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Abstract. This report describes the isolation and char- 

acterization of genomic and cDNA clones which 

define a subfamily of type I keratins in Xenopus laevis 

whose expression is restricted to embryonic and larval 

stages. The XK81 subfamily, named after the prototype 

cDNA clone DG81, contains four members arranged 

in two pairs of closely homologous loci; they were 

named 81A1, A2, B1, and B2. Genomic clones were 

obtained representing all of these regions. The A1 

gene has been completely sequenced together with ~1 

kb of flanking sequences at each end; this gene corre- 

sponds to the previously reported cDNA clone 8128 

(Jonas, E., T. D. Sargent, and I. B. Dawid, 1985, 

Proc. Natl. Acad. Sci. USA, 82:5413-5417). The B2 

gene is represented by a partial cDNA clone, DGll8. 

Upstream sequences and about half of the coding 

regions have been sequenced for the B1 and B2 genes, 

whereas the A2 locus has been identified on the basis 

of hybridization data and could be a gene or pseudo- 

gene. Genomic Southern blotting indicates that all 

members of the subfamily have been isolated. The ker- 

atin proteins encoded by the B1 and B2 genes are 96% 

homologous in the central rod domain, whereas A/B 

gene homology in this region is 81%. During develop- 

ment mRNAs derived from A and B genes accumulate 

coordinately during gastrula and neurula stages; in 

the tadpole, 81A mRNA decays rapidly, whereas 81B 

mRNA shows a second abundance peak, persists for 

most of tadpole life, and decays by metamorphosis. 

RNAs derived from the XK81 keratin subfamily are 

undetectable in the adult, where different type I 

keratin genes are expressed. 

I 
NXERMEDIArE filaments in epidermal and other epithe- 
lial cells are composed of keratins, members of a family 
of proteins that share a structural design as well as pri- 

mary sequence homologies (reviewed in reference 17). Kera- 
tins can be classified into two distinct groups, type I keratins 
that are generally smaller and more acidic, and type II kera- 
tins that are generally larger and more basic. Proteins of each 
type are more homologous to each other than they are to 
those of the other type (reviewed in references 17 and 18). 

In the frog Xenopus laevis, gastrulation is accompanied by 
vigorous expression of new genetic information (14). Promi- 
nent among the genes activated at this stage of development 
are keratin genes whose products accumulate rapidly in the 
ectoderm and in the differentiating epidermis of the develop- 
ing embryo (10, 15, 22; Jamrich, M., T. D. Sargent, and 
I. B. Dawid, unpublished observations). The timing of ex- 
pression of these keratin genes varies, but all share the prop- 
erty that expression is restricted to the embryonic and larval 
periods; no RNA transcribed from these embryonic genes 
can be detected in adult skin where distinct keratins are ex- 
pressed (8, 9). We have undertaken a detailed analysis of the 
keratin genes expressed in the frog embryo with the aim to 
analyze the developmental program of expression in terms 
of regulatory controls and functional implications for epider- 
mal development. 

The embryonic keratin genes characterized so far in Xeno- 
pus include representatives of type I and type II polypep- 
tides. Two predicted type I polypeptide sequences were de- 
rived from cDNAs named DG81 and DG70, which are quite 
different in sequence and in time of expression during devel- 
opment (10, 22). Further analysis of embryonic keratin genes 
has led to the realization that Xenopus contains several genes 
closely related to the original cDNA DG81. In the present 
paper we report the isolation and analysis of a genomic clone 
corresponding to the originally reported cDNA clone, and 
of clones representing additional related genes; the results 
define a subfamily of type I keratins in Xenopus which we 
call the XK81 family, with XK signifying the predicted pro- 
teins. Despite their close sequence similarity, member genes 
of this family are differentially expressed in frog devel- 
opment. 

Materials and Methods  

Genomic Clones 

One million recombinants from a lambda library of genomic DNA se- 
quences isolated from wild-caught animals (4) were screened by hybridiza- 
tion with nick-translated DG81 insert DNA (1), followed by washing at high 
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stringency (0.2x SSPE ~ at 65°C; lx  SSPE is 150 mM NaCI, 10 mM 
Na2HPO4, pH 7.0, 1 mM EDTA). Several different clones were isolated, 
including G8123, G8103, and G8132, which were analyzed in detail. 

Restriction enzyme sites were mapped by standard procedures, and 
where possible, were confirmed by inspection of nucleotide sequence data. 
The XbaI site at 14 kb in G8103 overlaps with an MboI site, and will be 
methylated and resistant to digestion with XbaI in DNA prepared from 
darn + bacteria. 

Sequencing 

The 81A1 Locus. The 6.0-kb EcoRI fragment from G8132 containing the 
A1 locus was purified from an agarose gel and digested with exonuclease 
III and S1 to generate a series of partially deleted fragments. These were 

treated with DNA polymerase 1 to repair imperfectly blunt ends and cloned 
into pUC18 that had been digested with SmaI and treated with calf intestine 
alkaline phosphatase. A set of nested deletion derivatives was thereby gener- 
ated. DNA from these subclones was prepared by a rapid alkaline lysis 
method (2) and further purified by chromatography on Sepharose CL2B. 
This DNA was digested with either BamHI or Asp718, dephosphorylated 
and labeled with T4 kinase and 7-32P ATP, followed by digestion with ei- 
ther HindIII (for the BamHI) or EcoRI (for Asp718), which cleaved the poly- 
linker sequence yielding a large labeled 81A1 fragment and a very small 
labeled polylinker fragment. The latter was removed by CL2B chromatog- 
raphy, and this was followed by chemical sequencing according to Maxam 
and Gilbert (11). Most of the 81A1 locus was sequenced on one strand only, 
except for 600 bp of 5' flanking sequence, which was read on both strands. 

The 81B2 Locus. The 5' half of the B2 locus, along with ,'~1,000 bp of 
5' flanking DNA, was sequenced by the chemical modification method (11) 
in conjunction with restriction endonuclease site mapping. 

The 81111 Locus. A 2.7-kb EcoRI fragment from G8123 containing the 
5' half of the B1 locus, along with ,',,1,000 nucleotides of 5' flanking DNA, 
was cloned into the EcoRI site of pUC18. This subclone was digested with 
BamHI and PstI and subjected to the directed exonuclease/S1 procedure of 

Henikoff (7). The deletion derivatives thereby obtained were sequenced by 
a primer extension method using double-stranded DNA template (21). Both 
the B1 and B2 loci were sequenced on one strand only. 

DG//8. The cDNA clone, DGll8, was sequenced by the chemical 
modification method of Maxam and Gilbert (11). Both strands were se- 
quenced completely. ° 

RNA Blot Analysis 

Total RNA was isolated from whole embryos, subjected to electrophoresis 
on gels containing methylmercury hydroxide, transferred to nylon mem- 
brane, and hybridized as described in Sargent et al. (15). A final wash step 
was included using 0.1x SSPE at 70°C. This high stringency wash was 
shown to eliminate >90% of cross-reaction between 81A and 81B sequences 
in RNA/DNA hybridizations (data not shown). 

Primer Extension 

A 17-residue long oligodeoxyribonucleotide was labeled with 7-32p-ATP 

and T4 kinase. 50 ng primer was annealed with 0.5 lag poly(A) ÷ RNA, 
prepared as described in Sargent et al. (15) from late neurula embryos, and 
extended by incubation with M-MLV reverse transcriptase (Bethesda Re- 
search Laboratories, Gaithersburg, MD) at 43°C for 20 s in .  The product 

was subjected to electrophoresis on a 6% acrylamide/urea gel, along with 
chain termination sequencing products using the identical primer and 
double-stranded DNA from G8132 as a template (13, 21). 

Results 

The XKS1 Subfamily of Epidermal Keratins 

To facilitate orientation we present the overall relationships 
among XK81 (Xenopus keratin 81) family genes at the outset 
before giving the evidence on which this summary is based. 
There are four loci in this subfamily, arranged in two pairs 
of closely related sequences. Following the nomenclature in 
the similar case of the four Xenopus vitellogenin genes (19), 

1. Abbreviation used in this paper: lx  SSPE, 150 mM NaCI, 10 mM 
Na:HPO4, pH 7.0, 1 mM EDTA. 
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Figure 1. Maps of genomic clones containing XK81 family keratin 
genes. The position and direction of transcription of each gene is 
indicated by arrows. The 81A2 locus is incomplete. R and L signify 

the right and left arms of  the lambda J1 cloning vector. Restriction 

enzymes are shown as follows: B, BamHI;  E, EcoRI;  H, HindlII;  

X, XbaI. EcoRI sites in parentheses correspond to the vector poly- 

linker sequence and do not appear in the Xenopus genome. 

we named the loci XK81A1, A2, B1, and B2. The A1 gene 
corresponds to the previously published eDNA clone 8128, 
which is a full-length homologue of the eDNA clone DG81 
(10, 14), and the B2 gene is represented by the eDNA clone 
DG118 (see below). Therefore it can be concluded that these 
two genes are genuinely expressed, i.e., are not pseudo- 
genes. Although there is nothing in the structure of the B1 
locus to indicate otherwise, we have no direct evidence that 
it is transcribed. Less is known about the A2 locus; a portion 
of its 5' region including the first exon has not been cloned, 
and no sequence data have been obtained. The close relation- 
ship between the A1 and A2 sequences is indicated by hy- 
bridization data. 

Genomic Clones from the XKSI Family 

Phages homologous to eDNA 8128 were isolated from a 
Xenopus genomic DNA library, and three different phages 
containing homologous regions are shown in Fig. 1. The seg- 
ments corresponding to keratin genes are indicated, together 
with the names assigned on the basis of subsequent analysis 
and the direction of transcription of each locus. As noted 
above, the A2 locus is incomplete: The region homologous 
to the eDNA probe (8128) was mapped to be very near the 
Xenopus-lambda boundary, and furthermore, no part of the 
A2 region could hybridize to a labeled probe corresponding 
to the first exon of the A1 gene, a probe that includes highly 
conserved sequences. 

Aside from the absent 5' end of A2, it appears that the three 
genomic clones shown in Fig. 1 include the entire XKS1 sub- 
family. Evidence supporting this conclusion is shown in Fig. 
2. Nuclear DNA samples from a single animal and single- 
copy equivalents of the three genomic clones were digested 
with EcoRI and analyzed by Southern blotting and hybrid- 
ization with eDNA 8128, the A1 gene product. In the ge- 
nomic DNA, four bands are visible, including a doublet of 
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Figure 2. Genomic Southern 
blots. DNA from a single frog 
and genomic clones were di- 
gested with EcoRI, subjected 
to electrophoresis on an aga- 
rose gel, transferred to nitro- 
cellulose membrane, and hy- 
bridized with labeled probe 
from cDNA clone 8128. The 
final wash was in 0.2x SSPE 
at 65°C. 5 ~tg of genomic 
DNA, or a single copy equiva- 
lent of phage clone DNA (83 
pg) diluted with EcoRI-di- 
gested Drosophila raelano- 
gaster DNA, was loaded on 
each lane. Bands are labeled 
for reference in the text. 

6.4 kb (band b). The intensity of the signals in genomic DNA 
samples is similar to that observed with single-copy equiva- 
lents of cloned DNA, indicating that the sequences corre- 
sponding to these bands are present only once per haploid 
genome. All of the bands visible in the genomic DNA sam- 
pies are represented in the genomic clones. The doublet band 
is probably due to population polymorphism; we have iso- 
lated several genomic clones that are very similar to G8132 
except that they contain a slightly larger EcoRI fragment ho- 
mologous to 8128 (data not shown). Bands a and d are pres- 
ent in G8103, band b in G8132, and band c in G8123. 

The XK81A1 Gene Sequence 

The keratin gene contained on phage G8132 was shown to 
correspond to the previously sequenced cDNA 8128; it was 
named XK81A1 and was completely sequenced together with 
'~1 kb of flanking sequence at each end (Fig. 3). The gene 
is composed of eight exons and seven introns whose place- 
ment will be discussed further below. The exon sequence 
shows only three differences compared with the sequence of 
cDNA 8128 (10; see legend to Fig. 3), all of which are silent. 
These minor differences are almost certainly due to poly- 
morphisms in the frog population from which the various 
clones have been isolated; thus we conclude that cDNA 8128 
is derived from the region cloned in G8132, and both of these 
clones represent the 81A1 gene. 

The 5' end of the mRNA was determined by primer exten- 
sion (Fig. 4). The major extension product is actually one 
nucleotide shorter than the cDNA clone 8128. It appears 
likely that the extension product terminated one position 
downstream of the cap site; we have assigned position +1 to 
the 5'-terminal nucleotide of 8128. 

The XK81B2 Gene 

The subtracted gastrula cDNA library prepared in our labo- 
ratory (14) was screened with a probe derived from late neu- 

rula stage epidermal poly(A) ÷ RNA. Several cDNA clones 
were identified that hybridized strongly to this probe, and 
one, named DGll8, proved to represent a keratin mRNA re- 
lated to DG81. Sequence analysis showed that DGll8 is pre- 
cisely homologous to the keratin gene region in the center 
of the phage clone G8103 (Fig. 1); this region was named the 
81B2 gene. The cDNA clone DGll8 is '~80% of full length, 
missing sequences at both the 5' and 3' ends. The sequence 
information available from DGll8 was augmented with se- 
quences derived from the first exon of the B2 locus and the 
result is shown in Fig. 5. In this figure the nucleotide se- 
quence of the 81B2 gene is translated into the XK81B2 protein 
and is compared with the predicted sequence of the XK81A1 
protein (10, and Fig. 3). The B2 protein has a typical keratin 
structure. In the central rod domain (see reference 17), the 
homology between the A1 and B2 proteins is 81%, but the 
NH2- and COOH-terminal domains have little significant 
similarity. 

Sequence Relationships in the XK81 Keratin Family 

A keratin gene closely related to the B2 gene is contained 
on phage G8123 (Fig. 1); we have named it the XK81B1 gene. 
Part of its sequence, including 1 kb of 5' flanking sequence 
and the first four exons and three introns, has been deter- 
mined, and a portion of the upstream sequence is presented 
in Fig. 8. In its rod domain the predicted XKS1B1 protein is 
96% identical with the B2 protein, and even in the nonhelical 
NH2-terminal domain the homology between the two pro- 
teins is 83 %. 

The intron sequences of B1 and B2, which are not shown, 
and all other available sequence data from the XK81 family, 
are being submitted to the Genbank Database. Analysis of 
the available intron sequences shows no significant homol- 
ogy between sequences in XK81A1 introns and those of the 
B1 or B2 loci. There is considerable homology between the 
introns in the closely related B1 and B2 genes; segments 
of high homology are interrupted by unrelated sequence 
stretches, suggesting evolutionary changes by frequent events 
of insertion or deletion. As in numerous other cases studied, 
the introns of different members of the XK81 keratin gene 
family show much lower levels of homology than the exons. 

Relationships in the XK81 family were studied also by hy- 
bridization, especially to obtain information about the up- 
stream homology region on phage G8103 (eventually named 
the A2 locus) for which no sequence data are available. Fig. 
6 shows the results of an experiment in which digests of the 
three genomic clones (Fig. 1) were hybridized at moderately 
stringent criterion with probes derived from the rod-encod- 
ing regions of the B2 (G8103), B1 (G8123), and A1 (G8132) 
genes. The A1 probe hybridizes most intensely to the frag- 
ment of clone G8132 containing this gene (band b); the sec- 
ond most intense signal was seen with the upstream fragment 
from G8103 (band a). Weaker signals were obtained with 
fragments containing the B1 and B2 sequences. The corre- 
sponding intensity relationships were seen with the B gene 
probes: strongest hybridization to self, moderate hybridiza- 
tion to the other B gene fragments, and weak signal with A 
sequences. These results suggest that A1 and A2 have a simi- 
lar level of homology as B1 and B2 for which sequence infor- 
mation is available (see above). On the basis of this informa- 
tion we classified the four XK81 loci into a subfamily with 
two pairs of closely related members, as introduced at the be- 
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ctc•gtt•cttg•c•ct•gtgttg•t••gtg••cccc•gtt•ttc•g•acctgtttgtgt•gccg•gcctttcctggcttgt•gtct••tc•••atg••t +3211 

t g g t ~ t t g t a t ~ c ~ t c ~ t ~ t t c ~ t g t t ~ c ~ g ~ g ~ t t ~ t ~ g ~ t g t g c ~ t g c t c g c c t c ~ g t ~ t g t ~ t ~ g ~ a t t c t t ~ t g g ~ c ~  +3311 

t•ag•••••••••••t•••gttgtggt•c•gg••g•••tgtt••g•gtttt•••g•gg•tgtt••••t•ttgttttt•••tt•t•cttgttttgt•cctc +3411 
I7 E8 

ttc~gtttt~ctt~t~c~Qc~tttc~ttcc~gAATCCTCATCAACATCCACAACTAGAACCAGAATGGTA/~`GACCATTGTCGAGGAGGTGGTTGATGG +3511 

GAAGGTTGTTT•ATCAAGA•T••AGTAAATCCAA•AGAATG•GAAATAAATGCA•AAATAAG•AGAAAT•TT•••TGAGAT••TGAAGTGTTA•TGATGA +3611 

CAAAGAAATTATGGAAACTTCTCAATAAAAGACCTTAACTC~t~tt~tattgtcc~ttcQttt~atg~ttt~tgc~ct~gcaccttgttc~gg~at~t +3711 

c ~ t t t c ~ t t t ~ g ~ c c t c a c ~ c c ~ c ~ t g t ~ c c ~ c t ~ a c a 9 t ~ c t c a t t a c c c t t ~ a a t a t ~ c t t t ~ c c t g t t ~ c ~ a c ~ a t t t t t Q ~ g a t ~ t ~  +3811 

tt•c••ttctg•••g•ca••••••••ct•c•••g•tcccc•gtct•t•••••tgtccccct•t••••g•gt•g•tt•••gc•ggg•attttttt•tc•cc +3911 

ttcctcc••ggg•cccc•tc•••tgtg•t•g••g•tg••cccg•••••tct••••ct••••ct•c•t••c•c••t•tg••g•••t•c•••cctc•c•tc 9 +4011 

••tct•cc•••tct••t•t••••c•••••tc•c•tc••c•a•cc••c••g•ct•tt•g•t•t•••t•ctgc•c•ttgc•tcttc•tcc9•c••tc9t•tt +4111 

••at•c••tc•gttt•••ttgc••t•g•t•c••c•ttt•tatt•ctt•c•tt•••ttt••c•catcc••t•t••cgcct•c•ctttctctc•tt9cgtct +4211 

••tc•g••t9•ccc•cctgt•t••ttcc•9cttt•ct•t•••••ttc••••c••t••••t•ttt•tc••••tt9•••ta•c9•tt••9t•ttttc•99•• +4311 

c•9•t•c•cc••tgc•••••ct•t•ct•cc•cgtt•ttt••c•c••c•••9c•9Qttt•tc•••9•ct••g•t•••ttttcc••t9••••••••ttct•t +4411 

tttt••••t•tttttt•t•t•••tt••ct•••g••t••tcc•••ttc••t•t•••t•tt••••ttt•tcQt•t•ct•tctcttt•9•••ttc••cttcc• +4511 

c c Q t t c ~ c c ~ t c t ~ c c t 9 c c ~ t t 9 c t t t t t ~ c c c t t c t ~ c c t ~ t t t 9 ~ t c c ~ t t g ~ t 9 ~ c t t t ~ a ~ c t t t t t t t t t t t t 9 t t ~ c t t  +4611 

Figure ~ Sequence of the XK81A1 gene. Flanking sequences and introns are shown in lower case letters, exons in upper case• The exons 
(E) and introns (I) are also numbered above each boundary. The 5'-~rminal nucleotide of the mRNA is assigned the number +1. Regions 
of in ,  rest are overlined: The TATA box at -23, the ATG translation initiation codon at +68, the termination codon TAA at +3,537, the 
polyadenylation signal at +3,635, and the poly(A) addition si~ at +3,652. The following changes are observed in the exon sequences 
compared with the sequence of eDNA 8128 (see re~rence ~): The T residues at positions +223, +466, and +1,538 are G, C, and C, 
respectively, in 8128. None of these changes alter the amino acid sequence of XK81AI. 

ginning of the Results section. As already mentioned, the A1 
and B2 regions are known to be expressed and thus represent 
genes, the B1 region has the structural properties of an active 
gene, while the status of the A2 region as a gene or pseudo- 
gene is undecided• 

The four members of the XK81 family are not poly- 
morphic variants of the same gene. Though the clones we 
analyzed were derived from libraries made from wild-caught 
animals that are known to harbor many polymorphisms, even 
the highly similar B1 and B2 genes have very different intron 
sequences and are contained within larger genomic segments 
of quite distinct restriction maps (Fig. 1). 

Intron/Exon Maps of XKS1 Family Keratin Genes 

The complete sequence of the 81A1 gene and the partial se- 
quences of the B1 and B2 genes yield intron/exon maps that 
are summarized in Fig. 7 and Table I; the position of introns 
is also indicated on the exonic sequence of Fig. 5. The first 
four introns, for which information is available for all three 
genes, occur at homologous positions of the coding sequences. 
The placement of all the introns in 81A1 is similar to that in 
keratin genes of other animals, but some variation in place- 
ment occurs (18)• In the XKS1 family genes as in all type 1 
keratin genes studied so far, the first exon is relatively large 
and includes the 5' untranslated region, the entire sequence 

encoding the NH2-terminal nonhelical domain of the pro- 
tein, and a portion of the rod domain• 

Sequence Homologies in the 5' Flanking Regions 

Fig. 8 shows ~300 bp of the upstream flanking regions of 
the 81A1, B1, and B2 genes. These data document the great 
similarity of the B1 and B2 genes. Further upstream, the B1 
and B2 loci are still homologous, but differences occur that 
suggest insertion or deletion events, similar to the situation 
in the introns of the same loci (see above). 

Substantial homologies were also observed between the A 
and B genes, particularly in four regions• The first homology 
region is constituted by the TATA box, located 23 bp up- 
stream of the 5' end of the A1 mRNA. Whereas the A1 and 
B2 TATA boxes are quite standard, the B1 locus has an un- 
usually long stretch of alternating A and T residues. Since 
this locus is not represented by a eDNA clone we cannot be 
certain that it is transcribed in vivo. 

Three homology regions upstream of the TATA box, iden- 
tiffed by overlining in Fig. 8, were observed. In the sequence 
up to 1 kb upstream no additional homology regions between 
A and B genes occur• The initiation site-proximal region 

with the sequence CA7G is precisely represented in all 
three genes• The other two regions include some mismatched 
bases but still constitute clearly identifiable segments of ho- 
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Figure 4. Determination of the cap site of XK81A1 mRNA by 
primer extension. A synthetic oligodeoxyribonucleotide (TGA- 
AGTTTCCACATCAC) was annealed with mRNA, extended with 
reverse transcriptase, and separated on a sequencing gel next to 
chain termination reactions generated with the same primer and 
cloned genomic DNA (see Materials and Methods). As explained 
in the text the 5'-terminal nucleotide of the mRNA is assumed to 
correspond to the T residue immediately upstream from the point 
at which primer extension terminated. 

mology. It may be speculated that these regions contain sig- 
nals for the temporally and regionally controlled activation 
of the keratin genes during frog embryogenesis. 

Differential Expression of  A and B Genes 
in Development 

Earlier experiments showed that RNA homologous to the 
eDNA clone DG81 begins to accumulate at early gastrula 
and eventually decays in later tadpoles to become undetect- 
able after metamorphosis (10, 16). Since the DG81 probe is 
now known to be homologous to different RNAs, we repeated 
the experiment under conditions that distinguish between A 
and B gene expression. Gel blot experiments showed that the 

XK81A and B mRNAs have the same size which is known 
to be 1,478 nucleotides plus the poly(A) tail (10). Fig. 9 
shows the results of relative quantitations of XK81 mRNAs: 
Transcripts derived from the A and the B genes accumulate 
in parallel through gastrulation, neurulation, and early tad- 
pole stages. After a peak in the 3-d tadpole, both types of 
RNA decay to about half their peak level during the next day. 
After this, the 81A mRNA continues to decay rapidly, while 
the 81B RNA increases again to reach a second peak in tad- 
poles during their later stage of development. As reported 
earlier all XK81-type mRNA reaches very low to undetect- 
able levels in the postmetamorphic frog skin. 

Discussion 

The Complexity of  Keratin Genes in Xenopus laevis 

To date there is direct evidence, in the form of cDNA or 
genomic clones, for 11 keratin loci in X. laevis. Of these, 
three type II and one type I genes are expressed in adult skin 
(8, 9), five are embryonic/larval specific, and two, which are 
of the embryonic/larval class, are not definitely known to be 
expressed. These genes can be classified into subfamilies: 
The three adult type II genes are very closely related, 
whereas the embryonic sequences include one type II gene 
and six type I genes that define two subfamilies. These two 
type I subfamilies were named after the prototype cDNA 
clone identifying them; the XK70 subfamily (22) is repre- 
sented by two known genes, whereas four members make up 
the XK81 group. Homology between the predicted XK81A1 
or B2 and XK70 proteins is not particularly high, only 53 
and 57% in the rod domain, respectively. Divergence be- 
tween these two subfamilies is thus as high or somewhat 
higher than between either and a human type I keratin (see 
22). This suggests that divergence between XK70 and XK81 
genes began early in the evolution of vertebrates. 

The total complexity of the keratin family in any one or- 

ganism is not known. While the clones we have obtained rep- 
resent the more abundant keratin mRNAs expressed in early 
frog development, data from protein gel electrophoresis sug- 
gest that additional keratins occur during oogenesis and in 
later tadpole stages (5, 6; Winkles, J. A., T. D. Sargent, M. 
Jamrich, and I. B. Dawid, unpublished results). 

Evolution of  the XK81 Family 

Karyotypic and molecular evidence suggest that a genome 
duplication has taken place during the evolution of the X. 
laevis species (3, 19). The properties of the XK81 keratin 
family, which are reminiscent of those of the vitellogenin 
family in the same animal (19, 20), are consistent with such 
an interpretation. We suggest that an XK81A and B gene were 
generated by duplication some time before the genome dupli- 
cation; this duplication was probably a local one since the 
A2/B2 pair is still closely linked. After some divergence be- 
tween these genes had taken place the entire X. laevis ge- 
nome duplicated, generating the four-locus XK81 family. 
Since this time relatively little divergence has occurred, 
leading to the closely related A1/A2 and B1/B2 pairs. 

Differential Expression of  SIA and 81B mRNAs 

The A and B RNAs accumulate coordinately but decline 
differentially; we do not know whether this is due entirely 
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B2 CTGTTTTGTGCA~CT~GTTGTC~GC~TAC~AGCCACC 42 

B2 ATGTCATTCCGTTCCAGCTCTTCTTACTCTCTACAGAGCAAAGGCATCTCTGGA~TGGTGGCTATGGAGCAGGCTTT~T~TGGCTCT 132 
M S F R S S S S Y S L Q S K G I S G G G G Y G A G F G G G S 

A1 M T S Y R S S A S Y Y S S S S K F 

B2 GGAGCAGGCTTTGGTGGTGGCTCTGGAGCAGGCT TTGGTGGTGGCTATGGAGCAGGCTTTGGTGGTGGTGCATCTTCTGGGTTTTCCCTT 222 
G A G F G G G S G A G F G G G Y G A G F G G G A S S G F S L 

A1 S R S L A N S Y G S S F S S V G S 

B2 AGTTCTGCAGGTGGTTTTGGAGCAGCTGCTGCCAGTTCCAGCTTCAGCAACTTTGGTGGTAATGATAAGCAAACCATGCAGAACCTCAAT 312 
S S A G G F G A A A A S S S F S N F G G N D K Q T M Q N L N 

A1 G G N F A M E E H A 

B2 GACCGTCTTGCT TCCTACCTGGAGAAACTAAGAGCCCTGGAAGCAGCCAATGCTGACCTGGAAC TGAAGATCCGTGAGTGGTATGAGAAG 4e2 
D R L A S Y L E K V R A L E A A N A D L E L K I R E W Y E K 

A1 T S G N D 

B2 CAAAAAGGGTCTGGTAT TGGAGCTGGGTCTAAGGAT TTCAGCAAATACT T TGAAATCATCAGTGAT T TGAGGAACAAGATCCTTTCAGCC 492 
Q K G S G I G A G S K D F S K Y F E I I S D L R N K II L S A 

A1 S D A Y A E I R A 
1 

B2 ACCAT TGATAACTCAAGAGT TGT TC TGCAAAT TGACAATGCCAAACTTGCTGCTGATGACT TCCGCC TGAAGT T TGAGAATGAGCTGGCT 582 
T 1 D N S R V V L Q I D N A K L A A D D F R L K I F  E N E L A 

A1 A T T R I 
2 

B2 C T TCGCCAGAGTGTGGAGACTGATATCAATGGCT TGCGTAGAGTCCTGGATGAGCTGACCCT TGC TAGAGGTGACCTTGAGATGCAGATT 672 
L R Q S V E T D I N G L R R V L D E L T L A R G D L F M Q I 

AI G S 1 F L 

B2 GAGAGC T TGAC TGAAGAGCTGGCCTACCTCAACAACAACCATGAGGAGGAGATGAGTAT TGC TAACAGCAGCTCTGCTGGACAAGTGAAT 762 
E S L T E E L A Y L K K N H E E IE M S 1 A K S S S A G Q V N 

A1 I H Q K S 

3 
B2 GTACAAATGGATGC TGC TCCAGGCATAGATC TGAACAAGATTCTCAGTGACATGACAGCCGACTATGAAACACTGGCTGAAAAGAACAGA 852 

V E M D A A P G I D L N K I L S D M R A D Y E T L A E K N R 
A1 L V T S N N I 

B2 AGAGATGCAGAGC TG TGG T T TAACCAGAAGAGCGGTGAGCTGAAGAAAGAGAT TCAAACAGG TG TGGAACAAGTGCAGACAAGCAAGAGT 942 
R D A E L W F N Q K IS G E L K K E I Q T G V E Q V Q T S K S 

A I I  S V A 

L, 
B2 •AAATAAAT•A•CTCAGAC•CAGCCTTCAGAGTTTGGAAATTGAATTGCAATCTCAACTGG•AATGAAAAAATCTCTGGAAGACACCCTG Ie32  

E I N D L R R S L O S L E I E L O S Q L A M K K S L E D T L 
A1 T E K I Q V G N 

5 
B2 G•AGAAACAGATGGCCGATATGGTG•A•AG••T•AAA•AATTCAGTT•AGTCT•AGAAGC•TGGA••AACAACTTCTGCAGATCAGGTCT 1122 

A E T O G R Y G A O L Q T l Q F S L R S L E E Q L L Q I R S 
A1 N L Q F S S Q N T I G 

B2 •A•ATGGAACGTCAGAA•A•••A•TA•A••CAGC••CTTGA•ATTAA•AC•AGACTA•AAATGGAGATT•AAA•ATACAGG••CCTGCTG 1212 
D M E R Q N M E Y R Q L L D I K T R L E M E 1 E T Y R R L L 

A1 H T K L Q 

B2 •AGGGA•AA•TT•GTTCATTAAAG•CTT•AATA•TGCAA••TACTGAAGTTTCCACATCACAATCATC•TC•AG•T•CAAAAAA•AT / /  1299 
E G E F G S L K S S I V O A T E V S T S Q S S S S S K K D / /  

A1 L I Q V T T V A N T S S V E K T El T T T R T 

6 7 

A1 R M V K T I V E E V V D G K V V S S R V E* 

Figure 5. Sequence of the XK81B2 mRNA and comparison of the predicted XK8IA1 and XK8IB2 proteins. The nucleotide sequence of 
eDNA clone DGII8 is represented by nucleotides 107-1,299. Exon sequence of the B2 gene corresponding to nucleotides 1-106 was used 
to provide the 5' region of the mRNA. The position of nucleotide +1 was inferred by homology to the A1 gene (Fig. 8), and the polypeptide 
sequence was assumed to begin with the first available ATG codon. In the sequence overlap of 776 nucleotides available between eDNA 
DGll8 and genomic B2 exons on phage G8103 there were no differences. The predicted XK81B2 protein is compared with the A1 protein 
taken from Jonas et al. (10). Blank spaces signify identity, and dashes are gaps introduced for alignment. The positions at which introns 
interrupt the sequence are shown by vertical lines; these positions are identical in A1 and B2 for the first four introns. B2 genomic sequence 
is not available beyond this point. 

to transcriptional regulation or also to differences in RNA 

stability. If the A and B genes originated by duplication, the 

sequences involved in differential regulation must have 

evolved since that time. Sequence comparisons between the 

A1 and B2 genes revealed some similarities as well as differ- 

ences in the upstream flanking and untranslated regions; 

which of these regions may be involved in the common acti- 

vation of these genes in early gastrula or their different be- 

havior later is presently unknown. 

In our experiments we did not distinguish between A1 and 
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Figure 6. Cross-hybridization of XK81 family clones. Phage DNA 
(Fig. 1) was digested with EcoRI, separated on an agarose gel, and 
transferred to nylon membrane filters. Replicate filters were hybrid- 
ized and washed as described (15). The final wash buffer has a Na ÷ 
concentration of 200 mM and was used at 65°C. Probes were de- 
rived from the indicated genes as follows: The A1 probe was a 2.6- 
kb PstI fragment from G8132, from 8.4 to 11 kb in Fig. 1 (PstI sites 
not shown in this figure). The B1 probe was the 2.7-kb EcoRI frag- 
ment from G8123, and the B2 probe was the 2.1-kb EcoRI fragment 
from G8103. The major bands are indicated as in Fig. 2 for refer- 
ence in the text. 

A2 or between B1 and B2 RNAs. Given the great similarity 

between transcribed and flanking sequences of the B1 and B2 

genes we might expect them to be co-regulated. If  this were 

found to be the case it would strengthen the interpretation of 

the origin of the V2 pairs by genome duplication: Their exis- 

tence would have no functional basis but would be a conse- 

quence of a global evolutionary event in the history of the 

species. 

While differential regulation alone does not provide con- 

clusive evidence that the 81A and 81B gene products have 

different functions, such an interpretation is consistent with 

the expression data. XK81A mRNA is present only during 

Table L Exon and Intron Sizes in XK81 Genes 

AI B1 B2 

E1 4 6 9  4 9 0  4 8 2  

I 1 4 5 2  601 6 7 9  

E2 83 83 83 

12 283  129 112 

E3 157 157 157 

I3 130 129 114 

E4  162 162 162 

14 379  - - 

E5  126 - - 

I5 100 - - 

E6  2 1 8  - - 

16 2 7 4  - - 

E7 4 7  - - 

I7 5 6 4  - - 

E8  2 0 8  - - 

The size, in base pairs, of  exons (El ,  E2, etc.) and introns (I1, 12, etc.) was 
deduced from available sequence data from the AI ,  B1, and B2 genes. The 5' 
boundary of exon 1 (El) for the A1 gene corresponds to the first nucleotide 
of  cDNA clone 8128 (Fig. 4; reference 10). The equivalent positions of  the B 1 
and B2 genes were predicted by homology to the AI gene (Fig. 8). Ambiguities 
in the location of splice sites were resolved according to the assumption that 
introns begin with the residues GT and end with AG. 

8 1 A I  n m,  _m m,  m ~ • • m m i m in i  m 

81B1 ~ - - - - R t - - i i ~ i l - - I /  

811:12 ~ , ,  ~ m r ' /  

0 0 .4  0 .8  1 .2  1 .6  2.0 2.4 2.8 3.2 3 .6  
I I I L I I I I I I 

Kilobases 

Figure 7. Intron/exon map of XK81 family genes. The maps summa- 
rize the available sequence information. The positions of introns 
and their lengths are also given in Table I and indicated in Fig. 5. 

early development when the epidermis is first established in 

the embryo; development beyond 4 d after fertilization does 

not require this mRNA. The situation is even more pro- 

nounced with XK70 mRNA which encodes a type I keratin 

of  rather distinct sequence: This mRNA accumulates in the 

gastrula and neurula stages but decays rapidly thereafter and 

A1 TTGCTGAAG•AAGCCTGGAG•AAG•AGAGAGTGGTGCTGCAACATCAAGTGAAAATCTTCCAAGAATTTGCCCCA.ACCAGTTTGTAACCAAGTTTTTGTTT 

: 1 : : : : :  : : ; : : : : : : : : : :  : : : : : ; :  : :  : :  : ; : : : : : : :  : : : : 1 : : : ;  : : : : : : : : : : : : : : : : : : : : : : : : : : :  1 : : : : : : :  : : :  

B2 TTCAGCAAAGTTGCCTGGGGCAAGGT-GAGAGGGACGGCTGAAAACTGGAAAGAAAAG_AAGAATTTGCCTCTCCCAGTTTCTAACCAATACcTTCAGG 

-17e  

A1 AA•AAA•ACC•TGAGC•CTACGTAACTGAATCAAGGCGATTATCCATCTCTCGATCAGTGCAGTGACCTGGCCAAAAAAAGGAATTTTCCATATAC•GAGGAC 

B1 C, CTATTTCATTTATTTAAATATG/~CTGAiTATGATGGTGAiTTTCTGGAAACAGATGCTGACCTGT CAAAAAAAGTATTTACTCTGGGAGOCTGTC 

B2 C, CTATATCTTTTATGTAAATATGGACTGATTATGATGGTGATTTTCTGGA~CAGATGCTGGCCTGC CA/UUUU~GTATTTACTCTGGGAGGCTGTC 

- 6 9  

1- ->  
A1 GTCCGGTTT~GG/U~A-A~GACCACCCA~CCCAG~ATGTGTATATATGTGCAT~A~TGGAAGGAGA/~GTTGCATCCTT~ACT~TTcTTTGTCCTAG +29 

B1 C C C A G T G i ~ c G G ~ / ~ C i C C C A C C A C T C T T T C T A C A T A C A T i A i A i A i A i A T A i A T A T A / t ' A G C C T G T C ~ & i G C A i G C A i ~ C A T i C i G T i i i G i ~ A ~  

B2 CCTGGTGT~CTGAAACACCCACCACTCTTTGTGTATCCACTATATATATA GGCTGTCAAA~TGCAGGCACCCATTCTGTTTTGT~A~ 

~gu~ 8. Upstream fla~ingsequencesinXK81Nmilygenes. Gapshavebeenintroduced ~roptimalalignment. Sequencesofin~rest 
areoverlin~ anddescribedinthetext. 
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Figure 9. Differential express ion  of  XK81A and 81B R N A .  Relative 

m R N A  abundance  was measu red  by R N A  gel blott ing of  equal  

a m o u n t s  o f  R N A  f rom different stages as descr ibed in Mater ia ls  and 

Methods .  The  hybr idizat ion and wash  condi t ions  used  permi t  

~<10 % cross-hybr id iza t ion  be tween  A and B sequences .  Hybridiza-  

t ion s ignals  were m e a s u r e d  by dens i tomet ry  o f  mul t ip le  exposures  

in the  l inear range  o f  the f i lm, and normal ized  to 100% max ima l  

values  for each  probe. A, DGl l8  probe,  XK81B R N A ;  [], 8128 

probe,  XK81A RNA .  Stages are according to N ieuwkoop  and Faber  

(12). 

has effectively disappeared at the end of day 2 (22). The mor- 
phology of tadpole epidermis does not change dramatically 
until metamorphosis (12), yet the keratin composition is 
modified as indicated by the changing mRNA population and 
by electrophoretic analysis of proteins (5). These data sug- 
gest that functionally distinct types of intermediate filaments 
are elaborated during tadpole epidermal development, but 
different explanations based on co-regulation of gene sets can 
be envisioned as discussed earlier (10). 

Received for publication 21 April 1986, and in revised form 12 July 1986. 
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