strategy, and thus our algorithm fails to solve this op-
timization problem exactly. Our main result of this section
is evidence that no such polynomial-time algorithm exists.

Theorem 6.1. The problem of computing the optimal Stack-
elberg strategy is NP-hard, even for instances with linear la-
tency functions.

Proof. We provide only a sketch of the main ideas and
defer the details to the full version. We will reduce the NP-
complete problem of partitioning a set of positive integers
into two sets with equal sums (Partition, [SP12] in [14])
to that of computing the optimal strategy for a Stackelberg
instance with linear latency functions.
The motivation behind the reduction is the following. Sup-

pose an instance admits a Nash assignment x̄ and an optimal
assignment x∗. Intuitively, the role of a Stackelberg strat-
egy is to induce an assignment “close to x∗” in spite of the
fact that, when there is no centralized intervention, jobs are
assigned according to x̄. Roughly, a machine i with x̄i ≥ x∗

i

is of no use since it is overloaded by selfish users even when
no centrally controlled jobs are assigned to it; on the other
hand, assigning si units of centrally controlled jobs to a ma-
chine i with x∗

i > x̄i should improve the cost of the induced
assignment, provided si > x̄i (as we have then succeeded in
producing an induced assignment that is “closer to x∗” and
“further from x̄”). Moreover, we expect the strategy to im-
prove as we increase si up to x∗

i . With this intuition in mind,
it is tempting to conjecture the following characterization of
optimal strategies (for a fixed value of α):

(*) a strategy s is optimal if and only if it maximizesP
i max{0, si−x̄i} subject to the conditions that

P
i si =

α and si ≤ x∗
i for each i.

Suppose for a moment that this condition characterizes
the optimal strategies of any Stackelberg instance, and con-
sider an instance of Partition specified by positive integers
c1, . . . , cn. Define an instance I = (M, 2C, 1

4
) (where C de-

notes
Pn

i=1 ci) with n + 1 machines having linear latency
functions such that x̄i = ci/2 and x∗

i = ci for i = 1, . . . , n
(and thus x∗

n+1 = C, x̄n+1 = 3
2
C); for example we could

put �i(x) = x
ci

+ 4 for i = 1, . . . , n and �n+1(x) = 3x
C
. If

111

{c1, . . . , cn} can be partitioned into two sets of equal sum
(say S ⊆ {1, . . . , n} satisfies

P
i∈S ci = 1

2
C) then putting

si = x∗
i = ci for i ∈ S and si = 0 otherwise yields a strat-

egy with
P

i max{0, si − x̄i} =
P

i∈S(ci − 1
2
ci) =

1
4
C. On

the other hand, suppose {c1, . . . , cn} cannot be partitioned
and consider any strategy s for I satisfying si ≤ x∗

i for all
i. Then, si ≤ 2x̄i for every machine i and there will be a
machine i with 0 < si < 2x̄i, so

P
i max{0, si − x̄i} < 1

4
C.

Thus, if (*) did characterize optimal strategies, we could
distinguish “yes” and “no” instances of Partition by com-
puting the optimal Stackelberg strategy for I and checking
if it saturates all of the machines to which it assigns jobs.
Unfortunately, (*) fails to characterize optimal strategies

in all instances (even restricting to instances with linear la-
tency functions). However, it can be shown that instance I
does have this property. Thus, we have constructed a class
of instances simultaneously rich enough to encode all Par-
tition instances and simple enough to possess the struc-
tural properties needed in our reduction; it follows that
Partition reduces to the problem of computing the opti-
mal Stackelberg strategy for an instance with linear latency
functions, proving the latter NP-hard.

7. DIRECTIONS FOR FUTURE WORK
The results of this paper suggest a number of problems

deserving further study. An important and general open
question is to what extent our machine-scheduling results
carry over to the more complex domain of general networks.
For example, given a directed graph G with a source vertex
s and a sink t, a rate r of network traffic that wishes to
travel from s to t, a load-dependent latency function on each
arc, and a parameter α specifying the fraction of traffic that
is centrally controlled, how should the managed traffic be
routed so as to induce the best possible equilibrium?5 Is it
always possible to induce an assignment with cost no more
than a constant (depending on α, but not on the size of the
network) times that of the optimal assignment of traffic to
s-t paths? Is a performance guarantee of 4

3
− ε possible for

the special case of linear latency functions?
There are also unexplored avenues in the machine-scheduling

setting. In Section 6, we considered the optimization prob-
lem of computing the optimal Stackelberg strategy, and ob-
served that the LLF strategy achieves the best approxima-
tion ratio possible using the cost of the optimal assignment
as a lower bound. Can a better approximation ratio be
proven for LLF via a better lower bound on the cost of the
assignment induced by the optimal strategy? Can we do
better with more sophisticated approximation algorithms?
Indeed, the results of Section 6 do not rule out the possibil-
ity of a fully polynomial-time approximation scheme for the
problem.

8. ACKNOWLEDGEMENTS
We thank Éva Tardos for several helpful discussions and

for comments on an earlier draft of this paper. We also
thank Anupam Gupta for useful discussions and Ben Atkin
and Jon Kleinberg for pointing out relevant references.

5The notions of equilibria used in this paper are equally
easy to define in general networks; see, e.g., [27] for a formal
treatment.

9. REFERENCES
[1] A. Bagchi. Stackelberg Differential Games in

Economic Models. Springer-Verlag, 1984.

[2] T. Başar and G. J. Olsder. Dynamic Noncooperative
Game Theory. SIAM, 1999.

[3] M. Beckmann, C. B. McGuire, and C. B. Winsten.
Studies in the Economics of Transportation. Yale
University Press, 1956.

[4] K. P. Birman. Building Secure and Reliable Network
Applications. Manning, 1996.

[5] B. Braden, D. Clark, J. Crowcroft, B. Davie,
S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, and
L. Zhang. Recommendations on queue management
and congestion avoidance in the Internet. Network
Working Group Request for Comments 2309, April
1998.

[6] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A
simple network management protocol. Network
Working Group Request for Comments 1067, August
1988.

[7] R. Cocchi, S. Shenker, D. Estrin, and L. Zhang.
Pricing in computer networks: Motivation,
formulation, and example. IEEE/ACM Transactions
on Networking, 1(6):614–627, 1993.

[8] S. C. Dafermos and F. T. Sparrow. The traffic
assignment problem for a general network. Journal of
Research of the National Bureau of Standards, Series
B, 73B(2):91–118, 1969.

[9] C. Douligeris and R. Mazumdar. Multilevel flow
control of queues. In Proceedings of the Johns Hopkins
Conference on Information Sciences and Systems,
page 21, 1989.

[10] C. Douligeris and R. Mazumdar. A game theoretic
perspective to flow control in telecommunication
networks. Journal of the Franklin Institute,
329:383–402, 1992.

[11] P. Dubey. Inefficiency of Nash equilibria. Mathematics
of Operations Research, 11(1):1–8, 1986.

[12] A. A. Economides and J. A. Silvester. Priority load
sharing: An approach using Stackelberg games. In
Proceedings of the 28th Annual Allerton Conference
on Communications, Control, and Computing, pages
674–683, 1990.

[13] J. Feigenbaum, C. Papadimitriou, and S. Shenker.
Sharing the cost of multicast transmissions. In
Proceedings of the 32nd Annual ACM Symposium on
the Theory of Computing, pages 218–227, 2000.

[14] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[15] S. Keshav. An Engineering Approach to Computer
Networking. Addison-Wesley, 1997.

[16] Y. A. Korlis, A. A. Lazar, and A. Orda. Achieving
network optima using Stackelberg routing strategies.
IEEE/ACM Transactions on Networking,
5(1):161–173, 1997.

[17] Y. A. Korlis, A. A. Lazar, and A. Orda. Capacity
allocation under noncooperative routing. IEEE
Transactions on Automatic Control, 42(3):309–325,
1997.

112

[18] Y. A. Korlis, A. A. Lazar, and A. Orda. Avoiding the
Braess paradox in noncooperative networks. Journal
of Applied Probability, 36(1):211–222, 1999.

[19] E. Koutsoupias and C. Papadimitriou. Worst-case
equilibria. In Proceedings of the 16th Annual
Symposium on Theoretical Aspects of Computer
Science, pages 404–413, 1999.

[20] N. Nisan. Algorithms for selfish agents: Mechanism
design for distributed computation. In Proceedings of
the 16th Annual Symposium on Theoretical Aspects of
Computer Science, pages 1–15, 1999.

[21] N. Nisan and A. Ronen. Algorithmic mechanism
design. In Proceedings of the 31st Annual ACM
Symposium on the Theory of Computing, pages
129–140, 1999.

[22] A. Orda, R. Rom, and N. Shimkin. Competitive
routing in multi-user communication networks.
IEEE/ACM Transactions on Networking, 1:510–521,
1993.

[23] G. Owen. Game Theory. Academic Press, 1995. Third
Edition.

[24] A. L. Peressini, F. E. Sullivan, and J. J. Uhl. The
Mathematics of Nonlinear Programming.
Springer-Verlag, 1988.

[25] C. ReVelle and D. Serra. The maximum capture
problem including relocation. INFOR, 29:130–138,
1991.

[26] A. Ronen. Solving Optimization Problems among
Selfish Agents. PhD thesis, Hebrew University of
Jerusalem, 2000.

[27] T. Roughgarden and É. Tardos. How bad is selfish
routing? In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science,
pages 93–102, 2000. Full version available at
http://www.cs.cornell.edu/timr.

[28] Y. Sheffi. Urban Transportation Networks:
Equilibrium Analysis with Mathematical Programming
Methods. Prentice-Hall, 1985.

[29] S. J. Shenker. Making greed work in networks: A
game-theoretic analysis of switch service disciplines.
IEEE/ACM Transactions on Networking,
3(6):819–831, 1995.

[30] H. von Stackelberg. Marktform und Gleichgewicht.
Springer-Verlag, 1934. English translation, entitled
The Theory of the Market Economy, published in 1952
by Oxford University Press.

APPENDIX

A. NON-OPTIMALITY OF THE LLF STRAT-
EGY

Consider a three machine example with latency functions
�1(x) = x, �2(x) = �3(x) = 1 + x, with r = 1 and α =
1
6
. The optimal assignment is (2

3
, 1

6
, 1

6
) and thus the LLF

strategy is (0, 0, 1
6
) inducing the assignment (5

6
, 0, 1

6
) with

cost 8
9
. On the other hand, the strategy (0, 1

12
, 1

12
) induces

the assignment (5
6
, 1

12
, 1

12
) having cost 7

8
.

113

