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Stackelberg Security Games (SSG)  
Basics and Application Overview

Bo An and Milind Tambe

21.1 Introduction

Security is a critical concern around the world that arises in protecting our ports, 

airports, transportation or other critical national infrastructure, curtailing the ille-

gal �ow of drugs, weapons, and money, and suppressing urban crime, as well as 

in protecting wildlife, �sh, and forests from poachers and smugglers; and it arises 

in problems ranging from physical to cyber- physical systems. In all of these chal-

lenges, we have limited security resources that prevent full security coverage at 

all times. Instead, limited security resources must be deployed intelligently, tak-

ing into account differences in priorities of targets requiring security coverage, 

the responses of adversaries to the security posture, and potential uncertainty 

over the types, capabilities, knowledge, and priorities of adversaries faced.

Game theory is well suited to adversarial reasoning for security resource allo-

cation and scheduling problems. Casting the problem as a Bayesian Stackelberg 

game in consideration of uncertainties, we have developed new algorithms for 

ef�ciently solving such games to provide randomized patrolling or inspection 

strategies. These algorithms have led to some initial successes in this arena, lead-

ing to advances over previous approaches in security resource scheduling and 

allocation, e.g., by addressing key weaknesses of predictability of human sched-

ulers. These algorithms are now deployed in multiple applications: ARMOR 

has been deployed at the Los Angeles International Airport (LAX) since 2007 

to randomize checkpoints on the roadways entering the airport and canine patrol 

routes within the airport terminals (Pita et al., 2008); IRIS is a game- theoretic 

scheduler for randomized deployment of the U.S. Federal Air Marshal Service 

(FAMS) requiring signi�cant scale- up in underlying algorithms that has been 

in use since 2009 (Tsai, Rathi, Kiekintveld, Ordóñez, & Tambe, 2009); and 

PROTECT, which requires further scale- up, is deployed for generating ran-

domized patrol schedules for the U.S. Coast Guard in Boston, New York, Los 

Angeles, and other ports around the United States (An et al., 2013; An, Pita, 
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Shieh, Tambe, Kiekintveld, & Marecki, 2011; Shieh et al., 2012). Furthermore, 

TRUSTS is being evaluated for deterring fare evasion, suppressing urban crime, 

and counterterrorism within the Los Angeles Metro System (Jiang, Nguyen, 

Tambe, & Procaccia, 2013; Zin & Tambe, 2012), and GUARDS was earlier 

tested by the U.S. Transportation Security Administration (TSA) for security 

inside the airport (Pita, Tambe, Kiekintveld, Cullen, & Steigerwald, 2011). 

Moreover, recent work on “green security games” has led to testing our deci-

sion aids for protection of �sheries with the U.S. Coast Guard and protection of 

wildlife at sites in multiple countries, and “opportunistic crime security games” 

have focused on suppressing urban crime. These initial successes point the 

way to major future applications in a wide range of security arenas, with major 

research challenges in scaling up our game- theoretic algorithms, to addressing 

human adversaries’ bounded rationality and uncertainties in action execution 

and observation, as well as in preference elicitation and multi- agent learning.

This chapter will discuss applications of security games, and outline 

research challenges in security games, including algorithms for scaling up 

security games, as well as for handling signi�cant adversarial uncertainty 

and learning models of human adversary behaviors. The rest of this chapter 

is organized as follows. We start with introducing Stackelberg security games 

(SSG) basics in Section 21.2. Section 21.3 categorizes different types of secu-

rity game models. Section 21.4 discusses both deployed and emerging secu-

rity applications. Section 21.5 overviews some applications of security games 

beyond the security domains. Section 21.6 concludes with open research issues 

and future research directions.

21.2 Stackelberg Security Games (SSG) Basics

A generic Stackelberg game has two players, a leader and a follower. A leader 

commits to a strategy �rst, and then a follower optimizes her reward, considering 

the action chosen by the leader (von Stengel & Zamir, 2004). The two players in 

a Stackelberg game need not represent individuals, but could also be groups that 

cooperate to execute a joint strategy, such as a police force or a terrorist organiza-

tion. Each player has a set of possible pure strategies, or the actions that she can 

execute. A mixed strategy allows a player to play a probability distribution over 

pure strategies. Payoffs for each player are de�ned over all possible pure- strategy 

outcomes for both the players. The payoff functions are extended to mixed strat-

egies by taking the expectation over pure- strategy outcomes. The follower can 

observe the leader’s strategy, and then act in a way to optimize his own payoffs.

To see the advantage of being the leader in a Stackelberg game, consider 

the game with the payoffs as shown in Table 21.1. The leader is the row player 
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and the follower is the column player. The only pure- strategy Nash equilibrium 

for this game is when the leader plays a and the follower plays c, which gives 

the leader a payoff of 3; in fact, for the leader, playing b is strictly dominated.

However, in this game, if the leader can commit to playing b before the 

follower chooses his strategy, then the leader will obtain a payoff of 4, since 

the follower would then play d to ensure a higher payoff for himself. If the 

leader commits to a mixed strategy of playing a and b with equal (0.5) prob-

ability, then the follower will play d, leading to a higher expected payoff for the 

leader of 4.5. As we can see from this example, the equilibrium strategy in the 

Stackelberg game can be in fact different from the Nash equilibria.

Stackelberg games are used to model the attacker- defender strategic inter-

action in security domains, and this class of Stackelberg games (with cer-

tain restrictions on payoffs) (Yin, Korzhyk, Kiekintveld, Conitzer, & Tambe, 

2010) is called Stackelberg security games. In the Stackelberg security game 

framework, the security force (defender) is modeled as the leader and the ter-

rorist adversary (attacker) is in the role of the follower. The defender commits 

to a mixed (randomized) strategy, whereas the attacker conducts surveillance 

of these mixed strategies and responds with a pure strategy of an attack on 

a target. Thus, the Stackelberg game framework is a natural approximation 

of real- world security scenarios. In contrast, the surveillance activity of the 

attacker cannot be modeled in the simultaneous move games with the Nash 

equilibrium solution concept. The objective is to �nd the optimal mixed strat-

egy for the defender.

21.3 Categorizing Security Games

With progress in security games research and the expanding set of applica-

tions, it is valuable to consider categorizing this work into three separate areas. 

These categories are driven by applications, but they also impact the types of 

games (e.g., single- shot vs. repeated games) considered and the research issues 

that arise. Speci�cally, the three categories are:

 (i) infrastructure security games; (ii) green security games; (iii) opportunistic 

crime security games. We discuss each category next.

Table 21.1. Payoff table for example Stackelberg game

c d

a 3,1 5,0

b 2,0 4,2
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21.3.1 Infrastructure Security Games

This type of games and their applications are where the original research on 

security games was initiated. Key characteristics of these games include the 

following:

• Application characteristics: These games are focused on applications of 

protecting infrastructure, such as ports, airports, trains, �ights, and so on; 

the goal is often assisting agencies engaged in counterterrorism. Notice 

that the infrastructure being protected tends to be static, and little changes 

in a few months, e.g., an airport being protected may have new construc-

tion once in two or three years. The activities in the infrastructure are 

regulated by well- established schedules of movement of people or goods. 

Furthermore, the targets being protected often have a discrete structure, 

e.g., terminals at an airport, individual �ights, individual trains, etc.

• Overall characteristics of the defender and adversary play: These games 

are single- shot games. The defender does play her strategy repeatedly, i.e., 

the defender commits to a mixed strategy in this security game. This mixed 

strategy may get played for months at a time. However, a single attack by 

an adversary ends the game. The game could potentially restart after such 

an attack, but it is not set up as a repeated game as in the game categories 

described later in this chapter.

• Adversary characteristics: The games assume that the adversaries are highly 

strategic and that they may attack after careful planning and surveillance. 

These carefully planned attacks have high consequences. Furthermore, 

since these attacks are a result of careful planning with the anticipation of 

high consequences, attackers commit to these plans of attacks and are not 

considered to opportunistically move from target to target.

• Defender characteristics:  The defender does not repeatedly update her 

strategies. In these domains, there may be just a few attacks that may occur, 

but these tend to be rare; there are not a very large number of attacks that 

occur repeatedly. As a result, traditionally, no machine learning is used for 

the defender to update her strategies over time.

21.3.2 Green Security Games

This type of games and their applications are focused on trying to protect the 

environment; we adopt the term from “green criminology.”1

• Application characteristics: These games are focused on applications of pro-

tecting the environment, including forests, �sh, and wildlife. The goal is thus 

often to assist security agencies against poachers, illegal �shermen, or those 
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illegally cutting trees in national parks in countries around the world. Unlike 

infrastructure security games, animals or �sh being protected may move 

around in geographical space, introducing new dimensions of complexity. 

Finally, the targets being protected are spread out over vast, open geographi-

cal spaces, e.g., protecting trees from illegal cutting in large forest regions.

• Overall characteristics of the defender and adversary play: These games 

are not single- shot games. Unfortunately, the adversary often conducts mul-

tiple repeated “attacks,” e.g., poaching animals repeatedly. Thus, a single 

illegal activity does not end the game. Instead, after obtaining reports, e.g., 

over a month of illegal activities, the defender often re- plans her security 

activities. In other words, these are repeated security games where the 

defender plays a mixed strategy, while the attacker attacks multiple times, 

and then the defender re- plans and plays a new mixed strategy and the cycle 

repeats. Notice also that the illegal activities of concern here may be con-

ducted by multiple individuals, and thus multiple adversaries are active at 

any one point.

• Adversary characteristics: As mentioned earlier, the adversaries are engaged 

in repeated illegal activities; the consequences of failure or success are not 

as severe as in the case of counterterrorism. As a result, every single attack 

(illegal action) cannot be carried out with the most detailed surveillance 

and planning. The adversaries will hence exhibit more bounded rationality 

and bounded surveillance in these domains. Nonetheless, these domains are 

not ones where illegal activities can be conducted opportunistically (as in 

the opportunistic crime security games discussed later). This is because in 

these green security games, the adversaries often have to act in extremely 

dangerous places (e.g., deep in forests, protecting themselves from wild 

animals), and thus given the risks involved, they cannot take an entirely 

opportunistic approach.

• Defender characteristics: Since this is a repeated game setting, the defender 

repeatedly updates her strategies. Machine learning can now be used in 

this work for the defender to update her strategies over time, given that 

attack data are available over time. The presence of large amounts of such 

attack data is very unfortunate in that very large numbers of crimes against 

the environment are recorded in real life, but the silver lining is that the 

defender can improve her strategy exploiting these data.

21.3.3 Opportunistic Crime Security Games

This type of games and their applications are focused on trying to combat 

opportunistic crime. Such opportunistic crime may include criminals engaged 
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in thefts such as snatching cell phones in metros or stealing student laptops 

from libraries.

• Application characteristics: These games focus on applications involving 

protecting the public against opportunistic crime. The goal is thus often to 

assist security agencies in protecting public’s property such as cell phones, 

laptops, or other valuables. Here, human crowds may move around based 

on scheduled activities, e.g., of�ce hours in downtown settings, or class 

timings on a university campus, and thus the focus of what needs to be 

protected may shift on a regular schedule. At least in urban settings, these 

games focus on speci�c, limited geographical areas as opposed to vast, 

open spaces as involved in “green security games.”

• Overall characteristics of the defender and adversary play:  While these 

games are not explicitly formulated as repeated games, the adversary may 

conduct or attempt to conduct multiple “attacks” (thefts) in any one round 

of the game. Thus, the defender commits to a mixed strategy, but a single 

attack by a single attacker does not end the game. Instead, multiple attack-

ers may be active at a time, conducting multiple thefts while the defender 

attempts to stop these thefts from taking place.

• Adversary characteristics: Once again, the adversaries are engaged in repeated 

illegal activities, and the consequences of failure or success are not as severe 

as in the case of counterterrorism. As a result, given that every single attack 

(illegal action) cannot be carried out with the most detailed surveillance and 

planning, the adversaries may act even less strategically, and exhibit more 

bounded rationality and bounded surveillance in these domains. Furthermore, 

the adversaries are not as committed to detailed plans and are �exible in their 

execution of their plans, as targets of opportunity present themselves.

• Defender characteristics:  Available crime data can be used to aid the 

defender in planning and adapting the defense strategy in response to 

the criminals’ actions. Machine- learning techniques are particularly 

applicable here.

Even though we have categorized the research and applications of security 

games in these three categories, not everything is very clearly divided in this 

fashion. Further research may reveal other categories or generate subcategories 

of these three categories.

21.4 Deployed and Emerging Security Applications

As we discussed at the beginning of this chapter, the past several years have 

witnessed the successful application of multi- agent systems in allocating 
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limited resources to protect critical infrastructures (An, Brown, Vorobeychik, 

& Tambe, 2013; An, Jain, Tambe, & Kiekintveld, 2011; An et al., 2013; An 

et al., 2011; Basilico, Gatti, & Amigoni, 2009; Jain, Tsai, Pita, Kiekintveld, 

Rathi, Tambe, & Ordóñez, 2010; Jiang et al., 2013; Korzhyk, Conitzer, & Parr, 

2010; Pita et al., 2011; Tambe & An, 2012; Zin & Tambe, 2012). In the rest 

of this section, we describe in detail the application of the Stackelberg game 

framework in multiple signi�cant security domains. Table 21.2 outlines differ-

ent applications and associated research problems, as well as major references.

21.4.1 Infrastructure Security Game Applications

ARMOR for Los Angeles International Airport

Los Angeles International Airport (LAX) is the largest destination airport in the 

United States and serves 60– 70 million passengers per year. The LAX police 

use diverse measures to protect the airport, which include vehicular check-

points and police units patrolling with canines. The eight different terminals 

at LAX have very different characteristics, like physical size, passenger loads, 

foot traf�c, or international versus domestic �ights. Furthermore, the numbers 

Table 21.2. Deployed key applications and associated research problems

Major Applications Research challenges and major references

ARMOR for Los Angeles 
International Airport

Algorithms for scheduling check points and canine 
units (Paruchuri, Pearce, Marecki, Tambe,  
Ordóñez, & Kraus, 2008; Pita et al., 2008)

IRIS for U.S. Federal Air 
Marshals Service

Algorithms for solving large- scale games with 
complex scheduling constraints (Jain, Kardes, 
Kiekintveld, Ordóñez, & Tambe, 2010; Tsai 
et al., 2009)

PROTECT for U.S.  
Coast Guard

Scheduling boat patrol, modeling human behavior  
(An et al., 2013; Fang, Jiang, & Tambe, 2013; 
Shieh et al., 2012)

GUARDS for U.S. 
Transportation  
Security Agency

Dealing with heterogeneous defender activities  
(Pita et al, 2011)

TRUSTS for Urban Security 
in Transit Systems

Deal with spatial and temporal travel constraints  
and interruptions (Jiang et al., 2013;  
Zin & Tambe, 2012)

PAWS for protecting wildlife Learning behavior model from poaching data  
(Fang, Stone, & Tambe, 2015; Yang, Ford,  
Tambe, & Lemieux, 2014)

Protecting public events Continuous and in�nite strategy space (Yin, An, & 
Jain, 2014; Yin, Xu, Gan, An, & Jiang, 2015)
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of available vehicle checkpoints and canine units are limited by resource con-

straints. Thus it is challenging to optimally allocate these resources to improve 

their effectiveness while avoiding patterns in the scheduled deployments.

The Assistant for Randomized Monitoring over Routes (ARMOR) sys-

tem focuses on two of the security measures at LAX (checkpoints and canine 

patrols) and optimizes security resource allocation using Bayesian Stackelberg 

games. Take the vehicle checkpoints model as an example. Assume that there 

are n roads; the police’s strategy is placing m < n checkpoints on these roads 

where m is the maximum number of checkpoints. The adversary may choose 

to attack through one of these roads. ARMOR models different types of attack-

ers with different payoff functions, representing different capabilities and 

preferences for the attacker. ARMOR uses Decomposed Optimal Bayesian 

Stackelberg Solver (DOBSS) to compute the defender’s optimal strategy 

(Paruchuri et al., 2008). ARMOR has been successfully deployed since August 

2007 at LAX to randomize checkpoints on the roadways entering the airport 

and canine patrol routes within the airport terminals (Pita et al., 2008).

IRIS for U.S. Federal Air Marshals Service

The U.S. Federal Air Marshals Service (FAMS) allocates air marshals to 

�ights originating in and departing from the United States to dissuade poten-

tial aggressors and prevent an attack. Flights are of different importance based 

on a variety of factors such as the numbers of passengers, the population of 

source/ destination, international �ights from different countries, and special 

events that can change the risks for particular �ights at certain times. Security 

resource allocation in this domain is signi�cantly more challenging than for 

ARMOR: a limited number of FAMS need to be scheduled to cover thousands 

of commercial �ights each day. Furthermore, these FAMS must be sched-

uled on tours of �ights that obey various constraints (e.g., the time required 

to board, �y, and disembark). Therefore, we face signi�cant computational 

challenge while generating the optimal scheduling policy that meets these 

scheduling constraints.

Against this background, the Intelligent Randomization in Scheduling 

(IRIS) system has been developed and has been deployed by FAMS since 

October 2009 to randomize schedules of air marshals on international �ights. 

In IRIS, the targets are the set of n �ights and the attacker could choose to 

attack one of these �ights. FAMS can assign m < n air marshals to protect these 

�ights. Since the number of possible schedules exponentially increases with the 

number of �ights and resources, DOBSS is no longer applicable to the FAMS 

domain. Instead, IRIS uses the much faster ASPEN algorithm (Jain et  al., 

2010) to generate the schedule for thousands of commercial �ights per day.  
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IRIS also uses an attribute- based preference elicitation system to determine 

reward values for the Stackelberg game model.

PROTECT for U.S. Coast Guard

The U.S. Coast Guard’s (USCG) mission includes maritime security of 

the U.S.  coasts, ports, and inland waterways –  a security domain that faces 

increased risks due to threats such as terrorism and drug traf�cking. Given a 

particular port and the variety of critical infrastructure that an adversary may 

attack within that port, the USCG conducts patrols to protect this infrastruc-

ture; however, while the adversary has the opportunity to observe patrol pat-

terns, limited security resources imply that USCG patrols cannot be at every 

location 24/ 7. To assist the USCG in allocating its patrolling resources, the 

Port Resilience Operational/ Tactical Enforcement to Combat Terrorism 

(PROTECT) model is being designed to enhance maritime security and has 

been in use at the port of Boston since April 2011 (Figure 21.1). Similar to 

previous applications ARMOR and IRIS, PROTECT uses an attacker- defender 

Stackelberg game framework, with the USCG as the defender against terrorist 

adversaries that conduct surveillance before potentially launching an attack.

PROTECT is currently deployed in the ports of Boston, New  York, Los 

Angeles/ Long Beach, and several others (An et  al., 2013). Indeed, the goal 

now is to deploy PROTECT at ports nationwide. Furthermore, beyond just port 

protection, PROTECT has been extended to protect ferry systems (Figure 21.2) 

such as the Staten Island ferry in New York (Fang et al., 2013).

While PROTECT builds on previous work, it offers some key innovations. 

First, to improve PROTECT’s ef�ciency, a compact representation of the 

defender’s strategy space is used by exploiting equivalence and dominance. 

Figure 21.1. USCG boats patrolling the ports of Boston and NY. (a) PROTECT is 

being used in Boston. (b) Extend PROTECT to NY.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316676714.021
Downloaded from https://www.cambridge.org/core. Nanyang Technological University (NTU), on 30 Jan 2018 at 09:17:44, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316676714.021
https://www.cambridge.org/core


494 Bo An and Milind Tambe

Second, the evaluation of PROTECT for the �rst time provides real- world 

data:  (i)  comparison of human- generated vs PROTECT security schedules; 

and (ii) results from an adversarial perspective team’s (human mock attackers) 

analysis.

GUARDS for U.S. Transportation Security Agency

The U.S. Transportation Security Administration (TSA) is tasked with protect-

ing the nation’s more than 400 airports. To aid the TSA in scheduling resources 

to protect airports, a new application called Game- theoretic Unpredictable 

and Randomly Deployed Security (GUARDS) has been developed. While 

GUARDS also utilizes Stackelberg games as ARMOR and IRIS, GUARDS 

faces three key challenges Pita et al., 2011: 1) reasoning about hundreds of het-

erogeneous security activities; 2) reasoning over diverse potential threats; and 

3) developing a system designed for hundreds of end- users. To address those 

challenges, GUARDS created a new game- theoretic framework that allows for 

heterogeneous defender activities and compact modeling of a large number of 

threats and developed an ef�cient solution technique based on general- purpose 

Stackelberg game solvers. GUARDS was originally tested at an undisclosed 

airport and further results are awaited (Pita et al., 2011).

TRUSTS for Urban Security in Transit Systems

TRUSTS focuses on three major security challenges: deterring fare evasion, sup-

pressing crime, and counterterrorism. Signi�cant focus in TRUSTS has been on 

Figure 21.2. Protecting ferries with patrol boats.
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deterring fare evasion. Speci�cally, in some urban transit systems, including the 

Los Angeles Metro Rail system, passengers are legally required to purchase tick-

ets before entering, but are not physically forced to do so (Figure 21.3). Instead, 

patrol units move about through the transit system, inspecting tickets of passen-

gers, who face �nes for fare evasion. This setting yields the problem of comput-

ing optimal patrol strategies to deter fare evasion and hence maximize revenue. 

The Tactical Randomization for Urban Security in Transit Systems (TRUSTS) 

system models the patrolling problem as a leader- follower Stackelberg game 

(Jiang et al., 2013; Zin & Tambe, 2012). Urban transit systems, however, pres-

ent unique computational challenges since there are exponentially many pos-

sible patrol strategies, each subject to both the spatial and temporal constraints 

of travel within the transit network under consideration. To overcome this chal-

lenge, TRUSTS uses a compact representation that captures the spatial as well 

as temporal structure of the domain. The system has been evaluated using real- 

world ridership data from the Los Angeles Metro Rail system.

One key �nding from initial tests was that the schedules generated by of�-

cers were often interrupted. Interruptions occurred because in frequent interac-

tions with the public, sometimes of�cers would get stopped by lost travelers, 

or sometimes they would need to arrest someone. Such interruptions mean that 

the schedules now need to be highly dynamic. To that end, a new generation 

of Stackelberg game– based scheduling algorithms –  using Markov Decision 

Problems –  was designed. This led to schedules now being loaded onto smart-

phones and given to of�cers. The schedules are then automatically updated 

on the smartphones if interruptions occur (Luber, Yin, Fave, Jiang, Tambe, & 

Sullivan, 2013).

Los Angeles Metro 

(a) (b)

Barrier-free entrance 

Figure 21.3. TRUSTS for transit systems.
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Protecting Public Events

Security games can also be applied to resource allocation for protecting pub-

lic events. Public events in major cities are prime terrorism targets since they 

usually provide easy access to a large number of targets for the adversary. 

There have been some successful terrorist attacks on large, public events in 

the United States and Europe in the past few years, e.g., the recent Boston 

Marathon bombings on April 15, 2013, and the July 7, 2005, London bomb-

ings. Intelligent deployment of limited security resources to protect such 

events is therefore extremely important and challenging since the importance 

of targets changes over time. For example, the value of targets along a mara-

thon track changes over time with the changing number of participants and 

spectators at any speci�c area over the course of the race. In addition, since the 

attacker may attack at any time and the defender can relocate resources among 

targets at any time, the strategy space of each agent is continuous and in�nite. 

Furthermore, due to the relative infrequency of such events, the attacker does 

not get the opportunity to conduct surveillance and respond to a distribution 

of defender strategies. In this case, a pure defender strategy sampled from the 

optimal mixed strategy does not necessarily outperform the one- shot optimal 

pure strategy in terms of ex- post payoff. Algorithms have been proposed to 

compute the optimal pure defender strategy despite the in�nite strategy space 

and time- varying target values (Yin et al., 2014; Yin et al., 2015).

21.4.2 Green Security Game Applications

A number of newer applications are focused on suppressing environmental 

crime. One of those is protecting forests (Johnson, Fang, Yang, Tambe, & 

Albers, 2012), where we must protect a continuous forest area from extrac-

tors. Since the attacker’s behavior (e.g., extracting important resources from 

the forest) could be effected by spatial considerations, it is critical for the 

defender to incorporate spatial considerations into her enforcement decisions 

(Albers, 2010).

Another area of interest is protecting endangered species. Endangered spe-

cies poaching is reaching critical levels as the populations of these species 

plummet to unsustainable numbers. The global tiger population, for example, 

has dropped more than 95% from the start of the 1900s and has resulted in three 

out of nine species’ extinctions. Depending on the area and animals poached, 

motivations for poaching range from pro�t to sustenance, with the former being 

more common when pro�table species such as tigers, elephants, and rhinos are 

the targets. To counter poaching efforts and to rebuild the species’ populations, 

countries have set up protected wildlife reserves and conservation agencies 
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tasked with defending these large reserves. Because of the size of the reserves 

and the common lack of law enforcement resources, conservation agencies are 

at a signi�cant disadvantage when it comes to deterring and capturing poach-

ers. Agencies use patrolling as a primary method of securing the parks. Due to 

their limited resources, however, patrol managers must carefully create patrols 

that account for many different variables (e.g., limited patrol units to send out, 

multiple locations that poachers can attack at varying distances to the outpost). 

Protection Assistant for Wildlife Security (PAWS) aims to assist conservation 

agencies in their critical role of patrol creation by predicting where poachers 

will attack and optimizing patrol routes to cover those areas (Figure 21.4; Yang 

et al., 2014).

Another emerging application domain is that of ensuring the sustainability of 

�sh resources. Marine �sheries are acknowledged to be some of the most impor-

tant food resources for countries around the world. As reported by the World 

Wildlife Fund for Nature (WWF), cod are currently at risk from over�shing in 

the UK, Canada, and most other Atlantic countries. Global cod catch has suffered 

a 70% drop over the past 30 years, and, if this trend continues, the world’s cod 

stocks will disappear in 15 years. Illegal, unreported, and unregulated (IUU) �sh-

ing is one of the major threats to the sustainability of ocean �sh resources. As esti-

mated by the National Oceanic and Atmospheric Administration (NOAA), IUU 

�shing produces between 11 million and 26 million tons of seafood annually, rep-

resenting as much as 40% of the total catch in some �sheries. The driver behind 

IUU �shing is high economic pro�t and low chance of seizure. It is impossible 

Figure 21.4. Computational game theory can play a role in suppressing  

environmental crime.
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to maintain a 24/ 7 presence to prevent IUU �shing everywhere due to the limited 

patrolling resources. Hence the allocation of the patrolling resources becomes 

a key challenge for security agencies like the U.S. Coast Guard (Figure 21.5).

21.4.3 Opportunistic Crime Security Game Applications

A notable characteristic of urban crime, distinct from organized terrorist 

attacks, is that most urban crimes are opportunistic in nature, i.e., criminals 

do not plan their attacks in detail; rather, they seek opportunities for commit-

ting crime and are agile in their execution of the crime (Short, D’Orsogna, 

Pasour, Tita, Brantingham, Bertozzi, & Chayes, 2008; Zhang, Jiang, Short, 

Brantingham, & Tambe, 2014). Thus, the Opportunistic Crime Security Game 

(OCSG) model is a good �t for addressing crime in urban settings.

A particular category of urban crime is crime on transit systems such as 

phone snatching.

OCSG has been validated in trials on the LA Metro systems with good 

results (Fave et al., 2014). The trials ran for two days with each test consisting 

of a two- hour patrol involving two teams of two security of�cers. Each team 

had to patrol seven stations of a particular LA Metro train line using schedules 

generated using the OCSG framework. Figure 21.6 shows such probabilities 

and correlates them to the crime statistics for each of the 14 stations to patrol. In 

the �gure, the x- axis enumerates the 14 stations to patrol. The bar graphs (y- axis 

on the right) show, for each station, the total number of crimes that happened 

during 2012 and 2013. Finally, the line graph shows the different coverage prob-

abilities calculated for each station (y- axis on the left). In the �gure, the stations 

with a larger coverage probability (stations 5 to 10) are either the stations with 

a large number of crimes (stations 5 and 8) or the adjacent stations (stations 6, 

7, 9, and 10). The latter stations are given a large coverage probability because 

the OCSG model anticipates the possibility that criminals will choose stations 

6, 7, 9, and 10 anticipating that stations 5 and 8 will be frequently patrolled 

by security of�cers. Hence, these coverage probabilities show how the OCSG 

Figure 21.5. U.S. Coast Guard personnel on a mission to protect �sheries.
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model allows schedulers to build effective, real- world patrol schedules. During 

the tests, the of�cers were able to write �ve citations and make two arrests. In 

general, they were able to understand and follow the schedule easily.

There are many other possible applications of OCSG, including scheduling 

police patrols and providing security at crowded places such as fairs.

21.5 Applications of Security Games beyond Security

The security games model is rich enough to capture many real- world scenarios 

of defender and adversary interaction beyond the physical security settings 

discussed here. One interesting work, called audit games (Blocki, Christin, 

Datta, Procaccia, & Sinha, 2013, 2015) enhances the security games model 

with choice of punishments in order to capture scenarios of security and pri-

vacy policy enforcement in large organizations. Large organizations (such as 

Google, Facebook, and hospitals) hold enormous amounts of privacy- sensitive 

data. These organizations mandate their employees to adhere to certain pri-

vacy policies when accessing data. Auditing of access logs is used by orga-

nizations to check for policy- violating accesses and then the violators are 

punished. Auditing often requires human help to investigate suspicious cases, 

and thereby arises the problem of allocating few resources to the huge number 

of cases to investigate. Another relevant question in this domain is how much 

should the organization punish in case of a violation?

The audit game models the adversary as an agent that performs certain 

tasks (e.g., accesses to private data), and a subset of these tasks is policy viola-

tions. The auditor inspects a subset of the tasks, and detects violations from 

the inspected set. As punishments do affect the behavior of the adversary, it 

is critical for the auditor to choose the right level of punishment. As a conse-

quence, the choice of a punishment level is added to the action space of the 

auditor. However, punishment is not free for the auditor, the intuition being that 

a high punishment level creates a hostile work environment, leading to lack in 
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Figure 21.6. Crime statistics and coverage probabilities.
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productivity of employees that results in loss for the organization (auditor). 

As a consequence, the auditor cannot impose in�nite punishment and deter 

any adversary. The auditor’s cost for a punishment level is modeled as a loss 

proportional to the choice of the punishment level. The auditor moves �rst by 

committing to an inspection and punishment strategy, followed by the best 

response of the adversary. The resultant Stackelberg equilibrium optimization 

turns out to be non- convex due to the punishment variable. The authors present 

ef�cient algorithms for various types of scheduling constraints.

There are various other interesting applications such as using a security 

game model to randomize regression testing in the domain of software test-

ing (Kukreja, Halfond, & Tambe, 2013). In software testing, due to time con-

straints, often not all the tests for a software product can be run. Thus, this 

leads to the problem of using few resources (test) to protect against attacks 

(software bugs); the security game model is a natural �t for such a scenario. 

Another interesting application (Li & Conitzer, 2013) is in the domain of test-

ing students. Often the set of all exam questions for large- scale exams (e.g., 

driver’s license test) is known a priori. However, if this set is large, the test 

takers cannot memorize all the answers. Then, the examiner must choose ques-

tions randomly to best test the students on the questions- answers they did not 

memorize. This can also be posed as a Stackelberg game. Other applications 

include the scenario of scheduling randomized patrols for improving security 

of transit networks in Singapore (Varakantham, Lau, & Yuan, 2013).

21.6 Major Research Issues

In this section, we highlight some key research challenges, including scal-

ability, robustness, and human adversary modeling. Readers can refer to other 

chapters (e.g., basic solution concepts and algorithms, linear programming 

methods, addressing the unpredictable human element, and learning) of this 

book for detailed discussions of the research issues outlined next.

Scalability: The �rst research challenge is improving the scalability of our 

algorithms for solving Stackelberg (security) games. The strategy space of 

both the defender and the attacker in these games may exponentially increase 

with the number of security activities, attacks, and resources. As we scale up to 

larger domains, it is critical to develop newer algorithms that scale up signi�-

cantly beyond the limits of the current state of the art of Bayesian Stackelberg 

solvers. Driven by the growing complexity of applications, a sequence of 

algorithms for solving security games has been developed, including DOBSS 

(Paruchuri et al., 2008), ERASER (Jain et al., 2010), and ASPEN (Jain et al., 

2010). However, existing algorithms still cannot scale up to very large- scale 
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domains such as scheduling randomized checkpoints in cities. In such graph- 

based security games, the strategy space of the defender grows exponentially 

with the number of available resources and the strategy space of the attacker 

grows exponentially with the size of the road network considered. Three key 

ideas have been used to design ef�cient algorithms, including (i) Marginals 

(compact representation); (ii) Incremental strategy generation; and (iii) 

Incremental constraint generation. For patrolling domains with spatiotemporal 

constraints, defender mixed strategies can be compactly represented as frac-

tional �ows. This approach has recently been applied to ef�ciently compute 

fare- enforcement patrols in urban transit systems (Jiang, Yin, Kraus, Zhang, 

& Tambe, n.d.; Zin & Tambe, 2012) and boat patrols for protecting ferries 

(Fang et al., 2013). To schedule checkpoints, an incremental strategy genera-

tion approach called “double oracle” is applied that does not require the enu-

meration of the entire strategy space for either of the players (Jain, Korzhyk, 

Vanek, Pechoucek, Conitzer, & Tambe, 2011; Jain, Tambe, & Conitzer, n.d.). 

When solving large- scale security games, we may need to deal with large (even 

in�nite) set of constraints and the constraint generation approach was recently 

applied (Nguyen, Yadav, An, Tambe, & Boutilier, 2014). The key idea is to 

sample a subset of constraints and gradually expand this set by adding violated 

constraints to the relaxed problem until convergence to the optimal solution.

Robustness: The second challenge is improving solutions’ robustness. 

Classical game theory solution concepts often make assumptions on the knowl-

edge, rationality, and capability of players. Unfortunately, those assumptions 

could be wrong in real- world scenarios. Therefore, while computing the defend-

er’s optimal strategy, algorithms should take into account various uncertainties 

faced in the domain, including payoff noise (Kiekintveld, Marecki, & Tambe, 

2011), execution/ observation error (Yin, Jain, Tambe, & Ordóñez, 2011), and 

uncertain capability (An, Tambe, Ordóñez, Shieh, & Kiekintveld, 2011). For 

observation uncertainty, it is typically assumed that the attacker has perfect 

knowledge of the defender’s randomized strategy or can learn the defender’s 

strategy after conducting a �xed period of surveillance. In consideration of 

surveillance cost, these assumptions are clearly simplistic since attackers may 

act with partial knowledge of the defender’s strategies and may dynamically 

decide whether to attack or conduct more surveillance. Security game mod-

els with limited observation (An et al., 2013; An, Kempe, Kiekintveld, Shieh, 

Singh, Tambe, & Vorobeychik, 2012) have been proposed in which the attacker 

either makes limited number of observations or dynamically determines a 

place to stop surveillance. Since the belief state space exponentially increases 

with observation length, it is still computationally challenging to solve large 

games in consideration of limited observation.
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Bounded Rationality: One required research direction with respect to robust-

ness is addressing bounded rationality of human adversaries, which is a funda-

mental problem that can affect the performance of our game- theoretic solutions. 

Recently, there has been some research on applying ideas (e.g., prospect theory 

(Kahneman & Tvesky, 1979) and quantal response (McKelvey & Palfrey, 1995)) 

from social science or behavioral game theory within security game algorithms 

(Nguyen, Yang, Azaria, Kraus, & Tambe, 2013; Pita, Jain, Tambe, Ordóñez, & 

Kraus, 2010; Yang, Jiang, Tambe, & Ordóñez, 2013; Yang, Kiekintveld, Ordóñez, 

Tambe, & John, 2011). Previous work usually applies existing frameworks and 

sets the parameters of these frameworks by experimental tuning or learning. 

However, in real- world security domains, we may have very limited data, or may 

have only limited information on the biases displayed by adversaries. Recently, 

monotonic maximin (Jiang et al., 2013) was proposed as a robust solution con-

cept to Stackelberg security games with boundedly rational adversaries. It tries to 

optimize defender utility against the worst- case monotonic adversary behavior, 

where monotonicity is the property that actions with higher expected utility are 

played with higher probability. An open research challenge is to combine such 

robust- optimization approaches with available behavior data. Furthermore, since 

real- world human adversaries are sometimes distributed across coalitions of 

socially, culturally, and cognitively biased agents acting behind a veil of uncer-

tainty, we may need signi�cant interdisciplinary research to build in social, cul-

tural, and cognitive biases into our adversary models.

Planning and Learning: The challenges of planning and learning pertain 

to new security domains such as patrolling metro systems and forests. In 

these domains, schedules might be interrupted due to some unexpected events 

(e.g., writing a citation in a train line or boarding an illegal �sherman’s boat). 

As a consequence, incorporating planning within security games is neces-

sary to model stochastic decision making. Furthermore, in the real world, a 

schedule’s spatial and temporal constraints are typically continuous dimen-

sions. Hence, more expressive models need to be derived to represent such 

schedules. So far, data available in most domains have been principally used 

to de�ne the game’s matrices. However, in the newer domains, the planned 

schedules are frequently interrupted. Hence, the information about the loca-

tions and times of interruptions, as well as the information about the actual 

interactions between attackers and defenders, can also be used. The former 

can be used to represent the uncertainty of the environment, whereas the lat-

ter can be used to learn the attacker’s behavior. An online planning algorithm 

for the protector in resource conservation games is proposed to use the infor-

mation gained by observing the extractor’s actions (Qian, Haskell, Jiang, & 

Tambe, 2014). The resource conservation game is modeled as a repeated game 

and then is casted as a POMDP.

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781316676714.021
Downloaded from https://www.cambridge.org/core. Nanyang Technological University (NTU), on 30 Jan 2018 at 09:17:44, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316676714.021
https://www.cambridge.org/core


503Stackelberg Security Games (SSG) Basics and Application Overview

Integrating Dynamic Information: The Transportation Security Administration 

(TSA) is launching a new concept to address its current challenges by integrating 

and quantifying risk information to comprehensively analyze risk on a per- �ight 

basis. Rather than using a one- size- �ts- all approach, the idea is to dynamically 

tailor the security by integrating information across �ve threat vectors:  pas-

sengers, checked baggage, cargo, aircraft operator, and airport/ perimeter. This 

approach will provide a more comprehensive picture of total �ight risk, enabling 

the TSA to reduce risk by allowing for more dynamic allocation of resources. 

This is a massive project that would radically impact domestic aviation security 

in the United States. The security games framework is being used as part of this 

project to quantitatively test and validate the concepts used in this new aviation 

security concept of the future. This may have a signi�cant impact on how this 

new concept of dynamic security gets operationalized.

Note

 1. We use the term green security games also to avoid any confusion that may come 
about given that terms related to the environment and security have been adopted 
for other uses. For example, the term environmental security, broadly speaking, 
refers to threats posed to humans due to environmental issues, e.g., climate change 
or shortage of food. The term environmental criminology, on the other hand, refers 
to analysis and understanding of how different environments affect crime.
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