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Abstract
Dynamic memory reclamation is arguably the biggest open
problem in concurrent data structure design: all known so-
lutions induce high overhead, or must be customized to the
specific data structure by the programmer, or both. This pa-
per presents StackTrack, the first concurrent memory recla-
mation scheme that can be applied automatically by a com-
piler, while maintaining efficiency. StackTrack eliminates
most of the expensive bookkeeping required for memory
reclamation by leveraging the power of hardware transac-
tional memory (HTM) in a new way: it tracks thread vari-
ables dynamically, and in an atomic fashion. This effectively
makes all memory references visible without having threads
pay the overhead of writing out this information. Our empir-
ical results show that this new approach matches or outper-
forms prior, non-automated, techniques.

1. Introduction
For the time being, Moore’s Law continues to make tran-
sistors smaller, but it has stopped making them faster. As
a result, there is increasing pressure for shared data struc-
tures to scale under concurrency. Over the last two decades,
researchers have developed efficient non-blocking [19] im-
plementations for many classic data structures [13, 15, 21,
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23]. This trend is being accelerated by the advent of hard-
ware transactional memory (HTM) [18], recently available
in commodity multiprocessors [1], which promises to sim-
plify and speed up non-blocking data structures [8].

While such data structures are attractive for their high
levels of concurrency, they make memory reclamation no-
toriously hard [4, 7, 10, 20, 22]. The difficulty is that in the
absence of coarse-grained locks (or automatic garbage col-
lection), it can be non-trivial to determine whether a thread
has a reference to a node in the data structure hidden in a
register, cache, or store buffer.

Existing schemes for concurrent memory reclamation
fall into three rough categories. First, quiescence-based
schemes [15, 16] reclaim memory whenever threads pass
though a quiescent state in which no thread holds a reference
to a shared node. These schemes are relatively lightweight,
but their performance is significantly impacted by thread de-
lays, which can prevent reaching quiescent states. Moreover,
a thread crash can result in an unbounded amount of unre-
claimed memory. Reference counting schemes [7, 14, 24],
while easy to implement, have been observed to require
expensive synchronization overhead [16]. Finally, pointer-
based schemes, such as hazard pointers [22], pass-the-
buck [20], or drop-the-anchor [4], explicitly mark live
nodes (nodes accessible by other threads) which should not
be de-allocated. The principal limitations of pointer-based
schemes are that they must be customized to the data struc-
ture at hand, and that they add a critical validation step,
which ensures that new memory accesses are exposed to
reclaiming threads. Recent work [10] employed hardware
transactional memory to speed up common components of
known memory reclamation schemes. Overall, to our knowl-
edge, all known techniques either require an often substan-
tial implementation effort from the programmer, or induce
performance overhead on data structure operations.

In this paper, we present a new technique exploiting hard-
ware transactional memory for concurrent memory reclama-
tion. We describe StackTrack, the first framework for con-
current memory reclamation that is both automatic and ef-
ficient. The key new insight is that we use HTM to solve
the critical “invisible readers” problem: by having parts of



the data structure operations be transactional, we ensure that
reclaiming threads always perceive a consistent view of all
variables accessed by other threads. We can then reduce
memory reclamation to having the reclaiming thread scan
the stack and registers of active threads for pointers to ac-
cessed memory locations.

To precisely explain how StackTrack works, we first need
to define some terms. Hardware transactions are executed
speculatively in processor caches. When a thread executes a
transaction, it loads data into its cache, marks those cache
lines as transactional, and does not write them back to mem-
ory. The data accessed by a transaction is called its data set.
The native cache coherence protocol detects data conflicts
with concurrent threads. If the transaction completes with-
out encountering a data conflict, it commits, marking those
lines as non-transactional, allowing them to be written back
to memory. If a conflict occurs, the transaction aborts, and
its tentative changes are discarded. A transaction can also
restart because of a capacity abort that occurs if its data set
overflows its cache, or if it runs for too long and a timer in-
terrupt clears the cache.

Roughly speaking, StackTrack works as follows. Con-
sider a correct non-blocking data structure implementation,
and assume for now that each data structure operation is a
single transaction. Before reclaiming an object, the reclaim-
ing thread must ensure that that object is not in another
thread’s data set. Care must be taken to avoid the race con-
dition where one thread adds an object to its data set at the
same time another thread tries to reclaim it. This is where we
exploit HTM: having data structure operations be transac-
tional ensures that threads always observe a consistent view
of memory. If a thread observes that an object is still live, it
leaves that object alone. If a thread correctly observes that
an object is no longer live, it reclaims it. If a thread observes
that an object is no longer live, but it is still accessed inside
an uncommitted transaction, then a data conflict will force
that transaction to abort. In all cases, the reclaiming opera-
tion is correct. Note that the reclaiming operation does not
need to be transactional.

This rough description lacks critical details. First, it is un-
realistic to assume that an entire data structure operation can
be placed inside a single hardware transaction because of
capacity aborts. Second, it is not clear how a thread can ef-
ficiently announce that it has added an object to its data set.
Methods such as hazard pointers are unappealing because
they add to the transaction’s cache footprint, increasing the
likelihood of a capacity abort; moreover, they are not auto-
matic.

To address the capacity problem, we introduce a tech-
nique which automatically splits the code into transactional
segments. At compile time, the compiler injects a split check-
point at the end of each basic block. At each checkpoint,
the thread checks whether it should attempt to commit the
current transaction and start another, or whether it should

continue the current transaction for another basic block. Ini-
tially, we (optimistically) attempt to run the entire operation
inside a transaction. Each time a transaction aborts, we lower
the number of basic blocks in a segment, and if transactions
repeatedly commit, we tentatively increase the number of
basic blocks. Over time, this scheme converges to a segment
length that matches the capacity of the hardware and the con-
flict level of the software. In the worst case, the scheme falls
back to executing one operation at a time, just as in the orig-
inal algorithm.

Next, we designed a novel scheme for tracking oper-
ations’ data sets. Instead of having each thread explicitly
announce each location it accesses, the reclaiming thread
scans the registers (register contents) and stack frames of
active threads, searching for references to the object to be
reclaimed.1 We batch the reclaiming thread’s steps to amor-
tize costs over the number of objects reclaimed. By contrast
with pointer-based schemes, which require a memory fence
each time a pointer is validated, StackTrack requires a mem-
ory fence only when a transactional segment commits.

StackTrack is designed to work with any best-effort HTM
system [5], and reverts to a non-blocking, non-transactional
mechanism if the HTM system fails. In this way, StackTrack
uses the HTM system for good performance in the com-
mon case, and the non-transactional fallback for guaranteed
progress in the worst case.

We implemented StackTrack in the C language, adding
automatic memory reclamation to classic non-blocking
queue, linked list, skip-list, and hash-table algorithms. These
data structures were chosen to test StackTrack at different
contention levels (queue vs. hash-table), and for different
operation lengths (skip-list vs. queue). We ran tests on an
8-way Intel Haswell chip with 4 cores, each multiplexing 2
hardware threads. We compared the performance of Stack-
Track against schemes that implement quiescence, hazard
pointers, and drop-the-anchor, as well as an uninstrumented
implementation that did not reclaim memory at all. (Haz-
ard pointers can be seen as an upper bound on the perfor-
mance of reference-counting techniques.) The StackTrack
scheme consistently outperforms hazard pointers (by up to
200%), and has an overhead of at most 50% in comparison
to the uninstrumented implementation. (By contrast, in our
tests, hazard pointers reduce throughput down to as little as
20%.) The quiescence technique scales as long as no threads
are preempted, but has significantly decreased performance
once context switches occur.

We found the main sources of overhead in StackTrack
are aborts (contention aborts and capacity aborts), and the
additional cost of instrumentation. Our empirical evaluation
shows that the overhead caused by instrumentation and con-
tention aborts increases linearly with the number of threads,
as one would expect. On the other hand, capacity aborts in-

1 We do assume that programs do not “hide” pointers to live objects. This is
similar to the assumption made by conservative garbage collectors [2].



crease substantially once the number of threads surpasses
the number of physical cores, as the onset of Hyperthreading
increases cache pressure. These results suggest that Hyper-
threading limits the scalability of HTM itself, but that these
limits will be less apparent in future larger-scale HTM sys-
tems.

The rest of the paper is organized as follows. Section 2
describes relevant aspects of Haswell’s HTM, while Sec-
tion 3 gives an overview of related work. Section 4 recounts
what we learned implementing concurrent memory reclama-
tion using HTM, which may be of independent interest. Sec-
tion 5.1 gives a high-level view of the system, while the tech-
nical details are presented in Sections 5.2–5.5. We discuss
the properties of the framework in Section 5.6. Experimen-
tal results are presented in Section 6. Section 7 concludes
with a discussion.

2. System Model and Problem Definition
In this section, we outline the system model, and overview
the semantics of the Haswell TSX framework. There are n
threads which communicate by reading and writing shared
objects. Threads run at arbitrary speeds, can be subject to
arbitrary delays, and may crash during the computation.

Threads share a correct non-blocking (lock-free) imple-
mentation of a data structure, which ensures global progress
as long as some process takes steps. We now define the con-
current memory reclamation problem [20, 22]. A node is a
memory range which can be viewed as a logical object in
the data structure at a given time. The roots of the data struc-
ture are nodes which can be accessed by threads directly
(e.g., through pointers to the data structure). A node is ac-
cessed at a given time if some thread holds a reference to
it. A node is reachable at a given time if it can be accessed
by following valid pointers through the data structure from
one of the roots. A node is removed (or unlinked) if it is no
longer reachable. A removed node may still be accessed by
some thread. A node is free if its memory is available for re-
allocation. A thread is reclaiming if it is currently removing
a node as part of the free; otherwise, the thread is reading. A
node is live if it is accessed by some reading thread.

The data structure is assumed to provide a lock-free op-
eration which removes nodes. In essence, memory reclama-
tion schemes must transition nodes from the removed to the
free state, ensuring that they are no longer live. An important
technical note is that when the memory reclamation scheme
is invoked, the node is no longer reachable in the data struc-
ture. Also, only a single thread may attempt to free a node
(though several nodes may attempt to unlink it). These as-
sumptions hold in most non-blocking data structures, and are
standard for concurrent memory reclamation [20, 22].

Intel Transactional Synchronization Extensions (TSX)
[1], define a best-effort HTM implementation, which allows
the programmer to group operations into transactions, which
are either applied atomically to memory (committed) or fail

(abort). A transaction may abort for one of several reasons:
capacity, suggesting that the transaction is too long; con-
tention, suggesting that threads accessed memory concur-
rently; and because of hardware reasons.

3. Related Work
A significant amount of research has focused on practical
solutions for concurrent memory reclamation, e.g. [7, 10,
16, 20, 22]. Hazard pointers (HP) [22] are probably the most
widely-known solution. (A similar scheme, known as pass-
the-buck, was proposed by Herlihy et al. [20].) Roughly,
hazard pointers work as follows.

Each thread has a pool of pointers, known as hazards
(or guards [22]), which it uses to mark objects as live—
such objects should not be reclaimed, since they may still be
accessed. Each thread also maintains a local buffer of nodes
which should be reclaimed. Regularly, the thread checks, for
each node in the buffer, if there are hazards by any other
thread pointing to the node. If there are no such hazards,
the node can be safely reclaimed. The critical interval is
between the point when the thread obtains a reference to an
object, and the point when the hazard pointer to the object is
visible to all other threads, as the node may be reclaimed
during this interval. Crucially, the thread must re-validate
the pointer before proceeding, and a memory fence has to
be inserted between the initial step and the validation. These
additional fence instructions are necessary even on relatively
strong memory models (e.g., TSO), and induce significant
overhead, as can be seen in our experiments.

Another approach, e.g. [7, 14, 24], employed reference
counts to track the accesses of each node. Each node is as-
sociated with a counter, which is incremented/decremented
by threads as they access/drop references to the node. Up-
dates need to be atomic, therefore instructions such as
fetch-and-add or double-compare-and-swap (DCAS) must
be employed. A significant drawback of such schemes is the
performance overhead of maintaining consistent reference
counts [16].

Harris [15] proposed a per-thread timestamping scheme
for memory reclamation in a concurrent list, which relies
on scheduler support to guarantee progress. Hart et al. [16]
performed a systematic comparison of several memory man-
agement techniques, such as hazard pointers, reference
counters, and quiescence/epoch-based reclamation [12].
(In these latter schemes, memory can only be reclaimed
when all threads have passed through a quiescent state, in
which no thread holds any reference to shared nodes. Har-
ris’s timestamping scheme [15] can be seen as an instance
of quiescence-based reclamation. Epoch and quiescence-
based schemes are similar, the main difference being that
the former usually enforce quiescent states to occur when
threads complete their operations.) Hart et al. [16] found
that schemes such as hazard pointers and reference counters
suffer from a performance penalty because of the additional



synchronization operations, which are required even in the
case of read-only operations. By contrast, quiescence-based
techniques perform better in the absence of thread delays.
On the other hand, if some threads are slow (preventing a
quiescent state), performance may be affected; moreover, if
a thread crashes, an unbounded amount of memory might
not be reclaimed.

Recently, Braginsky et al. [4] proposed an efficient scheme
which builds on timestamping and on hazard pointers. In
brief, each thread has a timestamp which tracks its activ-
ity, and an anchor pointer, which records a new reference
only once every several node accesses. To recover from
a thread crash, a complex technique called freezing [3] is
used, in which threads co-operate to replace part of the data
structure, restoring their ability to free memory. The key to
performance is that the expensive anchor and freezing op-
erations are used rarely, and do not affect the “fast path” of
the construction. Tests show that this scheme can improve
throughput significantly with respect to hazard pointers, by
up to 500% for a concurrent list on an AMD Opteron ma-
chine. On the other hand, the technique is complex, and rela-
tively difficult to implement for arbitrary data structures. To
our knowledge, the only implementation currently available
is for a linked list.

From the complexity standpoint, reference counters are
arguably the simplest reclamation technique, and can proba-
bly be automated. (Note however that some reference count-
ing schemes [24] impose limitations on the compatibility
between the memory reclamation and the memory alloca-
tion mechanism.) However, this is also the solution with the
highest performance overhead [16]. A common shortcoming
of other non-blocking techniques is that they cannot be auto-
mated [22], as they require a good understanding of the un-
derlying implementation. Specifically, for hazard pointers,
the programmer must know which accesses may generate a
hazard: omitting a hazard can lead to segmentation faults,
whereas placing superfluous hazards induces a performance
penalty. In contrast, our scheme is also non-blocking, but is
automatic.

In a recent paper, Dragojevic et al. [10] explored the
power of HTM to simplify memory reclamation. In partic-
ular, they focused on using HTM to speed up the dynamic
collect problem, which is a common component of several
known reclamation techniques. They showed that HTM en-
ables simpler and faster implementations for dynamic col-
lect, which in turn leads to faster memory reclamation. By
contrast, we propose a new scheme which exploits the book-
keeping capabilities of HTM explicitly.

There has also been significant work on parallel / multi-
threaded garbage collection, for example [11, 17]. Generic
concurrent garbage collection offers a functional super-set
of memory reclamation, likely to be more complex and ex-
pensive to implement, and is beyond the scope of this paper.

4. Observations
We now outline some observations made while examining
the performance of concurrent memory reclamation using
HTM. These observations may be of independent interest.

Extra cache lines are costly. An important performance
predictor for transactional code is the number of cache lines
it accesses. This is because of the generated cache traffic, but
also, more importantly, because accessing too many cache
lines causes the hardware transaction to be aborted due to a
capacity abort. In particular, memory reclamation schemes
which need to add update operations to the code will suffer
a performance penalty when combined with transactions.

Transactions must be short. A consequence of the previ-
ous observation is that hardware transactions must be short.
Transactions that access more than a small number of cache
lines, filling the L1 cache, will be aborted, leading to a sig-
nificant performance penalty. Moreover, a long transaction is
also more likely to generate contention, which can also cause
an abort. In general, short transactions are significantly more
likely to commit.

Take advantage of HTM bookkeeping. Any scheme for
concurrent memory reclamation must maintain, in some
form, a consistent record of the locations accessed (or about
to be accessed) by the active threads. A useful observation
is that HTM already maintains such a consistent record for
each thread. In particular, a series of accesses performed in-
side a hardware transaction may only read from locations
that have not been freed concurrently: otherwise, the trans-
action is automatically aborted, since all transactional oper-
ations are guaranteed to be executed atomically.

5. The StackTrack Framework
5.1 Overview
To free an object, a reclamation algorithm must first ensure
that no thread holds references to it. References to objects
accessed by a thread are loaded to its stack variables and
registers throughout its execution. Hence, whenever attempt-
ing to free an object, our algorithm performs a global scan
which inspects the stack and registers for every thread in the
system, searching for the address it wants to free. The ad-
dress is also checked against information about dynamically-
allocated objects.

Consistent views. The obvious problem with this idea is
that each thread is constantly updating its stack variables,
and its registers are not visible to the other threads. We
need to expose an atomic view of the current stack and
registers for the global scan operation, so that a scan cannot
miss a reference. This is easy if each operation is part of a
single transaction, since then the view of memory is always
consistent. However, long operations might not always “fit”
inside transactions. Our solution is to split each operation
into a series of hardware transactions, and to expose the



Algorithm 1 StackTrack: free functions.
1: procedure FREE(ctx, ptr free)
2: INSERT(ctx.free set, ptr free)
3: if SIZE(ctx.free set) > max free then
4: SCAN AND FREE(ctx)
5: end if
6: end procedure
7:
8: procedure SCAN AND FREE(ctx)
9: for all ptr free ∈ ctx.free set do

10: ptr free← ctx.free buf [index]
11: is found← false
12: for thread id = 0→ max threads do
13: th ctx← activity array[thread id]
14: oper cnt pre← th ctx.oper counter
15: start inspect:
16: htm cnt pre← th ctx.splits
17: if IS IN STACK(th ctx, ptr free) then
18: is found← true
19: end if
20: if IS IN REGISTERS(th ctx, ptr free) then
21: is found← true
22: end if
23: htm cnt post← th ctx.splits
24: oper cnt post← th ctx.oper counter
25: if oper cnt pre = oper cnt post then
26: if htm cnt pre 6= htm cnt post then
27: goto start inspect
28: end if
29: end if
30: end for
31: if ¬is found then

32: HEAP FREE(ptr free)
33: DELETE(ctx.free set, ptr free)
34: end if
35: end for
36: end procedure
37:
38:
39: function IS IN STACK(ctx, ptr free)
40: for all frame ∈ ctx.stack frames do
41: addr ← frame.start addr
42: end addr ← frame.end addr
43: while addr ≤ end addr do
44: if PTRS EQUAL(addr, ptr free) then
45: return true
46: end if
47: addr ← addr + 1
48: end while
49: end for
50: return false
51: end function
52:
53:
54: function IS IN REGISTERS(ctx, ptr free)
55: for all reg ∈ ctx.registers do
56: if PTRS EQUAL(addr, ptr free) then
57: return true
58: end if
59: end for
60: return false
61: end function

current values of the registers before every commit. As a
result, global scans always perceive a consistent view of the
registers and the stack, for every thread.

Splitting operations. We split the operation into a series of
hardware transactions by injecting ”split checkpoints” into
the code, which we use to manage the start and commit
points of the hardware transactions. To have a reasonable
number of split checkpoint calls, the algorithm injects ex-
actly one checkpoint call per basic code block. (Recall that
a basic code block is a sequence of instructions without a
branch instruction.) This process is automatic, since the ba-
sic code blocks are known to the compiler.

When an operation executes, it first starts a hardware
transaction, and invokes the split checkpoint function on ev-
ery basic code block start. The split checkpoint counts the
number of basic code blocks executed so far, and, when
reaching a predefined split limit, it commits the current hard-
ware transaction and starts a new one. When the data struc-

ture operation is completed, it commits the last hardware
transaction.

To achieve good performance, it is essential to optimize
the split lengths. Making them too long results in excessive
hardware aborts; making them too short results in high over-
head. To address this problem, we construct a dynamic split
length predictor, which “learns” the behavior of each opera-
tion, and adjusts the split lengths accordingly.

Length predictor. We define a dynamic split length predic-
tor for every possible split transaction inside each operation.
For example, if we have a skip-list data structure with search,
insert, and delete operations, and each operation is split into
hardware transactions at some point in the execution, then
each hardware transaction has a unique dynamic split length
predictor.

Every dynamic split length predictor first tries to execute
the split transaction with a large split length (say, 50 basic
code blocks). If the hardware transaction aborts too often,
then it reduces the length by one block, and restarts the



transaction. This is iterated until the right split length is
found, and the hardware commits successfully. In a similar
way, if the hardware transaction commits often, the predictor
speculates that it may succeed with a higher split length, and
increases the length by one block.

Transactional operations. In sum, the scheme takes all the
regular data structure operations and makes them transac-
tional. (In practice, operations are split into shorter hard-
ware transactions for performance reasons, however each
can be seen as a single transaction for the purposes of mem-
ory reclamation.) Operations which reclaim memory are
the exception. These operations are transactional only until
the point where they call the FREE() procedure, which our
scheme implements. The FREE() procedure, which scans the
thread stacks and registers, does not need to be transactional,
and multiple instances can be active at once. Notice that, by
the time the FREE() procedure is called, each target node
has already been made unreachable by the already executed
code of the corresponding data structure operation, and that
at most one thread may attempt to free a specific node.

We now describe the key elements of the scheme in more
detail. We first present the core mechanism, and then de-
scribe the slow path and removal batching.

Algorithm 3 StackTrack: split example
1: function REDBLACK TREE SEARCH(root, key)
2: op id← 1
3: SPLIT INIT(ctx, op id)
4: SPLIT START(ctx)
5: node← root
6: while node 6= null do
7: SPLIT CHECKPOINT(ctx)
8: if node.key = key then
9: SPLIT CHECKPOINT(ctx)

10: return node
11: end if
12: if node.key < key then
13: SPLIT CHECKPOINT(ctx)
14: node← node.left
15: else
16: SPLIT CHECKPOINT(ctx)
17: node← node.right
18: end if
19: end while
20: SPLIT COMMIT(ctx)
21: return null
22: end function

5.2 The Free Procedure
The algorithm associates a thread-local context structure,
called ctx, with every thread. The context holds thread
specific information, and the StackTrack uses it to inspect
the current thread stack and registers. Whenever accessing

the data structure, each thread registers itself into a global
activity array data structure, and deregisters when it com-
pletes its operations. Intuitively, the activity array allows
each active thread to be “found” by other threads. In par-
ticular, whenever attempting to reclaim an object, a thread
identifies the active threads in the system by scanning this
global array, and inspects their stack and registers.

Algorithm 1 shows the structure of the FREE() procedure
(lines 2-5). It adds the free requests to a local free set
buffer. When this set reaches a predefined size, it invokes
the SCAN AND FREE() procedure which inspects the stacks
and registers of the other threads, and frees the objects which
are not pointed to by any reference (lines 9-35).

The IS IN STACK() and IS IN REGISTERS() functions
implement the inspection of the stack and registers for a
thread, respectively. For the stack, the algorithm scans the
stack frames of the thread word-by-word, searching for a
pointer value that is equal to the pointer to be freed ptr free.
For the registers, it traverses the registers in the thread con-
text ctx.

The update of the stack and registers in the ctx of a thread
is atomic, however, the scan of the stack and registers is
not atomic. Therefore, a scan is consistent if there was no
concurrent update to the stack and registers during the scan.
In other words, there was no subsequent HTM successful
commit of the next split segment. To achieve this, we use
the split counter of the thread, which updates with every
HTM split segment commit, and read it before inspecting
the thread stack and registers and after we did it. If the split
counter has changed, then we restart the scan of this thread.
Else, the scan is consistent and we can continue to the next
thread.

At first glance, a restart of a thread scan seems to be a
blocking operation, that may restart infinitely. But, a restart
of a thread scan means that the thread made a successful
HTM commit of its current split segment. So, this means
that some thread progresses. Therefore, eventually the thread
will complete its current operation, in which case we are
no longer required to scan its stack and registers. We iden-
tify completed operations by using the oper counter of the
thread, and read it before the thread scan and after. If it has
changed, then we don’t need to restart the scan of the thread
and we continue to the next thread.

Notice that the scan may result in false positives, where a
value that is not a real pointer is equal to the free pointer.
However, this does not effect correctness, and such false
positives are highly unlikely, since the heap pointers have
specific structure and values. (We have not observed false
positives during our experiments.)

Free procedure optimization . The current implementation
traverses the stacks of the threads for every pointer in the
free buffer. This is relatively inefficient; it is in fact possi-
ble to optimize this procedure in a similar way as for hazard
pointers. We can scan the stacks only once, hashing all of the



Algorithm 2 StackTrack: split functions.
1: procedure SPLIT INIT(ctx, op id)
2: ctx.splits← 0
3: ctx.op id← op id
4: memory fence()
5: end procedure
6:
7: procedure SPLIT START(ctx)
8: ctx.steps← 0
9: ctx.limit← ctx.limits[ctx.op id][ctx.splits]

10: while HTM START() 6= sucess do
11: MANAGE SPLIT ABORT(ctx)
12: ctx.steps← 0
13: ctx.limit← ctx.limits[ctx.op id][ctx.splits]
14: end while
15: end procedure
16:
17: procedure SPLIT CHECKPOINT(ctx)
18: ctx.steps← ctx.steps+ 1
19: if ctx.steps ≥ ctx.limit then
20: SPLIT COMMIT(ctx)
21: SPLIT START(ctx)
22: end if
23: end procedure
24:
25:

26: procedure SPLIT COMMIT(ctx)
. Expose can be omitted on final commit

27: EXPOSE REGISTERS(ctx)
28: ctx.splits← ctx.splits+ 1
29: HTM COMMIT()
30: MANAGE SPLIT COMMIT(ctx)
31: end procedure
32:
33: procedure EXPOSE REGISTERS(ctx)
34: for all 〈reg name, reg value〉 ∈ registers do
35: ctx.registers[reg name]← reg value
36: end for
37: end procedure
38:
39: procedure MANAGE SPLIT COMMIT(ctx)

. If current split succeeded 5 times in a row, in-
crease its limit by 1 (ctx.limits[ctx.op id][ctx.splits]
+= 1 )

40: end procedure
41:
42: procedure MANAGE SPLIT ABORT(ctx)

. If current split failed 5 times in a row, then its
limit by 1 (ctx.limits[ctx.op id][ctx.splits] -= 1 )

43: end procedure

pointers in the stacks to a hash table, and then traverse the
free buffer pointers and compare them to the hash table as-
sociated entries. This will result in an average constant time
work per a free pointer instead of all stacks scan per such a
pointer. (We note that, in our empirical evaluation, this op-
timization did not give a significant performance advantage,
because the cost of the free procedure scan is amortized over
the free calls; it executes only once per predefined number
of free invocations.)

5.3 The Split Procedure
We execute each operation as a series of hardware trans-
actions, which we call segments. The algorithm manages
the start and commit points of segments by calls to split
checkpoints, which are inserted in the code at every basic
code block start. We allow each segment to have a dynamic
length, by maintaining private split information for each seg-
ment. In this way, we ensure that the split dynamically adapts
to the behavior of the code. In order to achieve this, we as-
sign a unique id per operation, and a unique segment number
which identifies a specific split inside an operation, such that
the combination of the two uniquely defines a segment.

Algorithm 3 shows an example of applying these func-
tions to the red-black tree search operation. (We employ the
red-black tree as a running example, since it generates short
code blocks, which best illustrate the instrumentation.) First,

it calls the SPLIT INIT() function with the unique operation
id. It then starts the first hardware transaction by a call to
the SPLIT START() function. During the execution, the code
calls to SPLIT CHECKPOINT() on every basic code block
start, and on operation finish, it commits the last hardware
transaction by a call to SPLIT COMMIT().

Algorithm 2 shows the implementation of the procedures
SPLIT INIT(), SPLIT START(), SPLIT CHECKPOINT(), and
SPLIT COMMIT(). These split procedures depend on a group
of local variables: ctx.op id, which holds the current op-
eration id; ctx.splits, which counts the current number
of segments, ctx.steps, which counts the current num-
ber of basic code blocks, and ctx.limit, which defines
when the checkpoint call will attempt to commit the cur-
rent split. Notice that the combination of operation id and
split number uniquely defines the current segment, therefore
ctx.limits[ctx.op id][ctx.splits] holds the length for the
current segment.

On split init, the algorithm sets ctx.op id to the unique
operation id and the ctx.splits to 0. On split start, it sets
ctx.steps to 0 and ctx.limit to the current value of the vari-
able ctx.limits[ctx.op id][ctx.splits], which defines the
unique length of the current segment. It then starts the hard-
ware transaction by a call to HTM START(). If a hardware
abort occurs, the algorithm calls MANAGE SPLIT ABORT(),



which may change the length of the current segment, and
updates the value of the ctx.steps and ctx.limit.

On split checkpoint, it increments ctx.steps by 1, and
checks it against the ctx.limit. If the limit is reached, then it
attempts to commit the current split transaction, and starts a
new one. The split commit first exposes the current registers
of the thread, by writing their values to ctx.registers, and
then actually performs the hardware commit. After a suc-
cessful commit, it calls the MANAGE SPLIT COMMIT() pro-
cedure, which may change the current split transaction limit,
and then increments ctx.splits by 1, to indicate a move to
the next transaction split.

The transaction split length limit is controlled by calls to
MANAGE SPLIT ABORT() and MANAGE SPLIT COMMIT().
Currently, we decrease the limit by one if we get five con-
secutive capacity aborts, and increase the limit by one if
we get five consecutive successful commits. We found that
this simple local scheme results in good performance. More
complex schemes can be implemented to obtain better con-
trol and faster adjustment of the transaction split lengths, but
this is a general problem that is not the focus of the current
paper.

5.4 The Fallback Mechanism

Hardware aborts. Our algorithm executes data structure
operations as a series of hardware transactions. Current In-
tel and IBM HTM implementations provide a best-effort
HTM design, meaning that there is no progress guarantee
for the hardware transactions: they may abort due to many
hardware-related reasons, and there is no guarantee that a
transaction commits.

The most likely reasons for HTM aborts are contention
and cache capacity limitations. The algorithm is able to han-
dle both of these common reasons dynamically by its auto-
matic adjustment of the lengths of the segments. However,
other (less likely) reasons for abort exist, such as unsup-
ported instructions that simply cannot execute in a hardware
transaction. For this case, if the unsupported instruction is
not related to a local variable or register update (required
for StackTrack correctness), then the we can handle it by
committing the current hardware transaction, executing the
unsupported instruction, and starting a new hardware trans-
action. For any other case, we are not able to use the HTM
system, and must fall back to a software-only StackTrack
slow-path version of the operation, described below.

Slow-path fallback. The slow-path version of the operation
implements a software-only extension of the “hazard point-
ers” scheme. It instruments every shared memory read and
write with a call to SLOW READ() and SLOW WRITE() pro-
cedures, which add the memory location to a reference set
of the thread. In addition, it adds a call to SLOW START()
and SLOW COMMIT() on operation start and finish, where
the SLOW COMMIT() resets the reference set of the thread
to an empty set. The goal of this design is to maintain com-

Algorithm 4 StackTrack: slow-path example
1: function RB TREE SEARCH SLOW PATH(root, key)
2: op id← 1
3: SLOW INIT(ctx, op id)
4: SLOW START(ctx)
5: node← SLOW READ(&(root))
6: while node 6= null do
7: SLOW CHECKPOINT(ctx)
8: if SLOW READ(ctx,&(node.key)) = key then
9: SLOW CHECKPOINT(ctx)

10: return node
11: end if
12: if SLOW READ(&(node.key)) < key then
13: SLOW CHECKPOINT(ctx)
14: node← SLOW READ(&(node.left))
15: else
16: SLOW CHECKPOINT(ctx)
17: node← SLOW READ(&(node.right))
18: end if
19: end while
20: SLOW COMMIT(ctx)
21: return null
22: end function

patibility with the GCC TM compile-time automatic instru-
mentation, which can be used for automatic generation of
the slow-path versions for data structure operations.

We now describe the fallback mechanics, and how they
interact with the fast path. We generate the HTM fast-path
and the software-only slow-path version for every data struc-
ture operation. In both of these paths, we inject the split
checkpoint calls on every basic code block start, and use
them to match the fast-path and the slow-path versions of the
split segments. In this way, when a fast-path split hardware
transaction constantly fails, the associated split checkpoint
procedure detects it and performs a jump to the correspond-
ing split checkpoint procedure in the slow-path. As a result,
the slow-path can continue the execution in software from
the point where the fast-path has failed.

Algorithm 4 shows an example of the slow-path ver-
sion of the red-black tree search operation. Comparing it
to the fast-path example in Algorithm 3, we see that the
shared memory accesses are instrumented with calls to
SLOW READ(), which perform the reference set mainte-
nance, and we can see that the SLOW INIT(), SLOW START()
and SLOW CHECKPOINT() procedure placement corresponds
to the corresponding placement of split procedures on the
fast path. As a result, a fast-path split checkpoint procedures
can always jump to the corresponding slow-path check-
point procedure. Algorithm 5 shows the implementation of
the slow-path functions. For clarity, we omit the slow-path
checkpoint policy code and the fast-path to slow-path jump-
ing code, and show only the reference set maintenance code.



Slow-path algorithm. The fallback tracks references using
a reference set for every thread. (See Algorithm 5 for pseu-
docode.)

On shared memory read, the SLOW READ() call reads the
location, adds it to a reference set of the thread, performs a
memory fence, and reads the address again, in order to verify
that it has not been changed in the meantime. If the reference
has changed, it restarts the slow read operation. (Note that
a restart implies that some other thread made progress.)
The memory fence and subsequent re-read of the location
ensure that a possible concurrent global scan operation will
synchronize correctly, and detect an update to the reference
set of the thread.

On shared memory write, the SLOW WRITE() call first
performs the SLOW READ() of the location to ensure that it
has been recorded in the reference set, and then performs
the write. When the data structure operation completes, the
SLOW COMMIT() resets the reference set to an empty set, by
removing all of the entries.

Note that this mechanism is less efficient than hazard
pointers, since it treats all of the shared reads and writes as
hazardous, and handles them as such. However, the high cost
of the fallback is not an issue for our scheme, since it is only
used as an unlikely backup.

Finally, the StackTrack global scan procedure uses a
global slow path counter to detect if there are threads exe-
cuting the fallback. Every thread atomically increments this
counter on slow-path start and decrements it on slow-path
finish. The StackTrack global scan checks that this counter
is 0 before the scan start. If the counter is not 0, then in ad-
dition to the inspection of the stacks and the registers, it also
inspects the reference sets of the threads.

5.5 Automatic Code Transformation
To apply our scheme, the programmer must simply indicate
to the compiler the functions which require reclamation, and
use the StackTrack FREE() procedure to reclaim memory.
The compiler then adds the HTM split logic, injecting split
checkpoint calls on every basic code block start, and gener-
ates the slow-path version of the operations, which requires
to instrument every shared memory read and write with a
call to the slow-path fallback read and write.

At runtime, the split predictors automatically adjust the
lengths of the different segments to optimize the HTM com-
mit rate. If some segment length reduces to one basic code
block, and still fails more than a predefined number of times,
then the algorithm executes the matching code block from
the software-only slow-path fallback.

We note that none of the actions described above require
any data structure specific information. Moreover, the GCC
compiler already supports automatic TM instrumentation of
shared memory accesses, which can be used to generate the
slow-path versions for the operations. The only significant
addition to the code is the split checkpoint call per basic code
block, which is performed by the compiler.

Limitations. Importantly, we note that our scheme does not
cover the case where the programmer stores pointers to vari-
ables which might be accessed in the heap, and not in the
threads’ stack. Another issue is that of code pointer calcu-
lations which may “hide” pointer values from the free pro-
cedure that scans for them. General solutions to this prob-
lem are not known, since programmers may employ unusual
techniques (for example, one may hide pointer values by
XOR-ing). Conservative GC schemes have the same prob-
lem [2]. However, there are reasonable pointer arithmetic
operations for array and structure accesses that our scheme
supports. For example, consider an array object starting at
address 0x1234 and having 20 entries of one byte each.
The code may load 0x1234 to a local variable ptr, calcu-
late 0x1234 + K in order to get access to the K-th element
of this array, and then store 0x1234 + K to variable ptr. A
thread attempting to free the array performs a scan for the
array’s starting address 0x1234 in the stacks and registers of
the other threads. This scan might miss the value 0x1234 +
K in the local variable ptr. The solution is to use the heap
information about the allocated objects. All dynamic allo-
cations go through the heap, therefore we hook on the al-
location function (for example, in the GNU C library, we
use the malloc hook variable), and store the start address
and the length of every object in a data structure supporting
range queries. Then, for any two pointers, we can identify
if they point to the same object by making a range query
into this data structure. In this way, the FREE procedure can
detect hidden pointers to arrays or structures. We note that
in some settings, this information is already present in the
malloc data structures.

Programmer-defined transactional regions. Using Stack-
Track does not preclude the programmer from defining her
own transactional regions in the code. In particular, the
split procedure adapts to this case by ensuring that a split
is never performed during a user-defined transaction. To
ensure correctness, the split procedure does have to insert
the necessary register expose operations at the end of the
user-defined transaction. This may increase the abort rate
of the user-defined transactions. At the same time, since the
HTM is best-effort, the programmer must still provide a
non-transactional backup execution alternative for the trans-
actional code. This backup is not provided by StackTrack.

5.6 Correctness

Progress. The fallback mechanism ensures that data struc-
ture operations remain non-blocking even in the case when
not all instructions can be executed by the hardware trans-
actional memory system. (In particular, the HTM may con-
stantly fail if the original code uses external libraries or I/O
operations.) It is straightforward to check that the backup
is non-blocking. Execution of the slow-path fallback with
other concurrent HTM split transactions does not affect cor-
rectness, since the specification ensures that HTM aborts



Algorithm 5 StackTrack: slow-path functions.
1: procedure SLOW INIT(ctx, op id)

. Slow-path checkpoint policy code
2: end procedure
3:
4: procedure SLOW START(ctx)

. Slow-path checkpoint policy code
5: end procedure
6:
7: procedure SLOW READ(ctx, addr)
8: step 1: ptr value← LOAD(addr)
9: ADD(ctx.refs set, ptr value)

10: memory fence()
11: if ptr value = LOAD(addr) then
12: return ptr value
13: else
14: REMOVE(ctx.refs set, ptr value)
15: goto step 1

16: end if
17: end procedure
18:
19: procedure SLOW WRITE(ctx, addr, new value)
20: SLOW READ(ctx, addr)
21: STORE(addr, new value)
22: end procedure
23:
24: procedure SLOW CHECKPOINT(ctx)

. Slow-path checkpoint policy code
25: end procedure
26:
27: procedure SLOW COMMIT(ctx)
28: for all ptr value ∈ ctx.refs set do
29: REMOVE(ctx.refs set, ptr value)
30: end for
31: end procedure

immediately on write-after-read, write-after-write or read-
after-write conflict with non-speculative code [1].

Safety. To check that no live node is freed, we examine
the code of the reclaim operation. A node is freed only if
the reclaiming thread scans the registers and stack frames
of active threads and does not see a reference to the node; if
there are threads on the slow path, then the reclaiming thread
also checks the reference metadata for the threads. Assume
for contradiction that there still exists a reading thread with
a reference to the free node.

We have two cases: if the reading thread is on the fast
path, then it must have accessed the node as part of its current
hardware transaction. (Otherwise, the reference to the node
would have been seen by the reclaiming thread.) However,
the reclaiming thread already successfully unlinked the node
from the data structure, since it is executing the FREE() oper-
ation. Therefore, the current transaction of the reading thread
has an inconsistent view of memory, and will be aborted.
Crucially, the reading thread cannot obtain another reference
to the reclaimed node after the abort, since, by definition, this
node is no longer reachable in the data structure.

The second case is when the thread holding the reference
is on the slow path. In this case, notice that, since the col-
lecting thread does not see any references to the node, the
reading thread must be between the point where it obtains
the reference to the node for the first time, but before it ex-
poses this reference through the fence instruction. The al-
gorithm specifies that the reading thread must then validate
the pointer before using it, checking that it still has the same
value. However, the reclaiming thread has unlinked the node
from the data structure. There are two possibilities: first, the
reading thread’s validation sees a changed pointer, in which
case the thread re-starts its read operation.

Second, the reading thread’s validation can see the same
pointer value. (This can occur if the node is reclaimed, then
re-allocated and again linked to from the parent node.) This
is an instance of the well-known ABA problem [22]. How-
ever, notice that, for the thread, this execution is exactly the
same as if the data structure pointer pointed to the second
“version” of the node throughout its call to SLOW READ().
Therefore, the thread can safely proceed with its execution.
(Note that this scenario cannot occur on the transactional fast
path, since any transaction experiencing this switch would
be automatically aborted.)

Finally, notice that the execution of the slow-path fall-
back with concurrent HTM segments does not affect cor-
rectness, since the specification ensures that hardware trans-
actions immediately abort on conflict with non-speculative
code [1]. Also, our scheme is not affected by cyclic refer-
ences in the data structure (such as a doubly-linked list),
since the reclamation algorithm only tracks references per
thread. Once a node is in unlinked state and is no longer ref-
erenced, it can be freed.

6. Performance Evaluation
We implemented the StackTrack scheme in C, and integrated
it into a set of classic non-blocking data structures. In the fol-
lowing, we first examine search data structures, i.e. the Har-
ris lock-free list [15] and the Fraser-Harris lock-free skip-
list [13]. Then, we show results for data structures with short
operations, i.e. the Michael-Scott lock-free queue [23] and a
lock-free hash-table based on the Harris lock-free list [15].
We chose these data structures to explore the performance of
the scheme under high contention (queue), low contention
(hash-table), long operations (list, skip list), and for short
operations (queue).



We instantiate these data structures with standard param-
eter values. (We found that significantly increasing the num-
ber of nodes in the data structure or the percentage of muta-
tions increases the base cost of the implementation, partially
hiding the cost of memory reclamation.)

Experimental setup. We executed the benchmarks on Intel
8-way Haswell chip with 2 cores, each multiplexing 2 hard-
ware threads (HyperThreading). This chip supports TSX,
Transactional Synchronization Extensions [1], a best-effort
HTM implementation. We use the RTM interface to inter-
act with the HTM. Currently, 4 is the highest number of
cores available for a system supporting the Haswell HTM.
The limited concurrency implies that our scalability results
should be interpreted with a grain of salt. However, they are
a good illustration for the potential of our scheme.

Approaches. The memory reclamation algorithms we bench-
marked are the following:

Original : The original implementation of the lock-free con-
current algorithm, without any memory reclamation, and
without HTM. This represents the best performance that
the data structure could achieve. (We also tested lock-free
versions employing HTM, and obtained similar results.)

Epoch : Epoch-based memory reclamation [12, 16]. Every
thread has a local timestamp, which it updates with ev-
ery operation start and finish. Before reclaiming a node,
the free procedure checks that all of the threads made
progress, by taking a snapshot of these timestamps and
waiting for their progress (or change).

Hazards : The hazard pointers implementation of [22]. We
manually add the code that defines, updates and verifies
the hazard pointers to the data-structure implementations.

DTA : The recent drop-the-anchor scheme [4], loosely
based on hazard pointers. It is known to achieve better
performance than hazard pointers by eliding hazards, and
by utilizing a wait-free freezing procedure. On the other
hand, this scheme is not automatic, as it requires the pro-
grammer to implement the complex wait-free freezing
manually. This requires a good understanding of the con-
current data-structure internals. Moreover, to our knowl-
edge, the only data structure for which the specifics of
this memory reclamation mechanism are known is the
linked list [4]. Therefore, we only present the implemen-
tation results for the case of the linked list.

StackTrack : Implementation of our StackTrack scheme.
We start the execution with initial hardware transactions
length set to 50, and the algorithm performs automatic
adjustment of these lengths according to the prediction
algorithm described in Section 5.3.

Note that StackTrack, Epoch, and reference counting are
the only schemes which could be applied automatically to
existing code. Hazard pointers require manual coding of the

hazard update checks, which depend on the specific data-
structure implementation. Whether hazard pointers can be
implemented automatically is an open problem [22]. We im-
plement hazard pointers since they perform better than ref-
erence counting schemes, which update shared counters on
every shared read. Also, hazard pointers allow us to better
understand how code instrumentation affects the overall per-
formance.

HTM behavior. The performance results are best under-
stood in relation to the behavior of the Haswell HTM as
the number of threads increases. In particular, we identi-
fied three regimes. In the parallel regime, the number of
threads is at most the number of cores, i.e. 1–4 threads. Here,
the HTM scales well, as the number of aborts is relatively
low. For 5–8 threads, we enter the hardware multiplexing
regime, where HyperThreading starts to execute two hard-
ware threads per core. There is less real parallelism in the
hardware; in particular, pairs of hardware threads share the
same L1 cache. As a result, the number of capacity aborts
increases by orders of magnitude in this range (see Fig-
ure 3), which affects performance. Finally, in the range of
9–16 threads, we have software multiplexing, as threads are
preempted. Contention effects become more prevalent, and
scalability is further affected.

It is important to note that capacity aborts are the main
source of overhead once the number of threads surpasses the
number of cores, since multiple threads are sharing the same
cache. Capacity aborts are likely to be less of an issue once
machines with HTM and more cores become available.

Scan behavior. The cost of scanning the stacks and registers
of all the threads is amortized over the total number of op-
erations. We found that the cost of the global scan becomes
negligible for a thread when it executes once per every 10
free memory calls of this thread. Deeper analysis shows that
the average stack depth inspected, increases linearly with the
number of threads. We add that a scan does not always need
to consider all threads: in particular, threads which are not
currently performing data structure operations are skipped.

Split predictor. We use a simple split predictor, that decre-
ments/increments by -1/+1 each segment length based on
HTM commit abort/success ratios. The converge time of this
predictor is relatively slow, and it is able to achieve a good
performance after 2 seconds on average. We execute each
run for 10 seconds, and report the average throughput per
sec, which includes the simple split predictor penalties.

6.1 List and Skip-List Benchmarks
Figure 1 shows the results for the lock-free list and the
lock-free skip-list. In brief, StackTrack scales well until the
number of threads surpasses the number of cores, and shows
performance degradation above 4 and above 8 threads, as a
consequence of HyperThreading (above 4 threads), and of
thread context-switches (above 8 threads).
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Figure 1. Throughput results for a lock-free list and a lock-
free skip-list. The X-axis denotes the number of threads, and
the Y-axis denotes operations per second.

More precisely, the results for 1–4 threads illustrate the
overhead of the different schemes relative to the original im-
plementation. Hazard pointers add the most overhead, since
they require a memory fence per hazard pointer update,
which happens every time the operation moves to the next
node in the data-structure it traverses. A memory fence is
an expensive synchronization operation; its performance de-
pends on the architecture, but in general it stops the next
memory operation from progressing until the store buffer of
the processor drains completely. The cost of these instruc-
tions on different architectures has been analyzed recently
by David et al. [6]. Epoch is the most light-weight, since it
only requires a thread local timestamp update per operation
start and finish. The overhead of StackTrack is close to that
of the Epoch scheme. This may seem surprising, since Stack-
Track adds a split checkpoint function call per basic code
block. However, notice that most of the time these calls sim-
ply increment a local counter, and only perform the split op-
eration when the local counter reaches the threshold. Hence,
we avoid synchronization operations or memory fences per
every call.

In the 5–8 threads range, there is a performance penalty
for the StackTrack scheme, because of the Intel Haswell
HyperThreading mechanism: pairs of threads share the same
L1 cache, which causes the HTM to incure more capacity
aborts. Figure 3 illustrates the HTM contention and capacity
abort rates for the lock-free list. As expected, contention
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Figure 2. Throughput results for a lock-free queue and
a lock-free hash-table. The X-axis denotes the number of
threads, and the Y-axis denotes operations per second.

increases linearly; however, there is a significant increase in
capacity aborts above 4 threads.

Another source of the StackTrack overhead is the auto-
matic adjustment of the lengths of the split hardware trans-
actions lengths. In Figure 4 we can see the average HTM
lengths the algorithm converged to, and the average number
of splits it performed per operation. Higher thread counts in-
duce more aborts, therefore the system converges towards
shorter transactions, which increase the commit rate.

Above 8 threads, the system starts to perform thread con-
text switches, which introduces thread delays. As a result, all
the algorithms receive an additional penalty. Here, the block-
ing Epoch scheme incurs a drastic decrease in performance,
since it is must wait for all threads to progress, including
the ones that are preempted. The advantage of non-blocking
memory reclamation algorithms is apparent in this scenario.

6.2 Queue and Hash-Table Benchmarks
Figure 2 shows results for a lock-free queue and a lock-free
hash-table. Similarly to the list and the skip-list benchmarks,
we can see the effect of HyperThreading above 4 threads,
and the effect of the context-switches above 8 threads. Also,
the Epoch scheme sees drastic performance degradation
above 8 threads, while StackTrack and hazard pointers main-
tain stable performance.

The queue benchmark represents a highly contended ex-
ecution, since every thread contends on the head and tail
pointers. The hash-table is the least contended, since threads
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  Figure 3. HTM contention and capacity aborts for the list
benchmark. The average is taken per transactional segment.
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Figure 4. HTM average number of splits per operation, and
average length of the split hardware transaction.

are evenly distributed by the hash function. This difference
is reflected in the benchmark results.

The hash-table algorithm scales almost linearly for 1–
8 threads, since the data structure experiences limited con-
tention. By contrast, for the queue benchmark, the origi-
nal algorithm scales only for 1–3 threads, and then its per-
formance decreases. For the queue, StackTrack and hazard
pointers techniques scale slightly better, and are able to out-
perform the original queue for 4–8 threads. The reason for
this is the “over-throttle” effect, which the original queue en-
counters due to excessive contention. The memory reclama-
tion schemes slow down the implementation, and as a side-
effect reduce the contention on the head and tail pointers of
the queue, which improves overall performance. (This effect
has been previously described and studied in [9].)

We note that StackTrack and hazard pointers perform
similarly for the queue and the hash-table benchmarks. This
is because the operations are very short, so adding a small
number of hazards pointers or a small number of split check-
points has approximately the same overhead. The difference
becomes more significant in favor of our scheme when op-
erations are longer, as seen in the skip-list benchmark.

6.3 Slow-Path Analysis
Figure 5 shows skip-list benchmark results for the slow-path
fallback. In the graph, StackTrack-0 indicates an experiment
with 0% slow-path fallbacks—all operations execute using
split hardware transactions. We use this case as an ideal

SCAN SKIPLIST*20*100K*F1

threads Perf Average 
Stack Depth #Scans Penalty %Scans

1838894.1 1 1569587 0 102619 14.64505759 6.537961897
3631594.3 2 3122754 33.931124 180773 14.01148526 5.788896596
5096135.9 3 4608024 65.964051 266323 9.578078559 5.779548891
6588959.7 4 5936289 94.944084 321482 9.905519683 5.415538226

6814025 5 6370777 128.068082 344188 6.50493651 5.402606307
7706217 6 7202661 166.571353 385256 6.53441241 5.34880095
8200466 7 7645150 193.644198 407555 6.771761507 5.330896058
8407533 8 7638215 229.836021 424639 9.150341723 5.559400986
6523797 9 5146962 303.525417 539885 21.10481059 10.48939161
5848073 10 4767412 348.422268 553708 18.4789246 11.61443567
5332374 11 4151207 389.953539 627798 22.15086564 15.12326415
4578330 12 3772111 431.987728 672975 17.60945585 17.84080585
4199783 13 3484213 476.733842 806542 17.03826126 23.14846997
4053458 14 3217890 522.366979 895376 20.6137081 27.82494119
3901903 15 3286067 554.870657 886057 15.78296539 26.96405764
3766900 16 3256915 582.565761 1018293 13.53858611 31.2655688

SCAN SKIPLIST*20*100K*F10

threads Perf Average 
Stack Depth #Scans Stack Depth %Scans

1838894.1 1 1485795 0 9764 0 0.657156606
3631594.3 2 3343972 34.052708 19219 17.026354 0.574735674
5096135.9 3 5051428 64.505328 27780 21.501776 0.549943501
6588959.7 4 6560898 94.701415 35273 23.67535375 0.537624575

6814025 5 7155879 132.371076 38294 26.4742152 0.535140407
7706217 6 7597804 163.526211 40499 27.2543685 0.533035598
8200466 7 8311041 195.6885 44000 27.9555 0.529416231
8407533 8 8785712 226.896933 46465 28.36211663 0.528870056
6523797 9 6151484 282.60512 33319 31.40056889 0.541641659
5848073 10 5637428 325.503404 30695 32.5503404 0.54448589
5332374 11 4820147 364.159689 26633 33.10542627 0.552535016
4578330 12 4709926 418.891328 26106 34.90761067 0.554276224
4199783 13 4478953 445.848593 24946 34.29604562 0.556960522
4053458 14 4015825 501.406947 22686 35.81478193 0.564915055
3901903 15 3983751 521.662917 22579 34.7775278 0.566777391
3766900 16 4029243 585.60134 22691 36.60008375 0.563157893

SkipList

threads HTM GC ORIGINAL HazardPtrs Epoch average splits 
per op

average HTM 
length HTM GC SP0 HTM GC 

SP10
HTM GC 
SP50

HTM GC 
SP100 HTM GC SP0 HTM GC 

SP10
HTM GC 
SP50

HTM GC 
SP100

1 1838894.1 2099135 638815 2051207 2.11 49.07 1519912 1312941 1068710 675883 1 0.86382698 0.70313939 0.44468561

2 3631594.3 4077855 1269962 3663244 2.03 49.06 3431679 2986216 2124355 1430172 1 0.87019095 0.61904246 0.41675576

3 5036135.9 5914868 2070248 5227313 2.25 47.38 4855529 4366380 3192774 2065464 1 0.89925938 0.65755431 0.42538393

4 6588959.7 7826386 2732795 6327541 2.11 47.95 6268767 5727401 3723960 2901925 1 0.91364075 0.59404983 0.46291799

5 6560408.5 8735268 2892314 7416549 3.63 27.54 7088584 6477469 4530091 3354482 1 0.91378885 0.63906854 0.47322314

6 7001275.4 10151795 3179849 8276879 3.84 27.41 7585866 6891870 4866797 3346762 1 0.9085146 0.64156116 0.44118391

7 7449815.2 11284127 3411644 9338264 3.79 24.93 8051538 7517309 5025681 3562187 1 0.93364883 0.62418894 0.44242317

8 7858779.7 12172066 3987599 9306331 4.1 21.1 8728093 8382950 5553957 3802857 1 0.96045608 0.6363311 0.43570308

9 7870654 9967491 3108706 3549652 4.38 19.17 5880068 5407450 4367320 3603018 1 0.91962372 0.74273291 0.61275108

10 6803244 8102496 2453458 2907217 4.38 19.75 5693720 5082818 3907139 3434484 1 0.892706 0.68621903 0.60320564

11 5986859 7246183 2313686 3052912 4.44 19.32 4907257 4862582 3606620 2833516 1 0.99089614 0.73495641 0.57741341

12 5303808 6524357 2216861 2236694 4456601 4308271 3509440 2897939 1 0.96671679 0.78747009 0.65025767

13 5008010 6285442 2122828 2243179 4377111 4148660 3404918 2747880 1 0.94780781 0.77789163 0.62778394

14 4967787 5682767 2284104 1985129 4250898 3805206 3559075 2552376 1 0.89515345 0.83725251 0.60043219

15 5004558 5280870 2314697 1898991 4140528 3775314 3340006 2631233 1 0.91179531 0.80666186 0.63548248

16 5208541 5428696 2207281 1742204 3883778 3436930 3278391 2645950 1 0.88494502 0.8441242 0.6812825

1 1 0.86382698 0.70313939 0.44468561

2 1 0.87019095 0.61904246 0.41675576

3 1 0.89925938 0.65755431 0.42538393

4 1 0.91364075 0.59404983 0.46291799

6 1 0.9085146 0.64156116 0.44118391

8 1 0.96045608 0.6363311 0.43570308

10 1 0.892706 0.68621903 0.60320564

12 1 0.96671679 0.78747009 0.65025767

14 1 0.89515345 0.83725251 0.60043219
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Figure 5. The effect of slow-path fallbacks in the skip-
list benchmark. We give results for different percentages of
slow-paths: 0%, 10%, 50% and 100% of the total operations.

100% performance reference point, and show the relative
performance of the StackTrack 10, 50, and 100, which exe-
cute 10%, 50%, and 100% slow-path fallbacks respectively.

Slow-paths induce significant slow-down, of up to 60%
of the original performance for 100% slow-path fallbacks.
On the other hand, most of the operations would succeed in
hardware, since the split predictor is able to adjust and make
split hardware transactions smaller or larger. We expect the
slow-path fallback to occur rarely, and the likely expected
slow-down is upper bounded by the 10% slow-path case.

The slow-path penalty is less prominent for higher thread
counts; there are higher penalties for concurrency and con-
tention when there are many threads executing at the same
time, which “hides” the cost of the slow-path fallback.

7. Discussion and Future Work
The results in the previous section suggest that StackTrack
can provide automatic memory reclamation while maintain-
ing low overhead. Its performance is superior to that of haz-
ard pointers (by up to 200%), and outperforms the epoch-
based technique if threads may be preempted. On the other
hand, StackTrack may reduce the throughput of the data
structure by at most 50%.

The overhead due to instrumentation and contention
grows roughly linearly with the number of threads, while
the number of capacity aborts appears to grow exponentially
once the number of threads surpasses the number of cores.
This suggests that a significant fraction of the overhead is
caused by limitations of the current hardware, which might
be mitigated in future HTM systems. In sum, these results
lead us to believe that our scheme has the potential to scale
well on HTM systems with higher numbers of cores.

The main limitation of our scheme is its reliance on HTM.
We believe that this technology will become more prevalent,
and will provide better scalability. In fact, StackTrack pro-
vides a good illustration of the power of HTM to simplify
concurrent data structure design. (While StackTrack can also
be executed using software transactional memory, hardware
support is essential for performance.)



An interesting aspect of our framework is the automatic
splitting of transactions into short segments, whose commit
rate is superior to that of long transactions. Our experience
suggests that this technique may be useful beyond memory
reclamation, and that it is possible to automate the segmenta-
tion to optimize performance. Improving the automatic seg-
mentation technique is an intriguing topic for future work.

We have certainly not explored the whole potential of
HTM for memory reclamation. The currently available HTM
system has several limitations, both in terms of number
of cores and capacity. The capabilities and performance of
HTM will undoubtedly improve in the future, and so will
the performance of our scheme.
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