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Abstract 16 

Labyrinth weirs are utilized to increase the weir crest length to transport a greater discharge 17 

during floods in contrast to conventional weirs. Nevertheless, due to the increased geometric 18 

complexity of labyrinth weirs, determination of accurate discharge coefficients and accordingly, 19 

head-discharge ratings are quite essential issues in practical application. Hence, as a first step the 20 

present study proposes the following eight standalone algorithms: decision table (DT), Kstar, 21 

least median square (LMS), M5 prime (M5P), M5 rule (M5R), pace regression (PR), random 22 

forest (RF), and sequential minimal optimization (SMO). Then, applying the stacking (ST) 23 

algorithm, these stand-alone models were hybridized to develop ST-LMS, ST-PR, ST-SMO, ST-24 

Kstar, ST-DT, ST-M5R, ST-M5P, and ST-RF to predict the discharge coefficient (Cd) for sharp-25 

crested labyrinth weirs. Modeling resulted in 123 experimental data sets including consideration 26 

of vertex angle (θ), channel width (B), head over the crest of the weir (h), crest heights (W), crest 27 

length of the weir (L), Cd, and flow discharge (Q). These effective variables were re-arranged in 28 

the form of several independent dimensionless parameters (θ, h/W, L/B, L/h, Froude number 29 

(Fr), B/W and L/W) to predict Cd as an output. Datasets were randomly divided into two groups; 30 
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70% of data used for model training while 30% used for model validation. The accuracy of the 31 

developed models was examined in terms of different statistical error measurement criteria of 32 

visually-based (line graph, scatter plot, box plot) and quantitative-based [root mean square error 33 

(RMSE), mean absolute error (MAE), the Nash-Sutcliffe efficiency (NSE), and percentage of 34 

bias (PBIAS)]. Results illustrate that h/W and B/W parameters have the highest and lowest effect 35 

on the Cd prediction, respectively. It was found that the most effective input combination 36 

included all input parameters except B/W. According to NSE, all developed algorithms provided 37 

accurate performances, while ST-Kstar has the highest prediction power (NSE=0.976, 38 

RMSE=0.011, MAE=0.008, PBIAS=0.027). Through incorporation of predicted Cd into 39 

discharge equation, promising results are obtained for accurate discharge computation.  40 

Keywords: Discharge coefficient; Hybridization; Labyrinth weir; Stacking algorithm; Machine 41 

learning  42 

 43 

1. Introduction 44 

Weirs are among the simplest form of spillway that are widely used in water resources 45 

engineering structures including dam projects. When possible, weirs are installed perpendicular 46 

to the flow, aligned with the channel axis and used to control and measure the water level as well 47 

as discharge. Due to the effects of seasonality and climate change, droughts and floods are 48 

becoming more severe; indeed many flood control structures require discharge capacity upgrades 49 

(FEMA 2013). Hence, accurate information about the flow discharge is necessary for accurate 50 

planning of watershed management, irrigation and water usage, flood modeling, etc. 51 
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Investigations in hydraulic laboratories have been heavily utilized in the past as direct 52 

measurement of flow discharge in the field is a difficult and time-consuming task. So far, many 53 

experimental studies have been applied using different weir types with variety of shapes to 54 

measure flow discharge to investigate their efficiencies. Labyrinth weirs were first introduced by 55 

(Gentilini 1940) and later developed by (Taylor 1968) and (Hay and Taylor 1970). This 56 

nonlinear weir has an advantage over straight over-flow weirs and ogee crest; although capacity 57 

of this type of weir varies with head, but overall, their discharge capacity can easily exceed twice 58 

with the same width comparing to the linear weirs (Tullis et al. 1995). Thus, labyrinth weirs are a 59 

common type of spillway that is used for dam reservoirs and even is more efficient than ogee 60 

spillway (Suprapto 2013). Taylor (Taylor 1968) conducted the first study of applying non-linear 61 

labyrinth weirs with various form including triangular, rectangular, and trapezoidal in a 62 

laboratory condition and declared that trapezoidal shape is preferred due to its balance of 63 

hydraulics and constructability. Houston (Houston 1982) used a monograph approach, which 64 

was proposed by (Hay and Taylor 1970) to design labyrinth weirs and declared that this method 65 

leads to about 25% error if the project-specific geometry and conditions deviate from the 66 

underlying data. The study conducted by Tullis et al. (1995) showed that discharge capacity is 67 

strongly depended on the total head, effective length of weir crest and corresponding coefficient 68 

of discharge. Emiroglu and Kisi (Emiroglu and Kisi 2013) reported that the coefficient of 69 

discharge has a high relationship with main channel hydraulic flow and geometric weir 70 

characteristics. Due to the constraints of a physical model study (cost, facilities, etc.) and to 71 

facilitate usage by industry, different empirical equations were developed based on the 72 

regression analysis to predict flow discharge (Q). One of the most well-known and widely used 73 

equations is 5.12)3/2( LhgCQ d , where Cd, g, L and h are coefficient of discharge, 74 
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gravitational acceleration, crest length of the weir and piezometric head over the crest, 75 

respectively. According to this equation, L, and h are the readily available parameter and g is a 76 

constant value, thus the only challengeable parameter that has a significant effect on the result 77 

and its calculation is the experimentally determined Cd.  78 

Weirs have been regularly studied by researchers for decades, including published values of Cd. 79 

For straight weirs, classical studies include (Rehbock 1929) who reported that h and its ratio to 80 

the weir height (h/W) strongly effects Cd values (Cd = 0.611 + 0.08(h/w)). Kindsvater and Carter 81 

(Kindsvater and RW Carter 1959) proposed several equations as a function of h/W and weir 82 

width over the channel width (b/B) (Cd = 0.602 + 0.075(h/w)). Also Kandaswamy and Rouse 83 

(Kandaswamy and Rouse 1957) conducted experiments, for different ranges of h/W as h/W≤5, 84 

5<h/W<15 and h/W≥15. Swamee (Swamee 1988) proposed an equation in the form of Cd = 0.611 85 

+ 0.075(h/W). According to the relevant literature, so far, different methods, different effective 86 

parameters, and also different equations for a specific condition were proposed which is 87 

challenging task to select a more appropriate method for hydrologic analyses. Furthermore, 88 

modern risk analyses consider experimental uncertainties which is a challenge of these proposed 89 

models. Cd can be predicted through computational fluid dynamic (CFD) models (Babaali et al. 90 

2015; Su et al. 2015), but approach needs high-accuracy calibration data with detailed 91 

information of the data set(i.e. boundary conditions for energy, momentum, and continuity law, 92 

nappe behavior for local pressure over weir’s crest, tailwater submergence, weirs geometry, crest 93 

shape, and so on) since model development and calibration is a difficult task. Also, due to the 94 

complexity of the process (three-dimensional flow over the weir); it is very difficult to have an 95 

exact prediction using an analytical approach (Crookston and Tullis 2013). 96 
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Therefore, to expand hydraulic estimations beyond physical and CFD models, the soft computing 97 

(SC) approach has gained more attention in solving and predicting complicated and nonlinear 98 

hydrological and hydraulic phenomena. Several advantages of SC approaches are non-linearity 99 

structures, ability to handle big datasets, considering data with different scales, prediction of 100 

phenomena with complicated process and a robust predictor that can allow some incomplete or 101 

missing data. Prediction capability of SC approaches strongly depends on the size of the data set 102 

and especially data quality. Up to now, different SC models have been applied to predict Cd. for 103 

weirs. Artificial neural network (ANN) is the most widely used algorithm in the field of water 104 

resources engineering, while due to low convergence speed and low prediction power in the 105 

testing phase, especially, when range of test data is out of training data. Thus, ANN combined 106 

with fuzzy logic and adaptive neuro-fuzzy inference systems (ANFIS) developed. Azamathulla 107 

et al. (Azamathulla et al. 2016) compared prediction performance of ANN, support vector 108 

machine (SVM) and ANFIS for discharge coefficient of side weirs and stated that the SVM has a 109 

better performance than ANN and ANFIS algorithms. Parsaie et al. (Parsaie et al. 2019a) did a 110 

similar study to (Azamathulla et al. 2016) for combined weir-gate and reported similar results as 111 

them. Salazar and Crookston (Salazar and Crookston 2019) specifically considered Cd for arced 112 

trapezoidal labyrinth spillways using neural networks (NN) and random forests (RF) algorithms. 113 

Karami et al. (Karami et al. 2018) examined simulation power of ANN, genetic programming 114 

(GP) and extreme learning machine (ELM) for Cd. for of triangular labyrinth weir and reported 115 

that ELM outperforms other algorithms followed by ANN and GP. Norouzi et al. (Norouzi et al. 116 

2019) stated that ANN has a higher prediction power than SVM. Bonakdari et al. (Bonakdari et 117 

al. 2020) predicted Cd using gene expression programming (GEP) and showed the superiority of 118 

GEP over nonlinear regression method (NLR). The group method of data handling (GMDH) 119 
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approach was used by (Ebtehaj et al. 2015) to predict Cd. and result were compared with ANN 120 

and nonlinear regression equations. Their result showed the superiority of GMDH over ANN and 121 

NLR. Parsaie et al. (2019b) compared prediction performance of GMDH, GP and multivariate 122 

adaptive regression splines (MARS) to the mathematical modelling of discharge coefficient of 123 

nonlinear weirs with triangular plan. They revealed that MARS model has a higher computation 124 

power over GMDH and GP. ANFIS, SVM, GMDH and other similar algorithms have a 125 

weakness which lead to higher error when they are applied in a standalone framework. These 126 

algorithms must be optimized through metaheuristic algorithm to find the optimum operator 127 

values, especially weights in membership function. ELM also need a large dataset to have a high 128 

prediction capability, (unlike in this study). The SVM is a robust algorithm but it is susceptible to 129 

hyper-parameter selection (Ahmad et al. 2018). Thus, Zaji et al. (Zaji et al. 2016) developed 130 

firefly optimization-based support vector regression (SVR-FF) for Cd. for prediction and reported 131 

that firefly metaheuristic algorithm enhanced SVR model about 10%. Ebtehaj et al. (Ebtehaj et 132 

al. 2018) utilized genetic algorithm (GA) for the optimum selection of ANFIS membership 133 

functions and the evolutionary design of a GMDH model structure to achieve more accurate 134 

prediction of coefficient of discharge. Result revealed that the ANFIS-GA has a higher 135 

prediction power than GMDH-GA.  136 

Recently, a new type of SC algorithms is being developed to overcome the weakness of the 137 

aforementioned more-traditional algorithms. Higher prediction capability of the SC algorithms 138 

over their counterparts were reported in literature. Specifically, (Akhbari et al. 2017) stated that 139 

M5 tree algorithm has a better performance than ANN algorithms. Hussain and Khan (Hussain 140 

and Khan 2020) declared random forest (RF) model outperforms of ANN and SVM for stream 141 

flow forecasting. (Khosravi et al. 2019b)Khosravi et al. (2019a) reported that optimized ANFIS 142 

https://www.sciencedirect.com/topics/engineering/regression-equation
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hybrid algorithm with metaheuristic algorithms is an improvement over standalone decision trees 143 

algorithms (M5Prime (M5P), random tree (RT), RF and reduced error pruning tree (REPT) and 144 

thus the hybridized data mining algorithm may outperform optimized traditional algorithms.  145 

Although not specific to weirs, this hybrid approach has been applied to other complex water-146 

related problems. For example, Khosravi et al. (2018) applied standalone (i.e., REPT, M5P and 147 

instance-based learning (IBK)) and hybrid models (i.e., bagging-M5P, random committee-REPT 148 

(RC-REPT) and random subspace-REPT (RS-REPT)) as well as Salih et al. (2020) developed 149 

M5P, attribute selected classifier (ASC), M5Rule (M5R), and KStar (KS) for predicting 150 

suspended sediment load. Khosravi et al (2019b) used IBK and locally weighted learning (LWL) 151 

to predicted fluoride concentration in groundwater. Khosravi et al. (2020) hybridized decision 152 

tree algorithm using bagging algorithm for bed load sediment transport rate prediction and 153 

reported that bagging algorithm enhanced performance of standalone algorithms. Bui et al. (Bui 154 

et al. 2020) applied hybridized algorithms of cross-validation parameter selection (CVPS) and 155 

randomizable filtered classification (RFC) with decision tree algorithms for water quality index 156 

prediction. This, there is evidence that such an approach could be applied with success to 157 

labyrinth weir hydraulics. 158 

Available conventional approaches for discharge coefficient computation were developed 159 

applying classic regression approach. They are mostly over-fitted models established on limited 160 

number of data. To this end, the main objective of the present study is to identify a robust, 161 

reliable and accurate method for coefficient of discharge prediction for the complex labyrinth 162 

weir. To accomplish this, the prediction power of eight novel standalone algorithms and eight 163 

hybrid algorithms was investigated. Of the standalone algorithms this study included: least 164 

median square (LMS), pace regression (PR), sequential minimal optimization (SMO), Kstar, 165 
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decision table (DT), M5 Rule (M5R), M5 Prime (M5P) and random forest (RF).  The eight new 166 

hybrid algorithms paired the staking algorithm (ST) with those standalone algorithms (i.e. ST-167 

LMS, ST-Pace, ST-SMO, ST-Kstar, ST-DT, ST-M5R, ST-M5P, and ST-RF) for coefficient of 168 

discharge prediction at sharp-crested labyrinth weirs. To the best of the authors’ knowledge, 169 

most of the developed algorithms have not been explored in geosciences.  170 

2. Methodology 171 

2.1. Identifying effective parameters 172 

According to the relevant literature and considering the well-known head-discharge equation of 173 

5.12)3/2( LhgCQ d , Cd is depended on the vertex angle (θ), channel width (B), piezometric 174 

head over the crest of the weir (h), crest heights (W), crest length of the weir (L), gravitational 175 

acceleration (g), dynamic viscosity of fluid (  ), density of flow (  ), surface tension ( ) and 176 

flow velocity (V) (Rehbock 1929; Kandaswamy and Rouse 1957; Kindsvater and RW Carter 177 

1959; Kumar et al. 2011; Zaji et al. 2016; Bonakdari et al. 2020). Overall, these effective 178 

parameters can be described as follows: 179 

) , , , , , , , , ,( VgLWhBfCd 
                                                                                   (1)

 180 

Using classical dimensional analysis through Buckingham   theorem to identify dimensionless 181 

parameters and to improve the modeling performance of the soft computing models and to 182 

directly compare datasets (Azamathulla et al. 2009; Pal et al. 2014). Using the   theorem seven 183 

dimensionless parameters were extracted as follows:  184 

) , ,, ,,  ,( FrBLWBWLhLWhfCd 
                                                                       (2) 

185 
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It is worthy to note that Reynolds (Re) and Weber numbers (We) are removed due to guideline of 186 

American Society of Civil Engineers (ASCE, 2000) committee (Manual 97), as We number is 187 

higher than100 and Re number shows fully turbulent flow.   188 

2.2. Dataset collection  189 

123 datasets measured and collected by (Kumar et al. 2011) are used to examine the 190 

effectiveness of the  16 algorithms considered herein. Kumar et al. (Kumar et al. 2011) 191 

experiments were carried out in a flume with 12 m length, 0.28 m width and 0.41 m depth. A 192 

triangular labyrinth weir made of a thin steel plate with six different vertex angles (θ = 30°, 60°, 193 

90°, 120°, 150° and 180°) was located 11 m downstream of the channel entrance (Fig 1). Flow 194 

supplied to the flume was measured using a volumetric sump (located at the flume exit).  A 195 

point-gauge with accuracy of ±0.1mm was used to measure the head of water over the crest of 196 

the weirs (h). More information about flume set-up and applied method can be found  in (Kumar 197 

et al. 2011). 198 

 199 

Fig 1. Sketch of sharp crested labyrinth weir (Kumar et al. 2011)  200 

The Kumar et al. (Kumar et al. 2011) dataset was separated into two subgroups randomly in a 201 

ratio of 70:30, as 70% (86 set) of data as a training dataset were used for the model development 202 

while 30% (37 set) as a testing dataset for developed models validation. This approach is 203 
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considered by the authors to be the most common method in modeling while there is not a 204 

universal guideline for preparation of training and testing dataset. Descriptive statistics of the 205 

training and testing dataset for input parameters are tabulated in Table 1.  206 

Table 1. Descriptive statistics of the training and testing dataset 207 

Parameters 
 Training  Testing 

 Max Min Mean STD Skew  Max Min Mean STD Skew 

θ (degree)  180.00 30.00 103.45 50.69 180.00  180.00 30.00 100.00 50.20 180.00 

h/w  0.72 0.09 0.38 0.16 0.72  0.67 0.12 0.36 0.17 0.67 

L/B  3.86 1.00 1.75 1.00 3.86  3.86 1.00 1.78 1.01 3.86 

L/h  135.25 3.89 19.61 24.22 135.25  98.36 4.18 20.44 22.00 98.36 

Fr  3.21 0.61 1.18 0.71 3.21  3.26 0.62 1.22 0.73 3.26 

B/W  3.04 2.59 2.76 0.14 3.04  3.04 2.59 2.76 0.14 3.04 

L/W  11.76 2.69 4.95 3.16 11.76  11.76 2.69 5.06 3.20 11.76 

Cd  0.91 0.54 0.72 0.07 0.91  0.86 0.57 0.72 0.07 0.86 

Q (m3/s)  0.01 0.00 0.01 0.00 0.07  0.01 0.00 0.01 0.00 0.23 

 208 

2.3. Optimal input combination  209 

Determination of the best input parameters have a significant effect on the result. To enhance a 210 

model’s prediction power, based on the correlation coefficient between inputs and output 211 

parameters, seven input combinations was constructed to find the optimal or most effective 212 

scenario. At the first step, input parameters with the highest correlation coefficient (r) were used 213 

as a single input. The hypothesis is to identify the parameter with highest ability to accurately 214 

predict Cd. Next, the parameter with the second highest r value was added to the first input and to 215 

this end, input No. 2 was constructed. This method continued until the last of the seven 216 

parameters also with the lowest r was added (Table 2). 217 

To find the most effective input combination, the model’s default operator was applied. 218 

Efficiency of all constructed input combinations were examined in terms of the root mean square 219 

error (RMSE); the lower the RMSE the more effective the input parameter combination.   220 

Table 2. Different input combinations 221 
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No. Input variables Output 

1 h/w Cd 

2 h/w, L/h Cd 

3 h/w, L/h, Fr Cd 

4 h/w, L/h, Fr, L/W Cd 

5 h/w, L/h, Fr, L/W, θ Cd 

6 h/w, L/h, Fr, L/W, θ, B/W Cd 

7 h/w, L/h, Fr, L/W, θ, B/W, L/B Cd 

 222 

2.4. Model’s parameter optimization 223 

In addition to data quality, the length of the data set, the model’s prediction power, and the 224 

effectiveness of input parameters and optimized value for each operator have significant effects 225 

on the modelling prediction accuracy. Optimum values for each model’s operator vary from 226 

study to study and data to data, hence, there is not an optimum value for all cases. For this study 227 

on labyrinth weirs, the trial-and-error approach were applied to determine the optimum model 228 

operators via the Waikato Environment for Knowledge Analysis (WEKA 3.9) software. Default 229 

values were first applied to each developed model and their performance was checked through 230 

RMSE. Next, higher and lower values were applied, and their performances were checked again 231 

until from the range of values the results the optimum values were identified with lowest RMSE.  232 

2.5. Model theory background 233 

This section provided in a supplementary material.  234 

2.6. Model evaluation and comparison  235 

Efficiencies of each developed algorithm must be evaluated, as without the model’s prediction 236 

power validation stage, modeling results would be inapplicable and do not have a scientific 237 

soundness (Chung and Fabbri 2003). Also, as training datasets are used for model building 238 

processes, the results of this section only show how well the developed algorithms fit 239 



12 

 

corresponding dataset. Thus, testing datasets were applied for the model validation stage. Two of 240 

the most common approaches for model evaluation and comparison are visually and 241 

quantitatively based methods.  Visually based methods are comprised of line graphs, scatter plots 242 

and box plots. These approaches benefit from fast, interesting and desirable comparison and can 243 

quickly provide more information about accuracy prediction of maximum, minimum, median, 244 

first and third quartiles, etc. which cannot be driven using quantitative metrics. But these metrics 245 

suffer from lack of information about models performance classification and their ranking. 246 

Therefore, different quantitative approaches including RMSE, mean absolute error (MAE), the 247 

Nash-Sutcliffe efficiency (NSE), and percentage of bias (PBIAS) were computed and applied as 248 

follows: 249 
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 253 

where 
Obs

dC and 
e

dC
Pr

, are measured and predicted coefficient of discharge values and 
Obs

dC is 254 

the mean of measured coefficients of discharge. 255 
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3. Result and analysis 256 

3.1. Relative parameter importance 257 

Each input parameters have a different relative effectiveness on the results. Seven dimensionless 258 

input parameters were considered for the modeling process based on the aforementioned 259 

literature review and theory of the discharge over weirs. Effectiveness of these parameters is 260 

evaluated using the Pearson correlation coefficient (r). As shown in Figure 2, the results 261 

demonstrated that h/W has the highest impact on the modeling of Cd (r = 0.713) followed by L/h 262 

(r = 0.537), Fr (r = 0.318), L/B (r = 0.122), L/W (r = 0.119), θ (r = 0.112) and B/W (r = 0.019).  263 

 264 

 265 

Fig 2. Pearson correlation coefficient between input parameters and output  266 

 267 

3.2. Best input combination 268 

To identify the best-input combination for Cd computations, seven scenarios were examined on 269 

eight stand-alone models of LMS, PR, SMO, Kstar, DT, M5R, M5P and RF, and their hybrid 270 

counterparts based on ST algorithm. The examined scenarios are given in Table 3, listed from 271 

one to seven combinations where the incorporated parameters in order of the presentation are 272 

h/w, L/h, Fr, L/W, θ, B/W and L/B. The models’ performances in terms of accurate prediction are 273 

-0,112 

-0,713 

0,122 

0,537 

0,318 

-0,019 
0,119 

r-value 

θ 

h/w

L/B

L/h

Fr

B/W
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given in Table 4 as a heat-map. It is important to involve most significant parameters, as 274 

irrelevant parameters lead to a complex structure that may lower prediction accuracy.  275 

 276 

Table 3. Heat map for determination of the best input combination based on RMSE 277 

  Inputs No. 

  1 2 3 4 5 6 7 

LMS 0.052 0.08 0.043 0.049 0.046 0.03 0.044 

PR 0.049 0.049 0.039 0.024 0.021 0.019 0.019 

SMO 0.052 0.052 0.041 0.03 0.031 0.025 0.024 

Kstar 0.043 0.022 0.015 0.01 0.0088 0.0085 0.0084 

DT 0.042 0.042 0.027 0.037 0.01 0.01 0.01 

M5R 0.043 0.032 0.027 0.035 0.018 0.016 0.016 

M5P 0.043 0.033 0.027 0.025 0.024 0.021 0.021 

RF 0.022 0.021 0.01 0.01 0.01 0.01 0.01 

ST-LMS 0.05 0.075 0.041 0.043 0.04 0.026 0.031 

ST-Pace 0.048 0.048 0.039 0.023 0.022 0.019 0.019 

ST-SMO 0.051 0.051 0.04 0.03 0.03 0.025 0.024 

ST-Kstar 0.042 0.022 0.006 0.005 0.0047 0.0046 0.0046 

ST-DT 0.041 0.038 0.025 0.026 0.01 0.01 0.01 

ST-M5R 0.042 0.031 0.025 0.02 0.017 0.015 0.015 

ST-M5P 0.042 0.033 0.025 0.025 0.024 0.019 0.019 

ST-RF 0.022 0.021 0.015 0.0094 0.009 0.008 0.0074 

** Red light shows the worst input while the green colors illustrate the best inputs 278 

 279 

Results obtained in Table 3 indicate that an increase in the number of incorporated parameters 280 

into the model improves the model’s performance significantly. For instance, for the best stand-281 

alone model of Kstar, it gives the RMSE of 0.043 for input No.1 (single input parameter), while 282 

it reaches the RMSE of 0.0085 and 0.0084 with six and seven input parameters, respectively. It 283 

shows 80% promotion in Kstar accuracy in Cd computation. Such an improvement is even more 284 

tangible in the hybrid models. The results indicate the ST-Kstar model as the most robust model 285 
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(shown in Table 3), with RMSE of 0.042 and 0.0046 for one and six input variables, respectively. 286 

It indicates almost 90% improvement in its computation accuracy, due to incorporation of more 287 

input parameters into the model’s structure.  288 

 289 

3.3. Comparison of models 290 

The Cd values from experimental data and the values computed by the stand-alone models of 291 

LMS, PR, SMO, Kstar, DT, M5R, M5P and RF, and hybrid models of ST-LMS, ST-PR, ST-292 

SMO, ST-Kstar, ST-DT, ST-M5R, ST-M5P and ST-RF are compared in terms of line graphs and 293 

scatter plots in Figure 3. As shown in Figure 3, although a few stand-alone models provide 294 

accurate performances, they generate large scatter as their results are not fitted to the best-fit line. 295 

For instance, DT and SMO models have significant over- and under-estimations, while Kstar and 296 

RF give more accurate computations. As shown in Figure 3, hybridization of the stand-alone 297 

models with ST ensemble algorithm improves model performances for the majority of cases. 298 

Hybrids models of ST-Kstar and ST-RF are superior predictors where most of the data remained 299 

on the best-fit line, thus showing their high performance in Cd computation. Also shown for the 300 

case ST-PR, ST-SMO and ST-DT models, the hybridization technique cannot significantly 301 

improve their performances as large scatter are still shown, thus demonstrating less accurate 302 

performances of these models.  303 

 304 

 305 

 306 
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Fig 3. Line-graph and scatter plot of measured Vs. prediction Cd in testing phase 310 
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Comparison of the developed models in this study for Cd computation is shown via Figure 4. The 311 

use of violin plots is helpful to understand the distribution of the data in the studied models 312 

results. It uses density curves where their widths are attributed to the frequency of data in a 313 

specific region. To this end, a model which has most similar violin plot shape to the measured 314 

counterpart generates more accurate computations.  315 

As shown in Figure 4, the ST-Kstar is in excellent agreement with the measured violin plot; the 316 

ST-RF models have approximately similar violin plot shapes to the measured one, although the 317 

ST-RF model has a wider distribution in the upper quartile. It shows that ST-RF is not as 318 

accurate for the higher Cd values. Generally, it can be concluded that hybrid models outperform 319 

their corresponding stand-alone models. The red dash line noted in Figure 4 shows the median of 320 

the data. For the hydride models, in most of the cases, the median line is located at the middle of 321 

the violin plot, while for some of the standalone models such as M5P, M5R, ST-M5P and ST-322 

M5R the median lines are placed in a lower level, indicating their under-estimation of results. In 323 

terms of the maximum value, M5R, Kstar, ST-M5R, ST-Kstar were accurate predictors while 324 

only Kstar and ST-Kstar models had the ability to predict minimum Cd value in a high accuracy.   325 

 326 
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327 

Fig 4. Violin plot used for model performance 328 

Furthermore, comparison of the developed models for Cd computation is conducted in terms of 329 

four statistical performance indices of RMSE, MAE, NSE and PBIAS, which reports modeling 330 

performance quantitatively as shown in Figure 5. Among the standalone models, Kstar and RF 331 

provided much better results than the remaining models considered herein. Consistently their 332 

hybrid versions as ST-Kstar and ST-RF are found superior to their alternatives. In terms of NSE, 333 

all developed algorithms due to NSE score higher than 0.75, have a very good performance 334 

(Ayele et al. 2017), but ST-Kstar outperforms all other models with RMSE, MAE, NSE and 335 

PBIAS of 0.011, 0.008, 0.976 and 0.027, respectively. Indeed, the hybridization algorithm 336 

significantly improved the performance of some models yet for some cases hybridization has no 337 

considerable enhancement in the model’s performance. For instance, a considerable 338 

improvement is seen in Figure 9 for DT and LMS models where their RMSE with 0.023 and 339 

0.020 values are decreased to 0.016 and 0.014 in ST-DT and ST-LMS model, respectively. It 340 

shows 30% and 25% promotion in ST-DT and ST-LMS models accuracies in contrast to DT and 341 

LMS stand-alone models. This scenario is vice versa for M5P and SMO models as hybridization.  342 
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lesser increases their accuracies in ST-M5P and ST-SMO models with a factor of 5% and 8%, 343 

respectively.  According to PBIAS result, Kstar, ST-Kstar and M5R algorithms under-estimated 344 

Cd values (negative values) while the remainder of the algorithms were over-estimators.  345 
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 346 

Fig 5. Model validation: (a) RMSE, (b) MAE, (c) NSE and (d) PBIAS 347 

 348 

Additional insights can be gained by evaluating the models’ performances in terms of accurate 349 

discharge computation based on the results obtained for Cd as shown in Figure 6. To this end, the 350 

predicted Cd values are incorporated into the 5.12)3/2( LhgCQ d to compute flow discharge 351 

passing the weir. From a first glance on Figure 10, it can be understood that, all machine learning 352 

models are successful for adjusting the Cd parameter for discharge computation. Although small 353 

scatter is seen for some models such as DT, LMS, M5R, PR and SMO, most of the models 354 

provide promising results where data are well-placed on the best fit line. Similar to results 355 

reported in the prior section, ST-Kstar and ST-RF models stay ahead in competition with other 356 

models in providing accurate results. To sum up, all developed algorithms predated Cd values 357 

accurately with corresponding coefficient of determination higher than 0.99 for whole the cases.  358 
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 362 

Fig 6. Measured and predicted flow discharge over weirs using adjusting Cd value 363 
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4. Discussion 368 

Due to the topographical characteristics, site-specific constraints, project economics, and 369 

performance goals, it is often an essential issue to address discharge capacity.  For many new and 370 

rehabilitation projects, enlargement of the weir crest length is a viable option to increase its 371 

discharge capacity. For the case of the conventional weirs, for greater discharges during the 372 

floods, water levels must also be greater and may cause unacceptable levels of upstream flooding 373 

and damage. In the case of flood infrastructure such as embankment dams and levees, this 374 

increased upstream elevation may result in overtopping, embankment erosion, breaching, and 375 

significant downstream flooding and corresponding consequences.  To this end, implementation 376 

of labyrinth weir can be considered to overcome the afflux problem in conventional weirs. An 377 

important problem for application of the labyrinth weir comes from the determination of its 378 

discharge coefficient. Recommended approaches for computation of discharge coefficient in 379 

labyrinth weir were established from selected hydraulic and geometric variables. However, the 380 

existing benchmarks are generated on experimental data through developing a best fit 381 

relationship applying classical regression methods. Following the same methodology in 382 

published literature and through considering a variety of dimensionless parameters, robust 383 

machine learning algorithms are utilized in this study to develop rigorous models for discharge 384 

coefficient computation in sharp-crested labyrinth weirs. 385 

This study applied eight stand-alone models of LMS, PR, SMO, Kstar, DT, M5R, M5P and RF, 386 

and their eight hybridized version constructed using the ST algorithm to develop ST-LMS, ST-387 

PR, ST-SMO, ST-Kstar, ST-DT, ST-M5R, ST-M5P and ST-RF models. Results indicate that all 388 

models developed in this study have acceptable/very good performance for discharge coefficient 389 

computation. For the worst case in the models of DT and SMO, they provide errors less than 2%, 390 
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while for the best models of ST-Kstar and ST-RF, 0.8% and 0.9% errors are found respectively 391 

for discharge coefficient computation showing the robustness of the models developed in this 392 

study. It can be asserted as a significant promotion in discharge coefficient computation in sharp-393 

crested labyrinth weirs. This completely is resulting from different computation capability, 394 

flexibility and complexity of each algorithm, which gets back to different structure of each 395 

model that developed based on. Also, higher performance of hybridized algorithms maybe due to 396 

increasing in flexibility and non-linearity of each model (De’ath and Fabricius 2000). It has to be 397 

emphasized that, according to the(Kumar et al. 2011), ±5% error in discharge computation in 398 

sharp-crested labyrinth weirs is acceptable. The range of the error in discharge computation in 399 

this study for different models are found from 1.6% to 3%, where for the best models of ST-400 

Kstar and ST-RF are 1.6% 1.8%, respectively (Fig. 7). This result also shows superiority of the 401 

present study over the approach proposed by (Kumar et al. 2011).  402 

 403 

Fig 7. Average percentage error for discharge prediction 404 
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researchers with the same data of the present study. For example, (Bonakdari et al. 2020) used 407 

GEP and NLR algorithm and reported RMSE of 0.021 and 0.040 respectively. Our study shows 408 

47.6% and 72.5% higher performance respectively using ST-Kstar algorithm. Also, (Akhbari et 409 

al. 2017) stated that M5 tree model with a R
2
 = 0.831 has high prediction accuracy, which is in 410 

disagreement with the result of this study that showed 15% higher prediction capability than M5 411 

tree model. These results show the successful application of the new machine learning 412 

algorithms proposed in the present study for discharge coefficient computation in sharp-crested 413 

labyrinth weirs. These discrepancies between prior studies may be linked to the details of 414 

training and implementation, which as shown herein are critical steps that can heavily influence 415 

results.  416 

Our finding in determining relative importance of each input parameters on the result is in 417 

accordance with Roushangar et al. (Roushangar et al. 2018) who stated that h/W is the most 418 

influential parameter on Cd prediction. Akhbari et al. (Akhbari et al. 2017) stated that h/B and Fr 419 

are two most effective input parameters. Also, (Azimi et al. 2017) declared that Fr parameter, 420 

among single input parameters, has the highest effectiveness, which leads to lowest error. 421 

Bonakdari et al. (Bonakdari et al. 2020) stated that θ is the less effective parameter in Cd 422 

prediction. To sum up, parameter importance results vary from study to study and its importance 423 

depends on the conditions which control the experiments.   424 

In terms of identifying the best input combination, except of prediction accuracy, the number of 425 

input parameters incorporated in the molding process is important, as sometimes, measuring 426 

many input parameters is time-consuming. Hence, a model which lead to a slightly lower 427 

accuracy with less input parameters, is preferable than a model with a slightly higher accuracy 428 
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with greater number of inputs. For example, ST-Kstar with input No. 5 with RMSE of 0.0047, is 429 

preferable than input No.6 and 7 with RMSE of 0.0046.   430 

It has been known that credibility of a hydraulic model is significantly attributed to the range of 431 

data used for the model development. On the other hand, there are a limited number of 432 

experimental studies on sharp-crested labyrinth weirs in the literature. Consequently, conducting 433 

experimental studies in large channels, adopting wide ranges of crest length, crest height and 434 

vertex angle needed, particularly at field scale, for further advancement of these models. 435 

Incorporation of the large number of parameters in the model structure arises a difficulty to use 436 

the model as a practical tool. To this end, future studies may consider the use of fewer 437 

parameters for simplifying the developed models and generating explicit models.  438 

5. Conclusions 439 

Weirs as a flow measurement structures are used for many purposes such as flood control, 440 

irrigation plan and controlling the flow discharge. Weirs are also widely implemented in the 441 

water management and hydro-system projects. Discharge capacity would be evaluated using 442 

coefficient of discharge, but accurate determination of this parameter can be a challenging task. 443 

The present study used different soft computing algorithms to predict coefficient of discharge 444 

using various readily available parameters as model inputs. The main findings of the present 445 

study can be summarized as follows: 446 

1- All developed algorithms have a very good performance, while, ST-Kstar algorithm 447 

outperforms its alternatives.  448 
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2- Hybrid ST-Kstar model has improved prediction performance of standalone Kstar about 449 

0.82% and provides almost 8.3% higher performance compared to the SMO, with lowest 450 

prediction power.  451 

3- h/W has the highest impact on the modeling of Cd (r = 0.713) followed by L/h (r = 0.537), 452 

Fr (r = 0.318), L/B (r = 0.122), L/W (r = 0.119), θ (r = 0.112) and B/W (r = 0.019). Result 453 

shows 80% promotion in Kstar model accuracy in Cd computation when effective input 454 

combination was applied compared to the input No.1. This reaches up to 90% for ST-455 

Kstar algorithm. 456 

4- Relative importance of input parameters differs from study to study. While L/h, Fr, L/B, 457 

and L/W are the most important parameters in predicting the coefficient of discharge. 458 

5- Best input combination is found as a model in which all input parameters involved except 459 

of B/W which its incorporation to the model, decreased modeling process performance. 460 

6- Utilizing predicted Cd value by soft computing techniques, the computed discharges 461 

provide  R
2
 values higher than 0.99, near to the unity.  462 

7- The novel approaches proposed in the present study outperform the traditional and non-463 

linear regression models.  464 

8- Kstar, ST-Kstar and M5R underestimated Cd values while rest of algorithms 465 

overestimated.  466 

Current finding shows that both new standalone and hybrid algorithms are cost-effective tools 467 

not only for coefficient of discharge prediction. Relying on the promising results of this study, it 468 

is expected that the applied algorithms in this study can be implemented in variety of hydrology 469 

and hydraulic problems.   470 

 471 
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