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Abstract. Feature modeling is an important approach to capturing
commonalities and variabilities in system families and product lines. In
this paper, we propose a cardinality-based notation for feature modeling,
which integrates a number of existing extensions of previous approaches.
We then introduce and motivate the novel concept of staged configura-
tion. Staged configuration can be achieved by the stepwise specialization
of feature models. This is important because in a realistic development
process, different groups and different people eliminate product variabil-
ity in different stages. We also indicate how cardinality-based feature
models and their specialization can be given a precise formal semantics.

1 Introduction

Feature modeling is a key approach to capturing and managing the common
and variable features of systems in a system family or a product line. In the
early stages of software family development, feature models provide the basis for
scoping the system family by recording and assessing information such as which
features are important to enter a new market or remain in an existing market,
which features incur a technological risk, what is the projected development cost
of each feature, and so forth [1]. Later, feature models play a central role in the
development of a system family architecture, which has to realize the variation
points specified in the feature models [2, 3]. In application engineering, feature
models can drive requirements elicitation and analysis. Knowing which features
are available in the software family may help customers decide which features
their system should support. Knowing which desired features are provided by the
system family and which have to be custom-developed helps to better estimate
the time and cost needed for developing the system. A software pricing model
could also be based on the additional information recorded in a feature model.

Feature models also play a key role in generative software development [2,4–
7]. Generative software development aims at automating application engineering
based on system families: a system is generated from a specification written
in one or more textual or graphical domain-specific languages (DSLs). In this
context, feature models are used to scope and develop DSLs [2, 8], which may
range from simple parameter lists or feature hierarchies to more sophisticated
DSLs with graph-like structures.

Feature modeling was proposed as part of the Feature-Oriented Domain
Analysis (FODA) method [9], and since then, it has been applied in a num-
ber of domains including telecom systems [10,11], template libraries [2], network



protocols [12], and embedded systems [13]. Based on this growing experience,
a number of extensions and variants of the original FODA notation have been
proposed [10, 11, 13–17].

1.1 Contributions and Overview

In this paper, we make the following contributions: we present a cardinality-
based notation for feature models, which integrates and adapts four existing
extensions to the FODA notation–namely feature cardinalities, group cardinali-
ties, feature diagram references, and attributes. We also propose the novel con-
cept of staged configuration based on specializing feature models and illustrate
how specialization can be achieved in a sound way. Finally, we briefly indicate
how a cardinality-based feature model can be formalized. The details of this
formalization are elaborated elsewhere [18].

The remainder of the paper is organized as follows. Section 2 reviews back-
ground concepts and related work on feature modeling. Our cardinality-based
notation for feature modeling is presented in Section 3. Staged configuration is
described in Section 4. Section 5 gives a glimpse of an approach to formalize
feature models. Appendix A gives a comparison of three different notations for
feature modeling.

2 Background and Related Work

2.1 Features, Feature Diagrams, and Feature Models

A feature is a system property that is relevant to some stakeholder and is used
to capture commonalities or discriminate between systems. Features are orga-
nized in feature diagrams. A feature diagram is a tree with the root representing
a concept (e.g., a software system), and its descendent nodes are features. In
the FODA feature diagram notation (see the leftmost column of Table 1 in Ap-
pendix A), features can be mandatory, optional, or alternative. Feature models
are feature diagrams plus additional information such as feature descriptions,
binding times, priorities, stakeholders, and so forth.

Feature diagrams offer a simple and intuitive notation to represent varia-
tion points in a way that is independent of implementation mechanisms such
as inheritance or aggregation. It is important not to confuse feature diagrams
with part-of hierarchies or decompositions of software modules. Features may or
may not correspond to concrete software modules. In general, we distinguish the
following four cases:

– Concrete features such as data storage or sorting may be realized as indi-
vidual components.

– Aspectual features such as synchronization or logging may affect a number
of components and can be modularized using aspect technologies.

– Abstract features such as performance requirements usually map to some
configuration of components and/or aspects.



– Grouping features may represent a variation point and map to a common
interface of plug-compatible components, or they may have a purely organi-
zational purpose with no requirements implied.

2.2 Summary of Existing Extensions

Since its initial introduction in the technical report by Kang and associates [9],
several extensions and variants of the original FODA notation have been pro-
posed. In the following summary, we abstract from variations in concrete syntax
and focus on the conceptual extensions.

– feature cardinalities. Features can be annotated with cardinalities, such as
[1..∗] or [3..3]. Mandatory and optional features can be considered special
cases of features with the cardinalities [1..1] and [0..1], respectively. Feature
cardinalities were motivated by a practical application [13] (after they were
initially rejected [2]).

– groups and group cardinalities. Alternative features in the FODA notation
can be viewed as a grouping mechanism. Two further kinds of groups were
proposed in Czarnecki’s thesis [14]: the inclusive-or group and the inclusive-
or group with optional subfeatures (see the middle column of Table 1 in
Appendix A).3 The concept of groups was further generalized in [17] as a
set of features annotated with a cardinality specifying an interval of how
many features can be selected from that set. The previous kinds of groups
become special cases of groups with cardinalities (see the rightmost column
of Table 1 in Appendix A).

– attributes. Attributes were introduced by Czarnecki and associates [13] as
a way to represent a choice of a value from a large or infinite domain such
as integers or strings. An elegant way to model attributes proposed by Bed-
nasch [19] is to allow a feature to be associated with a type (such as integer or
string). A collection of attributes can be modeled as a number of subfeatures,
where each is associated with a desired type.

– relationships. Several authors [10, 11, 16] proposed to extend feature models
with different kinds of relationships such as consists-of or is-generalization-
of.

– feature categories and annotations. FODA distinguishes among context, rep-
resentation, and operational features. FeatuRSEB [10] proposes functional,
architectural, or implementation feature categories. Section 2.1 gives yet an-
other categorization. Additional information on features suggested in FODA
include descriptions, constraints, binding time, and rationale. Other ex-
amples are priorities, stakeholders, default selections, and exemplar sys-
tems [2, 14].

3 Inclusive-or features were introduced independently by Czarnecki [14] and Griss
and associates [10]. However, inclusive-or features in Griss and associates’ work [10]
imply reuse-time binding, whereas inclusive-or features in Czarnecki’s work [14] are
independent of binding time.



– modularization. A feature diagram may contain one or more special leaf
nodes, each standing for a separate feature diagram [19]. This mechanism
allows the breaking up of large diagrams into smaller ones and the reuse of
common parts in several places. This is an important mechanism because,
in practice, feature diagrams can become too large to be considered in their
entirety.

3 Cardinality-Based Feature Modeling

This section proposes a cardinality-based notation for feature modeling, which
is based on modest changes to the previously introduced concepts of feature
cardinalities, group cardinalities, and diagram modularization (see Section 2.2).

In particular, a feature cardinality specification may consist of a sequence of
intervals. Furthermore, our notation does not allow features that are members of
a feature group to be qualified with feature cardinalities. This is because a feature
cardinality is a property of the relationship between a single subfeature and its
parent. Similarly, a group cardinality is a property of the relationship between
a parent and a set of subfeatures. Next to cardinalities, we have the notion of
feature diagram references, which allow us to reuse or modularize feature models
in a similar fashion as described by Bednasch [19]. In contrast to Bednasch’s
work [19], feature diagram references allow recursion, which may be either direct
or indirect. Direct recursion occurs when a feature diagram reference refers to
the feature diagram in which it resides, while indirect recursion involves more
than one diagram.

The chosen set of conceptual extensions and their adaptations are motivated
both by practical applications and the urge to achieve a balance between sim-
plicity and conceptual completeness. Feature cardinalities and attributes are
common in modeling both embedded software [13] and enterprise software (see
our example in Section 3.1). The primary motivation for including group cardi-
nalities is elegance and completeness. Although our experience so far shows that
the vast majority of groups are either exclusive-or or inclusive-or, other group
cardinality values may still be useful in more exotic situations (e.g., [17] and
the example in Section 3.1). Compared to the more profound semantic implica-
tions of feature cardinalities, the addition of group cardinalities is semantically
relatively straightforward.

In our notation, we do not consider relationships between features such as
consists-of or is-generalization-of because we think that they are better modeled
using other notations such as entity-relationship or class diagrams. In general,
we believe that a feature modeling notation should focus purely on capturing
commonality and variability. However, if necessary, a tool with an extensible
metamodel [19,20] may allow the user to introduce additional kinds of relation-
ships. Finally, feature categories and other additional information are domain
dependent, and as previously argued by Czarnecki and associates [13], we think
that they are better handled as user-defined, structured annotations. Such an-
notations are also supported through an extensible metamodel [19].
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Fig. 1. Security profile example

3.1 A Security Profiling Example

As a practical example to demonstrate the expressiveness of our feature modeling
language, consider a feature model of an operating system security profile in
Fig. 1.

The password policy of the security profile has an expiration time and possible
requirements on the kind of characters to be used. Passwords can be set to
never expire, or to expire only after a given number of days. The number of
days a password remains valid can be set in the integer attribute of the inDays
feature. Generally, whenever a feature has an attribute, we indicate its type
within parentheses after the feature name; for example, myFeature (Int) . It is also
possible to specify a value of the associated type immediately with the type;
for example, myFeature (5 : Int) . The constraints on the kind of characters required in
a password are specified by a feature group with cardinality 〈2– 4〉. This means
that any actual password policy must specify between two and four (different)
requirements on the kind of characters.

In our example, since no cardinality was specified for the group of expiration
policies, the cardinality 〈1– 1〉 is assumed (i.e., the expiration policies form an
exclusive-or group).

The security profile also has zero or more permission sets. This is indicated
with the feature cardinality [0..∗]. If a feature cardinality is [1..1], we draw a
little filled circle above the feature. Observe that features belonging to a group
do not have a feature cardinality.

A permission set determines various permissions for executing code. In our
simple model, a permission set has a string attribute to specify its name, and



*

Feature
name

SolitaryFeature
featureCardinality

GroupedFeature

ContainableByFContainableByFG

FeatureGroup
groupCardinality

TypedValue

StringValue
value

IntValue
value

type

Attribute

RootFeatureFDReference
1*

**

0..1
0..1

FeatureModel
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allows us to specify permissions with respect to file IO, file dialogs, and envi-
ronment variables. (Other examples would be permissions to access a database,
invoke reflection, access a Web address, etc.) According to our model, file IO
can be restricted to a list of file paths, or it is unrestricted. For each file path,
we can specify its name and associated read/write permissions.

Notice that we use a feature diagram reference for the permission model
because we want to reuse it for environment variables. In this paper, we use
a dashed line to represent a feature diagram reference, but it should be noted
that, in practice, a different representation may be necessary to avoid a convo-
luted diagram. This is especially important if the purpose of the feature diagram
reference is to modularize a large feature model over different diagrams.

Finally, the permission to open a file dialog and to close it can be selected
independently. The empty circle above the features open and closed indicates
that those features are optional (i.e., they have the feature cardinality [0..1]).

3.2 A Metamodel

Now that we have seen an example of a cardinality-based feature model, we
explain the available concepts more accurately by means of an abstract syntax
model, where we will refer to the example in Fig. 1 for clarification.

Consider the Unified Modeling Language (UML) metamodel for cardinality-
based feature models in Fig. 2. A feature model consists of any number of root fea-
tures, which form the root of the different feature diagrams in the model. In the
security profile example, both the features securityProfile and permission
are root features.

A root feature is only one of three different kind of features. The other two
are the grouped feature and the solitary feature. The former is a feature which
can only occur in a feature group. For example, the feature never is a grouped
feature in a feature group, which is contained by the feature expiration. A
solitary feature is a feature which is, by definition, not grouped in a feature
group. Many features in a typical feature model are solitary; for example, the
feature passwordPolicy and permissionSet.



Features can have an optional attribute of a certain type, and those attributes
can have an optional value. In this simplified model, we only have integer and
string attributes.

Fig. 2 also has a class named FDReference that stands for a feature diagram
reference. It can refer to only one root feature, but a root feature can be referred
to by several references. In the example, the feature permission is referred to
by two references.

The abstract classes ContainableByFG and ContainableByF stand for those
kind of objects that can be contained by a feature group and a feature, respec-
tively. A feature group can contain only grouped features or feature diagram
references, whereas a feature can contain only solitary features, feature groups,
and references.

A solitary subfeature of a feature f is qualified by a feature cardinality.4 It
specifies how often the solitary subfeature (and any possible subtree) can be
duplicated as a child of f . A feature cardinality I is a sequence of intervals of
the form [n1..n′

1] . . . [nl..n′
l], where we assume the following invariants:

∀ i ∈ {1, . . . , l − 1} : ni, n
′
i ∈ N nl ∈ N n′

l ∈ N ∪ {∗}
∀n ∈ N : n < ∗ 0 ≤ n1

∀ i ∈ {1, . . . , l} : ni ≤ n′
i ∀ i ∈ {1, . . . , l − 1} : n′

i < ni+1

An empty sequence of intervals is denoted by ε.
An example of a valid specification of a feature cardinality is [0..2][6..6], which

says that we can take a feature 0, 1, 2, or 6 times. Note that we allow the last
interval in a feature cardinality to have as an upper bound the Kleene star ∗.
Such an upper bound denotes the possibility of taking a feature an unbounded
number of times. For example, the feature cardinality [1..2][5..∗] requires that
the associated feature is taken 1, 2, 5, or any number greater than 5 times.
Semantically, the feature cardinality ε is equivalent to [0..0] and implies that the
subfeature can never be chosen in a configuration.

A feature group expresses a choice over the grouped features in the group.
This choice is restricted by the group cardinality 〈n– n′〉, which specifies that
one has to select at least n and at most n′ distinct grouped features in the
group. Given that k > 0 is the number of grouped features, we assume that the
following invariant on group cardinalities holds: 0 ≤ n ≤ n′ ≤ k.

At this point, we ought to mention that, theoretically, we could generalize
the notion of group cardinality to be a sequence of intervals as we did for feature
cardinalities. However, we have found no practical applications of this usage,
and it would only clutter the presentation.

Grouped features do not have feature cardinalities because they are not in
the solitary subfeature relationship. This avoids redundant representations for
groups and the need for group normalization that was necessary for the notation
in Czarnecki’s work [14]. For example, in that notation, an inclusive-or group

4 More precisely, a feature cardinality is attached to the solitary subfeature relation-
ship. This relationship is implicit in the metamodel.



with both optional and mandatory subfeatures (corresponding to feature car-
dinalities [0..1] and [1..1] respectively), would be equivalent to an inclusive-or
group in which all the subfeatures were optional. Keeping feature cardinalities
out of groups also avoids problems during specialization (see Section 4.3). For
example, the duplication of a subfeature with a feature cardinality [n..n′], where
n′ > 1, within a group could potentially increase its size beyond the upper bound
of the group cardinality.

Even without the redundant representations for groups, there is still more
than one way to express the same situation in our notation. For example, the
following two different diagrams are identical in their semantics.

<0−2>

read write

permission

[0..1]

read write

permission

[0..1]

Conceptually, we keep these two diagrams distinct and leave it up to a tool
implementer to decide how to deal with them. For instance, it might be useful
to provide a conversion function for such diagrams. Alternatively, one could
decide on one type of preferred form which is shown by default.

In Appendix A, we discuss a comparison of the new cardinality-based no-
tation with the FODA notation and the notation introduced in [2, 17]. For the
sake of readability, we will keep using the latter notation whenever an appro-
priate equivalent exists. However, because the cardinality-based notation has no
feature cardinality in groups, we will not use the filled circle on top of grouped
features.

4 Staged Configuration

4.1 Motivation

A feature model describes the configuration space of a system family. An applica-
tion engineer may specify a member of a system family by selecting the desired
features from the feature model within the variability constraints defined by
the model (e.g., the choice of exactly one feature from a group of alternative
features).

The process of specifying a family member may also be performed in stages,
where each stage eliminates some configuration choices. We refer to this process
as staged configuration. Each stage takes a feature model and yields a specialized
feature model, where the set of systems described by the specialized model is a
proper subset of the systems described by the feature model to be specialized.

The need for staged configuration arises in the context of software supply
chains [7]. Let us take a look at an example based on a real scenario involv-
ing the configuration and generation of basic services for electronic control units
(ECUs) embedded in an automobile. Basic services such as tasking support, net-
work drivers, network management, flash support, diagnosis, and so forth, are



implemented as components by different software vendors. A software vendor
may deliver different configurations of its component to different car manufac-
turers to reflect the differing requirements of the individual manufacturers (such
as different terminologies or provided interfaces). Doing so constitutes the first
configuration stage. In a second stage, each car manufacturer has to further con-
figure the components for each different ECU in a car, depending on the needs
of the control functions (such as break control or engine management) to be
installed on the given ECU. The second configuration stage may be even more
complex, as some global settings and available options may be determined by
the manufacturer, while other settings may be provided by the suppliers of the
control functions. Finally, given a concrete configuration, the code implementing
the basic services is generated. Based on the outlined requirements, it should be
possible to perform configuration in stages and to compose (possibly specialized)
feature models.

In general, supply chains require staged configuration of platforms, compo-
nents, and services. However, staged configuration may be required even within
one organization. For example, security policies could be configured in stages for
an entire enterprise, its divisions, and the individual computers. The enterprise-
level configuration would determine the choices available to the divisions, and
the divisions would determine the choices available to the individual computers.

4.2 Configuration vs. Specialization

A configuration consists of the features that were selected according to the vari-
ability constraints defined by the feature diagram. The relationship between a
feature diagram and a configuration is comparable to the one between a class and
its instance in object-oriented programming. The process of deriving a configura-
tion from a feature diagram is also referred to as configuration. Specialization is
a transformation process that takes a feature diagram and yields another feature
diagram, such that the set of the configurations denoted by the latter diagram is
a true subset of the configurations denoted by the former diagram. We also say
that the latter diagram is a specialization of the former one. A fully specialized
feature diagram denotes only one configuration. Finally, staged configuration is a
form of configuration achieved by successive specialization followed by deriving
a configuration from the most specialized feature diagram in the specialization
sequence.

In general, we can have the following two extremes when performing con-
figuration: a) deriving a configuration from a feature diagram directly and b)
specializing a feature diagram down to a full specialization and then deriving
the configuration (which is trivial). Please note that sometimes we might not
be interested in arriving at one specific configuration. For example, a feature
diagram that still contains unresolved variability could be used as an input to
a generator. This could be useful when generating a specialized version of a
framework (which still contains variability) or when generating an application
that should support the remaining variability at runtime.



4.3 Specialization Steps

In Section 4.1, we described the process of staged configuration as the removal
of possible configuration choices. In this section, we discuss in more detail what
kind of configuration choices can be eliminated. We will call the removal of a
certain configuration choice a specialization step.

There are six categories of specialization steps: a) refining a feature cardinal-
ity, b) refining a group cardinality, c) removing a grouped feature from a feature
group, d) assigning a value to an attribute which only has been given a type, e)
cloning a solitary subfeature, and f) unfolding a feature reference. We discuss
each of these possibilities in more detail below.

Refining feature cardinalities. A feature cardinality is a sequence of intervals
representing a (possibly infinite) set of distinct natural numbers. Each natural
number in the cardinality stands for an accepted number of occurrences for the
solitary subfeature. Refining a feature cardinality means to eliminate elements
from the subset of natural numbers denoted by the cardinality. This can be
achieved as follows:

1. remove an interval from the sequence; or
2. if an interval is of the form [ni..n′

i] where ni < n′
i,

(a) reduce the interval by increasing ni to n′′
i or decrease the n′

i to n′′′
i as

long as n′′
i ≤ n′′′

i . If n′
i = ∗, then it is possible to replace ∗ with a number

m such that ni ≤ m; or
(b) split the interval in such a way that the new sequence still obeys the

feature cardinality invariant and then reduce the split intervals.

A special case of refining a feature cardinality is to refine it to [0..0] or ε. In
either case, it means we have removed the entire subfeature and its descendents.
We leave it up to a tool to decide whether to visually remove features with
feature cardinality [0..0] or ε.

Refining group cardinalities. A group cardinality 〈n1– n2〉 is an interval
indicating a minimum and maximum number of distinct grouped features to be
chosen from the feature group. Its form is a simplification of a feature cardinality
and can only be refined by reducing the interval (i.e., by increasing n1 to n′

1 and
decreasing n2 to n′

2 as long as n′
1 ≤ n′

2). Currently, we do not allow splitting an
interval because we have no representation for such a cardinality. Of course, such
an operation should be incorporated whenever we allow sequences of intervals
for group cardinalities.

Removing a grouped feature from a feature group. A feature group of
size k with group cardinality 〈n1– n2〉 combines a set of k grouped subfeatures
and indicates a choice of at least n1 and at most n2 distinct grouped features.
A specialization step can alter a feature group by removing one of the grouped



subfeatures with all its descendents, provided that n1 < k. The new feature group
will have size k − 1, and its new group cardinality will be 〈n1– min(n2, k − 1)〉,
where min(n, n′) takes the minimum of the two natural numbers n and n′. The
following is an example specialization sequence where each step removes one
grouped subfeature from the group:

f

1
f f f f

42 3

<2−3>

f
3

f
21

f

f

<2−3>

f

f
21

f

<2−2>

It is not possible to remove grouped subfeatures from a feature group once
n1 = k. In that case, all subfeatures have to be taken, and all variability is
eliminated.

Assigning an attribute value. An obvious specialization step is to assign
a value to an uninitialized attribute. The value has to be of the type of the
attribute.

Cloning a solitary subfeature. This operation makes it possible to clone a
solitary subfeature and its entire subtree, provided the feature cardinality allows
it. Moreover, the cloned feature may be given an arbitrary, but fixed, feature
cardinality by the user, as long as it is allowed by the original feature cardinality
of the solitary subfeature.

Unlike the other specialization operations, cloning may change the diagram
without removing variabilities. However, the new diagram will generally be more
amenable to specialization, so we consider it a specialization step nonetheless.

We explain this process with an example:

f

f
0

[2..2][4..*]

f

f f 00

[3..3] [1..*]

The feature cardinality [2..2][4..∗] of the original subfeature f0 indicates that
f0 must occur at least two times or more than three times in a configuration.
In the specialized diagram above, we have cloned f0 (to the left) and assigned
it a new feature cardinality [3..3]. The original feature f0 (to the right) has a
new cardinality that guarantees the new diagram does not allow configurations



previously forbidden. In the example, because we have chosen to give the left f0

the fixed feature cardinality [3..3], the feature cardinality of the rightmost f0 has
to be [1..∗]. Specialization has occurred since the new diagram does not allow a
user to select only f0 two times.

Consider another example:

f

f
1

[2..*]

f

f f1 1

[0..*][2..2]

In this case, no actual specialization took place. The cloned feature f1 to the left
has been given the fixed cardinality [2..2]. However, because the original feature
cardinality was [2..∗], the rightmost f1 now has cardinality [0..∗].

More generally, suppose I = [n1..n′
1] . . . [nl..n′

l] and 0 < m. Provided we have
(n′

l = ∗) ∨ (m ≤ n′
l < ∗), it is possible to clone the solitary subfeature f ′ of f

with feature cardinality I as follows:

f

f’

I

f

f’ f’

L(m,I)[m..m]

Given that we always have ∗ − n = ∗ for any n ∈ N, we can define the function
L (m, I) as follows:

L (m, ε) = ε

L (m, [n..n′]I) =

⎧⎨
⎩

if (m ≤ n) : [(n − m)..(n′ − m)]L (m, I)
if (n < m) ∧ (m ≤ n′) : [0..(n′ − m)]L (m, I)
if n′ < m : L (m, I)

The reader may wonder why we only allow the cloned feature to be given a
fixed feature cardinality. This is because, in general, it is impossible to construct
a correct feature diagram by cloning a feature and giving it an arbitrary interval
or sequence of intervals without some more expressive form of additional con-
straints. However, there are a few useful special cases for this situation that we
do not consider in this paper and leave for future work.

Unfolding a feature diagram reference. Finally, we have a specialization
step that allows the user to unfold a feature diagram reference. This basically
means that we substitute the reference for the entire feature diagram it refers to
by means of its root feature. Although this operation never removes variability,
we consider it a specialization step for the same reasons as mentioned above for
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the cloning of a solitary feature: it makes the new feature model potentially more
amenable for specialization because each unfolded feature diagram can now be
specialized differently.

4.4 Security Profiling Example Revisited

Let us now apply the notion of staged configuration to the security profile ex-
ample from Section 3.1. Assume, for instance, that the IT infrastructure of a
company supports the security profile from Fig. 1. The company then decides
to specialize this profile to define a standard enterprise-level security profile as
depicted in Fig. 3.

The specialization is achieved by a combination of steps from Section 4.3.
In the feature passwordPolicy, we have eliminated the ability to have a non-
expiring password and set the expiry time at 30 days. On top of that, the com-
pany requires at least three different kind of characters to be used instead of
two.

Moreover, we clone the feature permissionSet and assign it the name “In-
ternet” because we want to specify a specific permission set for programs run-
ning from the Internet. In particular, we want file IO to be restricted and allow
no access to local file paths. Moreover, file dialogs may be allowed only to be
opened, but Internet programs may be given the permission to read environment
variables. Observe that we unfolded the permission feature diagram reference
under the environmentVariables feature. If desired, the enterprise-level secu-
rity profile could be further specialized by individual departments and then for
individual computers within the departments.



5 Feature Models as Context-Free Grammars

The semantics of a feature model can be defined by the set of all possible config-
urations. A configuration itself is denoted by a structured set of features chosen
according to the informal rules of interpretation of feature diagrams.

Although this description is sufficient in practice, it is helpful to provide
a formal semantics to improve the understanding of some of the intricacies of
feature modeling. For example, a formal semantics allows us to define exactly
what it means when two apparently different feature models are equivalent (i.e.,
denote the same set of configurations).

More interestingly, if feature model specialization maps to the semantic in-
terpretation of a feature model, it would be possible to formally establish that
feature model specialization reduces the set of possible configurations.

Our approach to obtaining such a semantics is to cast feature models back
into a well-known formalism: context-free grammars. The semantic interpreta-
tion of a feature diagram then coincides with a natural interpretation of the
sentences recognized by the grammar. It is beyond the scope of this paper to
provide a detailed account of exactly how a feature model can be translated
into a context-free grammar, but the interested reader is invited to examine the
details in an accompanying technical report [18].

We have to mention that feature diagrams, as they are presented in this pa-
per, can actually be modeled as regular grammars5 and do not require the addi-
tional expressiveness of context-free grammars. The main reason to use context-
free grammars instead is purely for convenience.

It is not only possible to specify cardinality-based feature models as a context-
free grammar. Feature model specialization can be mapped onto a set of opera-
tions on the context-free grammar. Those operations are such that it is possible
to determine that the set of all configurations of a specialized feature model is
never greater than the set of configurations of the original feature model.

6 Conclusion and Future Work

Cardinality-based feature modeling provides an expressive way to describe fea-
ture models. Staged configuration of such cardinality-based feature models is a
useful and important mechanism for software supply chains based on product
lines.

AmiEddi [21,22] was the first editor supporting the feature modeling notation
from [2]. As a successor of the first prototype, CaptainFeature [19,20] implements
a cardinality-based notation that is similar to the one described in this paper. In
future work, we plan to extend our model with external constraints and reference
attributes [13]. Meanwhile, commercial tools supporting variant configuration
for product lines are starting to emerge (e.g., GEARS [23] and Pure::Consul [24,
25]). Pure::Consul is even directly based on FODA-like feature modeling. More
5 Regular grammars require that the right-hand side of a production can only have

one terminal possibly followed by a nonterminal.



advanced capabilities such as staged configuration and cardinality-based feature
modeling still need to be addressed by these tools.

The study of specialization at the grammar level [18]) has helped to bet-
ter understand possible specialization steps at the diagram level. In fact, such
an analysis has revealed specialization steps other than those described in Sec-
tion 4.3. Some of them can be quite involved, and some cannot even be translated
back into the concrete syntax of the proposed feature diagram notation. The cur-
rent specialization steps in this paper (Section 4.3) are an attempt to balance
simplicity and practical relevance.

We think that specialization and direct configuration should be two distinct
procedures. Although any desired configuration can be achieved through spe-
cialization, specialization offers finer grained steps that would be unnecessarily
tedious for direct configuration. We already have experience with tool support
for configuration based on existing tool prototypes: ConfigEditor [13] and Cap-
tainFeature [19, 20]. Both support configuration in a strictly top-down manner.
This contrasts with our approach where staged configuration of a feature model
can be achieved in an arbitrary order.

Adequate tool support for the newly introduced cardinality-based feature
notation as well as its specialization is under way.
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A Overview of Feature Modeling Notations

The cardinality-based feature modeling notation of this paper is a continuation
of existing modeling notations [2, 17]. Table 1 compares the current proposal
with the extended notation from [2,17] and the FODA notation.

Table 1 compares three different notations for feature diagrams. The left-
most column shows the FODA notation [9] which has mandatory (f1), optional
(f2), and alternative subfeatures (fk . . . f1). In the extended notation [2,14], de-
picted in the middle column, alternative groups come in two flavors: inclusive-or
and exclusive-or groups. Moreover, an exclusive-or group can also have optional
subfeatures. The right column shows some possibilities of the cardinality-based
notation that have an equivalent diagram in the extended notation. Of course,
the cardinality-based notation allows for many additional features and feature
groups that cannot be expressed in either the FODA notation or the extended
notation.

However, to improve readability, we suggest using the extended notation of
the middle column whenever possible, except for the use of filled circles above
grouped features that belong to a feature group. A feature modeling tool may
provide the appropriate syntactic sugar for those cases.



Table 1. Comparison of feature modeling notations

FODA notation Extended notation Cardinality-based

in [9] in [2, 14] notation

mandatory and optional mandatory and optional mandatory and optional

subfeatures subfeatures subfeatures
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