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Hamiltonian systems often reveal the chaotic phenomena with long time memory, and 

then the time average of a dynamical variable does not seem to converge toward a certain 

constant monotonically. Even when the time average looks like a constant in the limit under 

a given initial condition, for many cases the limiting value often depends sensitively on the 

initial data. Chaos in the dynamical system is usually discussed in the framework of the 

ergodic theory which guarantees the weak law of the large number and the unique existence 

of the time average except for the measure zero set. However, the hamiltonian chaos seems 

to be difficult to understand on the same line straightforwardly. The essence of the 

hamiltonian chaos seems to be more complex (or robust) than that of the purely ergodic ones. 

In this paper we devote ourselves to the research of the origin of such wild long time tails. 

A result of our phenomenological approaches is that the hamiltonian chaos is non­

stationary and multi-ergodic. The various effects of the long time tails such as the rz 
spectrum and the anomalous large deviation will be explained from a universality Jaw in the 

transition regime between chaos and torus. 
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The dominant structures in the hamiltonian dynamics are chaos and torus. The 

main concern of the present paper is to elucidate the general features in the transition 

regime between chaos and torus (or between the probability and the deterministics). 

The basic problems of chaos in hamiltonian systems will be surveyed from that 

concern. 

1.1. Between chaos and torus --Twilight zone of causality--

Chaos in the hamiltonian system was noticed by Poincare for the first time in the 

study of the 3-body problem of celestial mechanics.ll He explained the onset mecha­

nism of chaos in terms of the transverse homoclinicity (or heteroclinicity), which 

implies the orbital instability due to a special geometrical structure of invariant 

manifolds in phase space. The analytical condition for the creation of such special 

structures was formulated later by Mel'nikov in 1963,2> and that was successfully used 

by Arnold in 1964 to predict the characteristic features of the chaotic region so-called 

instability zone.3> It was proved by Smale in 1967 that the content of the instability 

zone is quite rich and even a variety of random motions are generated therein. 4> 

When the transversality of the stable and unstable foliations are satisfied every­

where in phase space, the instability zone becomes a strong ergodic set, where the 

Anosov-Sinai theorem can be applied to determine the characteristics of the system 

such as entropy, Lyapunov exponent, etc. (see § 1.4).5>-s> But in the large class of 

hamiltonian systems, the transversality is violated and the tangential homoclinicity 

(or heteroclinicity) may appear in general. When the orbital instability is lost owing 

to the tangential homoclinicity, the orbit is eventually confined only into a lower 

dimensional hypersurface in phase space, i.e., a lot of chaotic orbits come out to 

degenerate on a low dimensional manifold with less symmetry. After such degener­

acy happens, what kinds of manifolds are generally induced? It is known that the 

most dominant one of them is a torus, if the system is bounded and the phase space 

is compact. 

The torus is an especially important structure in hamiltonian dynamics. The 

Liouville-Arnold theorem states that if the bounded hamiltonian is integrable by 

quadrature, almost every orbit is generically confined in each inherent torus and 

whole space are densely covered by tori.9> Then the hamiltonian H(P, Q) is sepa­

rable, 

H(P, Q)=LJH;(P;, Q;), 
i 

(1·1) 
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38 Y. Aizawa, Y. Kikuchi, T. Harayama, K. Yamamoto, M. Ota and K. Tanaka 

whereP=(H, H, ···, Pn)and Q=(Q1, Q2, ···, Qn)arecanonical2nvariables. Therefore 

we can say that when chaos is destroyed by the tangential homoclinicity, a locally 

integrable sub-set (or torus) can be created in phase space. Conversely, when the 

torus is demolished under the Mel'nikov condition for the transversal homoclinicity, 

the instability zone (or chaos) can be released. Generally speaking, chaos and torus 

are simultaneously coexisting, and both are alternative at every point in phase 
space. 29)-ss> 

The transition from chaos to torus is believed to be a "ali-or-none" type, but a 

question is whether the transition regime exists between chaos and torus. The torus 

region is considered to be a stable phase which has a long range order in time, but 

chaos region to be an unstable phase that has only a short range temporal order. If 

there is a certain transition layer between chaos and torus, the motion in such layer 

must reveal a partial order with multi-time scales. The main purpose of the present 

paper is to examine the uncertainty phenomena concealed in such twilight zone 

between chaos and torus. The analogy with the critical phenomena in statistical 

mechanics will be discussed for several topics in the latter sections. 

The dynamical system is always subjected to a certain deterministic law of 

causality, e.g., under a given hamiltonian. However, such causality in law becomes 

impotent in the long time prediction of a chaotic orbit, since the causality is not 

decomposable in the sense of Eq. (1·1), and we only know the probability of the orbital 

distribution in the sense of ergodic ensemble. Namely, the causality in law enables 

us to predict only the short time behavior for a chaotic orbit. Thus the transition 

from chaos to torus is the twilight zone of causality. 

1.2. Stability of torus --Analytical approach--

The stability of a torus is examined by introducing the perturbation into the 

system given by Eq. (1·1). Under an appropriate canonical transformation, the 

hamiltonian is generally rewritten into, 

H(p, q, e)=Ho(P)+eH1(P, q), (1·2) 

where (p, q) are the action-angle variables and e is a perturbation parameter. 

The Poincare theorem states that there is no uniform integral in this system 

except for the hamiltonian H(p, q, e) itself.10> The uniform integral means the 

one-valued analytic global constant of motion, which is often called the isolating 

global integral.11> The Poincare theorem suggests that the more unstable and com­

plex motions than the torus can be created in the nearly integrable system of Eq. (1· 2). 

Based on this theorem in 1923 Fermi tried to prove the ergodic hypothesis for the 

normal canonical system of Eq. (1·2).12> The non-existence theorem of the isolating 

integral has been developed to derive the necessary condition of the global inte­
grability.13H6> 

But in 1953 Kolmogorov proposed the concept of the local integrability.m He 

derived the condition under which the unperturbed torus remains stable even in the 

perturbed system. The fundamental idea of Kolmogorov is to find out the isomor­
phism which smoothly transforms a quasi-periodic flow on a torus into another 

quasi-periodic one. For instance, consider the quasi-periodic flow on a 2-dimensional 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

8
.3

6
/1

9
0
1
8
4
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



torus, 
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dx/dt=1 +.su(x, y), 

dy/dt=w+.sv(x, y), 

39 

(1·3) 

where c is a smallness parameter, (u, v) are periodic functions of (x, y) with the 

mod. 1, and assume the long time average of the flow vector (u, v) to be zero, u= v 
=0. The rotation number w( =constant) is a global characteristics. The basic 

question is following: Is the system of Eq. (1· 3) isomorphic to the unperturbed Weyl's 

flow (.s=O)? The answer is affirmative only if there exist constant parameters K 
and a such that, 

I w- m/nl > K/na (1·4) 

for all integers m and n. In other words, if the rotation number is an irrational far 

from resonance, the unperturbed torus is smoothly deformed into the perturbed one, 

that is called the invariant torus. 18>·19> 

Moser (1962) and Arnold (1963) pnwed that the invariant tori (in the sense of 

Kolmogorov) exist even in the nearly integrable system of Eq. (1·2) under the same 

off-resonance condition, 

(1·4)' 

when the hamiltonian Ho and the perturbation H1 satisfy the following conditions: 

(1·5) 

and 

(1·6) 

where (J)={(J)j}={aHo/apj}, k is the integer vector, /:1 a positive constant, and IIAII is the 

norm of the matrix A. The stability theorem of the torus mentioned here is called the 
KAM theory.9>'20H 4> 

When the off-resonance condition breaks, it is surmised that the unperturbed 

resonant torus is completely destroyed and chaotic motions comes to appear. Indeed, 

Zehnder (1973) proved in generic that the instability zone (in the sense of Mel'nikov) 

takes the place of the invariant tori in the resonance band in phase space.25> The 

onset mechanism of the instability zone was formulated by Mel'nikov for the first time 

with respect to the destruction of the separatrix, but the transition from torus to chaos 

accompanied with the breakup of the resonant torus has not yet been clearly under­

stood in general from the theoretical viewpoint. Some of the early works done by 

computer are found in Ref. 29}·'-'38). 

After the resonant torus, whose rotation number is a rational, is demolished by the 

perturbation, the pairs of the elliptic and hyperbolic cycles are created in the reso­

nance zone. This fact is known as the Poincare-Birkhoff theorem, that is always 

satisfied in the systems with the twist condition.20>'26> Then, not only the instability 

zone but also the new types of tori come to appear around the elliptic cycles, whose 

topological structures are quite different from that of the invariant tori of the 
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unperturbed hamiltonian Ho. The cascade of the transitions from torus to chaos is 

surmised to continue to the infinitesimal fine structure, since the resonant tori are 

everywhere densely embedded in phase space with the same cardinal number as the 

rationals. The sequences of such new born tori are often called the islands of tori, 

which are no longer the invariant tori of the unperturbed hamiltonian Ho. At the 

present time there is no rigorous result about the hierarchy of that islands of tori, but 

it is only surmised that the islands are distributed in phase space in a quite fractal 

manner, and that the phase space geometry is renormalizable in some sense under an 

appropriate scaling transformation (see § 1.3). It can be said that the transition 
regime between chaos and torus is the fractals' world.27>·28>·58J-soJ 

The KAM theory explained the conservation law of the invariant torus, and that 

the nearly integrable system is locally integrable. However, the theory does not say 

anything about the motions under the large perturbations. Every invariant torus, 

which belongs to the unperturbed hamiltonian Ho, is considered to vanish when the 

perturbation increases. In 1984 Mather derived the condition for the last invariant 

torus (so-called the last KAM) to disappear, and proved that the cantorian torus 

survives even after the last KAM is destroyed. The last KAM is the most stable 

invariant torus, and it conserves the topology of the unperturbed hamiltonian to the 
end.39H 2> His theorem is applicable only to the 2-dimensional case, but it is surmised 

that the cantorian torus may exist even in the higher dimensional systems,50H 5> and 

the diffusion process in chaotic regime is strongly affected by such special barrier in 
phase space.55J-57J 

1.3. Phase space geometry --Scaling theoretical approach--

There are two central approaches for the study of the dynamical system. One is 

the analytical method as is typically used in the theories mentioned in § 1.2. Another 

is the ergodic-theoretical approach which leads us to the statistical understandings of 

the system based on the thermodynamical formulation (see § 1.4).43>-45> However, 

those two approaches have not yet succeeded in explaining the fractal aspects of the 

phase space geometry as was mentioned in § 1.2. In the last decade, the third 

approach so-called the scaling theory has been exploited to attack such fractal 

geometry.46J The scaling theoretical approach is considered to bridge the gap 

between the analytical method and the ergodic-theoretical one. The scaling theory is 

based on the naive or phenomenological assumption that the phase space geometry is 

fractal or self-similar in some sense, and the technique is the same as is used in the 
renormalization group (RG) approach to the critical phenomena in statistical 

mechanics.47l Since Feigenbaum succeeded in 1979 to elucidate the renormalizable 

structure in the 2n-period doubling cascade,48J the RG approach has been also success­

fully developed in the study of hamiltonian systems along the scenario discovered by 
Greene.49> 

Here we try to picturize the phase space geometry only by the imagination. 

After a resonant torus breaks up, a lot of small islands of tori are created, and they 

are distributed in the resonant band in quite a complex manner. A very naive and 

phenomenological hypothesis is as follows. All the tori are arranged in a series of 

the lexicographical tree as is shown in Fig. 1. A torus is identified by a sequence of 
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Stagnant Motions in Hamiltonian Systems 41 

letters {ij; (i=O, 1, 2, ···: j=1, 2, 3, ···)}, 

where the i-class tori {ik ; (k = 1, 2, · · ·)} 

are the daughters of a (i -1)-class torus 

{(i-1)s; (s=1, 2, ···)}. In this model the 

0-class torus is a resonant torus that was 

destroyed by a perturbation. An essen­

tial point of this model is that only the 

break-up torus demolished by some reso­

nance can create a lot of daughters. 

Some of that new born daughters are 

stable tori (marked by ( o) in the figure) 

and others become unstable ones 

(marked by (X) in the figure) which 

create the granddaughters again. This 

0 i i+l class 
Fig. 1. A self-similarity model for the phase space 

geometry. The marks (0) and (X) denote the 

stable torus and the break-up torus re­

spectively. 

hierarchy continues to infinitesimal resonant tori. As the result of such cascade, the 

phase space geometry even in a resonance band can be a very complicated one. 

The above mentioned image is only a conjecture and may not be true in detail, but 

it is not altogether in the wrong. In 1983 Umberger and Farmer proposed a new 

concept of fat fractals, and numerically proved the hierarchical structure of the phase 

space geometry.59l The model is much simplified by assuming that the configuration 

of tori is strictly self-similar.60l Furthermore, the RG theoretical approaches elucidat­

ed that the hypothesis of the self-similarity is partially satisfied near the last KAM 

torus as well as the noble torus, e.g., the phase space geometry is renormalizable if one 

picks up from the above lexicographical tree a sub-sequence of tori whose periods can 

be rearranged in the Fibonaccian progression.28),so)-ss) 

The self-similarity depicted in Fig. 1 is global, and in some sense it asserts the 

self-similarity everywhere in the transition regime between chaos and torus. 

1.4. Characterization of chaos --Ergodic-theoretical approach--

A statistical behavior of the dynamical system is characterized by the time 

average of the dynamical quantity, e.g., Y(x). The ergodic theorem asserts that 

there exist almost always the time average and the invariant measure f.J.(X) which 

describes it, 

Y=lim 1/T 1r Y(x(t))dt= LY(x)f.J.(dx)=< Y>, (1·7) 

where M denotes the whole phase space of {x} in which the measure defined.61 l·62l 

The measure f.J.(x) is in general a function ofthe initial condition, and is equivalent to 

the asymptotic measure obtained numerically. The Birkhoff-Smith theorem states 

that if the space M is metrically indecomposable such invariant measure uniquely 

exists for almost all initial point x(O) except for measure zero sets. Then the 

dynamical system is called metrical transitive or ergodic in the space M under that 

measure. As a matter of course there coexist a lot of other invariant measures in a 

dynamical system, but the point is that such exceptional measures are valuable only 

on the restricted sub-space in M. For instance, the quasi-periodic motions discussed 
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in § 1.2 are ergodic on the torus, though there exist other exceptional invariant 

measures defined on the singular set, e.g., the atomic measure restricted on a periodic 

orbit. But when the torus breaks up by the perturbation as is shown in the KAM 

theory, the measures restricted on the resonant torus disappear and new types of 

measures, that describe the motions on the islands' tori and/ or in the instability zone, 

come to bifurcate. That is to say, even in the case of the nearly integrable system of 

Eq. (1· 2) the ergodic measure is not determined uniquely, and a lot of ergodic 

components are heterogeneously mixed in whole space. A remarkable effect of such 

multi-ergodicity is discussed in § 7. 

The statistical behavior of a single ergodic component E is roughly described by 

an ergodic measure fl.E, but the more details must be characterized by the measure 

theoretical structure among many ergodic sub-dynamics embedded in the singular set 

E{p} ( cE), where measures fl.E{p}'s defined in E{p} are singular continuous in 

contrast to the dominant ergodic measure fl.E. Here p indicates an ergodic sub-dynamics 

included in E. 

The characterization of chaos has been pursued in the framework of the ergodic 
theory.19>·21 >·63>-65> A characteristics is the Lyapunov exponents which denote the time 

average of the orbital unfolding rates for various foliations. In the strong ergodic 

case such as the C-system where the unstable and stable foliations exist everywhere 

in phase space, the sum of the positive Lyapunov exponents is a bound of the 

Kolmogorov-Sinai entropy which is a well-known characteristics of the ergodic 
motion,66>·67>·7>.s> and then the system reveals a kind of irreversibility so-called mixing. 

But general hamiltonian systems are not endowed with such strong condition, and 

that the existence of the generator which leads us to the Kolmogorov partition has not 

yet been proved. Therefore, the definition of "chaos" in hamiltonian systems is still 

unclear in the ergodic theoretical framework, but the following definition is tentative­

ly adopted; "chaos" is the weak C-system, i.e., almost every orbit has at least one 

positive Lyapunov exponent. By this definition, the quasi-periodic motion on a 

simple torus such as the Weyl flow can be separated definitely from "chaos", since the 

torus motion has no positive Lyapuhov exponents. But on the other hand, the 

instability zone (discussed in§ 1.2) is very ambiguous, and is only surmised to be chaos 

from the computer calculations. The situation in the transition regime between 

"chaos" and torus is much more difficult to characterize. For instance, is the 

motion restricted on the critical torus such as the last KAM chaos or not? 

The above definition of "chaos" seems to be useless in order to understand such 

critical regime. Indeed, there are many dynamical systems which generate a quite 

complicated behavior but whose entropy (or Lyapunov exponent) is zero. Then the 

sequence entropy (so-called the A-entropy) plays an inevitable role.21 >·65> 

An important point of the ergodic theory is to prove the unique existence of the 

long time average as is shown in Eq. (1·7). But another important problem is to 

characterize the convergent speed toward the average value. The latter is the 
extension of the law of the large number, i.e., the large deviation theory. 68>·69>,m> Such 

characterization of chaos is especially important for the hamiltonian flow in the 

transition regime between chaos and torus, because the convergent speed becomes 

very slow in that region and the distribution of the statistical quantity seems not to 
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Stagnant Motions in Hamiltonian Systems 43 

obey the normal exponential convergence. This situation is quite analogous to the 

critical slowing down or the creation of the long range order near the critical point 

of the phase transition. 

The rate of the exponential convergence is the entropy which is converted into the 

free energy by use of the Fenchel-Legendre transformation. The orthodox technique 

is the same as is used in the thermodynamical formalism in statistical mechanics.43> 

But in the transition regime· between chaos and torus the normal thermodynamical 

description is violated by the occurrence of the wild long tirrie tails owing to the 

non-stationarity and the multi-ergodicity (see § 7). 

1.5. Phase space kinetics --Non-equilibrium phenomena--

In the transition regime between chaos and torus the essentially new concept is 

the perpetual stability, and the typical phenomenon is the occurrence of the long time 

tails. The first evidence was found by Nekhoroshev in 1977.70> He succeeded in 

estimating the time scale for which the orbit is confined inside a certain narrow band 

in phase space (see § 2.1). The orbital confinement due to the perpetual stability is 

just the converse phenomenon to the Arnold diffusion that is induced by the 

topological instability. An origin of the long time tails in hamiltonian systems is in 

the Nekhoroshev confinement.71 >•72> 

The Nekhoroshev theorem enables us for the first time to study the kinetic 

process (or the essentially non-equilibrium process) originated from the chaotic 

dynamics.80>-s2> Before Nekhoroshev many works on chaos were mainly focused to 

the equilibrium aspects concerning the recurrence motions, though a few irreversible 

features such as the mixing property were studied so far. Now we are able to derive 

from his theorem a kinetic picture of the Arnold diffusion beyond the geometrical 

picture such as the "whiskered tori".21> 

An essential feature of the diffusion process (including the Arnold diffusion) is the 

appearance of long time tails or the enhancement of the diffusion mode with the zero 

frequency, e.g., the power spectral density (PSD) function S(f) satisfies, 

(/~1) (1·8) 

where I stands for the frequency and v a positive constant (v > 1).92H 9>·102Hos> Such 

anomalous enhancement of the zero-frequency mode cannot be observed in the inte­

grable system of Eq. (1·1), since almost every motion is the torus with quasi­

periodicity whose characteristic time scales are finite. The situation is the same for 

the strong ergodic system such as the K-system with a positive entropy, where the 

exponential decay of the correlation function can be derived from the Markov 

partition and such enhancement is not observed. Therefore, the singularity such as 

Eq. (1·8) is expected only in the transition regime between chaos and torus (or 

between the probability and the deterministics). 

The typical one of the kinetic phenomena related to chaos is observed in the 

mixing process of the normal mode energy. In 1953 Fermi, Pasta and Ulam studied 

the problems of the kinetic process in the lattice vibration, which is a simple dynami­

cal model of crystals.73> They expected that the equi-partition law of the normal 

mode's energy will be realized after a long time. But what they obtained from the 
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numerical calculations was the quasi-periodic recurrence phenomena,79J and the 

energy mixing was not observed. After their works many simulations have been 

done to confirm the existence of the unique thermal equilibrium state,74J-?BJ and the 

induction phenomenon which leads to the energy mixing was finally discovered by 

Saito and Hirooka, i.e., the energy mixing occurs remarkably after a long induction 

period. 

In this paper we will propose a reasonable interpretation of the induction phenom­

ena in terms of the Nekhoroshev confinement mentioned above, and that the kinetic 

process is considered to be a dynamical transition from torus to chaos. 

1.6. Chaos beyond ergodicity 

Chaos and torus are the dominant structures in the compact hamiltonian 

dynamics where the ergodic theory presupposes the Poincare-Hop£ recurrence theo­

rem. But slow motions in hamiltonian systems (including the Arnold diffusion) are 

no longer the recurrent phenomenon provided that Eq. (1·8) is satisfied. The com­

plexity of dynamical systems seems to be classified into two categories; one is the 

recurrent class (in the sense of Poincare-Hop£) and another is the non-recurrent, The 

old ergodic theory mainly focuses onto the former, but the Arnold diffusion is beyond 

the recurrent class. In the present paper we will show that the hamiltonian chaos 

generically belongs to the non-recurrent class with the compact phase space. 

Even the hamiltonian systems with the unbounded phase space can reveal not 

only the torus motions but also a quite complex phase. In some sense, the complexity 

in such systems comes from the phase shift sensitivity on the cross section in the 

scattering processes.83J For an instance, the model system treated in § 4 is an exam­

ple for such unbounded dynamics, and the orbit diverges to infinity as t~ ±oo. (The 

non-recurrent aspects of the model is not precisely discussed in this paper.) The 

critical phenomena between chaos and torus is expected to play an important role 

even in understanding the "chaos" in such scattering processes. 

§ 2. Stagnant motions and the final KAM torus 

In this section we will explain the basic mechanism of stagnant phenomena in 

hamiltonian systems, and then quickly review some useful concepts based on the 

2-dimensional picture which will be used in the latter section. 

2.1. Perpetual stability and Nekhoroshev theorem 

Let us consider the nearly integrable hamiltonian, 

H=Ho(P)+cHl(p, q), (2·1) 

where c is a small parameter and H is analytic. One of the fundamental problems is 

the following; how long does an orbit stay in the neighborhood of the unperturbed 

torus? When the distance in the action space IP(t)-p(O)I satisfies, 

IP(t)- P(O)I <a( c) (2·2) 

for all t(>O) with a certain parameter a(c) which yields limite~oa(c)=O, the orbit is 
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Stagnant Motions in Hamiltonian Systems 45 

called perpetually stable. 

The KAM torus discussed in § 1 is an example of such perpetually stable orbits. 

But in general, the perpetual stability is violated when the unperturbed torus is 

destroyed and is changed into a resonance zone under small perturbation. Then Eq. 

(2·2) should hold only for finite duration t< T(s). The Nekhoroshev theorem 

states,70J 

(2·3) 

provided a(s)=ea, and that the constant parameters a and b do not depend on the 

perturbation H1(P, q) but are determined only by the unperturbed hamiltonian Ho(P). 

The singularity factor exp[1/sb] plays an essential role in understanding the onset of 

the slow motions such as the Arnold diffusion. Equation (2 · 2) defines the stagnant 

region in the phase space where the motion is quite inactive. (The definition of the 

stagnant layer will be given later.) 

The essential condition for the N ekhoroshev estimation is the steepness of the 

hamiltonian Ho(P). Namely, let n be the degrees of freedom of our system and 

consider the n·dimensional space p=(PI, Pz, ···, Pn). Denoting the lower bound of the 

gradient (fl Ho1s) in the s·dimensional sub-space As by mp,s(TJ), i.e., 

(2·4) 

the hamiltonian Ho is called the steep at p if the upper bound of mp,s(TJ) satisfies, 

sup mp,s( 1)) > 0( e·) 
0<7/<f 

(2·5) 

with as> 1 (for s=1, 2, ···, n-1). The values of indices a and bare determined by as 

(s=1, 2, ···, n-1), i.e., 

a=a({aj}, n), 

b=b({aj}, n). 

For example, the Toda lattice hamiltonian,84J 

(2·6) 

Ho(P, Q)=2!{PN2+(A/B)exp[ -B(Qi+I-Q;)]+A(Qi+I-Q;)} (2·7) 
i 

is rewritten by a certain transformation into, 

Then the steepness index is easily derived as 

for all s, and the indices a and b are 

a=b=3/(6n 2 -3n+14)~ 0. (n~oo) 

(2·8) 

(2·9) 

(2·10) 

The essential singularity factor exp[1/sb] becomes unity as n goes to infinity and 

then the slow motion leading to the Arnold diffusion seems to be discarded in high 

dimensional systems. But as is shown later this conjecture is not true, that is to say, 
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46 Y. Aizawa, Y. Kikuchi, T. Harayama, K. Yamamoto, M. Ota and K. Tanaka 

the long time behaviors should not be understood without taking account of the 

non-stationarity owing to the stagnant effect in the perpetual stability region. The 

perpetual stability is locally defined in the very narrow band in phase space, but the 

idea is essentially important even in understanding the global wandering motions such 

as the Arnold diffusion. 119l 

The Nekhoroshev theorem was derived for flow systems, but in this paper we 

assume that the theorem is applicable even for the system defined by the discrete 

mapping provided the motion is area preserving. The mapping in 2(n-1) dimen­

sional space can be identified with the Poincare map of a certain hamiltonian flow 

with n degrees of freedom. 

2.2. Scaling theoretical approach --Stagnant layer and the final KAM surface-

Every KAM island floating in the stochastic (or chaotic) sea is always adjacent 

to chaotic orbits. When the dynamical system is smooth or analytic, the chaotic flow 

in the vicinity of a KAM surface is almost the same as the quasi-periodic motion 

restricted on the KAM torus because of the continuity of the flow vector. We call 

such local flow adjacent to a KAM surface the stagnant motion, and the sub-space 

occupied by the stagnant motions the stagnant layer. Furthermore, we define the final 

KAM surface as the boundary surface in which all the stagnant motions are 

enwrapped. Then the final KAM surface is a closed set in phase space. The final 

KAM may be a smooth invariant torus, but strictly speaking we cannot omit the 

possibility that the surface is a wild one such as the cantor set, and that the metrical 

transitivity might be lost on that surface. But in this paper we assume that the final 

KAM surface is an invariant torus with the same sense as is used in the KAM theory. 

The universality of the stagnant layer can be derived from the scaling theoretical 

approach.85 l Let us define the stagnant layer coordinate r which denotes the distance 

(n-1 dimensional vector) from the final KAM surface as is illustrated in Fig. 2-1. 

Following the Nekhoroshev theorem we introduce a smallness parameter c, i.e., 

then the volume element in the r-space is 

' ... ' \ 
\ 

, final KAM 

' \ \ 
KAM\ \ \ <; \. c c 

,,, ~ 
... - - + - ~ - ~ - ..,r,...c------j1-__:;::.:r 

, 
I I 

I 
I , 
, 

I Llr I 

I 
Fig. 2-1. The stagnant layer coordinate. 

Llr denotes the phenomenological threshold for 

the stagnant motion. 

(2·11) 

(2·12) 

where a'=a(n-1). The phase volume 

V of the stagnant layer (i.e., Lebesgue 

measure of the r-neighborhood) is a 

function of r and the phase volume ele­

ment dV satisfies, 

dV~P(r)dr, (2 ·13) 

where P(r) is the invariant density. As 

the density has no singularity, the paus­

ing time distribution P( T) is derived, 

P( T) ~ ldV/dTI ~ ca'-lldc/dTI 
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Stagnant Motions in Hamiltonian Systems 

~_1_(_1_)l+a'/b 

T log T ' 

where we used Eq. (2·3) in the limit of c~O, 

ldc/dTI ~ ,;?+bexp[ -1/cb], 

log T~c-b. 

47 

(2·14) 

(2·3)' 

When the initial points are uniformly distributed in the stagnant layer r<Llr (see 

Fig. 2-1), the distribution P( T') for the first passage time T' necessary for the 

representative orbit C to escape from the threshold level is given by dr/Llr, i.e., 

P( T')~ T' l~g T' . (2·15) 

This is a universal law in the stagnant layer. 

Equation (2 ·11) reveals the meaning of the smallness parameter c, i.e., in the 

above discussion the basic assumption is that the unperturbed motion is the final KAM 

torus and the distance r is the effective perturbation to it. This is compatible with 

the previous assumption such that the final KAM surface is an invariant torus. 

Next let us consider the inside of the final KAM surface, i.e., the stable region for 

r< 0 in Fig. 2-1. In the stable region we assume that almost whole space is densely 

covered with invariant tori. This is not generally correct in high dimensional sys­

tems, but is approximately correct in two dimensional systems (see § 5). When we 

consider the distance r as a control parameter, a kind of phase transition seems to 

occur at the critical value of r= rc ( =0). Then the final KAM surface corresponds 

to the critical point at which the stable phase takes the place of the chaotic one. 

In the system with 2 degrees of freedom, the rotation number of the invariant 

torus R(p) is the best candidate for the order parameter to describe the phase 

transition, where p is the action variable. Denoting the angular frequency by R 

( = mdah), the order parameter is given by the long time average of it. The derivative 

dR/dp stands for the relative shear stress of the circulating flow along the KAM 

surface, since m is the gradient of the hamiltonian, 

(2·16) 

Our basic assumption is formulated as follows; under an appropriate canonical 

transformation, the original system of Eq. (2·1) can be rewritten into, 

H'(r, O)=Ho'(r, c)+ H1'(r, (),c), (2 ·17) 

where the variable () is the canonical conjugate to the new action variable r. The 

point is that the renormalized perturbation H1' is effectively zero for r< rc( =0). 

Therefore, the order parameter R( r) is 

(2·18) 

for all r( < rc). As was proved by Arnold,9> the necessary condition for the invariant 

torus to survive under the perturbation H1' is, 
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(2·19) 

where An is a function of the degree of freedom n, and c is a positive constant, and 

8 is the upper bound of the local shear stress, i.e., 

8=maxllo2Ho' /or 2 ii 

~O(dR/dr). (2·20) 

Therefore, if the final KAM is the critical invariant torus that becomes unstable under 

every infinitesimal perturbation, the gradient dR/dr must be infinity at r = rc. This 

implies that the order parameter R(r) should be singular as is shown in Fig. 2-2, for 

instance, 

(a<1) (2·21) 

for rc>r, and R(r)=const for rc<r. 

In § 5 we will numerically pursue the critical phenomena near the final KAM 

surface. The results seem to support the existence of the phase transition, though our 

approach is based on the phenomenological assumption mentioned above. 

2.3. Statistical laws in a stagnant layer 

Here we give some heuristic comments on the general aspects in the stagnant 

layer. The mean values of the first passage time as well as the pausing time become 

infinity owing to Eqs. (2 ·14) and (2 ·15). This enables us to define the pure stagnant 

motions, that is to say, the motions which are perpetually trapped in the stagnant 

layer. The invariant measure that describes such motions is different from the 

Lebesgue measure of Eq. (2·13), and is surmised to be strongly localized around the 

final KAM surface. As will be discussed in § 6, the most dominant one of such 

measures P( r) is expressed by 

(r>O) (2·22) 

where r stands for the distance from the final KAM surface (i.e., rc=O) and a a 

positive constant. If the rate of the orbital unfolding tl is a function of r, i.e., 

Rc -----·------·----------!-. ----

0 r 
Fig. 2-2. The change of the rotation number R(r). 

r stands for the stagnant layer coordinate. 

(2·23) 

with a positive constant d, the distribu­

tion of tl becomes, 

(2·24) 

with 8=1 +(a-1)/d. Intuitively, tl is 

the local Lyapuno"9" exponent in the stag­

nant layer, and the first passage time T' 

is estimated by T' tl ~ 1 and the distribu­

tion of the first passage time P( T') 

becomes, 

P(T')~ T'-P, (/3=2-8) (2·25) 
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where o=1 (or a=1) is predicted in line with Eq. (2·15). 

The essence of the pure stagnant motions is the non-stationarity; the characteris­

tic time scale dt and the spatial scale dr satisfy the following relation: 

(2·26) 

This implies that any orbits cannot reach to the final KAM surface in a finite time, 

(2·27) 

where ro stands for the initial position. 

When we introduce the new coordinate Y, i.e., dY/dr =- r-d-I, Eq. (2 · 26) is 

rewritten into 

dY/dt=TJ(t) 

or 

(2·28) 

Here the non-singular part TJ(t) of Eq. (2·26) is introduced. We can assume that TJ(t) 

is originated from the chaotic behavior in the stagnant layer and is a stationary 

variation. For an instance, when TJ(t) is a white gaussian process, Y(t) becomes the 

Wiener process (or the Brownian motion). If the approximation is correct in the 

large time scale limit, the power spectral density (PSD) of the variable Y(t), i.e., S(f; 

Y) becomes 

(2·29) 

in the low frequency limit (/~1). The non-stationarity of Eq. (2·29) will be discussed 

in§ 4 by putting d=O, i.e., Y=-log(r-rc). 

The fluctuation of the phase angle B(t), which is the canonical conjugate to the 

radial coordinate r(t), is obtained from the same consideration. Let us denote the 

characteristic frequency of the final KAM torus by /c. Then the rotation velocity 

d8/dt( =27r/) at the distance r ( > ro) satisfies, 

27r(/-/c)= iJ(t)- Bo(t)=LJiJ(t) 

~O(rd) (2·30) 

since the system is the area preserving one. Here Bo(t) denotes the phase angle on the 

final KAM torus. Therefore, the distribution of the frequency P(/) obeys the same 

scaling form as stated in Eq. (2·24), 

(2·31) 

Furthermore, the PSD of the fluctuating period r( =dt/d(B- B.o)~ O(r-d)) is the same 

as that of Y(t) in Eq. (2·28), 
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(/<1) (2·32) 

Equations (2 · 31) and (2 · 32) explain the general aspect of the phase noise in 

hamiltonian systems.88> If the stationary process TJ(t) is submitted to the fractional 

Brownian motion BH(t), i.e., 

(2·33) 

and 

TJ(t)dt=dBH(t), (2·34) 

the phase noise should be generalized as, 

S(f; r)~ 1-<2H+ll, (1<1) (2·35) 

where B(t) stands for the Wiener process and H a parameter (0< H < 1).86>·87> 

2.4. Large scale diffusion --Symbolic dynamical realization--

In general, innumerable KAM islands are distributed in phase space, and as the 

result the stagnant layers without number are also coexisting. Denoting the size (or 

the phase volume) of an island by v, the distribution of the size P(v) seems to satisfy, 

(2·36) 

where D' ( < 1) is a positive constant (see § 6). Besides, the geometrical disposition of 

each KAM island is surmised to be self-similar as is shown in Fig. 2-3. Such self­

similar structure is called the fat fractals. 59> 

The fat fractal structure induces a new universal aspect in the long time tails of 

hamiltonian systems. Let us denote the i-th stagnant layer by L, and consider the 

jump process from L; to Lj. The pausing time in each stagnant layer is extremely 

long, but on the other hand the residence time in the non-stagnant layer L (=the 

compliment of the set ULk) is rather short. Therefore, the long time behavior of the 

k system can be characterized by the 

Fig. 2-3. A fat fractal picture of "islands around 

islands". Circles denote the final KAM sur­

faces. The C/s denote the ghost separatrices. 

reduced dynamics ¢ in the symbolic 

space {L1, L2, L3, ···}, i.e., ¢: L;,--+ L;,. 

The merit of the symbolic dynamical 

approach is that the mapping is well 

approximated by a semi-markoffi.an 

process as was discussed in the previous 

paper;89H 1> the PSD of the symbolic 

process {i1--+i2--+i3--+, ···}, i.e., S(f;i), 

reveals the long time tail, 

S(f; i) ~ /-(3-P) ' (1<1) (2·37) 

when the pausing time distribution P( T) 

in each symbolic state satisfies, 

(T}>1) (2·38) 
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Equation (2·37) suggests a universal aspect (,8=1 from Eq. (2·15)) of the Arnold 

diffusion in the symbolic space. As the PSD is not invariant under the general 

isomorphic translation, we cannot always observe the /-2 spectrum for a given 

variable. But the point is that the non-stationary diffusion process is almost always 

hidden behind the fat fractal structure. 

§ 3. Numerical proof of the stagnant motion 

In this section we will give a direct evidence of the N ekhroshev theorem carrying 

out with computer simulations. The model system is the billiard motion in the 

generalized stadium.101J 

The boundary of the stadium is constructed by four convex arcs as is shown in 

Fig. 3-1. First, fix a square ABCD (e.g., AB=2) and draw the circular arcs (AD and 

BC) with the same radius a, and then the remaining arcs (AB and CD) are drawn as 

their derivatives are continuous at each end point. In this model let the system 

parameter be 8=/ a2-l. At 8=0 the system becomes the Bunimovich stadium 

where the motion is completely ergodic (i.e., K-system), and the case 8=1 is complete­

ly integrable.100J 

The Birkhoff coordinates (i.e., the normalized arc length 7J ( 0 < 7J < 1) and the 

reflection angle-coordinate s=sina in Fig. 3-1) are used to describe the motion of the 

billiard ball.26J A collision point (7J;, s;) is successively transferred to the next colli­

sion point (7Ji+l, S;+I) due to the area-preserving mapping Tlf, 

(3·1) 

In this paper simulations will be limited only to the nearly ergodic case (8~1), where 

the final KAM surface is clearly observed and the analysis becomes rather easy. 

Figure 3-2(a) shows the mapping for a chaotic orbit. All the KAM tori in this 

system are squeezed into two narrow bands which are shown as white holes in the 

figure. Roughly speaking, these narrow bands correspond to the perpetual stable 

region discussed in § 2, and the center of each band is a stable cycle with period 2. 

I 
I 
I 

~~~l 

I 
I 

Fig. 3-1. The billiard system in the generalized 

stadium. 

There is no KAM islands anywhere in 

phase space except for in these bands. 

Figure 3-2(b) is the magnification of a 

part of the stagnant layer, where a lot of 

KAM islands are dispersed. 

By using the fact that the final KAM 

surface of our case (8~1) is an almost 

complete ellipse, we introduce new coor­

dinates (r and B), 

s=l/ArsinB, (3·2) 

where 7Jc( =0.25) is the position of the 

elliptic center and A(=.:30.752 .. ·) is the 
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H. 5 
1/ 

(a) 

I.H 

8. 8a82 

e. a888 

-a. oaa2 

a. 3472466 
1] 

(b) 

Fig. 3·2. The mapping in the normalized Birkhoff's coordinates. 

(a) The mapping for the generalized billiard. 

(b) The magnification of the stagnant zone observed in (a). 

·· .. ,.,· 

a. 3472468 

scaling factor. Figure 3-3 shows the magnification of the stagnant layer. The radius 

of the final KAM surface r=rc=0.0972···, and the thickness of the stagnant layer Llr 
=lo-s approximately. 

We distribute the initial ensemble uniformly in this thin layer (r-rc<c), and 

estimate the first passage time T necessary for each orbit to escape from the thresh­

old level c. The first passage time distribution P( T) is illustrated in Fig. 3-4. The 

exponential distribution (Fig. 3-4(a)) is realized in short time behavior for large c. In 

order words, the non-stagnant motion is dominant in the region far from the final 

KAM surface, where the markoffian approximation is well adjustable. But in the 

stagnant layer very near from the final KAM the distribution obeys the non­

markoffian hyperbolic one for large T, 

B. 8972468 

a. 8972467 

9. 8972466 

8. 9972465 

-8. 8a85 

f l nat KAM 

8. 001!0 

8 /2n: 

(a) 

8. 88a5 

e. 89724655 

8. 8!17246511 
-B. 11!1885 II. 11!1885 

e I2K 

(b) 

Fig. 3-3. (a), (b) The stagnant layer magnified in the (r, B) space. 
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-B. 2 a=-1. B892682883B9163D-B3 

a=-. a9321528932189!a4 

In P -B. 3 

-B.4 

~------~------~------~ 

3BB 4BB 

(a) 

-1.2 

In P 

-1.3 

11. a 11.5 
In T 

(b) 

12. a 

a=-. a3aU4162799726a23 -. B15 f--- ~ a=-2. 57fi554364824858U-B3 

-. ta 

""· 
In P In P -.BIG --

-. 15 

-.BI7 

I 

ta. a 11. a 11. a 
In T In T 

(c) (d) 

Fig. 3-4. The first passage time distributions P( T)~ y-P (a=1- /3). 
(a) For c=2 X 10-6 (exponential decay: P( T) ~exp[aT] with a= -0.000109). 

(b) For c=5X10-7 , a=-0.093215. 

(c) For c=3 X 10-7 , a= -0.030041. 

(d) For c=10-7 , a= -0.002576. 

P(T)~ y-P 

and the index /3(s) seems to decrease, 

/3(s)-+ 1, (s--+0) 

I 

12. A 

(3·3) 

(3·4) 

53 

in accordance with Eq. (2·15). In the numerical analysis the time domain is nearly 

fixed as 1010 < T < 1012 in line with the precision of the machine calculation, and the 

integrated distribution function was used in Fig. 3-4. 

The time course of one sample path in the stagnant layer is shown in Fig. 3-5. 

The distance from the final KAM surface increases almost monotonically for short 

time, and intermittently it reveals sharp enhancement. Especially big jumps are 

observed near r- rc ~ 10-7• Such anomalous enhancement may come from the 

diffusion barrier due to the cantorus or the heteroclinic narrow gates in phase space. 

The long time tails of Eq. (3·3) might be correlated to such special structure in phase 
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8.8972478 

r 
B. 8972468 

B. 8972466 

r, 

1888 
(x!O'l 

2BB8 

B. B972475 _ 

r(T+l) 

B. B97247B -

r, 
B. B97247B B. B972475 

r(T) 

Fig. 3-5. A diffusion process of one sample path. Fig. 3-6. One dimensional realization of the stag­

nant motion. rc denotes the coordinate of the 

final KAM surface. 

space. 

The essence of the stagnant layer can be extracted in a one-dimensional reduced 

mapping. We consider the narrow strip which satisfies I B- Jr/21 < 10-5 in phase space 

(r, B). When an orbit reinjects into the strip successively at time t1, tz, ···,denote the 

radial coordinate by {r1, rz, rs, ···}. Then let us consider the return mapping ¢, 

(3·5) 

Figure 3-6 reveals a striking structure that is quite similar one as is observed in the 

well-known intermittent map for lr-rcl~1. i.e., 106H 12l 

(B>2) (3·6) 

This remarkable point will be discussed again in § 6. 

§ 4. Induction phenomena and the Arnold diffusion 

Let us consider the discrete time lattice vibration of linear chain described by the 

following mapping: 

X~+1-2Xni +x~-l =K(xni+1_2Xni+xni-l)+( N i 1 r J.l{(xni+l_Xni)3 +(xni_Xni-l)3}' 

(4·1) 
(xn°=xnN+ 1=0) 

where the integer i stands for the lattice site and n discrete time.*l K is the linear 

spring constant and J.l the cubic nonlinear perturbation. When J.t=O, by introducing 

the normal mode coordinate Qnj's, the equations of motion are rewritten into 

*l The nonlinear term should be replaced by 

for the Fermi-Pasta-Ulam problems discussed in § 1, but the induction phenomena are not clearly 

observed under such perturbations. 
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(w/=4K sin2j;r/2(N + 1)) (4·2) 

where the transformation is unitary, 

(4·3) 

The constant of motion which corresponds to the energy of each normal mode Eni 

becomes, 

E i-(Qi Q i)2+ 2Qj Q j n - n+l- n Wj n+l n . (4·4) 

When we introduce the perturbation f.l, Eni's are not invariant but fluctuating in time. 

Defining the canonical momentum P/ by 

(4·5) 

the mapping ¢: (Pl, ···, PN; Ql, ···, QN)~ becomes a measure preserving one. The 

special case N = 2 and K = 1 is studied in what follows, namely that is the simplest 

model which reveals the Arnold diffusion. 

Figure 4-1 shows the mapping in the normal mode space for f.l=O, where the orbit 

is two dimensional torus described by Eqs. (4·4) and (4·5). For the case f.l::%::0, the 

Arnold diffusion occurs as is shown in Fig. 4-2. When the time t is smaller than a 

certain induction time T1, the energy of each normal mode oscillates pseudo­

periodically and the orbit seems to be a simple torus. But for the case t > T1, the orbit 

becomes strongly chaotic. The switching from the pseudo-periodicity to chaos is 

instantaneously achieved at t = T1 as is shown in Fig. 4-3. This is the induction 

phenomena of our system. After the transition at t= T1, the exchange of the energy 

occurs drastically but the equi-partition law of energy has not yet been satisfied in this 

model. 

Here we will numerically prove that the pseudo-periodic motion (for t < T1) is the 

stagnant motion such as discussed in § 2, i.e., the induction time T1 obeys the 

Nekhoroshev estimation; 

o. 2 

- 0' 2 '-------'--------' 
-0.2 0 0.2 

Fig. 4-1. The mapping of the first normal mode 

(P,, Q,) at tt=O. 

T1~ TP if.l~f.lciexp[(f.l-f.lc)-b], 
(4·6) 

and the distribution of the induction time 

T" becomes 

P(T")~ 1 1 (4·7) 
T" log T"' 

where f.lc is the adjustable value of f.l at 

which the orbit is completely quasi­

periodic under the initial condition used 

in the simulation. In other words, the 

orbit is a perpetually stable torus at f.l 

= f.lc and the induction phenomenon does 
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-0. 2 '--------'------
0 0. 2 -0. 2 0 0' 2 

Fig. 4-2. The mapping of the normal mode (H, Q,) at ,u=21. 

(a) Fort< T1. (b) Fort> T1. 

E, 

Fig. 4-3. The time course of the normal mode's energy E, (,u=9.45 x 10-2). The energy mixing 

begins at t= Tk=<7200). 

-1. 0 
'---------'------

-1. 0 0 1. 0 

Ql 

Fig. 4-4. The final KAM surface determined 

numerically at ,u=0.333 and (P,, P., Q,, Q.) 

=(0.4, 0, 0, 0). 

not occur (see Fig. 4-4). 

The induction period T,.. is 

measured for a fixed initial condition (Pr 

=0.4, H=O, Q1=0, Qz=O). As one can 

see in Fig. 4-5; T,.. changes step-wisely. 

This implies that the geometrical struc­

ture of phase space is very intricate and 

that the Arnold diffusion is sensitively 

dependent on the initial condition. If 

we neglect the step-wise small structure, 

the overall feature of Fig. 4-5 is well 

adjustable by Eq. (4 ·6) putting f.tc=0.333 

and b=400. 

Next we determine the probability 

density of the induction period T,.. by 
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1. 3 1. 8 

Fig. 4-5. The induction periods for various values of fl.. The solid line is the Nekhoroshev bound 

adjusted by Eq. (4·6) with f!.c=0.333 and b=400. 

1. 75Xlf 5 

( a ) 

T 

LOG roT 

6 

(j 

1 0 

Fig. 4-6. The distribution of the induction period for the initial ensemble of the small window. 

(a) Normal plot (P(T)~ T-1). 

(b) Logarithmic plot: The solid line denotes the fitting by Eq. (2 ·15), and the ordinate is shifted by 

Log(5000). 

fixing the value of f.J.( =21). In the first simulation (Fig. 4-6), the ensemble of the 

initial points is taken to be uniform in the small window satisfying, 

IH -0.1I<3.125X 10-4 ' 

1 Qll < 3.125 x 10-4 

with Pz=Q2=0. The second simulation (Fig. 4-7) follows to another ensemble with 

random phases on the torus described by Eq. (4 ·4) with the same initial energy as in 

the previous simulation. Either case seems to be adjustable by the inverse power law 
(P(T)~ y-P) with /3=1.14 or /3=1.02 respectively for large T(~10 4 ). The solid lines 

in Figs. 4-6(b) and 4-7(b) indicate the fitting by Eq. (2 ·15). 
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-7 
7. 0Xl0 

Or-------------~------------, 

( a ) ( b ) 

E 

~ ------------
1' (T) I ~ § . . ·~~.,.,, .. ,"~'/-..;'.':'!~;""" 

~~ "','-----~----' 

p "; 1. 0 2 

J~~ LOG1uT 

o _ ~':lt.~ . .iL~ii.O..,.,,jh!!.,.,,.,.,,,,.,.,.~ 
T 1 0 

(; 

Fig. 4-7. The distribution of the induction period for the initial ensemble of the random phase. 

(a) Normal plot (P(T)~ y-P)_ 

(b) Logarithmic plot: The solid line denotes the fitting by Eq. (2·15), and the ordinate is shifted by 

Log(5000). 

-6 

-14 l----~--~--~--~--~----·----~------~---1 
-4 LOG 10f 0 

Fig. 4-8. The power spectrum of the variable X=log(E,(t)/E,(O)) fort< T1, where tt=lo-s and 

(Pt, P., Q,, Q.)=(l, 0, 0, 0). 

In spite of the good agreement between the induction phenomenon mentioned here 

and the Nekhoroshev theory, precisely speaking there still remains a big problem 

unsolved. Namely, there may coexist a number of stagnant layers in the neighbor­

hood of the initial conditions used here, and the orbits may pass by them one after 

another before the induction occurs. If so, the induction phenomenon should not be 

understood in terms of the simple diffusion process in a stagnant layer, but must be 

understood as the compound jump process among a lot of stagnant layers as was 

discussed in § 2.4. 

The striking aspect of the diffusion process for t < T1 is revealed in the PSD 

function S(f; X) of the new variable X(=ln{EI(t)/EI(O)}, where E1(t) denotes the 
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energy of the first mode; 

(4·8) 

as is shown in Fig. 4-8. This is the same spectrum as for the Brownian motion, and 

should be understood in relation to Eqs. (2·37) and (2·38). 

§ 5. Critical phenomena of the final KAM surface 

In this section we will try to characterize the singularity of the final KAM torus 

along the same line that was discussed in § 2.2. Two-dimensional mappings are 

numerically studied, i.e., Henon map, Standard map, and Tennyson map. 

Henan map 113> 

x'=(cos2;m)x-(sin27ra)(y-x2), 

y'=(sin27ra)x+(cos27ra)(y-x2). (a=0.2114) (5·1) 

The distance r denotes the x-coordinate on the symmetry line, y=(tan7ra)x, as is 

shown in Fig. 5-l. The point of r=O is the elliptic center surrounded by invariant 

KAM tori. The invariant surface vanishes for r > rc ( =0.405289··· ), and the very 

narrow chaotic band appears owing to the heteroclinicity of unstable cycles with the 

period 5. The KAM torus at r = rc is the final KAM which will be analysed hereafter. 

The rotation number of the invariant torus R(r) is shown in Fig. 5-2, where the initial 

point is put on the symmetry line with the distance r. R(r) is well defined for r< rc, 

but is fluctuating above the critical point (r > rc). The anomaly observed near the 

final KAM surface reminds us the scaling law in the order-disorder phase transition, 

e.g., in the analogy with the magnetic spin system, the order parameter R corresponds 

to magnetization and the control parameter r to temperature. We do not have any 

.. . ~;;§?~-- --
·a!/ , '.....__/ 
\ :: \ (', 
·. I I 1 -., 

, ·: 0 .'O-' : 
... \ :' ,. I 

·· .. \ . . /· 
~ .. . . 

~-:·::":.: :·~·~)-·· 
-~./ 

special reason to believe that the singu­

larity of the final KAM surface obeys to 

the same scaling law as the fer­

romagnetic phase transition, but in what 

follows we will pursue the possibility of 

a certain universal law near the critical 

point r=rc. 

Two scaling forms are examined, 

(5·2) 

and 

(B) R-Rccx:{ln(rc- r)- 1}-11.8, 

(5·3) 

where R=R(r) and Rc=R(rc). The 

Fig. 5-1. The sketch of the Henon mapping. The second implies the essential singularity, 
stagnant layer coordinate is measured along 

the r-axis in the figure. 
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0 

a::: 
I 

-3.6 

... . .. 
. 2818 

.2885,__ _____________ ~ 

. 48528945 

(a) (b) 

Fig. 5-2. The singularity of R(r) in the Henon mapping. 

(a) The numerical data of the rotation number R(r) for the Henon map. 

(b) The magnification of (a) near the transition point. 

3.2 

. 48528965 

a::: -3.8 

0 
...... 

-4.0 

-12 -11 -10 

log("tc-"t) 

(a) 

-9 

c 
...... 

c 3. 0 
...... 

-8.8 -8.6 -8.4 -8.2 -8.0 

ln (R-Rc) 

(b) 

Fig. 5-3. The scaling regime for the Henon map. (a) Fitting by Eq. (5·2). (b) Fitting by Eq. (5·3). 

We have used the weighted least square method to determine the critical index and the 

critical point (rc, Rc), and get the most reliable values for them; 

(A) a=0.117···, 

(B) ,8=0.891···, 

rc=0.40528965772811··· , 

Rc=0.200485906· • • , 

rc=0.40528965749838···, 

Rc=0.200125357··· . 

The critical points (rc, Rc) are almost the same in both identifications (A) and (B). 

The solid lines in Fig. 5-3 denote the fitting curves for each plot. It is very striking 

that the both curves are well reproducing the same numerical data. That is to say we 

cannot decide which is the correct scaling form Eq. (5·2) or (5·3), though Fig. 5-3 

clearly reveals the existence of the scaling regime for each plot. 
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····--.:~. 

1259 •• 0 • 0 ••• . . . 

r 

.1255 

"'"~···· 

.25988785 .25988888 

X 

Fig. 5-5. The singularity of R(r) in the standard 

mapping (K/tr=0.3). 

Fig. 5-4. The sketch of the standard mapping. 

The stagnant layer coordinate is measured 

along the r-axis in the figure. 

Standard map21l 

x'=x+y', 

y'=y-(K/27r)sin(27rx). (mod. 1) 

(K/Jr=0.3) 

(5·4) 

As is shown in Fig. 5-4, the distance r is measured from the elliptic center (x, y)=(O, 0) 

along the x-axis. The final KAM surface is observed at r=rc (=0.259008···), above 

which the narrow chaotic band is generated due to the heteroclinicity of unstable 

cycles with the period 8. The critical point (rc, Rc) is quite different from the 

previous example, but the qualitative aspect seems to be the same as seen in Fig. 5-2. 

The best fitting by each scaling form of Eq. (5·2) or (5·3) was pursued in Fig. 5-5. 

(A) a=0.141···, 

and 

(B) {3=0.775··· , 

rc=0.25900806437536··· , 

Rc=0.1254320063 ... 

rc=0.25900806460558···, 

Rc = 0.125099421· · · . 

Then existence of each scaling regime is shown in Fig. 5-6. In this example also we 

have not yet been able to decide the correct scaling form. 

Tennyson maP24> 

x'=x+0.1 tan(Jry'), 

y'=y-0.1 sin(27rx). (mod. 1) (5·5) 
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-3.8 3.2 

. 
1-

0 I 

0:::-4.0 
I 

/ 
/ ~ 0 

1-

0::: 

0> 

0 

-4.2 

c 
,......, --....., 

3.0 

c 
,......, 

-10 -9 -9.2 -9.0 -8.8 

log(rc-rl ln (R-Rc) 

(a) (b) 

Fig. 5-6. The scaling regime fot the standard map. 

(a) Fitting by Eq. (5·2). (b) Fitting by Eq. (5·3) . 

. . . 
8627 . .. 

.86261----~--~--~--~--~ 

.3876165 . 3876167 

X 

Fig. 5-7. The sketch of the Tennyson mapping. Fig. 5-8. The singularity of R(r) in the Tennyson 

The stagnant layer coordinate is measured mapping. 

along the r-axis in the figure. 

The distance r is measured from the elliptic center (x, y)=(O, 0) along the x-axis as 

illustrated in Fig. 5-7. The final KAM surface is observed at r= rc ( =0.30761···), and 

the narrow chaotic zone is created by the heteroclinicity of unstable cycles with the 

period 16. 

The rotation number is shown in Fig. 5-8, where the best fitting for each scaling 

form is obtained with the following parameters: 

(A) a=0.128··· , rc=0.30761670614366··· , 

Rc=0.062582655··· 
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3.2 

$-

I 
0 

$-

c 
........ 

3.0 

c 
........ 

-10 -9 

log(rc-r) 

-9.4 -9.2 

ln(R-Rcl 

(a) 

Fig. 5-9. The scaling regime for the Tennyson map. 

(a) Fitting by Eq. (5·2). (b) Fitting by Eq. (5·3). 

(b) 

(B) ,8=0.646·· · , rc=0.30761670614645··· , 

Rc=0.062537420··· . 

63 

-9.0 

The scaling regime for each identification is shown in Fig. 5-9, where both plots seem 

to reproduce the numerical points as well. 

Three examples treated in this section suggest the existence of a certain singular­

ity at the final KAM surface, though we could not determine the scaling form 

definitely. We will close this section after giving two conjectures; 

(i) Universality 

The values of the critical indices for each example are rather close with each 

other. Therefore, if the scaling law is universal for that identification, the indices are 

roughly estimated as, 

a=0.13±0.015 

or 

.8=0.77±0.11. 

(ii) Singularity 

Denoting the critical rotation numbers identified by Eqs. (5·2) and (5·3) by RcA 

and Res respectively, and the rotation number in the adjacent chaotic band by Rx, then 

the following ordering holds for every example, 

RcA>Rcs>Rx. 

If the rotation number is a continuous function of r, i.e., the transition is not the first 

order type, the scaling form of Eq. (5·3) seems to be more plau~ible rather than Eq. 

(5 · 2). More precise calculations are still in progress. 
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§ 6. Model approach to the stagnant motions 

In this section the basic formalism discussed in § 2 will be proved by carrying out 

with some simple models. 

6.1. Fractal geometrical model--Two dimensional case-

Let us consider the hierarchical distribution of the final KAM tori in phase space, 

where the final KAM of the i-th class is surrounded by the KAM islands of the (i + 1)­

th class as is illustrated in Fig. 2-3. The hierarchy is assumed to continue successive­

ly to the infinitesimal KAM islands in a self-similar manner. Precisely speaking, the 

phase space in each ghost separatrix C; contains all the j-class KAM tori Kj(j"~ i + 1). 

Then the self-similar structure of the lexicographical tree is formed, 

(6·1) 

where sj denotes the j-class chaotic zone, 

(6·2) 

Sj is called the j-th class cluster for short, and all the chaotic motions occur in the 

union of the S/s (j = 1, 2, · · · ). The self-similarity is assumed in the strict sense: 

(1) One KAM torus of K; is surrounded by p KAM islands of K+1, where p ( > 2) is 

a constant. 

(2) The structure of the (i + 1)-class cluster is similar with that of the i-class cluster, 

i.e., the volume ratio for each region is a constant b ( > p ), 

vol(K;) 
vol(K;+l) 

vol(S;) 
vol(Si+l) 

vol(C;) 
vol( Ci+l) 

b. (6·3) 

(3) The parameters p and b are constants independent of i, and the chaotic orbit in 

S;+l is similar to that in S; when the time course is measured at every p step. 

When we assign the rank number l (=0, 1, 2, ···)to every KAM torus in order of 

its volume, the phase volume of the /-rank torus V1 is described by, 

v1~ !-liD'. (D' = lnp/lnb < 1) (6·4) 

Namely, the rank-size relation obeys the Pareto-Zipf law. From the above condi­

tions, the followings are easily obtained.60> 

(i) The distribution of the volume (v< v1< v+dv) becomes, 

(6·5) 

(ii) The distribution of the pausing time n, during which the orbit stays in the i-th 
chaotic zoneS; and/or C; becomes, 

(D=1/D') (6·6) 

This is independent of i. Besides the distribution of the first passage time P( T), 
where T is the time necessary for an orbit to escape from a cluster C;, is also 
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Stagnant Motions in Hamiltonian Systems 65 

derived from the same consideration, 

(6·7) 

Here the initial ensemble is assumed to be uniform in whole chaotic space U'i=oS;. 

(iii) The power spectrum of the rotation angle around the 0-class torus Ko becomes 

S(/) ~ 1-(3-D) ' (/~1) (6·8) 

and its Allan variance O"A2(n) becomes 

(n)> 1) 

(iv) The fat fractal index f-t, which was introduced by Umberger and Farmer,59> 

becomes 

t-t=2(1-D'). (6·9) 

(v) The distribution of the Lyapunov exponent ..1 becomes 

P(.-1) ~ A-(2-D) ' (6·10) 

where we used the temporal similarity, i.e., Aj~ p-i. 

Equations ( 6 · 5) and ( 6 ·10) can be used to predict the outlines of the stagnant 

motions. For instance, the pausing time distribution of Eq. (6·6) is compared with 

the Nekhoroshev estimation by putting D=1, and then P(.-1)~..1- 1 and S(!)~ r 2 are 

predicted. These are consistent with the basic assumption used in the Nekhoroshev 

theorem, i.e., the nearly integrable limit (D~1). 

The diffusion process in this model is described by the symbolic dynamics in the 

cluster space {S;}, where the time course is traced by the number of the cluster {j}. 

For example, when the transition from Si to Sk is limited to the nearest one, i.e., k 

=j±1 and k=j, the symbolic dynamics is a simple random walk in the cluster space. 

Assuming the detailed balance for the jump process, the transition probability Pj,k 

(from j to k) is obtained60> 

G 
G c=:>Kj 

<:::> l'J <:::> <:::> Kj+t 

~~---~~i--~~-~~--~-~~-~~Kj+2 
finalKAM 

Fig. 6-1. The multiple layer model near the final 

KAM surface. r, denotes the distance to the 

j-th layer. 

(6·11) 

This implies that an orbit is liable to 

flow from the micro-cluster to the out­

side, e.g., Pj,j+l > Pj+l,i· 

The model discussed so far is so­

called "islands around island". But the 

basic idea is also applicable to another 

geometrical structure, i.e., as is illus­

trated in Fig. 6-1 we assume the hierar­

chical series of KAM islands is ac­

cumulating towards the final KAM sur­

face when the cluster number j increases 

to infinity.85>'104>'105> If the distance ri 

from the final KAM surface to the j-
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cluster islands is an exponential function of j, 

(b'>l) (6·12) 

then the equilibrium distribution of the symbolic j-state PJ( =(p/b )J), which is propor­

tional to the phase volume, is transferred to the invariant measure in the r-space 

P(r), 

P( r) ~ ( r _ r c)-l(p/b )-In<r-rc>tlnb' 

~(r-rc)-a (6·13) 

with a=ln(b/p)/lnb'+l. Here r=rc stands for the final KAM surface. Therefore, 

the integrability limit (D=1) corresponds to a=l. 

The above discussion can be applied to the critical phenomena of the last KAM 

surface;85> the KAM islands with the Fibonaccian cycle obey the same scaling as Eq. 

(6·13) by putting, 

p=golden mean (6·14) 

and 

pJ=j-th Fibonacci number for large j, 

and then b' is a universal constant as was predicted by Greene.49>·53>·57> 

6.2. One dimensional model 

The modified Bernoulli map is the most simple system which generates the 

stagnant motion, 111>'112> 

X'-{X +2B-1XB, (0sXs1/2) 

x -2B-1(1- X)B, (1/2sX s1) 
(6·15) 

where B stands for the intensity of the stagnant effect. In the case B>3/2, the orbit 

stays for long time in the stagnant region near the fixed points X=O and X=l. As 

was proved in the previous papers, the distribution of the pausing time n in each 

stagnant region P(n) obeys,111 >·112> 

P(n)~n-P, 

and the power spectrum S(f) becomes, 

S(f) ~ /-(3-P) 

with j]=B/(B-1). The invariant measure P(X) becomes singular, 

p X {x-<B-1>, (X~O) 
( ) ~ (1- X)-<B-1> • (X~ 1) 

(6·16) 

(6·17) 

(6·18) 

As the result, the local Lyapunov exponent il is zero for B22, and the distribution of 

il is given by 

P(il) ~ ..t-(3-P) • (il~1) (6·19) 
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Fig. 6-2. The invariant measure for the one dimensional mapping of Eq. (6·20) with A=0.6 and 

c=l0-5• 

8.815 

The modified Bernoulli map is too simple to reproduce the complex behaviors of 

hamiltonian systems. A weak point is that this model does not take account of the 

fractal structure of "islands around island" as was discussed before. Here we go 

back to the numerical result illustrated in Fig. 3-6. By using the stagnant layer 

coordinate r, the successive return map (r~ r') is approximated as, 

r'=r+ Arsin(n/r)+c(1-r), (6·20) 

following the previous discussion. Here A is a parameter and c( ~1) small perturba­

tion. The second term of the r.h.s. represents the hierarchy of the KAM islands 

which are accumulating towards the final KAM surface at r=O. Figure 6-2 shows 

the numerical result of the invariant measure P( r ), which is precisely adjustable by 

(a=;:5.3) 

This seems to be consistent with Eq. (6·13) with a=l. 

6.3. Stochastic model 

(6·21) 

In order to understand the diffusion process in a stagnant layer, the following 

stochastic analog is useful: 

dr/dt=R(t)(r- r1)(r2- r), (6·22) 

where R(t) is a white gaussian noise and the motion is assumed to be trapped in the 
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region n < r < r2. The orbit can escape from the stagnant layer when r2 goes to 

infinity. If the variable r denotes the energy of a normal mode E1 as was discussed 

in § 4, the model of Eq. (6·22) may represent the Arnold diffusion process. But in 

what follows, we consider a chaotic band that is sandwiched by two final KAM 

surfaces located at r = r1 and r = h 

Defining a new variable Y by 

(6·23), 

Y(t) is the Wiener process and the transition probability P( Y, Yo; t) satisfies, 

P( Y, Yo; t)~exp[ -( Y- Yo)2 /2t], (6·24) 

where ro stands for the initial value of r and Yo=O. As the result, the equilibrium 

distribution P( r) satisfies, 

P(r)~ 1/(r- r1)+ 1/(r2- r) 

(6·25) 

This is the same scaling form used in § 2. 

As shown in the above argument, the stochastic analog discussed here well 

reproduces the scaling relations used in § 2.3, but the essential difference must be 

noticed and the Arnold diffusion must be compared with more complex models. 

When we use the following analog: 

dr/dt=R(t)(r-r1), (6·26) 

the variable X( t) ( = ln{ ( r- r1) / (ro-n)}) becomes the Wiener process. Comparing 

with Eq. (6·12), X(t) corresponds to the coordinate j(t) of the symbolic state U}, i.e., 

U(t)- j(O)}lnb' ~- X(t). (6·27) 

Therefore, the first passage time T necessary for an orbit to cross a certain level of 

r = rT (=constant) obeys the following distribution P( T): 

P( T-r = rT) ~ ("" z/T312exp(- z2 /2 T)dz 
' Jo 

~ r-1/2, (T~1) (6·28) 

where we used the first passage time distribution for the Wiener process90' and the 

uniform initial ensemble, i.e., P(j)~(pjb)i~const or P(r)~(r-r1)- 1 as was 

obtained in Eq. (6·13). Equation (6·28) is not consistent with the result obtained in 

§ 2. In the present analog we assumed that the time scale of the white noise R(t) is 

taken to be uniform and not to depend on r(t). But this assumption is not correct 

and we have to consider the effect of the critical slowing down in the neighborhood 

of the final KAM torus at r = r1. The mechanism of such critical slowing down has 

not yet been clear, but it might be correlated to the breakdown of the markoffian 

assumption used in Eq. (6·13).89' These are still open. 
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Stagnant Motions in Hamiltonian Systems 69 

§ 7. Multi-ergodic features of the large scale diffusion 

In the previous sections we have mainly discussed the local aspects of the stag­

nant motion around a single KAM torus, but in this section the global features in 

whole chaotic space will be studied. In general, infinite number of KAM islands are 

very complicatedly distributed in phase space, and that every final KAM torus is 

wrapped up with the inherent stagnant layer. Therefore, one chaotic orbit is slowly 

passing by the arbitrary vicinity of every final KAM torus. The purpose of this 

<S> 

0.0 
f 

Fig. 7·1. The mean power spectrum <S(f)> of the 

variable x for the standard map (Eq. (5·4)) 

with K=0.5 and N=104• 

section is to discuss the ergodic prob­

lems of such wandering motions in the 

large. 

7 .1. Multi-ergodicity and non-station­

arity 

The pausing time distribution in 

the i-th stagnant layer P;(T) (i=l, 2, 

.. ·) satisfies, 

P;(T)~ r-P• (7·1) 

(7·2) 

with v;=3- /3;, where/; stands for the 

characteristic frequency of the i-th 

<S> v <S> 

rm"' , rm"' , I"""' , 1 , 11111111 , 11111111 , 11111111 
1 o-2 1 o-4 1 o-4 1 o-2 

I'""" , I'""" , r""" , 1 , 11111111 , "' ii"J"TTT"'' 
1 o-2 1 o-4 1 o-4 1 o-2 

I f - f c I I f - f c I 
(a) (b) 

Fig. 7·2. The spectral singularity at the resonant frequency !c. ll± stands for the spectral index for 

/~/c. (a) For /c=1/10 (v+=l.04, ll-=1.21). (b) For /c=1/7 (v+=0.60, ll-=0.58). 
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final KAM torus. Therefore the PSD function of the chaotic orbit in the large <S(f)> 

must be, 

(7·3) 

where the A;'s denote the relative intensity and < > implies the ensemble average due 

to the asymptotic measure for one orbit under consideration. The results in the 

previous sections persist that the indices are uniquely determined as /3;=1 and !1;=2 

for the pure stagnant motion. But in what follows, the values of these indices are 

considered to be parameters, since it is difficult to get the perpetually stagnant orbit 

in the numerical simulation even if the calculation time is infinitely long. The 

singular spectrum is often observed in the numerical simulation, but here in this 

section Eq. (7·3) must be considered to be a hypothesis. 

Figure 7-1 is the PSD function of one chaotic orbit in the standard mapping, where 

we can see a lot of singularities as is described by Eq. (7 · 3). However, the spectral 

indices v;'s are usually less than 2, and that the scaling form is not always symmetric 

around the characteristic frequency f, (see Fig. 7-2). The difference between the 

numerical results and the theoretical prediction seems to come from the restriction in 

machine calculations such that the time series used is very long but finite. Namely, 

the orbit cannot get into the deep inside of each stagnant layer, but only skims over 

each layer during a finite period. To detect the critical effect arising from every 

stagnant layer we have to treat the time series of infinite length rigorously. Here we 

are confronted with two essential difficulties which cannot be solved in the simple 

ergodic-theoretical framework. The first one is the break-up of the recurrence 

property, i.e., the mean residence time in each stagnant layer becomes infinity, 

(T;)= jTP;(T)dT--HYO (7·4) 

for /3;~2 in Eq. (7 ·1). The second comes from the fractal distribution of KAM 

islands, i.e., the number of singular frequencies /;'s in Eq. (7 · 3) is never countable 

infinity but uncountable just like a cantor set. From these considerations it is 

possible to derive the following two general aspects for the global chaos in 

hamiltonian systems: 

(i) Multi-ergodicity 

The recurrence property (in the sense of Poincare) breaks down in every stagnant 

layer, and the asymptotic measure defined in each layer is mutually independent from 

the others if all the stagnant layers are topologically connected by some orbits. One 

of the most natural measures in the area-preserving system is the Lebesgue measure. 

However, in each stagnant layer the most dominant one of them is not the Lebesgue 

measure, but is the inherent asymptotic measure that is strongly localized near the 

final KAM torus as was discussed in § 2. We call the coexistence of such local 

measures "multi-ergodicity" for short. 

(ii) Non-stationarity 

As the result of the multi-ergodicity, the time average of a dynamical variable 

(e.g., denote the average of the variable X by X) is strongly dependent of the initial 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

s
/a

rtic
le

/d
o
i/1

0
.1

1
4
3
/P

T
P

S
.9

8
.3

6
/1

9
0
1
8
4
0
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



50.0 

p 

0.0 

0.0 

Stagnant Motions in Hamiltonian Systems 

50.0 

p 

0.0 

0. 1 
ll 

0.0 

(a) 

Fig. 7-3. The distribution of the Lyapunov exponent P(A). 

(a) For T=WS. (b) For T=l06 • 

ll 
(b) 

71 

0. 1 

data or the asymptotic measure. The time course X(t) is stationary if the probabil­

ity distribution of the partial average Xr defined by 

(7·5) 

converges exponentially to a constant X as T goes to infinity, i.e., 

(7 ·6) 

where 8( ·) denotes the delta function. However, in the multi-ergodic system we 

cannot expect such uniform convergence in unique, since the mean pausing time in 

each stagnant layer becomes infinity. In other words, the weak law of large number 

is violated in the multi-ergodic system and the stationarity is lost.98'·99' 

The essence of the multi-ergodicity and the non-stationarity in hamiltonian 

systems must be reasonably understood in the framework of the large deviation theory .68' 

The coexistence of the local asymptotic measures corresponds to the non-uniqueness 

of the Gibbs state or the coexistence of the thermodynamical phases. The similarity 

between the multi-ergodic dynamical system and the critical phenomena in statistical 

'mechanics will be discussed later. 

The extremely slow convergence of the time average Xr in Eq. (7 • 5) is often 

observed in the multi-ergodic system. As an example, the distribution of the 

Lyapunov exponent X r defined by 

-- I I e(T) I ,-\r-1 Tln e(O) (7·7) 

is shown in Fig. 7-3, where e(s) stands for the tangent vector at the time t=s. At T 

= 105 the distribution reveals three dominant peaks that correspond to macroscopic 
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5 

0.0 
f 

0.5 

Fig. 7-4. A path dependent power spectrum S(/) 

corresponding to Fig. 7-1. 

phases.115> If they survive even in the 

limit T---+oo, the phase coexistence can 

be expected. However, two of them 

gradually decreases as T goes to large. 

The remarkable point is that the lowest 

peak around tl=O obeys the inverse 

power law, 

P(tl)~,.t-a (with a~0.35), (7·8) 

in line with the argument in § 2. 

Besides the middle peak disappears very 

slowly and the dominant peak becomes 

unique. The convergence of the 

Lyapunov exponent is very curious, and 

the simple ergodic theorem by Oseledec 

must be revisited from the viewpoint of 

the multi-ergodicity.7> 

7.2. Multijractal approach to the PSD function 

We consider two kinds of PSD functions; one is the path-dependent PSD (S(f)) 

which is usually unstable and robust as is shown in Fig. 7-4, and another is the mean 

PSD ( <S(f)>) that is obtained from the ensemble average on the asymptotic measure 

of one orbit. If the system is simply ergodic, the asymptotic measure converges to a 

stationary one, and then <S(f)> approaches to a rather smooth function as is predicted 

in the large deviation theory. 117> But in the non-stationary multi-ergodic case which 

we are discussing here, <S(f)> is still fluctuating and robust as is shown in Fig. 7-1. 

Denoting the length of each sample path by N, the resolution of the frequency is 

1/N. When we box the frequency domain into boxes o(size Ll, the intensity in the i-th 

box Ll; is scaled as, 

S;(Ll)=1 <S(f)>d! ~ LJ~-'•, 
fE.di 

provided that <S(f)> has a singularity in the box, 

<S(f)> ~if- /;I-ll', (v;< 1,/;ELl;) 

(7·10) 

(7 ·11) 

with p;=1- V;. When V; is less than zero, the frequency/; stands for the absorption 

line. Here we assume that <S(f)> is the probability density in frequency domain, i.e., 

J<S(f)>d!=l. Then the multi-fractal analysis is used to determine the fluctuation of 

the local dimension ,u.114> The distribution of the singularity index, P(.u) ~ Ll-ff<P>, is 

derived by the Legendre transformation of the q-order dimension Dq, 

F(.u)=q,u-(q-1)Dq (7 ·12) 

and 

1 ln~S;(Ll)q 

q-1 lnLl 
(7·13) 
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1.5 

F 
0 

0.0 

0.0 

' 0 
0 
0 
0 

\ 
1.5 

Fig. 7-5. The multi-fractal spectrum F(f.t) corre-

where f1.=d/dq[(q-1)Dq]. 

The following relations are used in 

the numerical analysis by putting L1 

~1/N, 

Dq=/q/lnN 

and 

/q=- 1 -ln~S;q 
1-q i 

under the scaling assumptions, 

/q is the generalized Renyi's spectral 

entropy.118> Figure 7-5 is the dimension 

spectrum F(fl.). 

spending to Fig. 7-1. The spectral index fl. is correspond-

ing to the local dimension if v < 1 holds, 

but for the non-stationary case v > 1 the 

relation f1.=1-v must be discarded. So in what follows, we must consider the value 

of fl. is only a scaling index defined by Eq. (7 ·10). 

The most dominant dimension fl.* is obtained from the relation F(fl.*)=f.!.*, i.e., fl.* 

=0.98, and the minimum and the maximum values are numerically determined, fl.m1n 

=0.32 and fl.max=l.20 respectively. The multi-fractal analysis of <S(f)> is useful for 

the better understanding of the multi-ergodic motion. To compare with simple 

ergodic motions, let us consider the K-system defined by63> 

X'=X+Y, 

Y'=X+2Y. (mod. 1) 
(7·14) 

The power spectral density of X-variable <S(f)> becomes white, and the multi-fractal 

spectrum F(fl.) is sharply localized at f.!.=l, that corresponds to the fact that the 

dominant ergodic measure is unique in this system. The multi-fractal analysis were 

successfully used for the characterization of the multi-ergodic motion, but the essen­

tial difference between both ideas, multi-fractals and multi-ergodicity, must be recog­

nized. The multi-fractal spectrum characterizes a.single measure on a certain fractal 

set in phase space. On the other hand, in the multi-ergodic system the global 

asymptotic measure is not a single but compound of the non-stationary ones as was 

discussed before. As the result, the dimension spectrum F(fl.) depends on the orbit p 

under consideration; F(f.!.)=Fp(fl.). Roughly speaking, the result shown in Fig. 7-5 is 

the mean spectrum <Fp(fl.)>, where< >denotes the ensemble average on the path space 

{p}. The dimension spectrum F(fl.) was introduced by Procaccia as a measure which 

characterizes the fluctuation of local dimension fl. in a simple ergodic component. 

But in the multi-ergodic system we have to discuss the fluctuation of F(fl.) itself. 
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3.0 

F 

(

0 

0 0 

-~------0.0 
r-----------1------, 

0.0 ,f 0.5 3.0 0.0 
jJ. 

(a) (b) 

Fig. 7-6. The path dependent S(f) and Fp(f-1.). 

(a) The path dependent power spectrum S(f) for the strong ergodic system of Eq. (7 ·14). 

(b) The multi-fractal spectrum Fp(f-1.) corresponding to (a). The spectrum Fp(f-1.) is insensitive to 

the path. 

3.0- 3.0-

F F 

roo o o 
o oo o 

0 

I 0 
0 
0 0 

0.0- 0.0-
I I I 

3~0 0.0 3.0 0.0 

If. If. 

3.0- 3.0-

F F 
J>Oo ooo o 

tf 0 0 
0 

I 
0 

0 I 0 
'b 0 

0.0- o.o-
I I I I 

0.0 3.0 o.o 3.0 

If. If. 

Fig. 7-7. The multi-fractal spectrum Fp(f-1.) of the standard map corresponding to Fig. 7-4. The four 

samples (p=l~4) are illustrated for N=l04• 
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:::: 
F 

.... 

F=f-l 

...... 
...... 

Fig. 7-8. The schematic picture of the multi­

fractal spectrum F(J.l) for the multi-ergodic 

system. 

7.3. Fluctuation of the dimension spec­

trum 

We come back to path dependent 

PSD function S(f) in Fig. 7-4. In gen­

eral, S(f) is quite robust if the average 

<S(f)> is smooth. For instance, the 

PSD function of the K-system described 

by Eq. (7 ·14) is considered. The dimen­

sion spectrum Fp(fl.) for the path depen­

dent PSD is shown in Fig. 7-6, where we 

used the same method as before. The 

fine structure of S(f) is sensitively 

dependent on the initial data for each 

path, but the over-all behavior of Fifl.) 

is almost insensitive on the sample path. 

In other words, the fluctuation of the 

spectrum is negligibly small for the simple ergodic motion like K-system. 

When the same analysis is applied to the previous example of Fig. 7-4, the 

remarkable effect of fluctuations is observed as is shown in Fig. 7-7, where the 

dimension spectra are illustrated for 4 sample paths. The dominant dimension fl.* 

(=Fp(fl.*)) is fluctuating (0.75<J1.*<0.93), besides the forms of Fifl.)'s are quite 

different. Though the path length N( =104) is not so large in the present simulations, 

the non-stationary aspect of the multi-ergodicity seems to be elucidated at least 

qualitatively. If we consider all of the possible asymptotic measures, the maximal 

dimension spectrum F(Jl.) would be defined by the envelope of every path-dependent 

one as is illustrated in Fig. 7-8. F(Jl.) is the locally convex function and the dominant 

dimension fl.* ( = F(Jl.*)) is continuously distributed for J1.1 < fl.*< J1.2. In terms of the 

large deviation theory, this situation means the non-uniqueness of the Gibbs state or 

the coexistence of many thermodynamical phases. The analogy with the critical 

phenomena in statistical mechanics will be further pursued in what follows. 

7.4. Anomalous large deviation 

The fluctuation of the spectral power is measured by the variance defined by 

(7 ·15) 

We often observe that the fluctuation is anomalously enhanced at the singular fre­

quency /;'s, i.e., <S(f)> ~If- /;l- 11\ though the fluctuation is rather normal at the 

non-singular frequency. Figure 7-9 shows the distribution of the spectral power at f 
=1/7 in the simple ergodic system defined by Eq. (7·14), where every frequency 

component is not singular. The result is well adjustable by the F-distribution, 

P(x)=(1/T(7J))x~- 1 exp[ -x], (with 7]=1) (7 ·16) 

under an appropriate scale transformation of x ex: S(f). Denoting the fourier compo­

nent of the time series by the complex value C(f) =A (f)+ iB(f), 
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X 
0.4 

()) 

v 

I I II IIIII 

1 o·2 

N 

I I llllllj I llllllj 

1 o·s 

Fig. 7-9. The distribution of the spectral power at Fig. 7-10. The normal large deviation property for 

/=1/7 for the strong ergodic case correspond- the strong ergodic case corresponding to Fig. 

ing to Fig. 7-6. The solid line is the fitting by 7-9. 

Eq. (7·16). 

S(f)=IA(f)I2 +IBU)I2 • (7·17) 

When the random variables A and B obey the mutually independent same gaussian 

distribution, the distribution of S(f) obeys Eq. (7 ·16). Indeed, the distributions of 

A and B are well adjustable by the identical gaussian. When we define the partial 

sum C(f) from the time series Xn, 

N 

C(/)=(1/N) ~ Xnexp[- i2;rjn/N], 
n=l 

(with f=j/N) (7·18) 

the large deviation of A (and B) is expected to yield the normal exponential conver­

gence, i.e., 

P(A)-exp[-N 8 :l(A)], (with 8=1, for large N) 

where :I(A) is so-called "entropy". Namely, in the system of Eq. (7·14), 

:f(A)-A2 • 

Therefore, the variance (LJS(/)2) and the average <S(f)> satisfy, 

<LJS(/)2>- O(N-2) 

and 

(7·19) 

(7·20) 

(7·21) 

respectively. The numerical result is consistent with this scaling as is shown in Fig. 

7-10. 

Next we apply the same analysis to the multi-ergodic case of Fig. 7-4. Then the 

distribution of X= I C(/)12 ( rx S(f)) is adjusted by 

P(X)- X 71 - 1exp[- lfl(X)] (7·22) 
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300.0 150.0 

p p 

0.0 0.0 

A 

(f1 

v 

0.00 
X 

0.02 0.00 
X 

0.02 

(a) (b) 

Fig. 7-11. The distribution of the spectral power for the standard map corresponding to Fig. 7-1. The 

solid line is the fitting by Eq. (7 · 22) with X= I C(/)12• 

(a) For the non-singular component at /=13/250 (TJ~0.85, s~l.l1). 

(b) For the singular component at /=1/7 (TJ~0.62, s~0.71). 

I I II ""I I I I 111111 

1 o·2 

N 
(a) 

I I I IIIII 

1 o·s 

(f1 

v 

I I I II ""I 
1 o·2 

I I II 11111 I I 111111 

1 o·s 
N 
(b) 

Fig. 7-12. The anomalous large deviation properties for the standard map corresponding to Fig. 7-11. 

(a) /=13/250 (.~~1.11), (b) /=1/7 (~~0.68). 

with the entropy 1Jf(X)~N'X- (Fig_ 7-ll(a), (b))_ The corresponding mean value 

<S(f)> obeys the following scaling: 

(7. 23) 

as is shown in Figs. 7-12(a) and (b). The non-singular frequency at /=13/250 reveals 
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1 . o 1 o·3 

0 

0 0 
0 

0 0 

WIN 

0.0 
I I I I II "I I I II I 1111 I I I II II I I I I I II "I I I II II "I I I I II 111 

1 o·2 

N 
1 o·s 1 o·2 

N 
(a) (b) 

Fig. 7-13. The indices TJ and sat the singular frequency /=1/7 for the standard map corresponding 

to Fig. 7-11. 

(a) N-dependence of TJ. (b) N-dependence of IJT( s=<0.71). 

1 o·s 

an accellerated convergence ( ~ > 1), but a very slow convergence appears at the 

singular frequency, e.g., ~<1 for /=1/7. The origin of the former accellerated 

convergence is still unknown, but it might be understood as the counter effect due to 

the enhancement of the singular frequency components. The fact that the conver­

gence of the spectral power is quite slow in comparison with the normal case of Eq. 

(7 ·19) implies that the random variables A and B are not mutually independent but 

are strongly correlated at the singular frequencies //s. These aspects seem to be 

consistent with the fact that each spectral singularity is created by the very slow 

diffusion in the corresponding stagnant layer in phase space. This is compared with 

the critical slowing down near the phase transition point. 

The coherence between the real and imaginary parts of C(f) in Eq. (7 ·18) is 

measured by the index r; in Eq. (7 ·16); the value of 2r; is called the degree of freedom 

in the chi-square test. The case r;=1 implies the mutual independence of A and B, 

and r;=1/2 for the complete coherence (A=B). In general, the real and imaginary 

parts are partially coherent 0.5< r;<1, and the phase variable rp defined by rp=tan-1 

(B/A) is not random. Indeed, the value of r; is rather insensitive to N, and the 

example of Figs. 7-13(a) and (b) reveals the partial phase locking, i.e., 

r;=.:0.62' 

7J::::;: 0.85 . 

(for /=1/7) 

(for /=13/250) (7·24) 

The appearance of such phase order is a characteristic phenomenon of the multi­

ergodic motions. The mean value <S(f)> is calculated from Eq. (7 · 22), 

(7 ·25) 

This is compared with Eq. (7·23), i.e., .;=.:~. The numerical error is less than few 
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percents. 

It is surmised that the anomalous large deviation is induced by the phase coher­

ence of Eq. (7 · 24) and the index s might be determined by r;, but the correlation is still 

unknown. The multi-ergodic aspects of hamiltonian systems will be further discus­

sed in the forthcoming paper.120l 

§ 8. Summary and discussion 

In this paper we have tried- to elucidate the origin of the long time tails in 

hamiltonian dynamics, and tried to explain the stagnant phenomena in terms of the 

critical phenomena. The parallelism (between the stagnant motion and the critical 

fluctuation in statistical mechanics) is partially confirmed at least in the 

phenomenological framework, but the consistent theory has not been sufficiently 

developed here. These problems are left in future, but here the parallelism will be 

emphasiz;ed again. The Nekhoroshev bound T is the most essential quantity which 

characterizes a coherent length of the chaotic motion, and the control parameter is the 

distance r in the action space. Equation (2·23) is rewritten into 

(8·1) 

where rc stands for the critical point, and r is a critical exponent. This is the same 

expression for the critical regime of the phase transition. In this paper, we have used 

Eq. (8·1) only for r > rc, but the same relation is surmised to hold in the sub-critical 

region (r< rc), where the coherent length is no longer the Nekhoroshev time but a 

characteristic time of the phase fluctuation defined by Eq. (2·30). To complete the 

parallelism mentioned above it is necessary to describe the fluctuation of the charac­

teristic frequency in the sub-critical regime as well as in the stagnant layer. 

What we have discussed in the present paper is the stagnant effects originated 

<S> 

I I 11111111 11111111 I IIITTnl I 1111111] 

1 o- 4 1 o-2 1 o·o 

f 
Fig. 8. The r 2 power spectrum of X-variable in 

the weakly ergodic system of Eq. (8·2) with B 

=lo-•. 

only from the critical regime between 

chaos and torus, that is usually a very 

narrow band in phase space. But we 

have to understand the stagnant 

motions in the more wide view, name­

ly, the stagnant motions should be 

classified into a certain group which 

reveals the weak ergodicity, and it 

must be characterized independently 

free from the KAM theory. The fol­

lowing is an example which has no 

KAM tori in phase space, 

X'=X+ yB' 

Y'= Y+X', (mod. 1) (8·2) 

where B is a parameter (O<B); the 

Arnold cat map for B=1, and the 
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one-dimensional torus for B=O or B=oo. The point is that the modified cat map has 

the C -system property for 0 < B < oo. As the stable and unstable manifolds of the 

fixed point can be tangential but the perpetual stablility is guaranteed almost every­

where in the phase space, the motions are very sticky in the limit for B~o or B~oo. 

Then the entropy is decreasing to zero and the PSD function reveals the /-2 spectrum 

as is shown in Fig. 8. The categorization of such weak ergodic class will be discussed 

elsewhere. 
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