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Abstract We propose a new method for laminate stacking
sequence optimization based on a two-level approximation
and genetic algorithm (GA), and establish an optimiza-
tion model including continuous size variables (thicknesses
of plies) and discrete variables (0/1 variables that repre-
sent the existence of each ply). To solve this problem, a
first-level approximate problem is constructed using the
branched multipoint approximate (BMA) function. Since
mixed-variables are involved in the first-level approximate
problem, a new optimization strategy is introduced. The
discrete variables are optimized through the GA. When cal-
culating the fitness of each member in the population of
GA, a second-level approximate problem that can be solved
by the dual method is established to obtain the optimal
thicknesses corresponding to the each given ply orientation
sequence. The two-level approximation genetic algorithm
optimization is performed starting from a ground laminate
structure, which could include relatively arbitrarily discrete
set of angles. The method is first applied to cylindrical
laminate design examples to demonstrate its efficiency and
accuracy compared with known methods. The capacity of
the optimization strategy to solve more complex problems
is then demonstrated using a design example. With the pre-
sented method, the stacking sequence in analytical tools can
be directly taken as design variables and no intermediate
variables need be adopted.
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1 Introduction

Because of their high strength-to-weight and high stiffness-
to-weight ratios, composite materials have been widely used
in structures in the aerospace industry over recent decades.
Laminated composite materials are usually fabricated from
unidirectional plies of a given thickness with fiber ori-
entations limited to a small set of angles, for example
0°, +45°, —45° and 90°. Designing such laminates for var-
ious strength and stiffness requirements involves an integer-
programming problem for selecting the best number of plies
of each orientation, and then determining an optimal stack-
ing sequence. An extensive review of the topic can be found
in recent paper by Ghiasi et al. (2009, 2010) and the ear-
lier paper by Venkataraman and Haftka (1999). It showed
that two main scenarios are classified: constant stiffness (the
stacking sequence is uniform for the entire structure) and
variable stiffness (material distribution and fiber orienta-
tion might change over the structural domain). With lower
design and manufacturing costs involved, constant stiffness
design is widely used in engineering and is also the focus of
this paper.

For constant stiffness design problems, many composite
structure optimization codes use ply thickness as a design
variable with a fixed stacking sequence and perform con-
tinuous optimization. Examples are PANDA2 (Bushnell
1987), ANSYS (Giger and Ermanni 2005), Msc. Nastran
(Taskinoglu and Sahin 2011), and Altair OptiStruct (Zhou
et al. 2010). The continuous solution is then rounded to
an integer number of plies. Because of the ease of imple-
mentation, this method has been applied to solve practical
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problems (Yuan et al. 2006). However, the approach is
greatly affected by the pre-fixed stacking sequence, which
yields sub-optimal designs.

For optimizing the stacking sequence of a laminated
composite with discrete variables, GAs have been the most
popular method (Venkataraman and Haftka 1999). Unfortu-
nately, one major shortcoming of GAs is their high compu-
tational cost for the large number of objective and constraint
evaluations. For this reason, several modifications to GAs
have been proposed, such as parallel computing (Henderson
1994; Punch et al. 1994; Kere and Lento 2005), multi-level
optimization (Punch et al. 1994), approximation methods
for function evaluation (Liu et al. 1998; Gantovnik et al.
2002; Todoroki and Ishikawa 2004), as well as a combi-
nation of these methods (Park et al. 2008). Among these
methods, the approximation concepts like response surface
methods have been widely employed to reduce the compu-
tational cost. However, the cost of constructing the response
surface becomes prohibitive as the number of design vari-
ables increases. To reduce the number of design variables
used in the construction of the response surface, lamina-
tion parameters were employed as intermediate variables
(Todoroki and Ishikawa 2004), which is independent to the
number of layers and leads to great computational saving.

Based on lamination parameters, two—step approaches
were proposed and refined by several authors (Yamazaki
1996; IJsselmuiden et al. 2009; Irisarri et al. 2011). The
first step takes lamination parameters as continuous design
variables to search for the optimal stiffness and thickness
of the laminate. The stacking sequence of each laminate is
then searched with GA based on structural approximations
in the second step. This reduces the number of design vari-
ables considerably and allows easy use of approximation for
changes in the stacking sequence. However, for most ana-
lytical tools, stacking sequences are required as input data
whereas lamination parameters cannot be input directly.

In the present study, aiming at reducing the computa-
tional cost and implementing the stacking sequence opti-
mization with general FE programs directly, a method incor-
porating a two-level approximation and GA is constructed.
The original optimization strategy was proposed by Dong
and Huang (2004) in solving truss topology optimization
problem, which showed that the optimal solutions could be
reached after an extremely few structural analyses. Consid-
ering the similarity between stacking sequence optimization
problem and truss topology optimization problem, in which
both discrete topology variables and continuous size vari-
ables are involved, we introduce the optimization strategy
into solving the stacking sequence optimization problem. In
order to increase the approximation accuracy, a branched
multipoint approximation (BMA) proposed by Huang and
Xia (1995) is adopted to establish the first-level approx-
imation problem. The new method is applied to weight
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minimization problems of a composite cylinder and a com-
posite cone-cylinder, for which the computational cost is
demonstrated at the level of optimization calculations with
only continuous variables.

2 Problem formulation

In the present study, the optimization model is established
based on a ground stacking sequence. The ground stacking
sequence and the number of layers are relatively arbitrary,
which means the ply angle has been given before the cal-
culation and the corresponding discrete {0, 1} will decide
the ply should be retained or not. Besides the discrete {0,
1} variable, there is a thickness variable for each layer. The
thickness variables seem redundant, however, from lots of
calculations, the results of models with thickness variables
are much better than models without thickness variables,
which will be shown in section 4.1. The thickness vari-
ables optimization which will be solved in the second level
approximation could help to approach the optimal stiffness.
Based on the ground laminate sequence, the optimization
problem can be formulated as follows:

Min f(X)
st gi(X)<0 j=1,---m
aixt+ (A —a)xl <xii=1,--n , (1)

xi < aixlu + (1 - ot,-)xf’
=0 or o =1

where X is the vector of ply thickness variables, a is the
vector of discrete 0/1 variables which represent the exis-
tence of each ply, n denotes the total number of plies in
the ground structure, m is the number of constraints, f(X)
is the objective function, g;(X) is the j-th constraint func-
tion, xl.U and xiL are the upper and lower bounds on the
i-th thickness variable, respectively, and xf’ is a very small
value (usually O.leiL) used to represent the thickness of
a removed ply. For instance, when the ground laminate is
[(0/£45/90)12/0/45];, the total number of plies is 100 and
by considering symmetric laminate there are 50 thickness
variables (X = {xy, x2, ..., x50}" ) and 50 discrete variables
(a ={ag,ay, ..., a50}T).

3 Optimization algorithm

3.1 The first-level approximate problem with BMA
function

Investigating the former work (Huang and Xia 1995), it
can be seen that an explicit approximate function g;p )(X )
was formed based on multipoint aproximation (MA) in
structural optimization problems. In fact, MA is a wighted
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representation of the Taylor expansions with respect to inter-
mediate variables y; = x]. MA is shown to be of higher
quality as it is used for cross-sectional size optimization,
but it becomes singular and no longer effective if the design
variable x; approaches to zero or is substituted by a user-
defined very small value x,’:, which could happen when the
k-th ply is removed in laminate stacking sequence opti-
mization. For example, if x;, — 0 and r < 0, then
x{ — 00. So MA cannot be used for laminate stacking
sequence optimization.

To solve this problem, a modified MA (MMA) method
was proposed by Dong and Huang (2004), which is a
weighted representation of the Taylor expansions with
respect to intermediate variables y; = e¢~"*'. MMA is still
effective even if some variables are removed and substituted
by a small value, i.e., x;y = x,’: . However, the approxination
accuracy of MA is generally better than MMA for complex
constraint functions approximation with continuous vari-
ables. For this reason, BMA was proposed by Huang et al.
(2006), which integrates MA and MMA as one function
with two branches for conditions when the corresponding
variable exsits or is absent respectively. Here, BMA is a
piecewise function with two branches for conditions when
the corresponding ply exsits or is absent respectively.

Therefore, to solve problem (1), a series of first-level
approximate problems are established using BMA.

In the p-th stage, the first-level approximate problems
can be stated as below:

Min P (X)

s.t. g](_p)(X)SO j=1---7
aixiL(p)—i—(l—ot,-)xf’fxii:],uon , 2
xi < ot,-xil(]p) + (1 - ot,-)xib
o =0 or o; = 1

xil(/p) = min {xl-U, Yl-(fp)} , 3)

L L ~L
Xj () = max {x,- ,xi(p)} , “)

~U ~L . . .
where Xi(p) and Xi(p) are the move limits of x; at the

p-th stage. f(P)(X) is the p-th approximate objective func-
tion created using the BMA function with the information
of the primal function f(X) and its derivatives at multiple
known points. If the objective is to minimize the weight of
the structure, f(X) is explicit and approximating f(X) is not
necessary because the weight of laminates is in proportion
of the thickness of each ply. J; is the number of active con-
straints of the original problem (1), and gj.p ) (X) represents
the j-th approximate constraint function created by using
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BMA function at the p-th stage. The form of f(”)(X) and
g;-p)(X) is as follows:

H n
w?(X)=Y" {w(xt) +> w,-,,<X>}ht<X), (5)
t=1 i=1

where

1 dow(X -
w( I)X-] ot (xfo,t _xro,t) if aj=1

i it

_ Fou Ox; '
WA (] pmrmaixi)) i g —
i 0% (1 e ) if i =0
(6)
hi(X) = Hh’(X) , t=1,---H, (7
> hi(X)
=1
H
nx)= [] X—=x9Tx-Xx,). ®)
s=1
s #£1

In (5)—(8), w®(X) represents the objective function
FP)(X) or the constraint function gi.p)(X), X; is the #-th
known point, and H is the number of points to be counted,
bounded above by Hpmax. When the number of known points
is larger than Hpax, only the last Hpax points obtained are
counted in (5)—(8). w(X;) and dw(X;)/0x; are the function
values and partial derivatives of w(X) at X,, and h;(X) is
the weighted function. The exponents r,; and ry; (t =
1, ..., H), are adaptive parameters used to control the non-
linearity of the approximation, and can be obtained from the
following equations:

H n 2
Min kX:I {w(Xk) —w(X;) — Z wi,t(xt)}

=

L U ,L
St 1y Skor 1y ,F

U
o Tm STmit =Ty s

t:l,---,H

)
where rL yU L

LorY,rL and rY are the lower and upper bounds on
To.rand ry, ;, respectively. If there is only one known point,
To,:and 1y, ; are assigned the initial values r, o and ry, 0,
respectively. In this paper, r, ;0 = —1,7,,0=3.5, roL = -5,
rV =5rk = —5andrY =5.

It should be noted that a ply is not deleted when its related
discrete variable becomes zero, but is substituted by a spe-

cial ply with a very small thickness. Thus, the objective
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function and structural constraint functions are still differ-
entiable with respect to the ply thickness variables, which
can be approximated by multipoint approximation.

In the first-level approximate problems, the objective
function and constraint functions are made explicit by using
the BMA function. Since the first-level approximate prob-
lem (2) is an optimization problem with both continuous
and discrete variables, it cannot be solved by normal math-
ematical programming methods. If GA is used to solve
this problem directly and the continuous and discrete vari-
ables are encoded simultaneously, the scale of the design
variables and the computational resources required will
become huge. Thus a new optimization strategy is pro-
posed. The discrete variables representing the existence
of plies are optimized through a GA and the thicknesses
of existed plies are optimized using the dual method,
which could significantly reduce the gene code length
in the GA and improve the optimization efficiency and
accuracy.

3.2 Discrete variables (0/1 variables)optimization with GA

(1) GA code

Considering that the laminate is symmetrical, one string of
genes is used to represent half of the laminate. The existence
of each ply is indicated by a 0 or 1, with O representing that
the ply is removed and 1 representing that the ply is kept.
Thus the gene can be written as s = oj«3...00,, Where «; is a
discrete 0/1 variable which represents the existence of each
ply in the original problem (1). The string is the classical
binary representation.

(2) Generation of the initial population

Since we have no knowledge of how to choose the initial
members at the first/initial calling of GA, the initial pop-
ulation of designs can be generated randomly. Once the
optimal members of the population have been obtained, the
initial population of next generation is generated accord-
ing to the elite of former generations of the GA. That is
to say, from the second calling of the GA, the initial pop-
ulation consists of three parts: 1) the optimal members of
former generations; 2) members generated from those in
1) by making «; approach 0 with a greater probability if
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the corresponding optimal thickness is less than 1.5 times
the single ply thickness; 3) members generated randomly.
Here, we use N to denote the number of members in the
population.

(3) Fitness function

The GA is used to solve unconstrained maximization prob-
lems, so a constrained minimization problem using an
exterior penalty function is established as follows:

J
Fi=¢" | f(X)+ R (max{g;(x*),0})" |. (10

j=1

where n. is the number of stacks violating the limitation
that the number of continuous plies with the same ply angle
must be less than 4 (the number of plies adjacent to the mid-
plane of the laminate must be less than 2); ¢ = (10/ 9)03
is the penalty parameter for this manufacturing constraint
(Soremekun et al. 1995), which means the value of F will
be penalized when the number of stacks with the same ply
angle exceed 4; R is the penalty factor, which is multi-
plied by an increasing rate r(r > 1), g denotes the penalty
exponent (normally 1-5, 1 is recommended), and f(X*)
and g;(X*) are the objective value and constraint values
with respect to the optimal thicknesses of given stacking
sequences, obtained from (16). The composite function can
be then appended to the objective function F,, which is to
be maximized as:

F = <1 _ Fr—min(F) )S, (11

max(F1) — min(Fy)

where s is the exponent of normalization (1-3, 2 is rec-
ommended). In addition, to prevent too many copies of
members with high fitness, which would induce premature
convergence, a parameter P, is given to the fitness function
to control the maximum number of copies of each member.
We take P, = 2 in the present study. Finally, the fitness
function is defined as:

Fitness =aF, + b (12)

a— avg(F2)/lavg(F2) — min (F2)] (Pp — 1) min (F2) < Ppavg(F2) — max(Fy) (13)
| (Pp — Davg(Fy)/ [max (F2) — avg(F>)] other

b— —amin(F,) (P, — 1)min (F) < Ppavg(F,) — max(F2) 14
| A =a)avg(F) other (14)
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It can be seen that to calculate the fitness of each mem-
ber in a population, further sizing optimization is needed to
obtain the optimal thicknesses corresponding to a given ply
orientation sequence, which is solved by the internal sizing
optimization in Section 3.3. Fitnesses that have been calcu-
lated are stored in a database to shorten the computational
time for optimizing the same genetic code.

(4) Reproduction operator

The simulated roulette wheel selection method (Goldberg
1989) is applied to select parents for reproduction in the
present work. The selection probability P; of a member,
shown in (15) in the population is in proportion to its current
fitness. Members with high fitness will produce more off-
spring, while members with low fitness may be eliminated
in this process.

N
P = Fitnessi/z Fitness; (15)
j=1

In (15), Fitness; is the fitness of the i-th member, and P; is
the selection probability of this member.

Firstly, according to P;, we divide the wheel into a num-
ber of sectors equal to the number of members in the
population (N). The proportion of each sector area out of the
total wheel area corresponds to the fitness of each member.
We then spin the wheel N times to simulate roulette. Each
time the pointer stops at a sector the corresponding member
is selected.

(5) Crossover operator

A one-point crossover method is used. Firstly, two mem-
bers are selected randomly from the population after the
reproduction operation. A random number between 0 and 1
is then drawn to determine whether the crossover is to be
executed. If the number is smaller than the crossover prob-
ability P., the crossover operator is executed, and the pair
of genes is swapped at a randomly chosen point. Otherwise,
the two members are reproduced directly to the child pop-
ulation. This process is repeated until the size of the child
population is equal to the size of the parent population.

(6) Mutation operator

A simple mutation method is used as the mutation opera-
tor. For each member in the population after the crossover
operation, we switch a 0 to a 1 or vice versa if the number

- 07 (Xa) (¥ — i)

i=1 8xi N
~ ~ ! 02 (X
k) o~ -y 08 ( (k)) 1
S.t. gj (X) =gj (X(k)) - i; xi(k) ail ()?,- - Xi(k)
L ~ U
Xilly =X =X

) S0 =1
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randomly generated is smaller than the mutation probability
P,,. Otherwise, the code in a gene is kept unchanged.

3.3 Size optimization for fitness calculation

After a ply orientation sequence is given for each member
by the GA, the discrete variables in the first-level approxi-
mate problem (2) are fixed. Moreover, the sizing variables
of the members whose corresponding discrete variables are
zero will not change and can be removed. Additionally, the
deleted plies and related constraints gﬁ.p ) (X) will not exist.
The retained constraints will be further selected through
temporal deletion techniques. Finally, the internal sizing
optimization problem can be simplified to:

Min f(X) = P (X)
st (X)) =g X)<0j=1.h, (16)
Yitp) =X = Xi(p) i=1--1
Xioap=1
k=1.--- 17
xP ar=0 ( BRI an

where X is the vector of the remaining ply thickness vari-
ables, I is the number of remaining variables, X[L(]p) and iﬁ )
are the upper and lower bounds on the i-th remaining vari-
able at the p-th stage, g;(X) is the retained constraint, J; is
the number of retained constraints, and ]7 (X) is the structure
weight for the given ply orientation sequence.

Problem (16) is an explicit optimization problem with
continuous variables only, but it is still difficult to solve the
problem due to its complicated nonlinearity. Since the num-
ber of thickness variables in the first-level problem (16) is
usually much more than the number of active constraints, it
is reasonable to use the dual method to efficiently solve the
problem. Thus a second-level approximate problem that can
be solved by the dual method is established to approach the
optimum of the first-level approximate problem (16).

3.4 The second-level approximate problem

For common use, the objective function and the constraint
functions in the first-level approximate problem (16) are
expanded into linear Taylor series in the variable space
X and its reciprocal variable space, respectively, then the
second-level approximate problem is formed. In the k-th
step, the approximate problem can be stated as:

(18)
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U : U ~U
xifey = min {5 | (19)

L L ~L
Xy = max {xi(p)’ xi(k)} ) (20)

where f® (X) is the objective function at the k-th step,
gj.k) (i ) is the constraint function, )71.%() and Yﬁk) are the
move limits of x; at the k-th step, and x%k) and xl-l‘(k) are the
upper and lower bounds on x; at the k-th step.

The dual problem for the approximate problem (18) can
be stated as follows:

Max I(») = min [f(k) (X) + f 877, (3(')]

Xer(X) j=1 - 2D
st. A;j =0, j=1,---,/
where R()Nf) = ifi
The relationship between the design variables and the dual
variables can be established as follows:

L ~ U P
Xilk) Sxifxi(k), i=1, ---, I}.

L L
Xi(k) X< Xig
X = X xi(k)fxiixlu(k) i=]7"’snv (22)
Xik) Xi = Xik
where
/ li
X = \/xi x =0 (23)
0 x/ <0
and
2 ag; ()? )
~ 08 (Xw
Z:l )\j-Xi(k) 335,
xl=-"" ~ , (24)
f (X))

d%;
After finding the optimal design variables (X and «), the
thickness variables X need to be rounded to make them inte-
ger multiples of the ply thickness, and plies corresponding
to a discrete variable of O are deleted.

3.5 The sensitivity analysis

The sensitivities of objective function and constraint func-
tions with respect to the thickness variables in the first-level
approximation problem are derived from the results of com-
mercial finite element program Nastran sol 200, in which
semianalytical method is used. Within the second-level
approximation problems, only the sensitivities of objective
function (weight) are needed, which are equal to the area x
density of each layer.

3.6 Flow chart and convergence criteria

The flow chart of the optimum algorithm is organized as
shown in Fig. 1. The structural analysis within the procedure
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is implemented by Natran. In the end of the optimization
procedure, the thickness variables will be rounded to the
nearest integer and the layers with thickness of 0.01 7 will
be removed.

Within the optimization calculation procedure, there are
three positions need to evaluate convergence. The conver-
gence criteria in these positions are applied as follow.

1) First-level
evaluation

approximation problem convergence

There are three conditions involved.

a. ‘(f(p)(X) — f(”_“(X))/ f(p)(X)‘ < DELTAI
(25)

2
or Z (x,-(p) — x,'(pfl)) < DELTAX (26)
i=1

b Max {¢f (X, ¢5(X), . ¢, ¥ | = DELTAC @7)

c. p<LPMAX1 (28)

Where DELTAI, DELTAX and DELTAC are convergence
control parameters, and LPMAX1 is the maximum iteration
number of the first-level approximation problem. To evalu-
ate the convergence, condition a, b & ¢ should be satisfied
simultaneously.

2) Second-level approximation problem convergence
evaluation

Three conditions are involved.

o ‘ F0 ) — f(k_“(X)‘ / f® < DELTA (29)
b |rO) - r4 V)| < DELTA (30)
c. k> NMAXI GD

where DELTA and NMAXI are the convergence preci-
sion and maximum iteration number of the second-level
approximation problem. When any one of the three condi-
tions is satisfied, the second-level approximation problem
is converged. In the present work, DELTAl = 0.001,
DELTAX = 0.001, DELTAC = 0.005, LPMAX1 = 20,
DELTA = 0.001, NMAX1 = 10.

3) Convergence evaluation of GA

When the number of total evolution generations is larger
than the maximum number of generations, the GA iterations
will stop.
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Fig. 1 Flow chart of the " )
optimization algorithm < Intial design X )

Structural analysis and sensitivity analysis

l

Create first - levelapproximate problem

A4

Determine the laminate stacking

v sequence by genetic code of the
member
Generate the initial population (G=1) l
> Create internal size optimization problem
Y

Calculate the fitness of each member

Create second-level approximate

problem
h 4
Perform reproduction, crossover and mutation l
processes to generate a new population
(G=G+1)
Solve the dual problem of the second-
level approximate problem
o>
No
Yes

Second-level converged?

Find the optimal design X’

Yes

Use exterior penalty function to calculate
the fitness of the member

No.

First-level converged?

Yes

( Return the optimal X* )

4 Numerical examples

Table 1 The optimization control parameters of studied cases
Two numerical examples are presented to illustrate the

capabilities of the optimization procedure. The calcula- Case The ’(’Tround No. N MaxG Pc Pn FITP
tions are conducted in a computer with CPU3.30 GHz/ stacking sequence of ply
RAMS.00G. 1 [(0/£45/90)3/0/+£45]s 30 50 50 09 0.05 09
2 [(0/£45/90)5]s 40 20 20 1.0 0.2 0.95
4.1 Example 1 3 [(0/+45/90)6/0]s 50 50 50 1.0 02 088
4 [(0/£45/90)7/0/45]s 60 40 40 0.9 0.05 0.95
Consider a composite cylinder with a radius of 100 mm and [(0/£45/90)/0/=45]s 70 30 30 09 005 095
a length of 400 mm. One end of the cylinder is fixed. The [(0/-£45/90) 10]s 30 30 30 09 005 09
composite material properties are: Young’s modulus in two [(0/2£45/90),/0]s 90 30 30 09 005 092
directions E1 = 128 Gpa, E; = 13 Gpa; shear modulus 3 [(0/£45/90)1,/0/45]s 100 50 50 09 005 0.9

G112 = 6.4 Gpa; Poisson’s ratio vip = 0.3; ply thickness
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Table 2 Optimization results

Case

Ref. (Wang 2008)

Ref. (Tang et al. 2004)

*with the complete optimization procedure;

S. Chen et al.
Optimal stacking sequence & ° No. Weight (kg) f1(Hz) No. CPU
of Ply (B/A) (B/A) of iterations  cost (s)
[90/-45/0,/45/0,/-45]s 16 0.845/0.8168  494.48/491.96 10 53
Can not converge - - - - -
[90/02/£45/03]s 16 0.841/0.8168  500.35/496.63 8 49
[(0/445/90),/0/45/90/445/90/0/£45/90]s 36 1.838 520.62 3 25
[90/0/-45/0,/45/0; ]s 16 0.834/0.8168  498.92/498.92 13 81
[45/90/0/£45/90/0/-45/90/0/£45/90/(0/£45),/0]s 40 2.552 626.35 3 25
[90/03/£45/0,1s 16 0.8359/0.8168  491.4/488.03 15 99
[£45/90/0/-45/90/(0/£45/90)5/0/45]s 56 2.859 685.59 3 25
[90/0/45/0,/45/0/-45]s 16 0.901/0.8168  497.61/490.58 12 86
[-45/90/0/-45/0/90/45/90/0/90/0/45/0]s 26 1.327 503.98 6 48
[90/0,/445/0/-45/0]s 16 0.878/0.8168  494.1/490.3 10 75
[0/90/0,/45/90/0/-45/0/45/0/-45/0]s 26 1.327 522.44 6 50
[90/02/45/0,/1+45]s 16 0.89/0.8168 493.88/484.98 14 97
[0/-45/90/45/90/45/90/0,/45/03/90]s 28 1.429 517.59 4 32
[90/45/0/-45/03/45]s 16 0.866/0.8168  493.22/492.55 12 93
[0/902/45/90,/45/0/90/0,/90/0/45]s 28 1.429 509.03 6 50
[90/0,/-45/0/45/0; ] 16 0.8168 496.647¢
492,934
[902/445/04]5 16 0.8168 489.893°¢
489.124

®only first-level approximation and GA involved in the optimization procedure;

A: after rounding, B: before rounding;
“the first-frequency in the ref.,
dthe first-order frequency given by Nastran

t = 0.127 mm; density p = 1600 kg/m3. The stacking
sequence for the cylinder is symmetric, and the 0° fiber

Table 3 The iteration history of structural weight (unit:Kg)

Iteration No. Case 1 Case 6 Case 8
0 1.514 4.084 5.105
1 1.532 0.445 0.455
2 2.391 1.687 1.742
3 0.746 1.439 1.608
4 1.049 1.358 1.482
5 0.884 1.302 1.409
6 0.821 1.362 1.368
7 1.047 1.234 0.759
8 0.744 1.108 1.122
9 0.845 0.878 0.972
10 0.845 0.878 0.967
11 0.866
12 0.866
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direction is along the longitudinal direction of the cylinder.
The objective is to minimize the weight of the cylinder. The
constraint is f; > 492.93 Hz, where f; is the first-order
frequency of the cylinder. Due to the restrictions on the man-
ufacturing process, which is that the thickness of one layer
could not be lower than ¢, the lower and upper bounds on
ply thickness are set as xiL =tand xl.U = 4t, and the thick-
ness of a removed ply is xf’ = 0.01¢. The upper bound on
the number of known points is Hpax = 5.

Eight optimization cases were conducted. In each case,
the optimization without thickness variables, which means
there is only first-level approximation and GA involved in
the optimization procedure, was also implemented to verify
the necessity of thickness variables. The number of layers
in the ground laminates is given from 30 to 100 to test the
optimum searching capability of the present optimization
strategy. The optimum stacking sequence will be affected
by optimization control parameters, such as the number of
members in the population N, the maximum number of gen-
erations MaxG, the crossover probability P., the mutation
probability P,,, and the maximum delete percentage FITP.
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Fig. 2 Dimensions of cone-cylinder structure

The optimization control parameters of the selected results
are listed in Table 1, the initial penalty factor is R = 0.05,
and the increasing rate is r = 2.

The optimization results are shown in Table 2. The value
of weights and frequencies listed in Table 2 are actual
weights and frequencies obtained from the finite element
program Nastran. The results of Ref. (Wang 2008) and
Ref. (Tang et al. 2004) are also shown as comparison. The
algorithm performance is also evaluated with the reliabil-
ity in researching the best solution. Taking the case 1 as an

Table 4 Optimal stacking sequence of composite cone-cylinder structure
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instance, we assume that feasible designs with layers less
than 18 (the number of layer of the best known design is 16)
are acceptable and we denote them as practical optima. The
reliability is 80 % with 10 structural analyses on average
through 200 tests.

From the results listed in Table 2, it can be seen that
the present optimization procedure is able to find relatively
good stacking sequences which are close to the results in
published literatures. Starting from different ground stack-
ing sequences, which are varied from 30 layers to 100
layers, the present optimization procedure can all approach
practical optima efficiently. Comparing the results of that
with thickness variables (a) and that without thickness vari-
ables (b) for the studied cases, the weight of (b) is higher
than that of (a), and the iterations of (b) is less than that
of (a), which means that the second-level approximation
can help the GA to approach the optimum and avoid to
convergence prematurely at local optimums. In addition,
it showed that relatively low number of iterations were
needed in each case, and the computational time are all less
than 100 s, which showed that the computational expense
of the present optimization procedure is not too sensitive
to the number of design variables. The iteration history of
structural weight in case 1, 6 and 8 during the optimization
process is shown in Table 3.

4.2 Example 2

The composite cone-cylinder structure shown in Fig. 2
consists of two composite parts: the conic part and the cylin-
drical part. The dimensions are: r = 60 mm, R = 100 mm,
a = 100 mm, b = 200 mm. The two ends of the struc-
ture are fixed, and the outer surfaces are under a pressure
of 0.3 Mpa. The material is same as that in Example 1. The
stacking sequence for this structure is symmetric, and the
0° fiber direction is along the longitudinal direction of the
cone and cylinder. The objective is to minimize the struc-
tural weight. The first constraint is A1 > 6, where A1 is the

Group Conic part Cylindrical part Wikg Al fi/Hz No. of iteration
1 G [(0/445)6/0/45]s [(0/445/90)5]s 1.461 51.757 2331.1 -
BC [0/£45/0/+45/45]s [90/0/90/£45/0/+45]s 0.5623 6.638 1699.2 17
NBC [0/-45/0,/£45/451s [-45/45,/-453/0/-45/0]s 0.6134 6.0549 1731.5 12
2 G [(0/£45)10]s [(0/445/90)7/0/45]s 2.191 150.93 2784.8 -
BC [02/445/0/£45/0]s [90/(£45)2/0,/451s 0.5843 6.6194 1741.5 11
NBC [45/02/-45/0/453]s [45/902/0/-45/90/£45/45]s 0.6353 8.8052 1725.7 10
3 G [(0/£45)10]s [(0/445/90)12/0/45]s 3.212 401.17 3066.8 -
BC [03/445/0/£45]s [90/£45/90/0/445/0]s 0.5843 6.9216 1720.6 17
NBC [45/02/445/0/-451s [-45/90/45/90,/-45,/0/-45]s 0.6134 6.7558 1713.8 9

G: the Ground stacking sequence, BC: results with Balanced Constraint, NBC: results with No Balanced Constraint
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critical buckling factor of the structure. The second con-
straint is f; > 1700 Hz, where f; is the first-order
frequency of the structure.

In composite materials, it is usually required that the
number of +45° plies equals to the number of —45° plies,
which is called the balanced constraint. In the present work,
the balanced constraint is enforced by linking the thickness
variables of adjacent +45° and —45° plies. Two kinds of
calculation are investigated: (1) considering the balanced
constraint (BC); (2) not considering the balanced constraint
(NBCQ). The optimization parameters are: xiL =1, in = 4¢,
x? = 0.01t, Hyax = 5, R = 0.05, 7 = 2. N, MaxG, P, and
P, are different in studied cases for results comparison.

Table 4 gives three groups of results with varied ground
stacking sequences: 1) 40 layers in both conic and cylindri-
cal part; 2) 60 layers in both conic and cylindrical part; 3)
60 layers in conic part and 100 layers in cylindrical part.
It can be seen that the optimization calculations can con-
verge to the optimal results from different ground stacking
sequences with a small number of iterations. Comparing
the results of BC and NBC, it showed that the structural
weight of BC in three groups are a little lower than that
of NBC, which might be caused by fewer variables in BC
than that in NBC. It also showed that present procedure can
conduct stacking sequence optimization problem with mul-
tiple parts. The iteration history of structural weight in the
group 1 and 3 during the optimization process is shown in

Table 5 The iteration history of structural weight (unit:Kg)

Iteration no. Group 1 Group 3

BC NBC BC NBC
0 1.461 1.461 3.212 3.212
1 2.289 2.171 0.192 0.256
2 0.188 0.181 2.856 1.739
3 1.24 1.263 0.293 0.953
4 0.761 0.82 2.425 0.851
5 0.907 0.799 1.267 0.844
6 0.703 0.733 0.753 0.63
7 0.768 0.683 0.681 0.572
8 0.383 0.632 0.971 0.63
9 0.745 0.61 0.372 0.63
10 0.724 0.573 1.03
11 0.702 0.594 0.516
12 0.615 0.594 0.741
13 0.593 0.669
14 0.383 0.611
15 0.593 0.582
16 0.571 0.611
17 0.571 0.611
CPU cost (s) 155 120 190 114
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Table 5. The values of the final weight in Table 5 are a little
higher than that in Table 4, which is caused by the results
rounding.

5 Conclusions

An efficient stacking sequence optimization strategy for
composite structures is presented in this paper. This strat-
egy is based on a two-level multi-point approximation and
GA. The procedure starts with a ground stacking sequence
and both continuous size variables (thicknesses of plies)
and discrete variables (0/1 variables that represent the exis-
tence of each ply) are included. The genetic solver is run
to deal with the discrete variables based on the first-level
approximation, and the fitness calculation of each mem-
ber is obtained by solving a second-level approximation
problem for thickness variables optimization. The structural
and sensitivity analyses are only required before construct-
ing first-level approximate problem. The data of the critical
responses and their gradients in each iteration must be
stored for the next iteration. This procedure only requires
a very small part of computational time. The numerical
tests demonstrate that the present method can rapidly and
in a stable manner reach the solution under a given 0.1 %
weight precision. The effectiveness of the method is com-
parable with up-to-date existing methods (Irisarri et al.
2011), but the stacking sequence in analytical tools can
be directly taken as design variables and no intermediate
variables need be adopted. The extension of this work to
the general case with stress constraints is currently under
investigation.
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