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Abstract

Stacking interactions play an important role in stabilizing DNA and RNA secondary structure. To select a computational level to
study the stacking interactions, both energy and geometric criteria, as well as the time necessary to optimize the system, should be
taken into account. In this work, an attempt was made to find the most optimal level of theory describing the stacking interactions
in adenine dimers. The obtained results have shown that for this purpose, wB97XD/6-311G(p,d), wB97XD/aug-cc-pvdz, or
B97D3/aug-cc-pvdz should be used. What is more, geometry of the most preferable arrangements of molecules was also pointed
out, ensuring an optimal starting system for further analyses.

Keywords Adenine . Stacking interaction . Hydrogen bond . Computational method

Introduction

It is a trivial statement to say that DNA and RNA biopolymers
are of fundamental importance for life. Ever since the Pauling
[1] and Crick and Watson [2] discoveries, topology of cova-
lently linked nucleic bases, via the connections by ribosome
and phosphate anion, has been recognized as a leading con-
cept to the helix. Next, the H-bond interactions were acknowl-
edged for a certain stiffness of the helix-like strands. H-
bonding is a well-recognized type of interaction [3–6] and—
in principle—does not present any particular problem in com-
putational descriptions of the interactions between pairs and
other complexes of nucleic acids [7]. Much more complex is
another very important interaction, although rather weak,

known as the stacking. It takes place—in general—as an in-
teraction between π-electron structures of two planar or close
to planar molecules, often parallel one against another and
having a rich π-electron population. There are many confor-
mations of stacking pairs of nucleic bases [8], and hence any
computational approach is a complex problem [9, 10]. There
are many detailed works in this field of research (for reviews,
see [11–14]). It should be emphasized that the evaluation of
stacking interaction requires the use of accurate quantum-
chemical methods, for example, MP2 or CCSD(T) [15, 16].
However, their use is limited to a rather small system (e.g.,
benzene dimer) [17]. In the case of larger systems, these cal-
culations are considerably time and resource consuming [16].
For this reason, often, interactions are studied at higher com-
putational level (e.g., MP2) for geometry optimized at DFT
level [18, 19].

Summarizing, noncovalent interactions govern the struc-
ture and conformational dynamics of molecular systems, and
hence they are crucial for their chemical properties. Therefore,
the ability to understand and predict noncovalent interactions
is very important. Computational studies are necessary for
these purposes. Due to the size of the studied systems, it is
very important to choose the appropriate level of calculation
(methods and basis sets). Our research focuses on assessing
the impact of a substitution on the structure and energy of
stacking interactions of adenine dimers. Thus, the aim of this
paper is to present the most effective computational approach
which can reliably describe the abovementioned interactions.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11224-018-1253-7) contains supplementary
material, which is available to authorized users.

* Paulina H. Marek
pmarek@ch.pw.edu.pl

* Halina Szatylowicz
halina@ch.pw.edu.pl

1 Faculty of Chemistry, Warsaw University of Technology,
Noakowskiego 3, 00-664 Warsaw, Poland

2 Faculty of Chemistry, University of Warsaw, Pasteura 1,
02-093 Warsaw, Poland

Structural Chemistry (2019) 30:351–359

https://doi.org/10.1007/s11224-018-1253-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s11224-018-1253-7&domain=pdf
http://orcid.org/0000-0002-7034-6985
https://doi.org/10.1007/s11224-018-1253-7
mailto:pmarek@ch.pw.edu.pl
mailto:halina@ch.pw.edu.pl


For this purpose, adenine dimers presenting a variety of mu-
tual orientation of molecules, as well as variants of methods/
basis sets, were selected.

Methodology

Choice of input structures

Adenine may participate in various stacking interactions that
differ in the mutual orientation of molecules, a distance be-
tween them, a tilt, and a shift of individual adenine molecule.
In order to determine an optimal method and basis set to de-
scribe such interactions, a set of most representative systems
needs to be selected. Adenine can participate in amino-imino
types of tautomeric equilibria leading to 12 possible tautomers
[20]. A molecule of adenine can adopt four (stable) Bamino^
tautomers, fromwhich the most stable and most occurring one
in biological systems is conformer 9H [21]. Thus, this tauto-
mer is the most often described. The Hobza group analyzed
optimal arrangements of 9H adenine dimers using single-point
calculations [22]. From this work, we have selected eight sys-
tems in their geometry corresponding to the minimum on the
potential energy curve (A–H) and used them as input struc-
tures for systems modeling the most common adenine behav-
ior (Fig. 1, for input data set, see S.I.).

Choice of methods and basis sets

Intermolecular stacking interactions, due to their nature,
need to be described using diffusion corrections.
Additionally, in a selection of level of theory, calculation
speed and low computational cost play important roles.

Therefore, DFT-D methods were used and, according to
the suggestions from the Hobza group [11], the following
functionals were chosen: B97D [14], B97D3 [23],
wB97XD [24], M06-2X [25], and additionallyCAM-
B3LYP [26]. Since the basis set selection may also play
the important role in the resulting geometry and energy,
geometry optimization computations were carried out in
various basis sets: Pople’s [27] 6-311++G(d,p); Dunning’s
[28] aug-cc-pvdz, aug-cc-pvtz, and daug-cc-pvdz; and
Ahlrichs’ [29, 30] (def2tzvpp). The latter basis set gives
results that DFT calculations can be regarded as close to
the complete basis set limit, whereas cam-b3lyp/def2tzvpp
calculations resulted in one of the best performance for
optimizing molecular geometries [31]. All calculations
with full geometry optimizations were performed using
Gaussian 09 [32].

Results and discussion

The research focused on the selection of the most optimal
computational level to study stacking interactions in 9H
adenine dimers. To evaluate the final results, the energy
criteria were taken into consideration. However, due to
possible geometry changes during optimization, special
attention was also paid to deviation between input and
output structures. Additionally, since the carried calcula-
tions were devoted to a simple model system, underlying
further modification in the future work, ease of converg-
ing was also an important factor for final selection of the
optimum method/basis set. What is more, the selection of
a relatively stable system and energy of stacking interac-
tions within was also of our interest.

Fig. 1 Adenine dimers used in the study
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Assessment of energy values of interactions in output
geometries

Interaction energy (Eint) between two fragments of A···B sys-
tem was calculated according to Eq. (1):

Eint ¼ EA⋯B basisA⋯B; optA⋯Bð Þ–EA basisA⋯B; optA⋯Bð Þ

–EB basisA⋯B; optA⋯Bð Þ

ð1Þ

where EA(basisA···B; optA···B) and EB(basisA···B; optA···B) are
the energies of the A and B molecules, respectively, for its
geometries obtained during the optimization of the A···B sys-
tem and calculated using internal coordinates of the A and B
molecules; basisA···B; EA···B(basisA···B; optA···B) means the en-
ergy of the optimal A···B complex.

So, all of the interaction energies have been corrected for the
basis set superposition error (BSSE) using the counterpoise
technique [33, 34]. BSSE is determined by the equation:

BSSE ¼ EA basisA; optA⋯Bð Þ–EA basisA⋯B; optA⋯Bð Þ

þ EB basisB; optA⋯Bð Þ–EB basisA⋯B; optA⋯Bð Þ ð2Þ

The total energy of interaction (Etot), also known as binding
energy, is a sum of the interaction energy, Eq. (1), and defor-
mation (Edef). The latter is the amount of energy-
characterizing changes in geometries of A and B from the
optimized ones to their geometry in the complex (A···B),
and therefore is always positive. The deformation energy
can be calculated as:

Edef ¼ EA basisA; optA⋯Bð Þ–EA basisA; optAð Þ

þ EB basisB; optA⋯Bð Þ–EB basisB; optBð Þ ð3Þ

The obtained values of interaction energies are presented in
Table 1 and Fig. 2, while BSSE values are also shown in Fig.

Fig. 2 Estimated energy of the
interactions between adenine
molecules in the analyzed
systems for selected method/basis
set variants (for clarity, data points
were connected with solid line)

Fig. 3 RMS values for A–H
systems including data from
selected method/basis set
optimizations

(1)
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S1 (Supplementary Information). In addition, energy values
for the obtained optimal geometries of the studied systems and
deformation energies are gathered in Tables S1and S2,
respectively.

Although the values of the interaction energy differ depending
on the used level of theory, the trends remain similar, except for
the results obtained for CAM-B3LYP/def2tvzpp optimizations
(presented below in a separate subsection). It appears that stack-
ing interactions between parallel adenine molecules (system A)
are weak and its mean value is − 2.44 ± 1.04 kcal mol−1.
Moreover, in the case of this system as well as forB andC ones,
the weakest interactions were predicted by the M06-2X

functional. Interactions in geometries D, E, and G are described
by similar energy values (− 8.73 ± 0.64, − 8.98 ± 0.50, and −

9.03 ± 0.56 kcal mol−1, respectively, without including CAM-
B3LYP/def2tvzpp results), and what is not surprising is that after
the optimization, the mutual orientation of adenine molecules in
those systems is averaged (Fig. 3). The strongest stacking inter-
actions were found for F system (Eint from − 9.41 up to −

11.36 kcal mol−1, see Table 1 and S1), and the largest geometry
changes were also found in this case (see below).

BSSE values seem to be almost constant for each method/
basis set used, and thus system A seems to be an exception,
since obtained BSSE values for this geometry are lower in

Fig. 4 The overlay of dimers
before and after optimization for
tested methods/basis set where
stacking interactions were pre-
served. In all schemes, input
structure was marked in purple.
Optimized with CAM-B3LYP/
def2tzvpp geometry was marked
in yellow

356 Struct Chem (2019) 30:351–359



comparison to those of any other system (Fig. S1 in SI). The
smallest BSSE values (ca. 0.5 kcal mol−1) are found in the
case of the largest basis sets, i.e., the triple ζ type (aug-cc-pvtz
and def2tzvpp), as expected. Furthermore, in most cases,
BSSE values are greater than the calculated deformation en-
ergies (Table S2 in SI).

Assessment of output geometries

Bearing in mind the importance of changes in the geometry of
the optimized systems, quantitative parameter, namely RMS
(root mean square) indicating average distance between heavy
atoms in systems before and after calculations, was introduced
to the study. Table 2 contains obtained values of RMS
parameter.

As mentioned above, the input geometries of studied sys-
tems were Bartificial,^ not optimized ones, and thus they
should be treated only as reference, not as a goal
configuration.

Systems A,D, E, andGwere successfully optimized with-
out significant geometry changes in all used methods and
basis sets, apart from CAM-B3LYP/def2tzvpp (Figs. 3 and
4). In the case of the first two, optimized conformations
showed higher raise [35], when compared to input geometries.
A raise and a discrete shift [35] of adenine molecule was
observed in the case ofE andG systems. In both cases, chang-
es lead to the final conformation close to D system. B and H

were found to be the most unstable input configurations, what
resulted in difficulties in converging as well as inconsistent
optimal geometry throughout the applied level of theory
(Fig. 4). Geometry changes in the system F lead unanimously
to the tilt and the twist of adenine molecule (depicted in Fig.
4). Additionally, these geometry changes can be connected to
the strongest stacking interactions (the highest absolute value
of the stacking energy, Eint, see Fig. 2 and Table 1).

Optimization results with CAM-B3LYP/def2tzvpp

The most extreme geometry changes were observed using the
CAM-B3LYP method. Although input structures consisted
the systems exhibiting π···π interactions, in 4 out of 8 exam-
ples (systems A,B, C, F, and H), adenine molecules were
shifted to be co-planar and further stabilized by hydrogen
bonds. What is worth noticing, in structures B, C, F, and H,
hydrogen bonds have been formed spontaneously (Fig. 5,
Table 3). In the case of system A, molecules have shifted,
destroying stacking interactions and trying to form H-bonds,
yet optimal geometry has not been reached.

Centrosymmetric, hydrogen bond–stabilized dimers
formed in systems C andH are also present in adenine crystal
structure deposited in the crystallographic database CSD [36].
Experimental D···A distance lengths are significantly shorter;
however, overall geometry is reasonably well predicted. The
resulting dimers of B and F are not found in any crystal struc-
tures of adenine, probably due to their less preferable, asym-
metric character, yet their geometry remains realizable.
Estimated energy values of hydrogen bonds formed in the
case of B and C systems are close to average stacking inter-
action energy for E and F systems obtained by different
methods/basis sets, respectively. It can be concluded that al-
though CAM-B3LYP/def2tvzpp level of theory provides well
simulation of H-bond geometry, the energy of those interac-
tions remains underestimated.

In the case of D, E, and G systems, stacking interactions
are preserved, yet interaction energies were heavily
underestimated. Thus, both energy and RMS values for opti-
mization results visibly deviate from the ones obtained with a
different level of theory. In Fig. 4, in yellow color, CAM-

Fig. 5 Output structures optimized at the CAM-B3LYP/def2tzvpp level
of theory where H-bond-stabilized motifs were observed instead of ex-
pected stacking

Table 3 Hydrogen bonds in output structures from CAM-B3LYP/
def2tzvpp optimization

System DH···A DH (Å) D···A (Å) ∠ DHA (°) Eint

(kcal mol−1)

B N9 H9···N3 1.025 2.937 149.78 − 8.36
C2 H2···N3 1.085 3.535 166.99

C N0 H0···N3 1.022 2.994 178.65 − 12.33

F N0 H0···N3 1.018 3.013 166.31 − 14.29
N9 H9···N7 1.028 2.915 174.83

H N9 H9···N3 1.032 2.897 168.30 − 18.45
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B3LYP/def2tvzpp output geometry was distinguished. It can
be concluded that the overestimated distance between adenine
molecules resulted in an understatement of energy of stacking
interactions.

Conclusions

The clue of conducted research was to determine which
method/basis set would be appropriate to analyze stacking
interactions between adenine molecules, simulating aggre-
gates present in secondary structure of DNA and RNA nucleic
acids. In the course of the research, system A (presenting
parallel orientation of adenine monomers) and system D

(contained molecules twisted by 180°) appeared to be the
easiest to converge and thus the most stable from this point
of view. Twisted F geometry was exhibiting the strongest
stacking interactions, i.e., the interaction energy equaled about
− 10.7 kcal mol−1, meanwhile energy ofA andD systems was
determined as ca. − 2.4 kcal mol−1 and − 8.7 kcal mol−1,
respectively.

Disproportionally long walltime was necessary to finalize
optimization in the case of use aug-cc-pvtz and daug-cc-pvdz
basis sets, and thus despite more accurate energy estimation
for some systems, complete data in those cases was not
obtained.

Taking into consideration the comparison of energy
values for each system between all applied methods/data
sets and the ease of converging, three of the most optimal
methods/basis sets have been chosen to be the best in
describing stacking interactions, namely wB97XD/6-
311G(p,d), wB97XD/aug-cc-pvdz, and B97D3/aug-cc-
pvdz.

Calculations performed with CAM-B3LYP/def2tvzpp
in some cases unexpectedly resulted in formation of hy-
drogen bonds between adenine molecules. Although in
the literature this method/basis set variant was successful-
ly used to describe geometry and π-electron delocaliza-
tion of hetero- and polycyclic molecules [31, 37], it is not
appropriate in the case of stacking interactions in adenine
dimers.
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