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Abstract

We discuss two recently proposed adaptations of the well-known Stahel-
Donoho estimator of multivariate location and scatter for high-dimensional
data. The first adaptation adjusts the calculation of the outlyingness
of the observations while the second adaptation allows to give separate
weights to each of the components of an observation. Both adaptations
address the possibility that in higher dimensions most observations can
be contaminated in at least one of its components. We then combine
the two approaches in a new method and investigate its performance in
comparison to the previously proposed methods.
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1 Introduction

The Stahel-Donoho estimator (SDE) is a highly robust estimator of multivariate
location and scatter Stahel (1981); Donoho (1982). SDE measures the outlying-
ness of each observation and weighs the observations accordingly. The larger the
outlyingness of an observation, the lower its weight. Recent applications of the
Stahel-Donoho outlyingness measure can be found in Boudt et al. (2009); Hu-
bert et al. (2005); Hubert and Verboven (2003); Debruyne (2009). The SDE has
excellent robustness properties Maronna and Yohai (1995); Gervini (2002); Zuo
et al. (2004); Debruyne and Hubert (2009) according to the standard Tukey-
Huber contamination model. In particular, the estimator has a breakdown point
(i.e., the maximum fraction of outliers that an estimator can withstand) close
to 50% in any dimension which makes the SDE useful for multivariate outlier
detection (see e.g. Filzmoser (2008); Cerioli and Farcomeni (2011)).

The Tukey-Huber model is the most often used contamination model to eval-
uate the robustness of estimators. This model assumes that the majority of the
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observations are generated from a nominal distribution while the remaining ob-
servations come from an arbitrary distribution generating outliers. This model
thus assumes that there is a majority of observations that is completely clean,
i.e. none of their components are contaminated while the outlying observations
are assumed to be completely spoiled. Therefore, robust estimators such as the
SDE give equal weight to all components of an observation. However, for high-
dimensional datasets such a contamination model is less realistic. If all of the
variables have some chance of being contaminated, then it can easily happen
that the majority of the observations are contaminated. On the other hand,
most of the observations will not be contaminated in all measured components.
To handle this situation, a more flexible contamination model has been devel-
oped in Alqallaf et al. (2009). An interesting particular case of this general
contamination model is the independent contamination model in which each
variable contains some fraction of contamination, independently of the other
variables. This leads to cellwise contamination in a dataset. Note that in prac-
tice next to cellwise outliers also structural outliers which affect the correlation
structure of the data can occur.

In the independent contamination model the fraction of observations that
is contaminated in at least one of its cells only depends on the dimension p of
the data. In case that all the variables have the same probability ε of being
contaminated, the probability that an observation is contaminated in at least
one of its cells equals 1− (1− ε)p. If the dimension p increases, this probability
easily exceeds the breakdown point of the SDE. For example with ε = 0.05 the
SDE breaks down for p ≥ 14 and with ε = 0.01 breakdown occurs for p ≥ 69.
In practice, the outliers in the data may well be an unknown combination of
cellwise and structural contamination. The breakdown point of the SDE then
depends on both the dimension p and the sample size n, and the above numbers
only give an upper bound. Hence, for low quality data dimension p ≥ 10 can
already be considered large in this setting.

The SDE encounters two problems in high-dimensional data. The first prob-
lem occurs when determining the outlyingness of each observations. This out-
lyingness is based on the one-dimensional projection in which the observation is
most outlying. If a majority of the observations contains contaminated compo-
nents, then many of these projections contain a majority of projected outliers.
In such directions, both masking and swamping effects can occur. Masking
implies that a projected outlier is not recognized as such in this projection
because the outlyingness measure is affected too heavily by the majority of out-
liers. Swamping occurs if the majority of outliers have such a large effect on
the outlyingness measure that the minority of regular observations are incor-
rectly regarded as outliers. These masking and swamping effects thus make
it impossible to accurately measure the outlyingness of each observation. The
second problem occurs when weighing the observations. If only few components
of an observation are contaminated, then a lot of useful information is wasted
if the entire observation is downweighted. This is especially the case if only few
observations are completely outlier-free.

To overcome the first problem, i.e. the masking and swamping effects in di-
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rections with a majority of outliers, Van Aelst et al. (2011) proposed to shrink
extreme values in each of the components towards the bulk of the data before
computing the outlyingness of an observation. This shrinking, called huberiza-
tion or winsorization (see Hubert (1981); Alqallaf et al. (2002); Khan et al.
(2007)), reduces the effect of cellwise outliers which makes it possible to deter-
mine more reliably the outlyingness of each observation.

To overcome the second problem a cellwise weighting scheme has been intro-
duced by Van Aelst et al. (2011). In this scheme all components of an observa-
tion are given different weights. These componentwise weights take into account
the componentwise outlyingness of each component as well as the relevance of
the component in the direction with maximal outlyingness for the observation.
With this weighting scheme structural outliers will have most or all of their
components downweighted while cellwise outliers will have only one or a few
components downweighted.

Note that the independent contamination model, and contamination models
with cellwise contamination in general lack affine equivariance and suffer from
the outlier propagation effect Alqallaf et al. (2009). That is, linear transfor-
mations of the data can largely increase the number of outlying cells so that a
majority of the cells becomes contaminated. Therefore, estimators that can han-
dle cellwise contamination have to give up on affine equivariance, because (near)
affine equivariant estimators can only produce reliable results if a majority of the
observations is completely clean (regardless of the linear transformation applied
to the data).

In this paper we combine the two previous solutions to simultaneously ad-
dress both of the above problems. We compare the performance of the combined
method to the two previously proposed methods that address only one of the
issues. In Section 2 we review the standard SDE and its adaptations using
adjusted outlyingness Van Aelst et al. (2011) or cellwise weights Van Aelst et
al. (2011). We then explain the new combined method. Section 3 shows the
results of simulation studies to compare the performance of the Stahel-Donoho
adaptations and Section 4 summarizes our conclusions.

2 Methods

Let X be an n × p data matrix corresponding to n observations x1, . . . , xn in
IRp. Let µ and σ be shift and scale equivariant univariate location and scale
statistics. Then, for any y ∈ IRp its Stahel-Donoho outlyingness w.r.t. X is
defined as

r(y,X) = supa∈Sp

|y′a− µ(Xa)|
σ(Xa)

, (1)

with Sp = {a ∈ IRp : ||a|| = 1}. In particular, for the observations xi we denote
the corresponding outlyingness r(xi,X) by ri. Note that in practice Sp is a
finite set of (randomly) selected directions. In our algorithm these directions are
obtained as the directions orthogonal to the hyperplane spanned by p randomly
selected points from the data.
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The Stahel-Donoho estimator of location and scatter (TSD, SSD) is defined
as

TSD =

∑n
i=1 wixi∑n
i=1 wi

and SSD =

∑n
i=1 wi (xi − TSD)(xi − TSD)′∑n

i=1 wi
, (2)

where wi = w(ri) with w : IR+ → IR+ a weight function so that observations
with large outlyingness get small weights (see Stahel (1981); Donoho (1982)).

Following Maronna and Yohai (1995), we use for w the Huber-type weight
function, defined as

w(r) = I(r≤c) + (c/r)2I(r>c), (3)

for some threshold c. The choice of the threshold c is a trade-off between robust-
ness and efficiency. Small values of c quickly start to downweigh observations
with increasing outlyingness while larger values of c only downweigh observa-
tions with extreme outlyingness value. Following Maronna and Zamar (2002)

we set the threshold equal to c = min(
√
χ2
p(0.50), 4) to obtain robust estimates

in high dimensions.
To attain maximum breakdown point (see e.g. Maronna and Yohai (1995);

Gather and Hilker (1997)) the univariate location statistic µ is taken to be the
median (MED) and the scale statistic σ is chosen to be the modified MAD,
defined as

MAD∗(Xa) =
|Xa−MED(Xa)|dn+p−1

2 e:n + |Xa−MED(Xa)|(bn+p−1
2 c+1):n

2β
,

(4)
where β = Φ−1( 1

2 (n+p−1
2n + 1)), dxe and bxc indicate the ceiling and the floor of

x respectively and vi:n denotes the ith order statistic of the data vector v.
If the observations are projected onto a direction with a majority of outliers,

then masking and swamping effects may occur as mentioned before. Masking
occurs when an outlier is considered a regular observation because the median
and modified MAD (i.e. MAD∗ defined in (4)) of the projected data have been
adversely affected by the high amount of outliers. Swamping occurs when a
regular observation is falsely identified as an outlier because the median and
modified MAD are dominated by the large group of outliers. To reduce these
effects, Van Aelst et al. (2011) proposed to huberize the data matrix X and
calculate the outlyingness of the observations with respect to the huberized
data matrix.

Let X1, . . . , Xp denote the columns of the data matrix X. Then, the hu-
berized observations x1,H , . . . , xn,H that form the data matrix XH are defined
as

xij,H =

 MED(Xj)− cH MAD∗(Xj) if cij < −cH
xij if − cH ≤ cij ≤ cH ,
MED(Xj) + cH MAD∗(Xj) if cij > cH

where xij,H denotes the j-th component of xi,H and

cij =
xij −MED(Xj)

MAD∗(Xj)
. (5)
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The cutoff parameter cH determines the amount of shrinkage which is a
trade-off between robustness and efficiency. The idea is that unusually large
components are shrunken towards the center of the data distribution. We choose
cH = Φ−1(0.975), i.e. the 97,5% quantile of a standard normal distribution,
which is a standard choice for univariate outlier identification.

For any y ∈ IRp the adjusted outlyingness measure rH(y,X) then calculates
the outlyingness of y with respect to the huberized data matrix, i.e.

rH(y,X) = r(y,XH) = supa∈Sp

|y′a− µ(XHa)|
σ(XHa)

. (6)

For the observations xi, the corresponding huberized outlyingness rH(xi,X) is
denoted by ri,H . By calculating the outlyingness of observations with respect to
the huberized data matrix, the effect of componentwise outliers in the data can
be reduced which makes the outlyingness values and corresponding direction
of maximal outlyingness more reliable as illustrated in Van Aelst et al. (2011).
The huberized Stahel-Donoho estimator considered in Van Aelst et al. (2011) is
obtained by using the huberized outlyingnesses ri,H in the weight function (3)
when calculating the weighted mean and covariance in (2).

To avoid unnecessary downweighting of a complete observation as soon as
one of its components is contaminated, Van Aelst et al. (2011) introduced a
more flexible, cellwise weighting method. The cellwise weighted Stahel-Donoho
estimator of location and scatter is defined as

TSDc,j =

∑n
i=1 wijxij∑n
i=1 wij

(7)

and

SSDc,jk =

∑n
i=1

√
wij
√
wik (xij − TSDc,j) (xik − TSDc,k)∑n

i=1

√
wij
√
wik

(8)

for j, k = 1, . . . , p. The weight matrix W = (wij)ij is defined by wij = w(rij)
where w is the weight function w in (3). Here, rij is a cellwise outlyingness
which is defined as

rij = αij ri + (1− αij) |cij |, (9)

where αij is a weighting parameter, ri is the Stahel-Donoho outlyingness of xi
(i.e. ri = r(xi, X)) and cij is given in (5). Hence, |cij | is the outlyingness of
xi in the direction of component j. The weighting parameter αij in (9) will be
chosen in [0, 1], such that the cellwise outlyingness rij is a convex combination
of the global outlyingness ri of the observation and the outlyingness |cij | of its
jth component. Note that ri ≥ rij because ri ≥ |cij |.

The idea behind the cellwise outlyingness is to largely keep the global out-
lyingness ri for those components that are responsible for it, while allowing to
reduce the outlyingness (and increase the weight) of those components which
contributed little to the global outlyingness ri. To achieve this goal, taking
into account that the data may contain cellwise as well as structural outliers,
the following two choices for the parameters αij have shown good performance
in Van Aelst et al. (2011):
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1. αij = (maxp
k=1|cik|)−1|cij | It follows that αij is large whenever cij is large,

relative to the outlyingnesses in the direction of the other components.
The effect of this weighting parameter αij can be explained as follows: (1)
If observation xi contains cellwise contamination then this choice yields
a strong contrast between the rij of contaminated and non-contaminated
components. If xi is a structural outlier then all of the cij may be rel-
atively small and this choice avoids reduction of outlyingness for those
components responsible for the large outlyingness ri. This cellwise Stahel-
Donoho estimator is denoted by (TSDC ,SSDC).

2. αij = (maxp
k=1|uik|)−1|uij | where ui = (ui1, . . . , uip) denotes the direction

that maximizes ri. Hence, the parameters αij are proportional to the coef-
ficients in the maximizing direction ui. The magnitude of these coefficients
reflect to what extent each component contributes to the outlyingness ri,
both in the case of componentwise and structural outliers. Note that the
direction ui depends on the scales of the variables Xj . Therefore, the com-
ponents Xj are rescaled using MAD∗(Xj). This cellwise Stahel-Donoho
estimator is denoted by (TSDM ,SSDM ).

To handle all types of outliers in high-dimensional data, we now combine
the huberized outlyingness in (6) with the cellwise outlyingness in (9). That is,
we replace (9) by cellwise huberized outlyingnesses, given by

rij,H = αij ri,H + (1− αij) |cij,H |, (10)

where cij,H is given by (xij −MED(Xj,H))/MAD∗(Xj,H) with X1,H , . . . , Xp,H

the columns of XH . The corresponding modified Stahel-Donoho estimators
for high-dimensional data are then obtained by using the corresponding cell-
wise weights wij = w(rij,H) in (7)-(8). The idea is that by using huberized
outlyingness measures the maximal outlyingness of each observation and its
corresponding direction can be determined more accurately in the presence of
cellwise contamination. The cellwise weights then allow to recover the infor-
mation from those components that are not contaminated. If the parameters
αij are derived from the componentwise outlyingnesses |cij,H | (case 1 above),
then we denote the corresponding high-dimensional Stahel-Donoho estimator
by (THSDC ,SHSDC). If the parameters αij are derived from the maximizing
direction ui (case 2 above), then we denote the corresponding high-dimensional
Stahel-Donoho estimator by (THSDM ,SHSDM ).

3 Simulation studies

We consider simulation settings similar as in Van Aelst et al. (2011,?) to inves-
tigate the performance of the newly proposed combined method in comparison
to the previous solutions. We examine the performance of the methods through
their mean squared error (MSE). Since huberization ignores any correlation
among the variables, we consider data with different levels of correlation to
investigate the effectof correlation on the huberized outlyingness.
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As in Van Aelst et al. (2011), datasets were generated from a p-variate
normal distribution with mean zero and covariance matrix R2 where R is a
matrix whose diagonal elements are equal to 1 and all off-diagonal elements have
the same value ρ. The value of ρ is chosen such that the multiple correlation
coefficient R2 between any component of the p-variate distribution and all the
other components takes the values 0, 0.5, 0.7, 0.9 or 0.999. The dimension p
took the values 5 and 10, while the sample size n is equal to 50 for p = 5 and
equal to 100 for p = 10. A fraction ε of univariate outliers was then introduced
in the first d components (d ≤ p) with d = 2 (p = 5) or d = 5 (p = 10). The
outlying values were generated from a univariate normal distribution with mean
k/
√
d and standard deviation 0.1 where the outlying distances k = 6, 24, 64

and 160 were used. For each situation, N = 500 samples were generated and
the outlyingnesses were calculated by setting the number of random directions
equal to 200p, as advocated in Maronna and Yohai (1995) for data in higher
dimensions. It has been shown in Liu et al. (2013); Liu and Zuo (2014) that
exact calculation of the SDE requires a number of data dependent directions
that is of order O(n4p) which is too high for practical purposes (see also Zuo and
Laia, 2011). Therefore, a smaller number of data-dependent random directions
is usually considered. The choice of the number of random directions is a trade-
off between computational efficiency and accuracy of the SDE approximation.
Using 200p gave good results in our experiments, but if sufficient computer
power is available this number can be increased to obtain more accurate results.

Then, for each of the N = 500 generated datasets in each setting we com-
puted 6 different estimates. These are the original SD location and scatter es-
timates, its cellwise adaptations SDC and SDM, the huberized Stahel -Donoho
(HSD) estimates and its cellwise adaptations HSDC and HSDM. The MSE for
the location estimators of each of these methods was calculated as

MSE(T.) = ave
j=1,...,p

(
ave

l=1,...,N
(T (l)

. )2j

)
.

We also calculated the MSE for the diagonal elements of the covariance matrix
R2 as

MSE(Sdiag
. ) = ave

j=1,...,p

(
ave

l=1,...,N
[(S(l)

. )jj − (R2)jj ]
2

)
,

and similarly for the MSE for the off-diagonal elements.
Note that for most combinations of ε and d in the simulations, the fraction

of contaminated observations exceeds the breakdown point (50% ) of the SDE.
Our purpose is to see to what extent the adjusted Stahel-Donoho estimators
can better withstand such amounts of contamination.

We first consider the case p = 5 and d = 2. Table 1 shows the results when
the first two components contain 20% of independent contamination. This ta-
ble contains for each of the adjusted methods the ratio of its MSE with respect
to the original SDE. MSE ratios are shown for the location estimator as well
as for the diagonal and off-diagonal elements of the scatter matrix estimator.
For the various settings, Table 1 shows the overall MSE ratio which takes all
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Rsq k comp SDC SDM HSD HSDC HSDM
center 0 6 All 0.544 0.611 0.960 0.611 0.667
center 0 6 Cont 0.444 0.567 0.954 0.564 0.634
center 0 64 All 0.802 0.816 1.088 0.795 0.893
center 0 64 Cont 0.672 0.695 1.241 0.950 0.994

diag 0 6 All 0.626 0.710 0.882 0.456 0.577
diag 0 6 Cont 0.619 0.691 0.870 0.387 0.530
diag 0 64 All 0.433 0.459 0.915 0.319 0.489
diag 0 64 Cont 0.428 0.451 0.910 0.292 0.473

offdiag 0 6 All 0.963 1.117 0.984 0.794 1.137
offdiag 0 6 1 Cont 0.994 1.135 0.998 0.811 1.157
offdiag 0 6 2 Cont 0.901 1.095 0.949 0.782 1.131
offdiag 0 64 All 1.318 1.366 0.782 0.959 1.009
offdiag 0 64 1 Cont 2.360 1.948 1.024 1.779 1.675
offdiag 0 64 2 Cont 0.927 1.152 0.611 0.643 0.674

center 90 6 All 1.333 0.699 0.997 1.017 0.814
center 90 6 Cont 1.899 0.737 1.008 1.187 0.860
center 90 64 All 1.092 0.837 1.020 0.894 0.870
center 90 64 Cont 1.692 0.685 1.036 1.110 0.829

diag 90 6 All 1.193 1.236 1.028 1.454 1.316
diag 90 6 Cont 1.019 2.507 1.067 0.913 2.255
diag 90 64 All 1.219 1.800 1.044 1.494 1.619
diag 90 64 Cont 1.015 5.128 1.027 0.910 3.950

offdiag 90 6 All 1.549 0.729 1.000 1.235 0.819
offdiag 90 6 1 Cont 1.614 0.733 0.998 1.132 0.780
offdiag 90 6 2 Cont 2.471 0.947 0.994 0.946 0.917
offdiag 90 64 All 1.514 0.698 1.044 1.231 0.773
offdiag 90 64 1 Cont 1.576 0.632 1.044 1.121 0.722
offdiag 90 64 2 Cont 2.322 1.156 1.045 0.915 0.968

Table 1: MSE ratios of adjusted Stahel-Donoho estimators vs original SDE for
data in 5 dimensions with ε = 20% of independent contamination in the first two
components with k = 6 or k = 64. Both uncorrelated data and correlated data
(R2 = 0.9) are considered. The ratio of the overall MSE averages (all) are shown
as well as the ratio of the MSE averages of the contaminated components (Cont).
For the off-diagonal elements we further differentiate between elements with
only one contaminated component (1 cont) and elements with both components
contaminated (2 cont).

p = 5 components into account, as well as the MSE ratio based on only the
two contaminated components. The latter provides information about the dif-
ference in bias between the adjusted estimator and the original SDE due to the
contamination in these components. For the off-diagonal elements we further
differentiate between elements related to two contaminated components (2 cont)
and elements related to a contaminated and an uncontaminated component (1
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cont).
The fraction of contaminated observations in the settings of Table 1 is well

below 50% and thus the original SDE should not be highly affected by it. How-
ever, since the SDE can only downweight complete observations, a large amount
of useful information may be wasted and we examine to what extend the ad-
justed methods are able to recover some of that information. The top half of
Table 1 contains the results for uncorrelated data with close-by (k = 6) and
further away (k = 64) contamination. We can see that huberizing the data
(HSD) has little effect on the performance of the estimator in this case. For the
estimates of the center this is illustrated in more detail in the top panel of Fig-
ure 1 which contains the boxplots of the absolute errors of the estimates for the
components of the center. Separate boxplots are shown for the contaminated
and uncontaminated components. The boxplots of the SDE and HSD estimates
look very similar, both for the contaminated and uncontaminated components.
Using cellwise outlyingnesses and weights on the other hand does have an effect
on the performance of the estimators. The (H)SDC and (H)SDM estimators
improve on the SDE, especially for the estimators of the center and diagonal
elements of the scatter. For the off-diagonal elements, only the HSDM succeeds
in yielding a better overall MSE. The boxplots in Figure 1 reveal that the gain in
performance is mainly due to a bias reduction in the contaminated components.

To show the effect of increasing correlation, the bottom half of Table 1 con-
tains the results for (highly) correlated data (R2 = 0.9). Huberization does not
take into account any correlation among the variables. As a result, we can see
that the HSD cannot improve on the SDE in the presence of strong correlations.
Of the cellwise adaptations, the (H)SDC relies most on the componentwise out-
lyingness which is more difficult to measure in case of highly correlated data.
As a consequence the outlying components may receive a too high weight as
can be seen from Figure 1. It follows that the estimates become biased leading
to a worse performance as can be seen in Table 1. The (H)SDM estimators
focuses on the direction in which each observation is most outlying and pays
less attention to the componentwise outlyingness. In this setting this approach
leads to better weights for the components and thus results in estimators with
a better performance.

Table 2 and Figure 2 show the performance of the estimators when the frac-
tion of contamination in the first two components is increased to 35%. It can
be seen from the left plots in Figure 2 that the effect on the SDE is rather
small when the contamination is close by (k = 6). In this case the HSD es-
timates again show similar performance. When the contamination lies further
away from the bulk of the data, its effect on the SDE becomes much larger.
Note that in this setting it can easily happen that a majority of observations
is contaminated. This implies that the SD outlyingnesses are not determined
accurately anymore because the majority of outliers may lead to masking and
swamping effects, i.e. the SD outlyingness of the outliers is underestimated
whereas regular observations may even receive an SD outlyingness ri that is
far too large. HSD effectively reduces the effect of the componentwise contam-
ination which resolves the masking and swamping problems and thus the bias
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Figure 1: Boxplots of absolute errors of the estimates of the uncontaminated and
contaminated components of the center. Data were generated in 5 dimensions
with ε = 20% of independent contamination in the first two components. The
top panels show the results for uncorrelated data and the bottom panels contain
the results for correlated data (R2 = 0.9). The left plots correspond to k = 6
and the right plots to k = 64.

on the contaminated components is much smaller for the HSD as shown in the
plots on the right of Figure 2. This naturally results in a much lower MSE as
can be seen in Table 2. For low correlated data the HSD improves on the SDE
as soon as the SDE is seriously affected by the componentwise contamination.
For highly correlated data the outliers need to be further away before the HSD
succeeds in reducing their effect to a large extent.

The cellwise methods can already improve on the SDE when the contami-
nation is close by (k = 6) by recovering information from the clean components
of the contaminated observations. This works best in low correlation settings
where it is easier to determine which components are responsible for the outly-
ingness of an observation. For close by outliers the huberized cellwise estimators
do not yield any further improvement which is in line with the fact that huber-
ization was not helpful in this case. However, when the outliers lie further
away, huberization becomes useful and the huberized cellwise estimators gener-
ally perform even better than their non-huberized cellwise counterparts. In low
correlation settings the (H)SDC estimators generally outperform the (H)SDM,
but for highly correlated data their order reverses.

In Table 3, the dimension was increased to p = 10 with ε = 20% of inde-
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Rsq k comp SDC SDM HSD HSDC HSDM
center 0 6 All 0.661 0.902 0.998 0.692 0.933
center 0 6 Cont 0.647 0.899 0.998 0.687 0.931
center 0 64 All 0.012 0.015 0.035 0.011 0.015
center 0 64 Cont 0.008 0.011 0.029 0.008 0.012

diag 0 6 All 0.891 0.991 0.994 0.840 0.968
diag 0 6 Cont 0.893 0.991 0.993 0.832 0.965
diag 0 64 All 0.010 0.016 0.039 0.008 0.013
diag 0 64 Cont 0.010 0.016 0.039 0.008 0.013

offdiag 0 6 All 0.752 1.046 1.005 0.710 1.062
offdiag 0 6 1 Cont 0.833 1.094 1.005 0.764 1.097
offdiag 0 6 2 Cont 0.675 1.001 1.005 0.663 1.031
offdiag 0 64 Al l 0.034 0.055 0.052 0.020 0.032
offdiag 0 64 1 Cont 0.494 0.632 0.114 0.322 0.490
offdiag 0 64 2 Cont 0.032 0.052 0.052 0.018 0.030

center 90 6 All 0.747 0.693 1.024 0.875 0.754
center 90 6 Cont 0.821 0.762 1.034 0.924 0.832
center 90 64 All 0.022 0.022 0.035 0.018 0.020
center 90 64 Cont 0.012 0.011 0.020 0.012 0.012

diag 90 6 All 1.010 1.518 1.059 1.208 1.558
diag 90 6 Cont 1.020 1.668 1.064 1.077 1.675
diag 90 64 All 0.001 0.011 0.009 0.001 0.009
diag 90 64 Cont 0.001 0.011 0.009 0.001 0.009

offdiag 90 6 All 1.313 0.912 1.025 1.241 1.007
offdiag 90 6 1 Cont 1.261 0.847 1.024 1.138 0.926
offdiag 90 6 2 Cont 1.967 1.443 1.028 1.078 1.468
offdiag 90 64 All 0.016 0.125 0.014 0.018 0.041
offdiag 90 64 1 Cont 0.664 0.507 0.384 0.454 0.367
offdiag 90 64 2 Cont 0.003 0.118 0.005 0.005 0.034

Table 2: MSE ratios of adjusted Stahel-Donoho estimators vs original SDE for
data in 5 dimensions with ε = 35% of independent contamination in the first two
components with k = 6 or k = 64. Both uncorrelated data and correlated data
(R2 = 0.9) are considered. The ratio of the overall MSE averages (all) are shown
as well as the ratio of the MSE averages of the contaminated components (Cont).
For the off-diagonal elements we further differentiate between elements with
only one contaminated component (1 cont) and elements with both components
contaminated (2 cont).

pendent contamination in the first five components. Clearly, there again is no
majority of contamination free observations. For low correlated data, HSD im-
proves on the SDE, especially if the outliers lie further away. However, in this
setting with only componentwise outliers the SDC estimator yields a better im-
provement of the SDE in low correlation settings and HSDC yields even further
improvement. In highly correlated settings huberization is again less successful.
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Figure 2: Boxplots of absolute errors of the estimates of the uncontaminated and
contaminated components of the center. Data were generated in 5 dimensions
with ε = 35% of independent contamination in the first two components. The
top panels show the results for uncorrelated data and the bottom panels contain
the results for correlated data (R2 = 0.9). The left plots correspond to k = 6
and the right plots to k = 64.

Using cellwise weights can largely improve the estimator for the center, but the
results for the scatter are more diverse. For the highly correlated data (H)SDM
again generally performs better than (H)SDC.

In practice structural (correlation) outliers and independent contamination
can occur simultaneously in a dataset. To examine this case, we generated
datasets of size n = 100 in p = 10 dimensions as before. If the correla-
tion ρ is high, then the data are concentrated around the line with direction
e = (1, . . . , 1) ∈ IRp̃. Hence, 10% of structural outliers were added by shifting
observations over a distance c in direction cm, where m is a unit vector orthog-
onal to e. In particular, the direction m is determined as follows. Take b ∈ IRp

with bj = (−1)j , and set m = b − (b′e/p)e. Then m is orthogonal to e by
construction. Finally, rescale m to unit norm. The distance c was generated
uniformly within a range from 2 to 3 standard deviations of the components.
Finally, the standard deviation of the outliers was reduced by a factor 10. Next
to these structural outliers, also 10% of independent contamination with k = 64
was added to each of the components of the remaining regular observations.

Table 4 shows the MSE ratios for uncorrelated data and correlated data
(R2 = 0.90). In this highly contaminated case, all adaptations of SDE succes-
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Rsq k comp SDC SDM HSD HSDC HSDM
center 0 6 All 0.764 0.972 0.994 0.864 0.993
center 0 6 Cont 0.749 0.972 0.994 0.859 0.994
center 0 64 All 0.211 0.241 0.676 0.163 0.267
center 0 64 Cont 0.190 0.199 0.636 0.137 0.239

diag 0 6 All 0.971 1.074 0.987 0.891 1.035
diag 0 6 Cont 0.980 1.082 0.984 0.871 1.035
diag 0 64 All 0.166 0.171 0.524 0.074 0.156
diag 0 64 Cont 0.165 0.171 0.524 0.074 0.156

offdiag 0 6 All 0.916 1.031 0.998 0.875 1.032
offdiag 0 6 1 Cont 0.937 1.049 1.002 0.886 1.048
offdiag 0 6 2 Cont 0.878 1.000 0.994 0.858 1.005
offdiag 0 64 All 0.192 0.201 0.285 0.074 0.148
offdiag 0 64 1 Cont 1.439 1.525 0.808 0.974 1.464
offdiag 0 64 2 Cont 0.167 0.174 0.272 0.056 0.121

center 90 6 All 0.463 0.304 0.993 0.717 0.331
center 90 6 Cont 0.553 0.358 0.993 0.800 0.384
center 90 64 All 0.468 0.625 1.071 0.583 0.679
center 90 64 Cont 0.524 0.694 1.094 0.698 0.795

diag 90 6 All 0.857 1.021 1.003 1.321 0.992
diag 90 6 Cont 1.399 2.336 1.000 0.914 2.034
diag 90 64 All 0.192 2.336 0.971 0.168 1.832
diag 90 64 Cont 0.167 2.385 0.969 0.107 1.864

offdiag 90 6 All 0.831 0.556 0.984 1.229 0.615
offdiag 90 6 1 Cont 0.757 0.517 0.986 1.226 0.587
offdiag 90 6 2 Cont 1.067 0.665 0.974 1.196 0.702
offdiag 90 64 All 0.953 1.498 1.000 1.314 1.343
offdiag 90 64 1 Cont 1.137 0.870 1.045 1.550 0.862
offdiag 90 64 2 Cont 0.650 2.905 0.913 0.481 2.391

Table 3: MSE ratios of adjusted Stahel-Donoho estimators vs original SDE for
data in 10 dimensions with ε = 20% of independent contamination in the first
five components with k = 6 or k = 64. Both uncorrelated data and correlated
data (R2 = 0.9) are considered. The ratio of the overall MSE averages (all)
are shown as well as the ratio of the MSE averages of the contaminated com-
ponents (Cont). For the off-diagonal elements we further differentiate between
elements with only one contaminated component (1 cont) and elements with
both components contaminated (2 cont).

fully improve the SDE performance. HSD is again less successful for correlated
data. In this setting with correlation outliers, the cellwise estimators can largely
improve over the SDE. The huberization generally further improves the cellwise
estimators. HSDM has lower MSE than HSDC for the center estimators, but
performs worse for the scatter matrix in this setting.
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Rsq SDC SDM HSD HSDC HSDM
center 0 0.337 0.363 0.659 0.272 0.317
center 90 0.639 0.527 1.047 0.739 0.476

diag 0 0.194 0.229 0.334 0.051 0.127
diag 90 0.165 2.763 0.654 0.124 1.792

offdiag 0 0.430 0.504 0.494 0.251 0.439
offdiag 90 0.808 1.336 0.844 0.791 1.416

Table 4: MSE ratios of adjusted Stahel-Donoho estimators vs original SDE
for data in 10 dimensions with 10% of structural outliers as well as 10% of
independent contamination in all components. Both uncorrelated data and
correlated data (R2 = 0.9) are considered.

4 Conclusion

We reviewed a huberization of the SD outlyingness which calculates the outly-
ingness of observations with respect to a huberized data set that is obtained by
componentwise pulling outliers back to the bulk of the data. This huberization
yields more reliable outlyingness measures in settings with independent com-
ponentwise contamination. Contamination models that include componentwise
outliers are especially realistic for high-dimensional datasets. In these contam-
ination models the overall fraction of contamination can easily exceed 50% so
that the original SDE breaks down.

We also reviewed an adaptation of the SDE that uses a more flexible weight-
ing scheme in which a separate weight can be used for each component of the
observations. These cellwise weighted adaptations can offer a considerable boost
in performance if observations are outlying due to contamination in only a few
of their components.

We combined these two approaches that were proposed to adjust the SDE
for high-dimensional data. That is, we examined the performance of adjusted
Stahel-Donoho estimators that use cellwise weights based on huberized SD out-
lyingness. Our empirical study shows that the combined approach often out-
performs the HSD estimator and also can outperform the cellwise weighted es-
timators in high-dimensional situations with a large fraction of componentwise
contamination. In low correlation data the HSDC usually outperforms HSDM,
but with highly correlated data this order often reverses.
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