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Stagnation-point flow over a stretching/shrinking
sheet in a nanofluid
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Abstract

An analysis is carried out to study the steady two-dimensional stagnation-point flow of a nanofluid over a

stretching/shrinking sheet in its own plane. The stretching/shrinking velocity and the ambient fluid velocity are

assumed to vary linearly with the distance from the stagnation point. The similarity equations are solved

numerically for three types of nanoparticles, namely copper, alumina, and titania in the water-based fluid with

Prandtl number Pr = 6.2. The skin friction coefficient, Nusselt number, and the velocity and temperature profiles are

presented graphically and discussed. Effects of the solid volume fraction � on the fluid flow and heat transfer

characteristics are thoroughly examined. Different from a stretching sheet, it is found that the solutions for a

shrinking sheet are non-unique.
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Introduction
Stagnation-point flow, describing the fluid motion near

the stagnation region of a solid surface exists in both

cases of a fixed or moving body in a fluid. The two-

dimensional stagnation-point flow towards a stationary

semi-infinite wall was first studied by Hiemenz [1], who

used a similarity transformation to reduce the Navier-

Stokes equations to nonlinear ordinary differential equa-

tions. This problem has been extended by Homann [2]

to the case of axisymmetric stagnation-point flow. The

combination of both stagnation-point flows past a

stretching surface was considered by Mahapatra and

Gupta [3,4]. There are two conditions that the flow

towards a shrinking sheet is likely to exist, whether an

adequate suction on the boundary is imposed [5] or a

stagnation flow is considered [6]. Wang [6] investigated

both two-dimensional and axisymmetric stagnation flow

towards a shrinking sheet in a viscous fluid. He found

that solutions do not exist for larger shrinking rates and

non-unique in the two-dimensional case. After this pio-

neering work, the flow field over a stagnation point

towards a stretching/shrinking sheet has drawn

considerable attention and a good amount of literature

has been generated on this problem [7-10].

All studies mentioned above refer to the stagnation-

point flow towards a stretching/shrinking sheet in a vis-

cous and Newtonian fluid. The present paper deals with

the problem of a steady boundary-layer flow, heat trans-

fer, and nanoparticle fraction over a stagnation point

towards a stretching/shrinking sheet in a nanofluid, with

water as the based fluid. Most conventional heat transfer

fluids, such as water, ethylene glycol, and engine oil,

have limited capabilities in terms of thermal properties,

which, in turn, may impose serve restrictions in many

thermal applications. On the other hand, most solids, in

particular, metals, have thermal conductivities much

higher, say, by one to three orders of magnitude, com-

pared with that of liquids. Hence, one can then expect

that fluid-containing solid particles may significantly

increase its conductivity. The flow over a continuously

stretching surface is an important problem in many

engineering processes with applications in industries

such as the hot rolling, wire drawing, paper production,

glass blowing, plastic films drawing, and glass-fiber pro-

duction. The quality of the final product depends on the

rate of heat transfer at the stretching surface. On the

other hand, the new type of shrinking sheet flow is

essentially a backward flow as discussed by Goldstein

[11] and it shows physical phenomena quite distinct
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from the forward stretching flow [12]. The enhanced

thermal behavior of nanofluids could provide a basis for

an enormous innovation for heat transfer intensification

for the processes and applications mentioned above.

Many of the publications on nanofluids are about under-

standing of their behaviors so that they can be utilized

where straight heat transfer enhancement is paramount as

in many industrial applications, nuclear reactors, transpor-

tation, electronics as well as biomedicine and food. The

broad range of current and future applications involving

nanofluids have been given by Wong and Leon [13].

Nanofluid as a smart fluid, where heat transfer can be

reduced or enhanced at will, has also been reported. These

fluids enhance thermal conductivity of the base fluid enor-

mously, which is beyond the explanation of any existing

theory. They are also very stable and have no additional

problems, such as sedimentation, erosion, additional pres-

sure drop and non-Newtonian behavior, due to the tiny

size of nanoelements and the low volume fraction of

nanoelements required for conductivity enhancement.

These suspended nanoparticles can change the transport

and thermal properties of the base fluid. The comprehen-

sive references on nanofluids can be found in the recent

book by Das et al. [14] and in the review papers by Buon-

giorno [15], Daungthongsuk and Wongwises [16], Tri-

saksri and Wongwises [17], Ding et al. [18], Wang and

Mujumdar [19-21], Murshed et al. [22], and Kakaç and

Pramuanjaroenkij [23].

The nanofluid model proposed by Buongiorno [15]

was very recently used by Nield and Kuznetsov [24,25],

Kuznetsov and Neild [26,27], Khan and Pop [28], and

Bachok et al. [29] in their papers. The paper by Khan

and Pop [28] is the first which considered the problem

on stretching sheet in nanofluids. Different from the

above model, the present paper considers a problem

using the nanofluid model proposed by Tiwari and Das

[30], which was also used by several authors (cf. Abu-

Nada [31], Muthtamilselvan et al. [32], Abu-Nada and

Oztop [33], Talebi et al. [34], Ahmad et al. [35], Bachok

et al. [36,37], Yacob et al. [38]). The model proposed by

Buongiorno [15] studies the Brownian motion and the

thermophoresis on the heat transfer characteristics,

while the model by Tiwari and Das [30] analyzes the

behavior of nanofluids taking into account the solid

volume fraction. In the present paper, we analyze the

effects of the solid volume fraction and the type of the

nanoparticles on the fluid flow and heat transfer charac-

teristics of a nanofluid over a stretching/shrinking sheet.

Mathematical formulation
Consider the flow of an incompressible nanofluid in the

region y > 0 driven by a stretching/shrinking surface

located at y = 0 with a fixed stagnation point at x = 0 as

shown in Figure 1. The stretching/shrinking velocity Uw

(x) and the ambient fluid velocity U∞ (x) are assumed to

vary linearly from the stagnation point, i.e., Uw (x) = ax

and U∞ (x) = bx, where a and b are constant with b > 0.

We note that a > 0 and a < 0 correspond to stretching

and shrinking sheets, respectively. The simplified two-

dimensional equations governing the flow in the bound-

ary layer of a steady, laminar, and incompressible nano-

fluid are (see [35])

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+

µnf

ρnf

∂2u

∂y2
, (2)

and

u
∂T

∂x
+ v

∂T

∂y
= αnf

∂2T

∂y2
(3)

subject to the boundary conditions

u = Uw (x) , v = 0, T = Tw at y = 0,

u → U∞ (x) , T → T∞ as y → ∞,
(4)

where u and v are the velocity components along the

x- and y- axes, respectively, T is the temperature of the

w
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Figure 1 Physical model and coordinate system.
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nanofluid, μnf is the viscosity of the nanofluid, anf is the

thermal diffusivity of the nanofluid and rnf is the density

of the nanofluid, which are given by Oztop and Abu-

Nada [39]

αnf =
knf

(

ρCp

)

nf

, ρnf = (1 − ϕ)ρf + ϕρs, µnf =
µf

(1 − ϕ)2.5
,

(

ρCp

)

nf
= (1 − ϕ)

(

ρCp

)

f
+ ϕ

(

ρCp

)

s
,

knf

kf
=

(ks + 2kf) − 2ϕ (kf − ks)

(ks + 2kf) + ϕ (kf − ks)

(5)

Here, � is the nanoparticle volume fraction, (rCp)nf
is the heat capacity of the nanofluid, knf is the thermal

conductivity of the nanofluid, kf and ks are the thermal

conductivities of the fluid and of the solid fractions,

respectively, and rf and rs are the densities of the fluid

and of the solid fractions, respectively. It should be

mentioned that the use of the above expression for knf
is restricted to spherical nanoparticles where it does

not account for other shapes of nanoparticles [31].

Also, the viscosity of the nanofluid μnf has been

approximated by Brinkman [40] as viscosity of a base

fluid μf containing dilute suspension of fine spherical

particles.

The governing Eqs. 1, 2, and 3 subject to the bound-

ary conditions (4) can be expressed in a simpler form by

introducing the following transformation:

η =

(

b

νf

)1/2

y, ψ = (νfb)
1/2x f (η), θ(η) =

T − T∞

Tw − T∞

(6)

where h is the similarity variable and ψ is the stream

function defined as u = ∂ψ/∂y and v = -∂ψ/∂x, which

identically satisfies Eq. 1. Employing the similarity vari-

ables (6), Eqs. 2 and 3 reduce to the following ordinary

differential equations:

1

(1 − ϕ)2.5(1 − ϕ + ϕρs/ρf)
f ′′′ + ff ′′

− f ′2 + 1 = 0 (7)

1

Pr

knf/kf
[

1 − ϕ + ϕ(ρCp)
s
/(ρCp)

f

]θ ′′ + f θ ′ = 0 (8)

subjected to the boundary conditions (4) which

become

f (0) = 0, f ′(0) = ε, θ(0) = 1

f ′(η) → 1, θ(η) → 0 as η → ∞.
(9)

In the above equations, primes denote differentiation

with respect to h, Pr(= vf/af) is the Prandtl number, and

ε is the velocity ratio parameter defined as

ε =
a

b
(10)

where ε > 0 for stretching and ε < 0 for shrinking.

The physical quantities of interest are the skin friction

coefficient Cf and the local Nusselt number Nux, which

are defined as

Cf =
τw

ρfU2
∞

, Nux =
xq

w

kf(Tw − T∞)
, (11)

where the surface shear stress τw and the surface heat

flux qw are given by

τw = µnf

(

∂u

∂y

)

y=0

, qw = −knf

(

∂T

∂y

)

y=0

, (12)

with μnf and knf being the dynamic viscosity and ther-

mal conductivity of the nanofluids, respectively. Using

the similarity variables (6), we obtain

CfRe
1/2
x =

1

(1 − ϕ)2.5
f ′′(0), (13)

Nux/Re
1/2
x = −

knf

kf
θ ′(0), (14)

where Rex = U∞x /νf is the local Reynolds number.

Results and discussion
Numerical solutions to the governing ordinary differen-

tial Eqs. 7 and 8 with the boundary conditions (9) were

obtained using a shooting method. The dual solutions

were obtained by setting different initial guesses for the

missing values of f”(0) and θ’(0), where all profiles satisfy

the boundary conditions (9) asymptotically but with dif-

ferent shapes. The effects of the solid volume fraction of

nanofluid � and the Prandtl number Pr are analyzed for

three different nanofluids, namely copper (Cu)-water,

alumina (Al2O3)-water, and titania (TiO2)-water, as the

working fluids. Following Oztop and Abu-Nada [39] or

Khanafer et al. [41], the value of the Prandtl number Pr

is taken as 6.2 (water) and the volume fraction of nano-

particles is from 0 to 0.2 (0 ≤ � ≤ 0.2) in which � = 0

corresponds to the regular fluid. The thermophysical

properties of the base fluid and the nanoparticles are

listed in Table 1. Comparisons with previously reported

data available in the literature (for viscous fluid) are

made for several values of ε, as presented in Table 2,

which show a favorable agreement, and thus give confi-

dence that the numerical results obtained are accurate.

Moreover, the values of f”(0) for � ≠ 0 are also included

in Table 2 for future references. The numerical values

of CfRe
1/2
x

and NuxRe
−1/2
x

are presented in Tables 3

and 4, which show a favorable agreement with previous

investigation for the case m = 1 in Yacob et al. [42].

These tables show that the skin friction and Nusselt

number have greater values for Cu than for Al2O3 and
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TiO2. This is due to the physical properties of fluid and

nanoparticles (i.e., thermal conductivity of Cu is much

higher than that of Al2O3 and TiO2), see Table 1.

The variations of f”(0) and -θ’(0) with ε are shown in

Figures 2, 3, 4, and 5 for some values of the velocity

ratio parameter ε and nanoparticle volume fraction �.

These figures show that there are regions of unique

solutions for ε > -1, dual solutions for εc < ε ≤ -1 and

no solutions for ε <εc < 0, where εc is the critical value

of ε. Based on our computation, εc = -1.2465. This value

of εc is in agreement with those reported by Wang [6],

Ishak et al. [8] and Bachok et al. [9,10]. Further, it

should be mentiond that the first solutions of f“(0) and

-θ’(0) are stable and physically realizable, while the sec-

ond solutions are not. The procedure for showing this

has been described by Weidman et al. [43], Merkin [44],

and very recently by Postelnicu and Pop [45], so that we

will not repeat it here. The results presented in Figure 2

also indicate that the value of f“(0) is zero when ε = 1.

This is due to the fact that there is no friction at the

fluid-solid interface when the fluid and the solid bound-

ary move with the same velocity. The value of f“(0) is

positive when ε < 1 and is negative when ε > 1. Physi-

cally positive value of f“(0) means the fluid exerts a drag

force on the solid boundary and negative value means

the opposite. We notice that ε = 0 correspond to

Hiemenz [1] flow, and ε = 1 is a degenerate inviscid

flow where the stretching matches the conditions at infi-

nity [46].

Figures 6 and 7 illustrate the variations of the skin

friction coefficient and the local Nusselt number, given

by Eqs. 13 and 14 with the nanoparticle volume fraction

parameter � for three different of nanoparticles: copper

(Cu), alumina (Al2O3), and titania (TiO2) with ε = 0.5.

These figures show that these quantities increase almost

linearly with �. The presence of the nanoparticles in the

fluids increases appreciably the effective thermal con-

ductivity of the fluid and consequently enhances the

heat transfer characteristics, as seen in Figure 7. Nano-

fluids have a distinctive characteristic, which is quite dif-

ferent from those of traditional solid-liquid mixtures in

which millimeter- and/or micrometer-sized particles are

involved. Such particles can clot equipment and can

increase pressure drop due to settling effects. Moreover,

they settle rapidly, creating substantial additional pres-

sure drop [41]. In addition, it is noted that the lowest

heat transfer rate is obtained for the TiO2 nanoparticles

due to domination of conduction mode of heat transfer.

This is because TiO2 has the lowest thermal conductiv-

ity compared to Cu and Al2O3, as presented in Table 1.

This behavior of the local Nusselt number is similar

with that reported by Oztop and Abu-Nada [39]. How-

ever, the difference in the values for Cu and Al2O3 is

negligible. The thermal conductivity of Al2O3 is approxi-

mately one tenth of Cu, as given in Table 1. However, a

unique property of Al2O3 is its low thermal diffusivity.

The reduced value of thermal diffusivity leads to higher

temperature gradients and, therefore, higher enhance-

ment in heat transfers. The Cu nanoparticles have high

values of thermal diffusivity and, therefore, this reduces

the temperature gradients which will affect the perfor-

mance of Cu nanoparticles.

The samples of velocity and temperature profiles for

some values of parameters are presented in Figures 8, 9,

10, and 11. These profiles have essentially the same

form as in the case of regular fluid (� = 0). The terms

first solution and second solution refer to the curves

shown in Figures 2, 3, 4, and 5, where the first solution

has larger values of f“(0) and -θ’(0) compared to the sec-

ond solution. Figures 8, 9, 10, and 11 show that the far

field boundary conditions (9) are satisfied asymptotically,

thus support the validity of the numerical results,

besides supporting the existence of the dual solutions

shown in Table 2 as well as Figures 2, 3, 4, and 5.

Conclusions
We have presented an analysis for the flow and heat

transfer characteristics of a nanofluid over a stretching/

shrinking sheet in its own plane. The stretching/shrink-

ing velocity and the ambient fluid velocity are assumed

Table 1 Thermophysical properties of fluid and

nanoparticles [39]

Physical properties Fluid phase (water) Cu Al2O3 TiO2

Cp(J/kg K) 4179 385 765 686.2

r(kg/m3) 997.1 8933 3970 4250

k(W/mK) 0.613 400 40 8.9538

Table 2 Values of f″(0) for some values of ε and � for Cu-

water working fluid

ε Wang
[6]

Present results

� = 0 � = 0 � = 0.1 � = 0.2

2 -1.88731 -1.887307 -2.217106 -2.298822

1 0 0 0 0

0.5 0.71330 0.713295 0.837940 0.868824

0 1.232588 1.232588 1.447977 1.501346

-0.5 1.49567 1.495670 1.757032 1.821791

-1 1.32882 1.328817 1.561022 1.618557

[0] [0] [0] [0]

-1.15 1.08223 1.082231 1.271347 1.318205

[0.116702] [0.116702] [0.137095] [0.142148]

-1.2 0.932473 1.095419 1.135794

[0.233650] [0.274479] [0.284596]

-1.2465 0.55430 0.584281 0.686379 0.711679

[0.554297] [0.651161] [0.675159]

“[ ]” second solution
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to vary linearly with the distance from the stagnation

point. The resulting system of nonlinear ordinary differ-

ential equations is solved numerically for three types of

nanoparticles, namely copper (Cu), alumina (Al2O3), and

titania (TiO2) in the water-based fluid with Prandtl

number Pr = 6.2, to investigate the effect of the solid

volume fraction parameter � on the fluid and heat

transfer characteristics. Different from a stretching

sheet, it is found that the solutions for a shrinking sheet

are non-unique. The inclusion of nanoparticles into the

base water fluid has produced an increase in the skin

friction and heat transfer coefficients, which increases

appreciably with an increase of the nanoparticle volume

fraction. Nanofluids are capable to change the velocity

and temperature profile in the boundary layer. The type

of nanofluids is a key factor for heat transfer

Table 3 Values of CfRe
1/2
x

for some values of ε and �

ε � Yacob et al. [42] Present results

Cu-water Al2O3-water TiO2-water Cu-water Al2O3-water TiO2-water

-0.5 0.1 2.2865 1.9440 1.9649

0.2 3.1826 2.4976 2.5413

0 0.1 1.8843 1.6019 1.6192 1.8843 1.6019 1.6192

0.2 2.6226 2.0584 2.0942 2.6226 2.0584 2.0942

0.5 0.1 1.0904 0.9271 0.9371

0.2 1.5177 1.1912 1.2118

Table 4 Values of NuxRe - 1/2
x

for some values of ε and �

ε � Yacob et al. [42] Present results

Cu-water Al2O3-water TiO2-water Cu-water Al2O3-water TiO2-water

-0.5 0.1 0.8385 0.7272 0.7082

0.2 1.0802 0.8878 0.8423

0 0.1 1.4043 1.3305 1.3010 1.4043 1.3305 1.3010

0.2 1.6692 1.5352 1.4691 1.6692 1.5352 1.4691

0.5 0.1 1.8724 1.8278 1.7898

0.2 2.1577 2.0700 1.9867

Figure 2 Variation of f“(0) with ε for some values of � (0 ≤ � ≤ 0.2) for Cu-water working fluid and Pr = 6.2.
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Figure 3 Variation of -θ’(0) with ε for some values of � (0 ≤ � ≤ 0.2) for Cu-water working fluid and Pr = 6.2.

Figure 4 Variation of f“(0) with ε for different nanoparticles with � = 0.1 and Pr = 6.2.

Figure 5 Variation of -θ’(0) with ε for different nanoparticles with � = 0.1 and Pr = 6.2.
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Figure 6 Variation of the skin friction coefficient Cf Re
1/2
x with � for different nanoparticles with ε = 0.5 and Pr = 6.2.

Figure 7 Variation of the local Nusselt number NuxRe
- 1/2
x with � for different nanoparticles with ε = 0.5 and Pr = 6.2.

Figure 8 Velocity profiles for some values of � (0 ≤ � ≤ 0.2) for Cu-water working fluid with ε = -1.22 and Pr = 6.2.
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Figure 9 Temperature profiles for some values of � (0 ≤ � ≤ 0.2)for Cu-water working fluid with ε = -1.22 and Pr = 6.2.

Figure 10 Velocity profiles for different nanoparticles with � = 0.1, ε = -1.2 and Pr = 6.2.

Figure 11 Temperature profiles for different nanoparticles with � = 0.1, ε = -1.2 and Pr = 6.2.

Bachok et al. Nanoscale Research Letters 2011, 6:623

http://www.nanoscalereslett.com/content/6/1/623

Page 8 of 10



enhancement. The highest values of the skin friction

coefficient and the local Nusselt number were obtained

for the Cu nanoparticles compared with the others.
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