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Integer-programming formulations for the design of symmetric and balanced laminated plates under 
biaxial compression are presented. Both maximization of buckling load for a given total thickness and 
the minimization of total thickness subject to a buckling constraint are formulated. The design variables 
that define the stacking sequence of the laminate are zero-one integers. It is shown that the formulation 
results in a linear optimization problem that can be solved on readily available software. This is in con- 
trast to the continuous case, where the design variables are the thicknesses of layers with specified ply 
orientations, and the optimization problem is nonlinear. Constraints on the stacking sequence such as a 
limit on the number of contiguous plies of the same orientation and limits on in-plane stiffnesses are 
easily accommodated. Examples are presented for graphite-epoxy plates under uniaxial and biaxial 
compression using a commercial software package based on the branch-and-bound algorithm. 

Introduction 

T has drawn much attention in recent years (e.g., Refs. 1- 
7). Typically, the design variables are either the ply orients- 
tions of the layers or the thicknesses of layers assumed to have 

tity design variables. Thus, widely available software for the 

Both the maximization of buckling load for specified total 
thickness and the dual problem of minimizing total thickness 
for specified loading are studied. 

HE design of laminated plates for maximum buckling load Of linear integer-Progrming Problems Can be used. 

a given ply ohentation. However, in many practical applica- 
tions the ply orientations that may be used are limited to 0-, 
90-, and +45-deg, and the thicknesses of the layers are limited 
to integer multiples of the lamina thickness. This means that 
the basic design problem is to determine the stacking sequence 
of the composite laminate-a problem that calls for integer- 
programming techniques. 

Integer-programming techniques are often quite costly, and 
for this reason there have been several attempts to use ad-hoc 
techniques in applications to structural optimization (e.g., Refs. 
8 and 9). However, the laminate design problem (when clas- 
sical lamination theory is used) is simple enough to permit the 
use of standard integer-programming techniques. Thus, Mes- 
quita and Kamat” and Olsen and Vanderplaats” have applied 
the popular branch-and-bound technique to the optimization of 
composite laminates with thickness and ply-orientation design 
variables subject to frequency or strength constraints. In Ref. 
10 the method was applied directly to the nonlinear problem, 
and in Ref. 11 the nonlinear problem was solved as a sequence 
of linearized problems. A similar approach was used by John 
and Ramakrishnan” for the design of trusses using a discrete 
set of sections. 

The objective of the present work is to show that the stack- 
ing-sequence design of a laminated plate for buckling can be 
formulated as a linear problem by using ply-orientation-iden- 
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Analysis and Optimization Formulation 
A simply supported laminated plate under biaxial compres- 

sion is shown in Fig. 1. The loads per unit length in the x and 
y directions are ANx and AN,, respectively, with A being an 
amplitude parameter. The laminate is assumed to be symmet- 
ric and composed of 0-, 90-, and 245-deg plies. Each ply has 
a constant thickness t .  For most of the examples in this paper, 
the laminate is also assumed to be balanced (Le., the number 
of 45-deg plies is equal to the number of -45-deg plies). The 
laminate is composed of Np plies with a total thickness of h 
= Npt .  However, because in some situations the number of 
plies is unknown (it will be determined by the optimization 
process) the number of plies is assumed to be smaller than an 
upper limit N .  The laminate buckles when the load amplitude 
reaches a critical value A,, given as 

Acr(m, n) 

- 2 [ D l l ( m / 4 4  + 2@12 -t D66)(m/a)?n/b)’ + D ~ ~ ( n / b ) ~ l  - 
( m / 4 2 N x  + (n/b)’N, 

(1) 
where m and n are the number of half-waves in the x and y 
directions, respectively, that minimize &. In the present study, 
the minimization over m and n is performed by checking for 
all values of m between 1 and mf and all values of n between 
1 and np The flexural stiffnesses D l l ,  D I 2 ,  DZ2, and D66 can 
be expressed in terms of three integrals, Vo, VI, and V3, and 
five material invariants U,,  i = 1, . . . , 5, which depend on the 
stacking sequence13 as 

814 
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Geometry and loading 
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Fig. 1 Laminated plate geometry and loading. 

where V,, V I  and V, are given as 
. N  

and 

where h is the total thickness of the laminate, z the distance 
from the plane of symmetry (see Fig. l ) ,  8 the ply-orientation 
angle, and Pk a variable that is equal to one if the kth ply is 
occupied and is equal to zero if the ply is empty. Constraints 
are applied during the optimization to ensure that P k  can be 
zero only for the outermost plies. The material invariants are 

UI = ' / S ( ~ Q I I  + 3Q22 + 2412 + 4Q66) 

u2 = ' /2(Q11 - Q22)  

u3 = ' / d Q i i  + Q22 - 2Q12 - 4Q66) 

u 4  = ' / d Q i i  + Q22 + 6Q12 - 4066) 

u5 = ' / ~ Q I I  + Q22 - 2812 + 4Q66) 

(6 )  

where 

It is convenient to work in terms of nondimensional loads n,, 
ny, flexural stiffnesses d,, integrals vo, v I ,  and v3, and material 
constants u, defined as 

N, a' Ny a' D, 
n, = 1.5- ny = 1.5 7, dii = 1.5 - 

r 2 E  I t ' a2El t  E l t 3  

i , j  = 1, 2 ,  6 

V,  
t 3  

v;=1.5--,  i = O , l , 3 ,  

, i = l ,  ..., 5 U; u.  = - 
' El 

Then A,, is given as 

dIlrn4 + 2(dI2  + 2d66)rn2n2(a/b)2 + d22n4(a/b)4 
A , h  n) = m2n, + n2(a/b)2n, 

(9) 

The nondimensional flexural stiffnesses are given as 

dll = UIVO + U ~ V I  + ~ 3 ~ 3  

Because the laminate is symmetric only the plies below the 
plane of symmetry are defined. The ply stacking sequence is 
defined in terms of four sets of ply-orientation-identity vari- 
ables o,, n,, f i ,  and f : ,  i = 1, . . ., N / 2 ,  that are zero-one 
integer variables. The variable o,, n,, f P  or f ' :  is equal to one 
if there is a 0-, 90-, 45-, or -45-deg ply, respectively, in the 
ith layer. Unlike conventional practice, it is more convenient 
here to number the plies so that the first one (i = 1) is nearest 
the plane of symmetry of the laminate, and the last one is on 
the outside (i = N / 2 ) .  The stacking-sequence variables are 
used to express the nondimensional integrals vo, v,, and v3 as 

N l 2  

= 2 [k3 - ( k  - 1)3](ok + nk - f $  - f r )  (1 1) 

where f f l  and f do not appear in the expression for v I  since 
the cosine of 90 deg is equal to zero. Two optimization prob- 
lems are formulated. The first is the optimization of a laminate 
with a fixed thickness for maximum buckling load, and the 
second is the optimization of a laminate with minimum thick- 
ness for a given buckling load. For the first optimization prob- 
lem, the lowest (over values of rn and n )  buckling load A* is 
maximized. The objective A* is not a smooth function of the 
design variables, and the standard device for removing this 
problem is to add A* as a design variable and require it to be 
less than or equal to each A&, n ) .  Thus, the optimization 
problem is formulated as 

Find A*, and 

k =  I 

to maximize A* 
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such that 

A* 5 A,,(m, n) ,  m = 1 ,  . . ., m f ,  n = 1, . . ., nf 

oi + ni + f P  +fy = 1 ,  i =  1 ,  ..., N / 2  (12)  

and 
Nf2 

Zff - .fy = 0 
~ ,=, 

where the last constraint ensures that the number of 45-deg 
and -45-deg plies is the same, so that the laminate is bal- 
anced. Equations (9-11) are used to calculate the nondimen- 
sional buckling load, which is clearly a linear function of the 
stacking-sequence design variables, Therefore, the optimiza- 
tion problem (12) is a linear integer-programming problem. 

This linear formulation should be contrasted to the one ob- 
tained when ply thicknesses are used as design variables (e.g., 
Ref. 4). That formulation results in a nonlinear optimization 
problem. Thus, the continuous formulation results in a prob- 
lem that is more difficult than the integer formulation pre- 
sented here. 

Unlike the formulation of Eq. (12), in the dual problem of 
minimizing the laminate thickness subject to a specified buck- 
ling load, the number of plies is not specified. However, the 
dual formulation is only slightly more complex. The number 
of plies N is selected large enough to insure that a laminate 
that does not buckle can be found. This can be done by ana- 
lyzing a trial design and then scaling the laminate thickness so 
that it does not buckle (the buckling load is proportional to the 
cube of the laminate thickness if the same ply stacking se- 
quence is repeated again and again). Now the laminate is de- 
signed permitting some of the outer layers to be empty. Buck- 
ling will not occur for a specified N, and N, if Acr 2 1 .  The 
problem is formulated as follows: 

Find 

i = 1 ,  . . ., N / 2  

to minimize 
N/2 

i= 1 

such that 

n) 2 1, m = l ,  ..., m f ,  n = l ,  ..., 9 

0, + ni +f f  +f: I 1,  i = 1 ,  . . ., N / 2  (13) 
N/2 

and 

i = 2 ,  . . ., N / 2  

where the last constraint ensures that if there are empty plies 
they are on the outside. 

In general, the solution to the optimization problem (13) is 
not unique. For example, the noninteger solution could require 
8.1 plies. The design from Eq. (13) will have 10 plies (N must 
be even because of symmetry), and it will have a substantial 
margin, that is A, will be significantly larger than 1 .  Any weaker 
10-ply design, that is one that has a A,, closer to 1, is also a 
legitimate solution of Eq. (13) in that it satisfies all of the 
constraints and has the same value of the objective function. 
In the present work, to achieve a unique solution, it is assumed 
that the best design is the minimum-thickness plate that has 
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also the largest possible buckling margin of all plates of the 
same thickness. To achieve this goal, the objective function 
of Eq. (13) was modified by subtracting EA,, from it, where E 
is a small number (0.001 for the results presented in the next 
section). 

Another reason for a nonunique solution is that in terms of 
the calculation of the flexural stiffnesses of Eq. (2 )  there is no 
difference between the contribution of 45-deg and -45-deg 
plies. However, the buckling-load calculation, Eq. ( l ) ,  is not 
accurate for large values of DL6 and 0 2 6 .  These can be mini- 
mized by selecting the positions of the 45-deg and -45-deg 
plies so as to minimize their combined contribution to V,, Eq. 
(3). This selection was done by modifying manually the op- 
timum design. The magnitude of the 0 1 6  and 0 2 6  terms can be 
measured by the following two nondimensional terms: 

when both y and 6 are below 0 . 2  the effect of DI6 and 0 2 6  is 
negligible.14 

In some cases, it may be desirable to impose constraints on 
the stiffness of the plate. In the present study, a limit on the 
in-plane stiffness in the x direction Al l  was considered as an 
example of such constraints. A constraint requiring All  to have 
a minimum value of A:, can be written as 

A,,/A:, - I 2 o (15) 

As shown in the Appendix, this constraint can be expressed 
as a linear function of the ply-identity design variables similar 
to the buckling constraint [in Eqs. (9-ll)]. 

Results 
Results were obtained for graphite-epoxy laminates [E ,  = 

18.5 X lo6 psi (128 GPa), E2 = 1.89 X lo6 psi (13.0 GPa), 
GIZ = 0.93 X lo6 psi (6.4 GPa), v12 = 0.3, and t = 0.005 
in. (0.0127 cm)]. The computations were performed with the 
LINDO program,15 which employs the branch-and-bound al- 
gorithm. First, uniaxial loading was considered, and the buck- 
ling load was maximized for various plate aspect ratios a / b  
for laminates with 16 plies. It is known (e.g., Ref. 16) that 
for low aspect ratios the optimum ply angle is 0 deg, and for 
a / b  larger than about 0.7 the optimum ply orientation is close 
to k45 deg. This can also be expected from Eq. (9) since for 
a / b  > 0.7, ds6 is the most important stiffness coefficient. A 
check was performed to see whether there was a transition range 
of a / b  where the optimum stacking sequence would include 
both 0-deg and k45-deg plies. It was found that if such a tran- 
sition range exists it is extremely narrow, since even changes 
in the fourth significant digit of the aspect ratio were not fine 
enough to locate it. When the number of plies N was not di- 
visible by four, so that a balanced k45-deg laminate was pre- 
cluded, the optimizer placed two 0-deg plies near the plane of 
symmetry of the laminate, as expected (because these less ef- 
ficient plies have the smallest effect on d66 there). 

Next the biaxial loading case was solved; the results are pre- 
sented in Fig. 2 .  It is known (e.g., Ref. 16) that for aspect 
ratios less than 1.5 the optimum ply orientation is the same as 
for the uniaxial case, and for aspect ratios greater than 1.5, 
the value of the optimum ply angle increases rapidly as N,/N, 
increases, and that for large N,/N,, the optimum ply angle is 
90 deg. Therefore, the case of biaxial loading for a laminated 
plate with an aspect ratio of 2 was selected. The reference 
axial load N, was fixed at 1 lb/in. (175 N/m), and the ref- 
erence transverse load was increased from 0.1-3.0 lb/in. (17.5- 
525 N/m). The plate was specified to have 16 plies. Two tran- 
sition ranges of a / b  were found: one for NJN, between 0.125 
and 0.15 and the other for N,/N, between 2.4 and 2.45. The 
first range marked the transition from all +45-deg plies to a 
combination of 90-deg and k45-deg plies. The second range 
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Fig. 2 Maximum buckling load results for graphite-epoxy plate 
(16 plies): a = 20 in. (50.8 cm), b = 10 in. (25.4 cm), and N ,  = 
1 Ih/in. (175 N/m). 

marked the transition from a combination of 90-deg and ?45- 
deg plies to all 90-deg plies. As the ratio N y / N ,  increased to 
0.15, first two 90-deg plies appeared, then four 90-deg plies 
(N,/N, = 0.25), then six 90-deg plies (Ny /Nx  = l ) ,  and finally 
all 90-deg plies (Ny/Nx = 2.45). Also, as the transverse load 

N, became larger than the axial load N,, the * 45-deg plies 
moved closer to the plane of symmetry until only 90-deg plies 
were present. This behavior is expected because when Ny dom- 
inates, the plate behaves like a plate of aspect ratio of 0.5 
under uniaxial load, and for that case the optimum angle is in 
the direction of the loading. 

The magnitudes of Dl6 and DZ6 as given by the nondimen- 
sional parameters y and 6 were calculated for all cases given 
in Fig. 2. The value of 6 was always larger than y ,  and it 
exceeded the threshold of 0.2 for only one case, N,/N,  = 1.0, 
where 6 = 0.213 (a similar value of 6 would be obtained for 
a [(?45),], laminate. For this case, there is one 45-deg ply and 
one -45-deg ply, and they are widely separated. For all other 
cases 6 was smaller than 0.11. 

When the number of contiguous plies in the same direction 
is large, composite laminates are known to experience matrix 
cracking. Therefore, it is desirable to limit the number of such 
contiguous plies. To demonstrate that such constraints can be 
easily added to the present formulation, this constraint was 
imposed on the design obtained for Ny/N,  = 2 which had five 
contiguous 90-deg plies. This was implemented by adding the 
constraint 

n4 + n5 + n6 + n7 + n8 5 4 

The designs with and without this constraint are compared in 
Fig. 3. It is seen that the penalty for limiting the number of 
contiguous plies is quite small. 

The case of Ny/Nx  = 2 was used also for the purpose of 
checking on other aspects of the optimization. The first was 
the effect of requiring that the design variables be integers. 
Noninteger design variables describe hybrid plies. For exam- 
ple, 0, = 0.5, nl = 0.5 means that the first ply has properties 
that are the average of the elastic properties of 0-deg and 90- 
deg materials. When the requirement that the ply-identity vari- 
ables be integers was removed the solution included two hybrid 
plies. For i = 1, the ply was 70% 45-deg and 30% 90-deg; 
and for i = 4, the ply was 70% -45-deg and 30% 9O-deg, 
with the remaining plies being 90-deg. The effect on the buck- 
ling load was again quite small-less than five-hundredths of 
1%. 

Another aspect of the optimization checked for N,/N, = 2 
was the effect of introducing a minimum-stiffness require- 
ment. The optimum laminate for this case was dominated by 
90-deg plies and has only 16% of the axial stiffness A l l  of an 
all 0-deg laminate. A requirement that A l l  be at least 50% of 
the unidirectional laminate was added, with and without the 
requirement of no more than four contiguous plies. The results 
are compared to the original design in Fig. 4. It is seen that 
the stiffness requirement is satisfied by putting 0-deg plies near 
the plane of symmetry where they have only a minimal effect 
on the bending stiffnesses, and hence on the buckling load. 
The reduction in the buckling load is about 8%. For this de- 

(16) 

Without constraint With constraint - --- .... .... sw 
(goo5, 45", -45", go"), (goo4, 45", goo,, -459, 

&e e . . .  .... .... .... 
. e . .  .... .... .... 

36.84 kc,  36.59 
Kev 

\\\\\\\\ 45" . . . . 90" 

Fig. 3 Effect of constraint of no more than four contiguous plies 
in same direction on design for NJN, = 2. 
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N, = 2 and N, = 2.0 Ib/in. (350 N/m). 

Ny/Nx = 0.0 

(450, -450*, 450,00)s 
a,, 1.41 

. . . m  

5 .... m 
(-450, goo2, 450,900, 0ys 

a,, = 1.32 

Ny/Nx = 0.5 

BBB .... 
FsFs _ _ _ _  .... 
Ny/Nx = 1 .O 

(goo2, 450,96, -4502, 450& 
kcr = 1.39 

--- 
@@ .... .... .... 
. e . .  .... 
Ny/Nx = 2.0 

(goo5, 450, -450, goo), 
A,, = 1.22 

--- .... .... 
NY/Nx 0.25 

(-450,450, goo3& 
kc,  = 1.03 .... 
e . . .  w w 

Ny/Nx = 0.75 
(900, -450,900,450, goo2& 

a,, 1.05 

--- .... zw w .... 
e . . .  

NyINx = 1.5 
(goo3, 450,900, -450, goo), 

a,, = 1.02 
--- 

. . . e  
m . . .  
. e . .  .... .... .... .... 
. * e .  

Ny/Nx = 2.5 
(90°,fj) 

a,, = 1.02 

Fig. 5 Minimum thickness results for graphite-epoxy plate IN, 
= 30 Ib/in. (5250 N/m)]: a = 20 in. and b = 10 in. 

sign, the effect of adding the requirements of no more than 
four contiguous plies had a nontrivial effect (7% reduction) on 
the buckling load. 

Next, we solved the minimum-thickness problem for a lam- 
inate with the same dimension. The axial load N,, was fixed 
at 30 lb/in. (5250 N/m), and the transverse load N, was varied 
from 0-75 lb/in. (13140 N/m). The results are summarized 

in Fig. 5. For N ,  = 0, we have a 10-ply laminate dominated 
by 245-deg plies, with two 0-deg plies near the plane of sym- 
metry. As N, is increased, the number of plies increases, and 
the laminate becomes dominated by 90-deg plies. However, 
the requirement of a balanced laminate tends to disturb the 
progression toward increasing number of 90-deg plies. For ex- 
ample, with loads that result in 12-ply laminates we can have 
either four or eight 245-deg plies, and the optimizer chooses 
four, because eight would leave only four 90-deg plies. How- 
ever, when we increase the load so that we require 14-ply lam- 
inates, the number of t45-deg plies jumps from four to eight, 
because we can have now six 90-deg plies. 

Concluding Remarks 
The problem of stacking-sequence design of composite lam- 

inates for minimum thickness subject to a buckling constraint 
or maximum buckling load for a given thickness was ad- 
dressed. It was shown that the use of ply-orientation-identity 
design variables results in a linear formulation of the problem 
unlike the use of more traditional ply-thickness design vari- 
ables that lead to nonlinear formulation. The linear integer- 
programming formulation was solved using a commercially 
available program based on the branch-and-bound algorithm. 
It was also shown that the formulation can accommodate con- 
straints on stiffnessess as well as constraints on the maximum 
number of contiguous plies of the same angle. Results were 
presented for both uniaxial and biaxial loadings. 

Appendix: In-Plane Stiffness Constraint 
This Appendix shows how a limit on the in-plane stiffness 

Al l  can be formulated as a linear function of the ply-orienta- 
tion-identity design variables. Limits on other stiffness com- 
ponents can be formulated in a similar way. The in-plane stiff- 
ness A l l  is given as 

(-41) A l l  = U l V O A  + u 2 v l A  + u 3 v 3 A  

where 

and 
h/2  N 

V ~ A  = / - , , C O S  48 dz = t P k  COS 48, (A41 
k= 1 

We define nondimensional stiffness and integrals as 

a11 = AlI/Elt,  V , A  = V z A / t r  i = 0, 1, 3 (A5) 

where all  can be expressed as 

all = u l v O A  + UZVIA + U3v3A (A61 

and the nondimensional integrals can be expressed in terms of 
the ply-identity design variables as 

N / 2  

k= 1 

NI2 

k= 1 

N 12 
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In the example used in the Results section, the lower limit on 
A l l  is a specified fraction f of the corresponding stiffness of 
an n-ply all 0-deg laminate. For such a laminate, voA = vIA = 
v~~ = N, so that the constraint of Eq. (14) becomes 

Acknowledgment 
The work of the first author was supported in part by NASA 

Grant NAG- 1- 168. 

References 
‘Chao, C., Koh, S. L., and Sun, C. T., “Optimization of Buckling 

and Yield of Laminated Composites,” AIAA Journal, Vol. 13, No. 

%hen, T. L. C., and Bert, C. B. , “Design of Composite-Material 
Plates for Maximum Uniaxial Compressive Buckling,” Proceedings 
of the Oklahoma Academy of Science, Vol. 56, Oklahoma Academy 
of Science, Weatherford, OK, 1976, pp. 104-107. 

3Lukoshevichyus, R. S., “Minimization of the Mass of Reinforced 
Rectangular Plates Compressed in Two Directions in a Manner Con- 
ducive Toward Stability,” Mekhanika Polimero [Polymer Mechan- 
ics], Vol. 12, No. 6, 1976, pp. 929-933. 

4Schmit, L. A., and Farshi, B., “Optimum Design of Laminated 
Fibre Composite Plates,” International Journal for Numerical Meth- 
ods in Engineering, Vol. 11, NO. 4, 1977, pp. 623-640. 

Compression,” AIAA Journal, Vol. 17, No. 9, 1979, pp. 1017-1019. 

9, 1975, pp. 1131-1132. 

5 ’  Hirano, Y., “Optimum Design of Laminated Plates Under Axial 

6Miki, M., ‘Optimum Design of Fibrous Laminated Composite Plates 
Subject to Axial Compression,“ Proceedings of the 3rd Japan-US. 
Composite Materials Conference, Tokyo, Japan, 1986, pp. 673-680. 

7Adali, S., and Duffy, K. J. ,  “Design of Antisymmetric Hybrid 
Laminates for Maximum Buckling Loa@: I. Optimal Fibre Orienta- 
tion. 11. Optimal Layer Thickness, Composite Structures, Vol. 14, 

*Schmit, L. A., and Fleury, C., “Discrete-Continuous Variable 
Structural Synthesis Using Dual Methods,” AIM Journal, Vol. 18, 

’Shin, D. K., Gurdal, Z., and Griffin, 0. H., “A Penalty Approach 
for Nonlinear Optimization with Discrete Design Variables,” Engi- 
neering Optimization, Vol. 16, No. 1, 1990, pp. 29-42. 

Mesquita, L., and Kamat, M. P., “Optimization of Stiffened 
Laminated Composite Plates with Frequency Constraints, Engineer- 

“Olsen, G. R., and Vanderplaats, G. N., “Method for Nonlinear 
Optimization with Discrete Design Variables,” AIM Journal, Vol. 

‘*John, K. V., and Ramakrishnan, C. V., “Optimum Design of 
Trusses from Available Sections-Use of Sequential Linear Program- 
ming with Branch and Bound Algorithm,” Engineering Optimization, 

13Tsai, S. W., and Pagano, N. J., “Invariant Properties of Com- 
posite Materials,” Composite Materials Workshop, Technomic, West- 

I4Nemeth, M. P., “Importance of Anisotropy on Buckling of 
Compression-Loaded Symmetric Composite Plates,” AIAA Journal, 

”Schrage, L., User’s Manual for UNDO, 4th ed., Scientific Press, 
Redwood City, CA, 1989. 

I6Haftka, R. T., Gurdal, Z., and Kamat, M. P., Elements of Struc- 
tural Optimization, 2nd ed., Kluwer Academic, Dordrecht, The Neth- 
erlands, 1990. 

NOS. 1, 2, 1990, pp. 49-60, 113-124. 

NO. 12, 1980, pp. 1515-1524. 

10 

ing Optimization, Vol. 11, NO. 1-2, 1987, pp. 77-88. 

27, NO. 11, 1989, pp. 1584-1589. 

Vol. 13, NO. 2, 1988, pp. 119-145. 

port, CT, 1968, pp. 233-253. 

Vol. 24, NO. 11, 1986, pp. 1831-1835. 


