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We investigate two mechanisms of crystallographic slip in graphene,
corresponding to glide and shuffle generalized stacking faults (GSF), and
compute their �-curves using Sandia National Laboratories Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS). We find
evidence of metastable partial dislocations for the glide GSF only.
The computed values of the stable and unstable stacking-fault energies
are suggestive of a high stability of full dislocations against dissociation and
of dislocation dipoles against annihilation.

Keywords: graphene; stacking faults; dislocations; dynamic stability

1. Introduction

Single-sheet graphene [1–3], a monolayer of sp2-bonded carbon atoms that are

packed as a honeycomb crystal lattice, is actively being evaluated as a material for

next-generation electronics. Thus, in addition to exceptional mechanical properties

[4], pristine graphene is a ballistic conductor exhibiting remarkably high electron

mobility [5,6] and thermal conductivity [7]. In addition, the potential for controlling

the density of charge carriers by applying a gate voltage [2,3,6] renders graphene an

attractive candidate material for electronic applications such as field-effect transis-

tors (FETs) [1]. Graphene has been observed to be stable in free-standing form [2]

and on a variety of substrates [1]. However, a number of lattice defects, including

Stone–Wales (SW) defects [8], dislocation dipoles [9], and others [10], have been

observed to be stable in graphene [9–12]. The stability of some of these defects has

been theoretically demonstrated up to high temperatures [13]. Depending on their

structure and density, these defects may have a detrimental effect on the electronic

and thermal transport response of graphene, thereby limiting its potential for use in

electronic applications.

Graphene defects have been analyzed by a variety of means. For instance, Jeong

et al. [14] have studied the stability of dislocation dipoles with 5–7 core structure

using density-functional theory. These 5–7 pairs have been observed to form complex

defect structures [9]. Periodic arrangements of dislocation dipoles and quadrupoles

have also been extensively considered by means of first-principles
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calculations [14–18]. In addition to first-principles calculations, interatomic poten-

tials have also been widely used for modeling carbon structures in general and

graphene in particular [13,19–28]. The simplest types of potential are harmonic and

are defined in terms of force constants [19,25,27,28]. More general bond-order

interatomic potentials include the reactive empirical bond-order (REBO) potential

[24] and the reactive force field (ReaxFF) [29]. The addition of torsion, dispersion,

and non-bonded repulsion interactions to the REBO potential results in a new

hydrocarbon potential (AIREBO) that is suitable for studying reactivity in molecular

condensed phases [26].

In this article, we investigate two mechanisms of crystallographic slip in graphene

with a view to ascertaining the energetics of the resulting generalized stacking faults

(GSF) and by extension, the feasibility of dislocation dissociation and the

metastability of the resulting partials. The slip mechanisms are investigated within

Vitek’s framework of the �-energy surface [30,31]. In order to study the stability of

the dissociated dislocation cores at finite temperature, we have first computed the

dislocation core structures predicted by the theory of discrete dislocations [32] and

then studied their dynamic stability considering these configurations as initial

conditions for a molecular dynamics calculation carried out using the Sandia

National Laboratories Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) code [33].

2. Generalized stacking faults

The �-surface is constructed by cutting an infinite crystal along a given crystallo-

graphic plane and then displacing the resulting half-crystals through a vector d, or

slip displacement, contained within the plane. An atomistic model of the crystal is

then relaxed under far-field boundary conditions consistent with the slip displace-

ment d and with zero normal tractions, i.e., prescribing the parallel components of

the far-field displacements while simultaneously relaxing the far-field normal

displacements. The resulting relaxed configurations have been termed generalized

stacking faults (GSF) by Vitek [30]. The attendant elastic or misfit energy �(d), when

plotted against the slip displacement d, defines the so-called �-surface of the GSF.

The two GSF geometries considered in this work, corresponding to slip across

zigzag bonds and across parallel bonds, are shown in Figure 1a and b, respectively.

By analogy to the diamond structure, we refer to these GSF as glide GSF and shuffle

GSF, respectively (cf. e.g. [34]). For the shuffle GSF, the distance between two

adjacent atomic lines on either side of the cut equals the bond length, and only one

bond per atom is broken during the block-shearing process. For the glide GSF, the

interplanar distance is one-half of the bond length and two bonds per atom are

broken during the block-shearing process. Owing to the two-dimensionality of

graphene, only one component � of the slip displacement needs to be considered, and

the �-surfaces of the GSFs reduce to �-curves. We compute the �-curves by means of

molecular dynamics calculations carried out using the Sandia National Laboratories

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [33] and

two different interatomic potentials: the Adaptive Intermolecular Reactive Empirical

Bond-Order (AIREBO) [26] and the reactive force field (ReaxFF) [29]. Both
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potentials allow for covalent bond breaking/creation with associated changes in

atomic hybridization described by means of a classical potential, thus enabling

simulations of slip in single-sheet graphene. All �-curve calculations are carried out

at zero temperature [30]. By symmetry, the �-curve is periodic of period b ¼
ffiffiffi
3

p
a,

where a¼ 1.42 Å is the bond length [25] and b¼ 2.46 Å is the Burgers vector size. In

order to obtain the �-curve of the glide and shuffle generalized stacking faults, the

simulation cell is first cut along a zigzag direction or armchair direction, respectively

(see Figure 1). Then, prescribed slip displacements in the interval [0, b] are applied in

increments of b/100 by shifting the upper part with respect to the lower part.

Following Vitek [30], the far-field displacements are allowed to relax during

0.0277 ps in the direction perpendicular to the line of fault at every prescribed value

of slip displacement. Periodic boundary conditions are enforced on the remaining

two sides of the computational cell (Figure 2). The relaxation time after each slip is

divided into 100 steps, so the time step is 0.277 fs, which satisfies the CFL condition

[35]. This time step has been proposed, in order to achieve the maximal numerical

stability during the simulation, by other groups working on the dynamics of

graphene using MD techniques [36]. By way of comparison, we have used two

different time steps, i.e., 0.1 fs and 0.277 fs, and observed that there are no differences

between both simulation results.

The characteristic thermalization time required for the system to reach

equilibrium may be estimated from the two-dimensional heat equation as

tc ¼
3

2
N

kB

KA

ð1Þ

where N is the number of atoms, kB is Boltzmann’s constant, and KA is the two-

dimensional thermal conductivity of graphene. This two-dimensional thermal

conductivity may in turn be estimated from the experimentally reported three-

dimensional thermal conductivity KV as KA¼KVh, where h is the nominal

thickness of the graphene sheet. For a periodic cell of N¼ 488 atoms, with

Figure 1. Generalized stacking faults considered in this study. (a) Glide GSF: slip occurs
across zigzag bonds. (b) Shuffle GSF: slip occurs across parallel bonds.

2006 M.P. Ariza et al.
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kB¼ 1.381� 10�23 JK�1, KV¼ 5� 103Wm�1K�1 [37] and h¼ 0.334 nm [38],

Equation (1) gives tc� 0.0056 ps. This estimate is smaller than the relaxation time

considered after each slip.

Cells sizes ranging from 80 to 1600 atoms are used in order to assess cell-size

convergence. We find that the �-energy is ostensibly converged for a cell size of 1600

atoms.

The �-curves for the glide GSF, Figure 1a, computed from the AIREBO and

ReaxFF potentials are shown in Figures 3 and 4, respectively. Some noise

notwithstanding, both potentials give strong evidence of a metastable stacking-

fault configuration, or local energy minimum, at �¼ b/2. The computed stacking-

fault energies are �sf¼ 1.18 eV Å�1 for the AIREBO potential and �sf¼ 1.22 eV Å�1

for the ReaxFF potential. We note that, owing to the two-dimensional geometry of

graphene, the natural units for the stacking-fault energies are those of an energy per

δ/b

Figure 3. �-curve of glide GSF computed from LAMMPS [33] using the AIREBO potential
and its piecewise parabolic approximation.

(a)

A B

PBC

PBC

(b)

Figure 2. (a) Typical computational cell used in the analysis of stacking-fault structures in
graphene. Inlaid in the figure is a schematic cut showing the plane of the stacking fault.
(b) Schematic representation of Vitek’s stacking fault construction. The two half graphene
sheets incident on the stacking fault plane are displaced rigidly in the parallel direction. In
particular, the parallel component of displacement is prescribed for all atoms. The normal
component of the displacement of all atoms is unconstrained and allowed to relax as the two
half-sheets slide relative to each other.
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unit length. The �-curves for the glide GSF computed from the AIREBO and

ReaxFF potentials are found to be well-approximated by the piecewise quadratic fit

�ð�Þ ¼ min
�

2
ð�=bÞ2, �sf þ

�sf

2
ð�=b� 1=2Þ2, �

2
ð�=b� 1Þ2

n o
, ð2Þ

for � in the interval (0, b), with the function �(�) extended to the remainder of the real

line by periodicity. The values of the parameters in (2) are tabulated in Table 1. The

perfect lattice and the metastable stacking-fault configurations are separated by

unstable stacking-fault configurations at slip displacements �¼ 0.15b for the

AIREBO potential and �¼ 0.20b for the ReaxFF potential (parabolic approxima-

tion). The corresponding unstable stacking-fault energies, i.e., the energy barrier

separating the perfect lattice and the stable stacking-fault configuration, are

computed to be �us¼ 1.60 eV Å�1 for the AIREBO potential and �us¼ 1.78 eV Å�1

for the ReaxFF potential.

The piecewise quadratic fits of the AIREBO and ReaxFF �-curves for the glide

GSF are compared in Figure 5. Remarkably, the values of the stacking-fault energy

�sf predicted by the AIREBO and ReaxFF potentials are nearly identical. By

contrast, the AIREBO potential predicts a somewhat lower unstable stacking-fault

energy than that predicted by the ReaxFF. Closeup views of the relaxed atomic

structure of the unstable and stable stacking faults are also inset in Figure 5. In order

δ/b

Figure 4. �-curve of glide GSF computed from LAMMPS [33] using the ReaxFF potential
and its piecewise parabolic approximation.

Table 1. Parameters of piecewise quadratic fit of the glide GSF �-surface.

Potential � (eV Å�1) �sf (eV Å�1) �sf (eV Å�1) �us (eV Å�1)

AIREBO 141.37 5.82 1.24 1.60
ReaxFF 89.81 12.03 1.23 1.78

2008 M.P. Ariza et al.
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to verify the stability of the latter atomic structure configuration, we have allow the

system to relax over a time of 1000 ps, which, according to the previous estimate (1),

amply suffices for the system to reach thermal equilibrium. As may be seen from the

figure, the unstable stacking-fault configuration consists of a distorted hexagonal

lattice, whereas the stable stacking-fault configuration consists of an array of

decarings.

Next we turn to the shuffle GSF, Figure 1b. The �-curves for the shuffle GSF

computed from the AIREBO and ReaxFF potentials are shown in Figure 6a and b,

respectively. As is evident from the figure, the �-curve predicted by the ReaxFF

δ/b

Figure 5. Piecewise parabolic approximations of the �-curves of a glide GSF computed from
the AIREBO and ReaxFF potentials. Details of the stable and unstable stacking-fault atomic
configurations at 0K are also inset in the figure.

δ/b

(a)

δ/b

(b)

Figure 6. � curve of shuffle dislocation computed from LAMMPS [33] using (a) the AIREBO
potential and its Fourier series approximation and (b) the ReaxFF potential and its Fourier
series approximation.
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potential is somewhat softer than that predicted by the AIREBO potential. Contrary

to the case of the glide GSF and differences in fine structure notwithstanding, both

potentials rule out the existence of a stable stacking-fault configuration for the shuffle

GSF. Instead, both the AIREBO and ReaxFF potentials predict unstable stacking-

fault configurations at �¼ b/2 of unstable stacking-fault energies �us¼ 1.97 eV Å�1

and �us¼ 1.51 eV Å�1, respectively. Owing to the b-periodicity and evenness of the �-

curves, a cosine Fourier series representation of the form

�ð�Þ ¼ �us

XN

n¼1

cn cos
n��

2b
ð3Þ

suggests itself as an analytical approximation to the computed curves. The

coefficients of a 11-term expansion are collected in Table 2.

The Fourier series fits of the AIREBO and ReaxFF �-curves for the shuffle GSF

are shown in Figure 6a and b. As already noted, the ReaxFF-potential �-curve

undershoots the AIREBO-potential �-curve, and both curves differ in fine detail, the

AIREBO-potential �-curve exhibiting a wavier profile. As for the glide GSF, a

closeup view of the atomic structure of the unstable stacking-fault has been inset in

Figure 7. Similarly to the unstable glide stacking-fault configuration, a distorted

hexagonal lattice has been observed.

3. The lattice complex of graphene and its harmonic approximation

In this section we summarize the specialization to graphene [13,28] of the general

theory of discrete dislocation in crystal lattice developed by the authors [32]. The

primary objective of this section is to present a general expression for the stored

energy of the graphene crystal in terms of eigendeformations. Following [32], we

regard the graphene lattice as a cell-complex C, i.e., as a collection of cells of different

dimensions equipped with discrete differential operators and a discrete integral. In

particular, the graphene complex is two-dimensional and consists of: atoms, or

0-cells; atomics bonds, or 1-cells; and hexagonal cells, or 2-cells, Figure 8. For ease of

indexing, we denote by Ep(C) the collection of all cells of dimension p¼ 0, 1, 2 in the

graphene cell complex C. These cells supply the support for defining functions, or

forms, of different dimensions. Thus, of dimension p assign vectors to each cell of

dimension p of the lattice. In particular, we refer a function defined over the atoms as

a 0-form, a function defined over the atomic bonds as a 1-form and a function

Table 2. Parameters of an 11-term cosine Fourier series fit of the shuffle GSF �-surface.

Potential c1 c3 c5 c7 c9 c11

AIREBO 1.139 �0.826 �0.413 0.128 0.041 �0.061
ReaxFF 0.968 �0.737 �0.413 0.150 0.015 0.026

c13 c15 c17 c19 c21 �us (eV Å�1)

AIREBO �0.080 0.064 0.039 �0.026 �0.019 1.97
ReaxFF 0.033 �0.035 �0.033 0.023 0.011 1.51

2010 M.P. Ariza et al.
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defined over the hexagonal cells as a 2-form. As we shall see, forms provide the

vehicle for describing the behavior of the graphene lattice, including its displace-

ments, eigendeformations and dislocation densities.

In order to define the discrete differential operators of the lattice, we begin by

orienting all cells, Figure 8. Suppose that ! is a 0-form defined over the atoms

and let eab be an atomic bond defined by atoms a and b, cf. Figure 9. Suppose,

Figure 7. Fourier series approximations of the �-curves of a shuffle dislocation computed
from the AIREBO and ReaxFF potentials. Details of atomic configurations at 0K are also
inset in the figure.

ba

cf

e d

ba

Figure 9. Diagram for the definition of the discrete differential operators of graphene.

1 2 1

2

3

1

Figure 8. The oriented 0, 1 and 2-cells of graphene grouped by type.
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in addition, that eab is oriented from a to b. Then, the differential d!(eab) of ! at

eab is

d!ðeabÞ ¼ !ðebÞ � !ðeaÞ: ð4Þ

Suppose now that ! is a 1-form defined over the atomic bonds and let eabcdef be a

hexagonal cell bounded by the atomic bonds eab, ebc, ecd, ede, eef and eabcdef, cf.

Figure 9. Then, the differential d!(eab) of ! at eabcdef is

d!ðeabcdefÞ ¼ !ðeabÞ þ !ðebcÞ þ !ðecdÞ þ !ðedeÞ þ !ðeefÞ þ !ðefaÞ: ð5Þ

Finally, ! is a 2-form defined over the hexagonal cells. Then, its differential is the

vector

d! ¼
X

e22E2ðCÞ
!ðe2Þ: ð6Þ

Thus, the differential operator maps: 0-forms, defined over the atoms, to 1-forms,

defined over the atomic bonds; 1-forms, defined over the atomic bonds, to 2-forms,

defined over the hexagonal cells; and 2-forms, defined over the hexagonal cells, to

vectors. The discrete differential operators thus defined may be regarded as the

discrete counterparts of the familiar grad, curl and div of vector calculus.

In particular, the differential of 0-forms is the discrete counterpart of the grad

operator; the differential of 1-forms is the discrete counterpart of the curl operator;

and the differential of 2-forms is the discrete counterpart of the div operator from

vector calculus. It is readily verified from the definition of the discrete differential

operators that

d2 ¼ 0, ð7Þ

which is the discrete counterpart of the identities curl � grad ¼ 0 and div � curl ¼ 0.

By grouping cells of the same type (Figure 8), it may be observed that they are

translations of each other and have the same complement of neighbors, or

environment. According to this definition, graphene has two types of atoms, three

types of atomic bonds and one type of hexagonal cell. The fundamental property of

cells of the same type is that they are arranged as simple Bravais lattices, Figure 10.

Thus, the atoms of graphene define two simple Bravais lattices, the atomic bonds

define three simple Bravais lattices, and the hexagonal cells define one simple Bravais

lattice. Consequently, the Discrete Fourier Transform (DFT) provides a natural tool

for the analysis of discrete forms, cf., e.g., [32,39]. Thus, the DFT of a p-form ! is

!̂ð�,�Þ ¼
X

l2Z2

!ðl,�Þe�i��l ð8Þ

where l2Z2 and � range over [��,�]2. Similarly, the corresponding DFT

representation of the differential d! is

cd!ð�,�Þ ¼
XNp

�¼1

Q
�

� �

� �
!̂ð�,�Þ ð9Þ

2012 M.P. Ariza et al.
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where the coefficients Q �
� �

� �
represent the differential operator defined over the

lattice.

It is possible to fashion a theory of discrete dislocations in crystals from the

classical theory of eigendeformations, cf., e.g., [40]. Based on the fundamental

property of crystals, that certain uniform deformations leave the crystal lattice

unchanged and, hence, should cost no energy, the energy of the crystal may be

written as

Eðu,�Þ ¼ 1

2

X

e12E1ðCÞ

X

e0
1
2E1ðCÞ

hBðe1, e01Þðduðe1Þ � �ðe1ÞÞ, ðduðe01Þ � �ðe01ÞÞi

� 1

2
hBðdu� �Þ, ðdu� �Þi ð10Þ

where the sums take place over the atomic bonds of the crystal lattice, and u(e0) is the

atomic displacement of atom e0, du(e1) is the deformation of atomic bond e1, �(e1) is

the eigendeformation at bond e1, and Bðe1, e01Þ are bond-wise force constants giving

the interaction energy resulting from a unit differential displacement at bond e01 and a

(a) (b)

(c)

Figure 10. The simple Bravais lattices defined by the atoms, atomic bonds and hexagonal cells
of graphene.
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unit differential displacement at bond e1. Explicit expressions of the force-constant

values from the AIREBO potential (Adaptive Intermolecular Reactive Empirical

Bond-Order) [26] and from the potential of Aizawa et al. [25] have been previously

obtained [28,41].

In (10), the local values �(e1) of the eigendeformation field are constrained to

defining lattice-invariant deformations. By this restriction and the form of the energy

(10), uniform lattice-invariant deformations du cost no energy, as desired. We note

that, owing to the discrete nature of the set of lattice-invariant deformations, the

energy (10) is strongly nonlinear. In particular, the reduced energy

EðuÞ ¼ inf
�
Eðu,�Þ ð11Þ

is piecewise quadratic with zero-energy wells at all uniform lattice-invariant

deformations.

The entire class of lattice-invariant deformations is characterized by a classical

theorem of Ericksen [42] as the set of unimodular affine mappings with integer lattice

coordinates. The ones considered in this work are shown in Figure 11. The stored

energy of a crystal may be obtained by minimizing (10) with respect to u

inf
u
Eðu,�Þ ¼ Eð�Þ ð12Þ

which is strongly nonlinear by the constraint that the local Burgers vectors must be

integer linear combinations of the basic Burgers vectors bi in Figure 11 (see [13,28]).

4. Dynamic stability at finite temperature

In this section we study the stability of dissociated dislocation cores and the

metastability of the resulting partials. Recent publications have extensively discussed

the formation of structural defects in graphene, in particular, the ability of graphene

to reconstruct its lattice around intrinsic defects [43] or the existence of arrays of edge

dislocations associated to graphene grain boundaries [44]. We have first studied the

structural transformation and stability of the stable stacking-fault configuration at

finite temperature by considering this configuration as initial conditions for a

Figure 11. Fundamental lattice-preserving shear deformations of graphene considered in
this work.
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molecular dynamics calculation based on the AIREBO potential [26] and carried out

using LAMMPS. The observed initial array of decarings (Figure 12a) remains stable

up to temperatures of 1500K, whereas it transforms into two parallel chains of

pentagon-heptagon pairs (5j7) at higher temperatures up to 2700K (Figure 12b).

Regular arrays of (5j7) pairs have been observed at the edges of misoriented

graphene grain boundaries, in particular between armchair and zigzag edge

orientations [43,44].

The �-surfaces of a crystal shed useful light on the structure and stability of

extended defects such as dislocation dipoles and dissociated cores. Consider, for

instance, the stability of a glide dislocation dipole against annealing. To this end, we

consider two competing configurations of the dipole, one in which two perfect

configurations are separated by a distance d and another, the transition state, in

which the perfect dislocations are replaced by two adjacent b/2 partials each. The

dipole is unstable if the elastic energy released by the transition exceeds the energy

barrier �usb, leading to a stability condition

Kb2

4�d
� �us: ð13Þ

Equivalently, the spontaneous pair-annihilation distance follows as

dc ¼
Kb2

4��us
: ð14Þ

Inserting into (14) the prelogarithmic factor K¼ 15.486 eV Å�2 computed by Ariza

and Ortiz [28] using the potential of Aizawa et al. [25], as well as the value of the

Figure 12. Stable glide stacking-fault atomic configuration at two different temperatures after
relaxation: (a) up to 300K; (b) up to 1500K.
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unstable stacking-fault energy �us¼ 1.60 eV Å�1 computed from the AIREBO

potential, we obtain dc’ 1.9b. A somewhat smaller critical distance is computed

from the ReaxFF potential. These simple estimates suggest that dislocation dipoles

are stable in graphene down to exceedingly small separations of the order of a few

lattice spacings. This finding is consistent with the finite-temperature LAMMPS

calculations of Ariza et al. [13], who showed that dislocation quadrupoles are

compact as 8b in size are indeed dynamically stable up to temperatures of 2500K.

Consider now the dissociation of glide dislocations into b/2-partials separated by

stacking-fault ribbons, resulting in extended cores. In this case, balancing the

repulsive elastic force and the configurational force corresponding to the size of a

stacking-fault ribbon gives the force-balance equation (e.g., [45])

Kðb=2Þ2

4�d
¼ �sf, ð15Þ

whence the equilibrium separation between partials follows as

deq ¼ Kb2

16��sf
: ð16Þ

Inserting again the prelogarithmic factor K¼ 15.486 eV Å�2 computed by Ariza

and Ortiz [28] using the potential of Aizawa et al. [25], as well as the value of the

stacking-fault energy �sf¼ 1.24 eV Å�1 computed from the AIREBO potential, we

obtain deq’ 0.61b. It follows from this estimate that dissociation into partials is

unlikely in graphene. Again, this conclusion is born out by direct molecular

dynamics calculations (cf., e.g., [13]) which are suggestive of the stability against

dissociation of graphene dislocations up to temperatures of 2500K.

Next, using the theory of discrete dislocations outlined in Section 3, we proceed

to further investigate the stability of dissociated cores in graphene. In particular, we

compute the displacement fields and the energies of periodic distributions of

dissociated dipoles in the configuration shown in Figure 13. The corresponding

eigendeformation field consists of one Burgers vector over a zigzag chain of n one-

cells and half Burgers vector over two zigzag chains of m one-cells at the left and

right ends (m� n�m). We begin by considering periodic distributions of type

m� n�m with increasing values of n and m¼ 2. The initial discrete dislocation

Figure 13. Detail of the distribution of eigendeformations �i(e1), consisting of one Burgers
vector over a zigzag chain of n one-cells and half Burgers vector over two zigzag chains of m
one-cells on the left and right of the first one.
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configuration is first allowed to relax at 0K in order for the system to reach thermal

equilibrium. Then we proceed to increase the temperature while simultaneously

allowing time for relaxation. The dynamic stability at finite temperature of a

sequence of configurations with values of n ranging from 3 to 9 is observed to be

roughly independent of the value of n (Figure 14). In particular, the atomic

configuration corresponding to dislocation partials (two decarings) remains stable

up to 300K over long periods of time for all values of n considered. At higher

temperatures, between 300K and 400K, the partials recombine. For the 2-3-2

configuration, which contains two consecutive pairs of two decarings, the partials do

not transform into 5–7 pairs at any finite temperature. However, the defective system

evolves toward a defect free lattice at a temperature range between 350 to 400K

(Figure 15). The transformations for the rest of configurations give rise to the pattern

observed when the defect contained in the computational cell is a perfect dipole of

length n atomic bonds (Figure 16). All LAMMPS calculations are carried out at

fixed constant temperature using the Nose–Hoover thermostat. The tabulated

energies are time-averaged total energies (potential plus kinetic) of the defects, i.e.,

the total energy of the lattice with defects minus the total energy of the lattice

without defects.

Table 3 compares the defect energies of two different initial configurations of

defects at different temperatures. The first configuration corresponds to a m� n�m

defect (Figure 13), whereas the second corresponds to a dipole of length n. In both

these cases, defects are embedded in periodic cells of 448 atoms. The results are

suggestive of a high stability of full dislocations against dissociation and of

dislocation dipoles against annihilation.

Figure 14. Deformed configurations of periodic arrangement of discrete dislocations for a
448-atom unit cell containing 2-n-2 configuration at finite temperature: (a) n¼ 3; (b) n¼ 5;
(c) n¼ 7; (d) n¼ 9.

Philosophical Magazine 2017

D
o
w

n
lo

ad
ed

 b
y
 [

F
ac

 P
si

co
lo

g
ia

/B
ib

li
o
te

ca
] 

at
 0

3
:2

3
 1

0
 O

ct
o
b
er

 2
0
1
2
 



Figure 16. Deformed configurations of periodic arrangement of discrete dislocations for a
448-atom unit cell containing 2-5-2 configuration at finite temperature: (a) up to 300K;
(b) 350K; (c) 400K. (d) 500K.

Figure 15. Evolution of the 2-3-2 defective configuration toward a defect-free lattice at a
temperature range between 350 to 400K.
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The out-of-plane displacements of the atoms bear special remark. In all cases, be

it the discrete dislocation calculations or the full LAMMPS molecular dynamics

calculations, the displacements of the atoms out of the plane of the graphene sheet

are unconstrained. However, in the 0K discrete dislocation calculations the out-of-

plane displacements vanish, an indication that the planar geometry of the sheet is

locally stable at 0K, even in the presence of defects, though not necessarily globally

stable when the full interatomic potential is taken into account. By contrast, in the

LAMMPS molecular dynamics calculations at finite temperature, the dislocation

cores deviate from planarity, and the out-of-plane displacements of the atoms are of

the same order as the in-plane ones.

5. Conclusions

In this paper we have studied two mechanisms of crystallographic slip in graphene,

corresponding to glide and shuffle generalized stacking faults (GSF). These

calculations have been performed using the Sandia National Laboratories Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and two different

interatomic reactive potentials: the Adaptive Intermolecular Reactive Empirical

Bond-Order (AIREBO) and the reactive force field (ReaxFF). We report the

existence of metastable partial dislocations for the glide GSF, whereas no stable

stacking-fault configuration is observed for the shuffle GSF. Furthermore, we have

investigated the stability of dissociated dislocation cores at finite temperature. In

particular, after computing the atomic structures predicted by the theory of discrete

dislocations, we have studied their dynamic stability considering these atomic

configurations as initial conditions for a molecular dynamics calculation carried out

using LAMMPS. Our simulations indicate that annihilation of dislocation dipoles

and dissociation of perfect dislocations into partials in graphene are unlikely.
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Table 3. Defect energy (eV) values after relaxation of 2-n-2
configuration and a dipole of length n embedded in a 448-atom
unit periodic cell at different temperatures.

0K 500K

2-5-2 22.70 10.47
dipole L¼ 5 12.73 10.44
2-7-2 26.06 13.81
dipole L¼ 7 13.49 13.80
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