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STAGNATION FLOW ON THE SURFACE OF A QUIESCENT FLUID-

AN EXACT SOLUTION OF THE NAVIER-STOKES EQUATIONS*

By
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Abstract. A lighter fluid impinges downward on a heavier, otherwise quiescent fluid.

The region near the stagnation point is investigated. The Navier-Stokes equations yield

similarity solutions for both upper and lower regions. The convective heat transfer is also

determined.

Introduction. One of the most basic exact solutions of the Navier-Stokes equations is the

stagnation point flow. Hiemenz [1] found the similarity solution for the two-dimensional

stagnation point flow against a solid plate and Homann [2] studied the axisymmetric case.

We ask, what would be the solution if the solid boundary is replaced by a free surface of a

different, heavier fluid? This situation can be visualized when we blow softly against the

surface of a cup of hot coffee.

In order to obtain exact solutions, we require the interface to be flat. This criterium can

be quantified as follows. Let the upper light fluid be denoted by the subscript 1 and the

lower heavier fluid be denoted by the subscript 2. Let (x, y\) denote either Cartesian or

cylindrical coordinates with x = 0 be the symmetry plane (2 dimensional case) or the

symmetry axis (axisymmetric case). The potential, stagnation point flow of the lighter

fluid is described by

= ax, Oj = -may x (1)

where «, v are velocity components in the x, y directions respectively, a is a constant with

dimension (time)"1 and

m =
1, two dimensional, , ,

2, axisymmetrical.

The potential pressure distribution on y1 = 0 is

1
Pi = Po ~
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where p0 is the stagnation pressure and p is the density. Using fluid statics, the deflection

of the free surface 8 is estimated to be

g _ Po ~ Pi _ P i CI ~X "

(Pi~Pi)g 2(P2~Pi)%'

Thus the criterium for a nearly flat interface is

8 a 2x

x 2(Pi/Pi ~ ])g
« 1. (5)

This can be realized by small * (the region near the stagnation point) or small a (soft

blowing) or large density difference (p2 » p:) or large gravitational acceleration g. Notice

that the condition of small x is already implicit in all stagnation point flows. Also if

surface tension effects are included, the estimated 8 would be even smaller.

Formulation. Figure 1 shows the coordinate axes. For the upper lighter fluid let

ux = axf'(ri), i>j = -m][^af(ri), t] = (6)
p i/a

where v is the kinematic viscosity. The Navier-Stokes equations reduce to

f " (y) + mff " ~~ (f ')2 +1=0 (7)

Equation (7) is the same as that of Hiemenz [1] and Homann [2], However, the boundary

conditions are different.

/(0) = 0, /'(0) = P, (8)

/'(oo) = 1. (9)

Fig. 1. The coordinate system.
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The variables /?, yet to be determined, represents lateral motion of the interface. /? ranges

from zero (solid boundary) to one (stress-free boundary). When /3 is one, the solution for

the upper flow is potential:

f=r\. (10)

For the lower, heavier fluid we set

y2
u-, = aj8xh'(£), t>2 = -mp2afih, £ = (11)

Since the flow decays to zero as>>2 —> oo, the Navier-Stokes equations reduce to

h"'(S) + mhh" ~{h')2 = 0. (12)

Noting that the velocities must be equal at the interface, the boundary conditions are

h (0) = 0, h'( 0) = 1, (13)

h'(oo) = 0. (14)

The function h is independent of yS. The solution for the two-dimensional case (m = 1) is

h = 1 - e~s. (15)

This closed form solution was found by Stuart [3] in connection with acoustic streaming

problems and later by Crane [4] in modelling the flow due to a two-dimensional stretching

plate. The tangential stresses are then matched at the interface

3mi / x \ .

Pl"1a^(0) = "P2,'2a}~(0)- (16)

This yields

rm (17)
~^/2h"{0) Pi \ "i

Equation (17) is used to determine /?.

The solution for h($), m = 2. This problem is the axisymmetric analog of Crane's [4]

solution. Suppose a membrane is radially stretched in a viscous fluid. The governing

equations are Eqs. (12)—(14). For m = 2 the solution cannot be expressed in closed form.

Asymptotic properties are obtained by setting

A = 6 + «p(f) (18)

where b is a constant and <p(f) is small. Then Eq. (12) linearizes to

cp"'+2bcp" = 0 (19)

cp = b0 + bli; + b2e-2hS. (20)

In order for <p to decay, b0 = b{ =0 and b > 0.

Perhaps the simplest method to solve Eqs. (12)-(14) is by numerical integration. We

guess h"{0) and integrate Eqs. (12), (13) as an initial value problem by the fifth order
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Runge-Kutta-Fehlberg algorithm. A solution is found when h(^) decay exponentially to

zero. We find

^"(0) = -1.1737247, (21)

h(oo) = b = 0.7514252 (22)

This universal solution is plotted in Fig. 2, Eq. (15) is also plotted for comparison.

Perturbation solution fori /(17) when fi ~ \. This is the case when the lower, heavier

fluid is almost inviscid. Since v2 —> 0 Eq. (17) gives/"(0) = 0 and the solution is/ = 77. Let

e ~ 1 — fi and we perturb as follows

/= 7) + eF(r)) + 0(e2) (23)

Equations (7)-(9) yield

F + mr]F" — 2F' = 0, (24)

F(0) = 0, F(0)=-1, F'(oo) = 0. (25)

For m = 1, the solution is

= 7\r fis2 + 1) \ e~r2/2(t2 + 1 )~2 dtds, (26)
C1 J0 oo

C ") O

Cl = / e's /2(s2 + 1) ds = 0.6266571. (27)
Jr\

The value of Cj is obtained by numerical quadrature. Thus

J_
C,

F"(0) = -pr = 1.595769. (28)

1 r

Fig. 2. The universal function h($).
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1 r

Fig. 3. The function /(rj).

Fig. 4. The function/'(rj).
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Fig. 5. The initial values/"(0). Dashed lines are analytic approximations.

Fig. 6. Graph of K = ^Pi,/P\)(vi/v\)l/2 as a function of /?.
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For m = 2 the solution is

F—f (s2 - \)e~s~ ds --q2 { e'sds. (29)
J0 oo

Thus

/•°° 7 / 

F"(0) = 2 / e's ds = ^fir. (30)
A)

Therefore the approximate initial values are

/"(0) = 1.595769(1 - 0) + 0(1 - /3)2, m = 1, (31)

/"(0) = 1.772454(1 - /?) + 0(1 - /3)\ m = 2. (32)

Numerical solution for/(77). An asymptotic study shows that for large i] and arbitrary /3,

the governing equation is similar to Eq. (24). Thus exponential decay occurs. For given /S,

Eqs. (7), (8) are integrated numerically with a guessed /"(0), guided by Eqs. (31), (32). We

find a step size of A?j = 0.05 guarantees accuracy to 10 "6. Some results are graphically

shown in Figs. 3 and 4. When jS = 0 we recover the stagnation point solutions of Hiemenz

[1] and Homann [2]. Fig. 5 shows the variation of /"(0) with /?. Our approximate solutions

compare well when ft ~ 1. Table 1 shows the more accurate initial values. Since nowadays

computers are fairly common, it is no longer necessary to tabulate functional values for all

t; here.

Given the density ratio and the viscosity ratio, one can determine the value of /3 from

Eq. (17). The particular combination K = -f"(0)/3~^/2/h"(0) is graphed in Fig. 6 for

practical purposes. For fi = 1

K= 1 1.5958(1 -0) + O(l -p)\ m = 1,

\ 1.5101(1 - /3) + 0(1 - f3)2, m = 2.

The temperature profile. The problem considered in this paper is particularly important

in forced convective heat transfer. Suppose the temperature at yl -* 00 is Tlx and the

temperature at j>2 00 is Tlrx. We would like to predict the heat transfer rate.

For the lighter fluid the energy equation yields

Xl' + mPJx\ = 0 (34)

where

/ \ _ Ti(v) ~Tlo0 vx
Xi(ti) = T _ T ' pi = —• (35)

70 100 Ki

Here k is the thermal diffusivity and T0 is the unknown constant temperature of the

interface. The boundary conditions are

Xi(oo) = 0, xi(0) = l. (36)

The normalized temperature function Xi depends on m, /?, and Pt.
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For the heavier fluid we deduce

X 2 + mP2hx'2 = 0, (37)

y (f) = Tl^ ~ Tlx P=^-
/C 2 / T   rp > r2 >

i0 2oo 2

X2(°o) = 0, x2(°) = 1- (38)

X2 is a function of m and P2 only. The interface temperature is determined by the constant

heat flux

3^1 / x 97^ / X
= ~k2^t(o). (39)

3^i " dy:2

Table 1

ft /"(0) for m = 1 /"(0) for m = 2

0 1.232588 1.311938

0.25 1.000054 1.081629

0.5 0.713295 0.780324

0.75 0.378421 0.417534

1 0 0

P

ft

Pi

P

Table 2a. xi (0) for m — 1

1 10 100

0 -0.571 -1.340 -2.986

0.25 -0.634 -1.683 -4.600

0.5 -0.692 -1.990 -5.905

0.75 -0.747 -2.270 -7.010

1 -0.798 -2.523 -7.982

Table 2b. x! (0) for m = 2

1 10 100

0 -0.762 -1.752 -3.870

0.25 -0.867 -2.295 -6.346

0.5 -0.961 -2.768 -8.275

0.75 -1.048 -3.190 -9.883

1 -1.129 -3.569 -11.283

Table 3. xiCO)

Pl 1 10 100
m

1 -0.582 -2.308 -7.765

2 -0.852 -3.308 -11.032
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This gives

+ Mtt-f)' (40)
where

(4I)

Although we can formally express the solution to Eqs. (34), (36) in terms of integrals, it

is more practical to obtain a numerical solution. Using one parameter shooting we find the

initial values listed in Table 2 and Table 3. In general, the functions Xiiv) and X2(f)

decay monotonically to zero. The thermal boundary layer is thinner for larger Prandtl

number P. As a reference, P ~ 0.7 for air and P ~ 7 for water. One can also include the

energy of possible phase change in Eq. (39).

Discussion. Exact solutions of the Navier-Stokes equations are rare. This paper presents

the exact solution of an important boundary value problem. Given the properties of the

two fluids and the strength of the stagnation flow, one can determine the entire velocity

and temperature field.

The relative motion of two immiscible fluids was also investigated by Lock [5]. He

considered the two-dimensional case where the upper fluid is moving with constant

velocity parallel to the interface. As in the present case, the lower fluid is being dragged

along by interfacial shear. Lock's results, however, is a boundary layer solution and not an

exact solution of the Navier-Stokes.

On the other hand, if the upper fluid is a thin layer of light, spreading material from a

point source, such as the continuous spreading of split oil on water, then an exact solution

is possible. One can show that the interface velocity is inversely proportional to the

distance from the axis. The lower fluid then admits a closed-form solution in spherical

coordinates [6],
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