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Abstract

The Stahel-Donoho estimator is defined as a weighted mean and covariance, where
each observation receives a weight in function of a measure of its outlyingness.
Therefore, all variables are treated in the same way whether they are responsible for
the outlyingness or not. We present an adaptation of the Stahel-Donoho estimator
where we allow separate weights for each variable. By using cellwise weights, we
aim to only downweight the contaminated variables such that we avoid losing the
information contained in the other variables. The goal is to increase the precision and
possibly the robustness of the estimator. We compare several variants of our proposal
and show to what extent they succeed in identifying and downweighting precisely
those variables which are contaminated. We further demonstrate that the mean
squared error of the adapted estimators is lower than that of the original Stahel-
Donoho estimator in many situations. We also consider some real data examples.

Key words: robust multivariate estimators, contamination models, outlier
identification.

1 Introduction

The Stahel-Donoho estimator, proposed independently by Stahel (1981) and
Donoho (1982), is a well-known robust estimator of multivariate location and
scatter. It was the first affine equivariant estimator with breakdown point (i.e.,
the maximum proportion of outliers that the estimator can withstand) close to
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50% for any dimension. It has some excellent robustness properties as shown
by Maronna and Yohai (1995), Gervini (2002) and Zuo et al. (2004), and is
in this respect comparable to other popular high-breakdown estimators such
as the minimum covariance determinant (MCD) estimator (Rousseeuw 1984)
or S-estimators (Davies 1987).

The Stahel-Donoho estimator is defined as a weighted mean and covariance,
where each observation receives a weight in function of a measure of its “out-
lyingness”. This measure is based on the one-dimensional projection in which
the observation is most outlying, the underlying idea of which is that every
multivariate outlier must be a univariate outlier in some projection. Hence,
observations with large outlyingness then receive small weights. Recent appli-
cations of the Stahel-Donoho outlyingness measure can be found in Hubert et
al. (2005), Hubert and Verboven (2003) and Debruyne and Hubert (2008).

Whether a large outlyingness is due to an aberrant value in one or more spe-
cific variables (componentwise outliers) or to a deviating covariance structure
involving several variables (structural outliers), there is no difference in how
the weighting scheme treats the outlying point. That is, the entire observation
is either downweighted or not. Or still, all components of an observation are
treated in the same way whether they are “responsible” for the outlyingness or
not. This kind of weighting is of course intrinsic to all affine equivariant robust
estimators. Indeed, once we start to treat the components of an observation
differently, we have to give up the equivariance. However, by making this sac-
rifice we can make a distinction between contaminated and non-contaminated
components of an observation. It thus allows us to downweight the contami-
nated components only, such that we avoid losing the information contained
in the other components. We can then obtain an estimator with increased
precision.

The Stahel-Donoho estimator, like other high-breakdown estimators, has been
studied primarily in the context of the Tukey-Huber contamination model
(Tukey (1962) and Huber (1964)). This model assumes that, on average, a
large fraction (1-ε) of the data (e.g. 0 ≤ ε < 0.25) is generated from a classical
model, whereas the remaining data can be affected by abnormal noise. In
other words, the data come from a mixture distribution with a fully described
dominant component (e.g. a Gaussian random variable) and an unspecified
minority component. The general idea of robust procedures in this context is to
conduct inference on the dominant component of the mixture, by limiting the
influence of observations that resulted from the other component. Identifying
and subsequently downweighting such “harmful” observations makes perfect
sense for this purpose.

The Tukey-Huber model has some limitations, especially in high dimensions.
The main criticisms are that it assumes that a majority of the points is per-
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fectly free of contamination, and that downweighting entire points may be
inefficient. In Alqallaf et al. (2008), the Tukey-Huber model was extended
to a large family of contamination models. One of these models, the inde-
pendent contamination model, assumes that contamination in each variable is
independent from the other variables, leading in particular to componentwise
outliers. Furthermore, the models now merely assume that there is a major-
ity of outlier-free values in each variable, but not necessarily a majority of
outlier-free observations. Affine equivariant robust estimators do not perform
well under such models because they require a majority of clean observations.
The Stahel-Donoho estimator may seem somewhat better protected against
a possible majority of outlying points than estimators such as MCD or S-
estimators, as it is in principle allowed to downweight more than half of the
points. Nevertheless the estimator surely is not particularly suitable for these
models since it can not treat the variables separately. Downweighting a large
number of points may lead to a considerable waste of information, especially
in high dimensions, and may cause severe instability.

In this paper we investigate an adaptation of the Stahel-Donoho estimator
where we allow separate weights for each component of an observation. The
idea is to start from the outlyingness of the observation as measured in the
original Stahel-Donoho procedure. Subsequently, for each observation, we at-
tempt to identify to what extent each variable is contributing to the outlying-
ness and we use this information to adjust the original Stahel-Donoho weights
in a cellwise manner. In particular, whenever an observation has a considerable
outlyingness and hence a small Stahel-Donoho weight, the “clean” components
should be restored to some extent by adjusting the corresponding weight up-
wards. By adapting the estimator in this way (using cellwise weights), we give
up affine equivariance but we can gain precision. Moreover, the estimator be-
comes more suitable for use in the context of the larger family of contamination
models considered in Alqallaf et al. (2008). That is, in case of independent
contamination, the adaptation not only boosts the precision but may also
increase the robustness.

The rest of the paper is organized as follows. In Section 2 we discuss the
Stahel-Donoho estimator and focus on a real data set. In Section 3 we present
our proposal for adapting the estimator in a componentwise manner. A simu-
lation study is performed in Section 4, in which we compare several variants
of our proposal and see to what extent they succeed in restoring the weights
of the clean components of an observation while leaving the weights of the
contaminated components unaffected. Section 5 investigates through a second
simulation study specifically how the cellwise weights affect the precision and
robustness of the estimator. We continue with real data examples in Section
6. Finally, Section 7 concludes and gives directions for further research.
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2 Stahel-Donoho estimator

Suppose X = {x1, . . . , xn} ⊂ R
p is a set of n observations. Let µ be a shift and

scale equivariant univariate location statistic and let σ be a shift invariant and
scale equivariant univariate scale statistic. Then, for any y ∈ R

p, the Stahel-
Donoho outlyingness is defined as

r(y,X) = supa∈Sp

|a′y − µ(a′X)|
σ(a′X)

(1)

with Sp = {a ∈ R
p : ||a|| = 1}. This outlyingness measure is based on the

idea that for any multivariate outlier, one can always find a one-dimensional
projection for which the observation is a univariate outlier.

The Stahel-Donoho estimator of location and scatter (TSD, SSD) is defined as

TSD =

∑n
i=1 wixi

∑n
i=1 wi

and

SSD =

∑n
i=1 wi (xi − TSD)(xi − TSD)′

∑n
i=1 wi

where wi = w(r(xi, X)) and w : R
+ → R

+ is a weight function so that
observations with large outlyingness get small weights (see Stahel (1981) and
Donoho (1982)).

For w, we use the Huber-type weight function as advocated by Maronna and
Yohai (1995). It is defined as

w(r) = I(r≤c) + (c/r)2I(r>c), (2)

where c is a threshold which we choose here as c = min(
√

χ2
p(0.50), 4).

In order to attain maximum breakdown (see e.g. Maronna and Yohai (1995),
Gather and Hilker (1997)) the univariate location statistic µ is set equal to
the median (MED) and the scale statistic σ is chosen to be the modified MAD,
defined as

MAD∗(a′X) =
|a′X − MED(a′X)|⌈n+p−1

2 ⌉:n + |a′X − MED(a′X)|(⌊n+p−1

2 ⌋+1):n

2 β
(3)

where β = Φ−1(1
2
(n+p−1

2n
+ 1)) and xi:n denotes the ith order statistic of the

data set.
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As an example, we consider the Philips data (Rousseeuw and Van Driessen
(1999)). For each of 677 diaphragm parts for TV sets, nine characteristics were
measured at the beginning of a new production line. In Figure 1 the Stahel-
Donoho outlyingnesses of the Philips data are shown. It can be seen that
observations 491 to 565 get a very large outlyingness and hence seem to be
strongly deviating from the majority of the observations. Consequently, these

0 100 200 300 400 500 600 700
0

2

4

6

8

10

12

14

Fig. 1. Stahel-Donoho outlyingnesses of the Philips data.

aberrant observations will get a small weight in the computation of the Stahel-
Donoho estimator, so that they influence the location and scatter estimate
in a limited way. By giving a small weight to an outlying observation, every
component of this observation will be downweighted. However, very often only
a selected number of components is causing an observation to be outlying. The
remaining components then have values that are in line with the majority of
the data and do not contribute much to the large outlyingness. Therefore,
perfectly valid information is potentially thrown away by downweighting the
entire observation. Instead, one could attempt to incorporate componentwise
information in the computation of the estimator.

In the Philips data, observations 491 to 565, among other points, are assigned
a small weight in the Stahel-Donoho estimator. To assess whether it is truly
required to downweight each component of these observations, we could first
look at their outlyingness within each individual component. Figure 2 shows
univariate scatter plots for each of the 9 components (V1, . . . , V9), standar-
dized by their median and modified MAD. Some random jitter is added on the
horizontal axis. Observations 491 to 565 are marked in dark. It can be seen,
for example, that these observations are somewhat outlying within component
V2. On the other hand, their values do not seem particularly suspicious within
many of the other components, such as V1, V3, V4 or also V6.

Obviously, unsuspected behavior within individual components does not mean
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that the information contained in these components is harmless and can safely
be used in the estimation of location and scatter of the data. Indeed, the large
outlyingness of observations 491 to 565 could be due to the combined values of
several components, rather than to those of individual components. To find out
whether we are indeed dealing with such structural (or correlation) outliers,
let us examine pairwise scatter plots. Figure 3(a) shows all pairwise plots
involving component V1, while Figure 3(b) shows those involving component
V6. Observations 491 to 565 are again marked in dark.

Regarding component V1, Figure 3(a) indicates that whenever some rea-
sonable correlation structure is present between V1 and another component
(which is the case for components V3 and V4, for example), observations 491
to 565 are well within the bulk of the data. It appears that component V1 con-
tributes little to the outlyingness of these observations, even in combination
with other components.

On the other hand for component V6, we see in Figure 3(b) that observations
491 to 565 are clearly outlying with respect to the correlation between V6 and
V5, as well as that between V6 and V9. We may conclude that component V6
bears a considerable responsibility for the large outlyingness of observations
491 to 565 and hence should be downweighted when estimating location and
scatter (even if these observations were not particularly outlying within the
individual component V6).

Returning to component V1, based on Figure 3(a) we could decide that it
should be safe to include this component of the outliers when computing the
estimate. When the latter is supposed to be estimating the location and scatter
of the “good” part of the data, its inclusion will probably not be harmful and
is even likely to increase the precision of the estimate. In principle, however,
before reaching such a conclusion we should go further and also examine three-
way combinations of components, and so on. That would lead us too far in
this example, but it will be taken into account in our proposals in the next

V1 V2 V3 V4 V5 V6 V7 V8 V9
−4

−2

0

2

4

Fig. 2. Philips data, componentwise scatter: each component is standardized by its
median and modified MAD. Observations 491 to 565 are marked in dark.
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Fig. 3. Philips data, pairwise scatter plots: (a) all respective variables versus variable
1; (b) all respective variables versus variable 6. Observations 491 to 565 are marked
in dark.

section.

3 Adapted Stahel-Donoho estimators

As mentioned before, a considerable amount of information could be wasted if
we only have one scalar weight to control the influence of an observation on the
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Stahel-Donoho estimator. Therefore we propose an adaptation that assigns a
vector of weights to each observation, i.e. every component of an observation
receives its own weight.

Suppose X = {x1, . . . , xn} ⊂ R
p is a set of n observations. The adapted

Stahel-Donoho estimator of location and scatter (TSD∗ , SSD∗) is defined as

TSD∗,j =

∑n
i=1 wijxij

∑n
i=1 wij

(4)

and

SSD∗,jk =

∑n
i=1

√
wij

√
wik (xij − TSD∗,j) (xik − TSD∗,k)

∑n
i=1

√
wij

√
wik

(5)

for j, k = 1, . . . , p.
The weight matrix W = (wij)ij is defined as

wij = w(rij) (6)

where the weight function w is as before and the adapted outlyingness rij is
defined as

rij = αij ri + (1 − αij) cij (7)

where αij is a weighing parameter, ri is the Stahel-Donoho outlyingness of
xi (i.e. ri = r(xi, X)) and cij is the outlyingness of xi in the direction of
component j, given by

cij =
|xij − MED(Xj)|

MAD∗(Xj)
. (8)

Here, Xj represents the set of jth components of all observations in X (i.e.
Xj = {x1j, . . . , xnj}), MED is the median and MAD∗ is defined by (3).

The weighing parameter αij in (7) will be chosen in [0, 1], such that the adapted
outlyingness rij is a weighted average of ri and cij. Since the componentwise
directions are a subset of the directions considered in (1), we always have that
ri ≥ cij and hence ri ≥ rij. That is, the adapted outlyingness is smaller than
the original outlyingness. The idea is to reduce the outlyingness, and hence
increase the weight, of those components which had limited influence on the
global outlyingness ri (i.e. those components for which a weight increase is
“justified”), while largely keeping the original outlyingness and weight for the
other components.

We could choose αij as a constant, i.e. αij = α, in which case the reduction in
outlyingness associated with rij is linearly related to cij, the outlyingness in
the jth component. This would make sense if we only suspect componentwise
outliers but seems not appropriate for structural outliers. Indeed, if xi is such
a structural outlier, it may have components with small cij which nevertheless
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share a responsibility for the large ri and hence should not be awarded any
considerable reduction in outlyingness. In order now to account for structural
outliers as well, αij would preferably represent the extent to which the jth
component contributes to ri. If this contribution is assessed to be large, rij

should remain close to ri, otherwise rij is allowed to decrease largely towards
cij.

In this paper we consider the following choices for αij:

(1) αij = α = 1/2. Hence the adapted outlyingness rij always equals the aver-
age of ri and cij. As explained above, a constant weighing parameter may
not account appropriately for structural outliers. Another disadvantage
is that the choice of α = 1/2 is arbitrary and may be far from optimal in
some situations. We do not expect this choice of weighing parameter to
perform well, but we consider it as a benchmark.

(2) αij = (maxp
k=1cik)

−1cij with cij as defined in (8). It follows that αij is
large whenever cij is large, relative to the outlyingnesses in the direction
of the other components. This weighing parameter αij compares to a con-
stant α as follows: (1) in case observation xi is a componentwise outlier,
the contrast between the rij of contaminated and non-contaminated com-
ponents is now stronger; (2) in case xi is a structural outlier involving
multiple components, all of the cij may be relatively small and then this
choice of αij is more conservative and may avoid unwarranted reduction
of outlyingness for those components sharing responsibility for the large
outlyingness ri.

(3) αij = (maxp
k=1|uik|)−1|uij| where ui = (ui1, . . . , uip) denotes the direction

that maximizes ri. Hence, αij is large whenever the jth component has a
relatively large coefficient in the maximizing direction ui. The underlying
idea is that the magnitude of the coefficients in ui reflects the extent to
which the respective components are responsible for the outlyingness ri,
both in case of componentwise and structural outliers.

We will refer to these methods as (1) SDH, (2) SDC and (3) SDM (respec-
tively from Half, Components and Maximizing). The resulting location and
scatter estimates (4) and (5) will sometimes be denoted by (TSDH , SSDH),
(TSDC , SSDC) and (TSDM , SSDM) respectively. Note further that when αij = 1,
we obtain the original Stahel-Donoho estimator (TSD, SSD).

Remark: when applying the SDM method, it would be desirable to rescale each
variable first by dividing it componentwise by its MAD, ensuring that the vari-
ances of the components are within the same range. This would avoid that
the maximizing directions ui are attracted to the variables with the smallest
scales. Note that rescaling the variables by the componentwise MAD before
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computing the maximizing directions ui, however, is equivalent to adjusting
the directions ui by multiplying its coefficients by the respective MADs (with-
out rescaling the variables). In the rest of the paper, adjusted ui vectors will
be used in the SDM method.

4 Simulation study

In this section we investigate through simulation to what extent our methods
succeed in reducing the outlyingness, and thus increasing the weight, of pre-
cisely those components for which it would be justified.

Samples {x1, . . . , xn} of size n = 100 in p = 3 dimensions were generated from
a standard normal distribution N(0, Σ). For each sample, 100 ǫ% of the data
were shifted over a distance of k m. (Additionally, the variance was reduced
for those components with non-zero coefficient in the outlying direction m, by
multiplying their standard deviation by 0.1).

We considered two choices for Σ, respectively corresponding to uncorrelated
and partly correlated data: (1) Σu = I3 (i.e. the identity matrix), and (2)
Σc = [1 − .9 0; −.9 1 0; 0 0 1]. In case of Σu we considered outliers
in directions m = (1, 0, 0), (1, 1, 0) and (1, 1, u) with u ≥ 1. For the cor-
related data corresponding to Σc we looked at outliers in directions m =
(1, 0, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (1, 1, u) and (1, u, 1), again with u ≥ 1.
The distance k and the proportion ǫ of the outliers were varied.

For each situation, 100 samples were generated. For each sample, and for each
observation xi, we computed the Stahel-Donoho outlyingness ri and subse-
quently the adapted outlyingnesses rij based on the methods SDH, SDC and
SDM. The corresponding weights wi and wij are based on the weight function
(2). When the Stahel-Donoho procedure is sufficiently robust against the out-
liers generated as above, the weight wi will be close to 0 for the outliers and
close to 1 for the regular observations. The adaptations SDH, SDC or SDM
then can be said to work appropriately if the following more or less holds:

(1) if xi was generated as an outlier, and if the jth component has a zero
coefficient in the outlying direction m, then wij is high (i.e. the weight of
the jth component should be awarded an increase compared to the SD
weight).

(2) if xi was generated as an outlier, and if the jth component has a non-
zero coefficient in the outlying direction m, then wij is close to wi (i.e.
the weight of the jth component should be similar to the original SD
weight).

(3) if xi was generated as a regular observation, then wij is high (i.e. the
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weights of all components should be as close as possible to 1).

(Recall that by definition wij ≥ wi.) When reporting our results we will di-
vide the components xij into groups corresponding to these three situations,
which we will also respectively refer to as (1) non-contaminated components
of outliers; (2) contaminated components of outliers; and (3) components of
regular observations. In particular we will report the mean weights wi and wij

for each of the three groups, over all generated samples in each of the outlier
situations described above.

For the data in this simulation study, we would say that we are dealing with
componentwise outliers as soon as the distance k is sufficiently large (such that
cij is large for each contaminated component j). On the other hand, we would
refer to structural outliers for those cases where each cij is relatively small but
the global outlyingness ri is large. This especially occurs in case of covariance
matrix Σc and outliers in the direction (1,1,0) or (1,1,u) at a relatively small
distance k. However, we do not attempt to make a strict distinction between
the two types of outliers in this study. In fact we make the general assumption
that those components that were not contaminated, i.e. that were actually
generated according to the standard normal distribution, are justified to have
their weight increased. The other components are not.

Note that exact computation of the supremum in the Stahel-Donoho outly-
ingness (1) is impractical and typically a random search algorithm based on
subsampling is used to obtain an approximation. In this paper we applied a
Matlab implementation of the Gauss-algorithm used in Maronna and Yohai
(1995). The number of random directions in the algorithm was taken equal to
1000, which should be sufficient for p as small as in this simulation study (see
Maronna and Yohai 1995).

We first consider the simple case of Σ = Σu, such that none of the components
are correlated. In this situation all outliers may be regarded as componentwise
outliers. The top panel in Figure 4 presents the results for m = (1, 0, 0),
while the bottom panel represents the case m = (1, 1, u). The results for
m = (1, 1, 0) are omitted as they are very similar to the case m = (1, 0, 0).
Here, and in the following, the left plots correspond to the group of non-
contaminated components of outliers, the middle plots to the contaminated
components, and the right plots to the components of regular observations.
Each plot shows the mean values of wi and wij of all concerned components
in all generated samples. The top row of a panel always presents the results
as a function of the outlier location (determined by k and/or u) for fixed
proportion of outliers ǫ. In the bottom row the outlier location (k and/or u)
is fixed and the plots show the weights in function of the fraction of outliers
ǫ. The solid lines correspond to the initial SD weights wi, while the dashed,
dotted and dash-dotted lines respectively represent the SDH, SDM and SDC

11
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Fig. 4. Simulation results uncorrelated data: mean weights for (left) non-contami-
nated components of outliers, (middle) contaminated components of outliers, (right)
components of regular observations; various outlier configurations as indicated

weights wij.

Consider the choice m = (1, 0, 0), i.e. outliers are situated in the first compo-
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nent only, in the top panel of Figure 4. In the top row, where ǫ = .1 and the
distance k varies, we see that the SD weights for the outliers are close to 0,
except when k is small in which case the Stahel-Donoho estimator hence could
not withstand the outliers. For larger k we see in the left plot that the SDC
and SDM method are both succesful in awarding an increase in weight for the
non-contaminated components of the outliers. SDH succeeds in only a limited
increase. From the middle plot it is clear that all methods leave the weight
of the contaminated component almost untouched, which is as desired. The
right plot, representing the regular observations, indicates that all methods
yield a slight gain in precision by somewhat increasing the (already high) av-
erage weights of those observations. Note that increasing the weight of clean
components may constitute a gain in robustness, rather than a gain in preci-
sion, if it offsets a possible bias induced by contamination in the corresponding
components from other observations (see the next section).

In the bottom row of the top panel in Figure 4 the distance of the outliers is
fixed at k = 5 and the proportion ǫ is varied from 10% to 35%. It is again clear
that the non-contaminated components obtain a considerable weight increase
in case wi is low, while the contaminated components do not. We may conclude
that in case of m = (1, 0, 0), the adapted outlyingnesses succeed nicely in
boosting precision while largely preserving robustness.

Now for the choice m = (1, 1, u), which is shown in the bottom panel of Figure
4, each component of the outliers is contaminated and hence we have only two
plots in each row of this panel. Our interest is now primarily in the compo-
nents of the outliers, which preferably should not be awarded an increase in
weight. The main difficulty for our methods here (especially SDC and SDM) is
that the contamination in components 1 and 2 would be dwarfed by the much
more severe contamination in component 3, and that this may lead to the first
two components obtaining a somewhat unjustified gain in weight. However,
because it always holds that ri ≥ cij it follows from (7) that also the adapted
outlyingness rij is bounded below by cij. Hence, whenever an observation is
outlying in the direction of the jth component, any decrease in outlyingness
awarded to that component is bounded by the large componentwise outlying-
ness cij. Therefore, any gain in weight wij is kept limited. This ensures that
our methods to a reasonable extent are conservative, which indeed can be seen
in the results in Figure 4.

The top row again takes ǫ = .1, fixes additionally k = 5, and shows the
mean weights for a grid of increasing u. The bottom row sets k = 5 and
u = 5 and varies the proportion of outliers. First, the SDH method has a
fixed weighing parameter αij and that is the reason why it fares reasonably
well in this situation. Indeed, its weights wij are closest to the SD weights
wi on average. Both SDM and SDC yield a somewhat larger increase for the
weights of the contaminated components, which can be entirely attributed to
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the components 1 and 2, for which αij is relatively low compared to component
3. Nevertheless, the increase in weight is very limited, for reasons explained
above, and it is not deemed harmful in the sense that at worst it would yield
a slight bias increase in the adapted Stahel-Donoho estimates. In the next
section, we will examine the issue of robustness and possible bias increase of
the presented estimators more thoroughly.

Next, we consider the partly correlated data generated with Σ = Σc. The si-
tuation is now more complicated since the high negative correlation between
components 1 and 2 could produce far outliers for which none of the compo-
nents needs to be severely contaminated. Or, in other words, the SD outlying-
ness ri is potentially much higher than any of the componentwise cij. Figure 5
contains the results for m = (1, 0, 0) and (1, 1, 0), while Figure 7 contains those
for m = (1, 0, 1) and (1, 1, u). Results for m = (0, 0, 1) and (1, u, 1) are omit-
ted (these results were found to be comparable to respectively m = (1, 0, 0)
and (1, 1, u) in case of uncorrelated data, as considered above).

Let us first look at the results for m = (1, 0, 0) in the top panel of Figure 5.
The two rows again respectively fix the outlier proportion at ǫ = .1 and the
distance at k = 5. We see that the behavior of the methods looks similar to
that in the corresponding uncorrelated setting that was shown in Figure 4, top
panel, except for the following differences. First, note that the SD weights are
generally lower than in Figure 4 because the outliers now are more pronounced
and hence easier to detect. Indeed, although the outliers were generated in
the first component only, because of the high correlation the outlyingness ri

becomes considerably higher (and is maximized) in a direction which addi-
tionally involves the second component. This is also the reason why, as seen in
the left plots, the SDM method behaves somewhat more conservative for the
non-contaminated components than in the uncorrelated setting. In fact, the
dashed curves are rather low here because the second component is considered
by the SDM αij parameter as partly responsible for the high ri and hence does
not receive a high weight. The third component on the other hand does gener-
ally receive a gain in weight and so the SDM curves still end up somewhere in
the middle of 0 and 1. The fact that SDM wrongly attributes some responsi-
bility to the second component is understandable and difficult to avoid, since
the data correlation implies that these particular outliers could equally easily
have been produced by contaminating both components 1 and 2, as shown in
Figure 6. Regarding SDC, the method comes out on top but its performance
for non-contaminated components is also somewhat worse than in Figure 4.
The reason is that ri is now much higher, due to the correlation, while the
weighing parameter αij remains the same. For the contaminated components
shown in the middle plots, the methods perform very well, except for SDH
which seems overly liberal here. Hence, we may again conclude that SDC and
SDM best preserve the outlier resistance while increasing the precision.
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100ǫ% outliers at k × (1, 1, 0); top: ǫ = .1, k varies; bottom: k = 5, ǫ varies
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Fig. 5. Simulation results correlated data: mean weights for (left) non-contaminated
components of outliers, (middle) contaminated components of outliers, (right) com-
ponents of regular observations; various outlier configurations as indicated

The bottom panel in Figure 5 corresponds to outliers in the direction m =
(1, 1, 0), which means that the outliers are now even more pronounced than in
the previous setting, given k, resulting in even lower SD weights wi. The only
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Fig. 6. 2-D example with highly correlated data: different causes leading to the same
outlier

non-contaminated component of the outliers is (the uncorrelated) component
3, and we see in the left plots that SDM performs best in awarding this compo-
nent a higher weight. The SDC method clearly has difficulties to overcome the
large ri in view of the small cij (and the small differences among the cij) and
therefore turns out to be more conservative here. The SDH method, finally,
completely fails as it is unable to distinguish properly between contaminated
and non-contaminated components (especially in case of small k).

Next, consider the case m = (1, 0, 1) in the top panel of Figure 7, where
the only non-contaminated component is the second one, which is of course
highly negatively correlated with the first one. We see in the left plots that
the SDM method hardly increases the weight of the second component, be-
cause it deems the latter partly responsible for the outlyingness of these ob-
servations. The current situation is comparable to the one corresponding to
m = (1, 0, 0) in Figure 5, top panel, where we had additionally component
3 as non-contaminated (which ensured that the SDM curves on average still
indicated an increase). The SDC method here again performs well, similarly
to the m = (1, 0, 0) case.

Finally, the bottom panel of Figure 7 represents outliers in m = (1, 1, u). The
top row fixes ǫ = .1 and k = 2, and shows the mean weights in function of
u. The bottom row varies again the proportion of outliers, with k = 2 and
u = 5. Since all components of the outliers are contaminated we again have
only two plots to consider. Note that the small k in combination with the
high correlation implies that we are dealing with truly structural outliers. We
are concerned here that the components of the outliers should not receive a
high weight wij. We see, however, that SDC is behaving in a way which is
somewhat too liberal in this context. The reason is that it believes it should
justifiably increase the weights of components 1 and 2 since their cij is very
small compared to that of component 3. The SDM method does better in this
regard.

This last situation illustrates the main difficulty of our methods, namely that
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Fig. 7. Simulation results correlated data: mean weights for (left) non-contaminated
components of outliers, (middle) contaminated components of outliers, (right) com-
ponents of regular observations; various outlier configurations as indicated

they may be underestimating the responsibility of some components in case
of certain structural outliers, e.g. in case of large outlyingness due to cor-
relation combined with other outlying components. In general, we may con-
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clude that both SDC and SDM offer a considerable increase in weights for
non-contaminated components for many outlier situations. In some cases this
increase in weights also leads to an increased robustness, such as in the case
of independent contamination in the different components. However, in other
cases the potential gain in precision comes at a cost of increased weights for
contaminated components, and thus some loss of robustness, but this cost is
limited since the adjusted outlyingnesses rij are bounded by the component-
wise outlyingnesses cij. In the next section we examine more closely this pos-
sible trade-off between precision and robustness.

5 Precision and robustness

In this section we show the results of a simulation study that investigates how
the precision and the robustness of the Stahel-Donoho estimator are affected
by our adaptations. In particular we present mean squared errors (MSEs) of
the estimates, and we focus on the location part. Here, precision is meant to
represent the variance of the estimates, while by robustness we mainly refer
to the bias.

Recall that our adaptations can only adjust the weights wij of the observations
upward from the Stahel-Donoho weight wi. Such upward adjustments produce
either a reduction or an increase of the MSE for the resulting location esti-
mates TSD∗,j, depending on which of the three groups (as distinguished in the
previous section) component xij belongs to:

(1) non-contaminated components of outliers: reduction of the MSE, due to
gain in precision or bias reduction

(2) contaminated components of outliers: increase of the MSE, due to a bias
increase

(3) components of regular observations: reduction of the MSE, due to gain
in precision or bias reduction

Regarding the reduction of the MSE, we distinguish between gain in preci-
sion and bias reduction. The former refers to a variance reduction in case the
original SD estimate TSD,j was roughly unbiased (either because there are no
harmful outliers in the j-th component or the outliers have been downweighted
by the SD estimate). Bias reduction, on the other hand, corresponds to the si-
tuation where TSD,j is biased because of outliers that have not been sufficiently
downweighted. In such cases, adjusting the weight wij for an observation in
which the j-th component is clean, indeed may reduce the bias of TSD,j.

Hence, the interest in this study is essentially to investigate whether the posi-
tive MSE effect corresponding to components from (1) and (3) outweighs the
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negative MSE effect of observations from (2), resulting in an average MSE
reduction.

Samples X = {x1, . . . , xn} were generated from a p-variate normal distribu-
tion, with p taking the values 5 and 10, and size n = 10p. Subsequently,
contamination was added.

5.1 Componentwise outliers

First, we used a standard normal distribution and randomly added univariate
outliers, independently in each component. In particular, for component Xj

(with j = 1, . . . , p), 100ε% of the observations {x1j, . . . , xnj} were shifted over
a distance of k mj, with mj the j-th component (after normalization) of the
outlying direction m. Again, the variance was reduced for those components
with non-zero coefficient in m, by multiplying their standard deviation by 0.1.

We considered various choices of m, with outlying distances k = 6, 24, 64 and
160. For each situation, N = 500 samples were generated. Then, for each
sample X(l); l = 1, . . . , N and for each observation xi in X(l), we computed
the Stahel-Donoho outlyingness ri, the adapted outlyingnesses rij based on the
methods SDH, SDC and SDM, and subsequently the corresponding location
estimates T

(l)
.,j . The number of random directions in the algorithm was set at

200p.

Next, the MSE of the various methods was calculated as

MSE(T.) = ave
j=1,...,p

( ave
l=1,...,N

(T
(l)
.,j )2)

To simplify interpretation, the MSE was computed also separately for the
variables which contain contaminated observations and the variables without
any contamination:

MSEC(T.) = ave
j∈C

( ave
l=1,...,N

(T
(l)
.,j )2), MSENC(T.) = ave

j∈NC
( ave
l=1,...,N

(T
(l)
.,j )2)

with C and NC respectively denoting the set of variables with and without
contamination.

We first consider the case p = 5 where 20% of independent contamination
was added in the outlying direction m = (1, 1, 0, 0, 0). The top row in Figure
8 presents the MSE for the location estimates of the original SD (solid) and
the adaptations SDH, SDM and SDC (dashed, dotted and dash-dotted re-
spectively), for different values of the outlying distance k. From these plots,
it can be seen that the adjusted methods SDH, SDM and SDC perform well,
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p = 5, n = 50, 20% outliers at k × (1, 1, 0, 0, 0); k varies; top: total MSE;

bottom: MSE of contaminated (C) and non-contaminated (NC) variables
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Fig. 8. Simulation results univariate outliers: mean squared errors for different k

values; various outlier configurations as indicated

as their overall MSE is considerably smaller than the MSE of the original
Stahel-Donoho estimator.

To get more insight in this MSE reduction, we split up the MSE by looking
at the contaminated and non-contaminated variables separately. As contami-
nation was added in direction (1, 1, 0, 0, 0) here, only variables 1 and 2 are
contaminated. The average MSE for these two components of the location
estimate, MSEC , is shown in the left column (C) of the plots in the bottom
row of Figure 8. The MSE of the remaining components, MSENC , is shown in
the right column (NC).

First, it is clear that the original SD estimate suffers from a bias due to the
contamination in the first two components, which corresponds to MSEC being
larger than MSENC . The bias gradually disappears when the outlier distance
k increases, as the estimate succeeds better in downweighting the outliers.
For small k values, we see that the observed overall MSE reduction of our
adaptations was mainly due to a reduction of MSEC . This particular reduc-
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p = 5, n = 50, 35% outliers at k × (1, 1, 0, 0, 0); k varies; top: total MSE;

bottom: MSE of contaminated (C) and non-contaminated (NC) variables
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Fig. 9. Simulation results univariate outliers: mean squared errors for different k

values; various outlier configurations as indicated

tion results from observations in group (1) and (3) above receiving consider-
ably higher weights and hence reducing the bias caused by the observations
from group (2). The largest effect can be seen for SDC and SDM, which in-
dicates that these methods succeed well in distinguishing contaminated from
non-contaminated components. Regarding the non-contaminated components,
where MSENC roughly corresponds to the variance, we see that SDC and SDM
yield a relatively large gain in precision. For small values of k however, this
effect is somewhat dwarfed by the bias reduction in the contaminated compo-
nents. For 20% of contamination in direction (1, 5, 0, 0, 0) (results not shown)
we obtained similar conclusions.

Figure 9 presents the results for 35% of independent contamination in the
outlying direction (1, 1, 0, 0, 0). We see that the original SD estimate is not
able to resist this large amount of contamination, resulting in a very high
MSE. However, the MSE of the adaptations SDH, SDM and SDC is rather
low and hence offers a large improvement. Especially method SDC performs
very well, with a huge bias reduction for the contaminated components. For
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p = 10, n = 100, 10% outliers at k × (1, 1, 1, 1, 1, 0, 0, 0, 0, 0); k varies; top: MSE;

bottom: MSE of contaminated (C) and non-contaminated (NC) variables
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Fig. 10. Simulation results univariate outliers: mean squared errors for different k

values; various outlier configurations as indicated

the non-contaminated components, the gains in precision are similar as in the
previous situations, but these gains are obviously negligible compared to the
gain in robustness in the other components. These results indicate that the
cellwise weighted SD estimates can potentially cope with much larger amounts
of contamination than the original SD.

Let us now increase the dimension to p = 10 and add 10% of independent
contamination in the outlying direction m = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0). The re-
sults in Figure 10 again show that both SDC and SDM considerably improve
the MSE of the location estimates, either due to a bias reduction of the con-
taminated components or due to a gain in precision. We see further that SDC
and SDM perform similarly, except for contamination close to the regular
observations (small k) where SDC outperforms SDM. Results for 10% of con-
tamination in the outlying direction (1, 3, 5, 7, 9, 0, 0, 0, 0, 0) were similar to
those in Figure 10 and are omitted here.

In Figure 11, the amount of independent contamination was increased to 20%,
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p = 10, n = 100, 20% outliers at k × (1, 1, 1, 1, 1, 0, 0, 0, 0, 0); k varies; top: MSE;

bottom: MSE of contaminated (C) and non-contaminated (NC) variables
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Fig. 11. Simulation results univariate outliers: mean squared errors for different k

values; various outlier configurations as indicated

again in direction m = (1, 1, 1, 1, 1, 0, 0, 0, 0, 0). It can be seen that the SD lo-
cation estimate has severe bias problems, which slowly improve though for
increasing outlying distance k. For k = 6, or contamination close to the re-
gular observations, the cellwise weighted adaptations are not very effective at
reducing the MSE. For contamination further away, however, we again observe
quite a large improvement by methods SDC and SDM, mainly due to bias re-
duction and thus gain in robustness, but also because of gain in precision.
Similar results were found for 35% of contamination.

5.2 Structural outliers

We also investigated the performance of the cellwise adaptations in case of
correlation outliers. The main difference with (independent) componentwise
outliers is that now, we have more observations which are contaminated in
several components at once. Consequently, the adverse effect of bias increase
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due to observations in group (2) above is more difficult to avoid.

The correlated data were generated (similarly as in Maronna and Zamar 2002)
by first drawing samples {y1, . . . , yn} of size n = 100 in p = 10 dimensions
from a standard normal distribution and then setting xi = Ryi, with

R =







A 0

0 Ip−p̃







where 0 represents a zero matrix and Ip−p̃ is the identity matrix of dimension
p− p̃, with p̃ the number of correlated components. Matrix A ∈ R

p̃×p̃ is defined
by

Ajj = 1 and Ajk = ρ for j 6= k

Parameter ρ was chosen so that the multiple correlation ρmult between any
coordinate of X̃ = (X1, . . . , Xp̃) and all of the others, took on chosen values.
If ρmult is high, then X̃ is concentrated around the line with direction e =
(1, . . . , 1) ∈ R

p̃.

Next, correlation outliers were added as follows. For each sample, 100ε% of
the data were shifted over a distance of km, where m is a unit vector. Define b

∈ R
p̃ by bj = (−1)j, and set a = b− (b′e/p̃)e, which is orthogonal to e. Then,

the outlying direction m̃ is chosen as m̃j = aj (for j ≤ p̃) and m̃j = 0 (for
j > p̃). After normalizing m̃ to unit norm, we obtain m. Again the variance
was reduced for the contaminated components, by multiplying their standard
deviation by 0.1. For each situation, 500 samples were generated.

Similarly as before, we consider the overall MSE as well as MSEC and MSENC ,
as defined above, where MSEC represents the first p̃ components.

We first consider the case of ρmult = 0, such that none of the components are
correlated. Figure 12 presents the results for 20% of outliers and p̃ = 4. As
before, the original SD suffers from some bias which diminishes as the distance
k increases. In the top row, we see that for small k, methods SDH and SDM
do not succeed in reducing the MSE of the original SD estimator. In this case
the higher weights of the clean observations of groups (1) and (3) above, were
not sufficient to offset the bias increase due to higher weights for contaminated
observations from group (2). On the other hand, method SDC overall slightly
improves on the SD. For larger outlying distance k, as the bias decreases, the
MSE becomes dominated by the variance and SDM turns out to yield the
largest gain in precision in these cases, although SDC also performs well.

Results for the correlated case with ρmult = 0.9 are shown in Figure 13. Due
to the correlation, the outliers are relatively further from the regular obser-
vations than in the previous setting, and hence the bias of the original SD is
limited, even for small k. However, the cellwise adaptations increase this bias
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p = 10, n = 100, ρmult = 0, 20% correlation outliers at k × m, p̃ = 4; k varies;

top: MSE; bottom: MSE of contaminated (C) and non-contaminated (NC) variables
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Fig. 12. Simulation results correlation outliers: mean squared errors for different k

values; various outlier configurations as indicated

and therefore increase the overall MSE for small k. Especially methods SDH
and SDM perform poorly. For larger distances k, we again observe that SDM
offers a nice gain in precision, while the other adaptations also have a positive
effect on the overall MSE. Similar conclusions were found for other simulation
settings involving structural outliers, which are not reported here.

We may summarize the simulation results as follows.

• In case the original SD estimates are roughly unbiased, then the cellwise
adaptations have been shown to offer a relatively large reduction in MSE,
corresponding to a gain in precision.

• In case the original SD estimates are not able to fully resist the contamina-
tion and suffer from bias, then
– in case of independent componentwise contamination: the cellwise adapta-

tions SDC and SDM are quite capable of identifying the correct contami-
nated component(s), hence prohibiting these components from obtaining
an increased weight wij. The bias is therefore generally not increased and
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p = 10, n = 100, ρmult = 0.9, 20% correlation outliers at k × m, p̃ = 4; k varies;

top: MSE; bottom: MSE of contaminated (C) and non-contaminated (NC) variables
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Fig. 13. Simulation results correlation outliers: mean squared errors for different k

values; various outlier configurations as indicated

on the contrary reduced by increased weights for many clean observations.
Additionally to this gain in robustness, a gain in precision is obtained in
non-contaminated components.

– in case of structural outliers: the cellwise adaptations SDC and especially
SDM give evidence of difficulties identifying all of the contaminated com-
ponents of an observation. Therefore some of these components may ob-
tain a significant weight increase and this increases the bias. This loss
of robustness on its turn may outweigh the gain in precision obtained in
non-contaminated components.

We may conclude that the cellwise weighted adaptations in many situations
offer a nice reduction of MSE with respect to the original Stahel-Donoho
estimator. However, in some cases with structural outliers the methods do not
perform well, with SDC being more reliable in this regard than SDM. Very
positive results are obtained in the setting of independent componentwise
contamination, in terms of both improving the precision and the robustness.
With respect to the latter, it has been observed that both SDC and SDM can
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Fig. 14. Philips data: adapted SD weights for (a) SDH, (b) SDC and (c) SDM.

cope with larger amounts of contamination than the SD estimate itself.

6 Examples

6.1 Philips data

Consider again the Philips data (n = 677, p = 9), for which we have illus-
trated in Section 2 that the original Stahel-Donoho estimator is potentially
ignoring a lot of information by assigning the same weight to each component
of an outlier. Let us see now whether our adaptations of the Stahel-Donoho
estimator can be useful.

Figure 14 shows the weights wij for respectively SDH, SDC and SDM, in the
form of heat maps. For each map, the horizontal axis represents the variable
j and the vertical axis the observation i. The colors range from dark to light,
corresponding to the weights ranging from 0 to 1. The maps have an additional
column on the right, the (p + 1)-th column, which shows the original SD
weights wi. These weights correspond to the outlyingnesses ri shown in Figure
1. Observations 491 to 565, for example, can again be identified as a group of
strongly outlying points, based on the very low SD weights represented by the
dark colors. We now take a closer look at how the componentwise adaptations
deal with the outliers.

In the left plot in Figure 14 we see that the weights assigned by the SDH
method to observations 491 to 565 remain low for each of the nine variables.
The method takes componentwise differences into account to a limited extent
only, and none of the variables is awarded a full weight repair. On the other
hand, for many of the other outliers found by the SD weights, for example
observations 1 to 175, the SDH method assigns full weights to each of the
variables, which is not likely to be justified since at least one component
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Fig. 15. Philips data: (a) (negative) componentwise outlyingnesses cij , (b) (negative)
coefficients in maximizing directions ui (normalized).

should be responsible for the large outlyingness ri. The reason for these large
adapted weights is that apparently none of the componentwise outlyingnesses
cij is reasonably large compared to ri and SDH is not able to take into account
combinations of components.

As can be seen in the middle and right plots in Figure 14, both SDC and SDM
yield a much stronger distinction between the nine components than SDH did.
The two methods act differently though. Concerning the group of observations
491 to 565, the SDC method mostly retains the low weight for components V2,
V5 and V8, while the weights for components V1, V3 and V7 are considerably
increased. On the other hand, the SDM method mainly holds components V4,
V5, V6 and V9 responsible while fully repairing the weights of V1, V2, V3
and V8. Some differences between SDC and SDM can be noticed regarding the
other outliers as well. All of these differences can of course directly be traced
back to the behavior of respectively the componentwise outlyingnesses cij and
the maximizing direction coefficients uij. Figure 15(a) shows the values of −cij

while Figure 15(b) depicts −|uij|/‖ui‖. The minus was added here to arrange
that large values (light colors) be comparable to large values (light colors) in
the plots of wij in Figure 14. We see for example that for observations 491
to 565 the value of cij is indeed relatively high in components V2, V5 and
V8, while components V4, V5 and especially V6 and V9 exhibit the largest
coefficients in the corresponding directions ui.

Hence, estimators (TSDC , SSDC) and (TSDM , SSDM) both take componentwise
differences into account. The question then arises which method acts most
appropriately here. Let us focus on observations 491 to 565 and recall Figure
3(b), which showed pairwise scatter plots for component V6. It could be seen
that this group of points was clearly outlying with regard to the correlation
between V6 and V9, as well as that between V6 and V5. Therefore we may
conclude that at least components V5, V6 and V9 should retain a low weight
and in this view SDM performs much better than SDC. Moreover, closer in-
spection suggests that the SDM results are generally supported by all pairwise
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Fig. 16. Stahel-Donoho outlyingnesses of the Bank notes data.

scatter plots (not shown here). On the other hand, we have seen in Figure 2
that V2 is the component in which the outlyingness of observations 491 to
565 seems most extreme. Nevertheless, component V2 of these outliers is as-
signed weight 1 by the SDM method, while SDC retains a very low weight for
this component. This could be seen as a shorthcoming of the SDM method,
although it is open to interpretation. Indeed, one might as well argue that
SDM righteously viewed the outlyingness in V2 as negligible and succeeded in
identifying instead the truly important components to downweight. To con-
clude this example, although preceding simulation results indicated that the
estimator (TSDM , SSDM) can be inaccurate in some cases, the SDM method
here seems to act appropriately and outperforms the other methods. Given the
number of components that were awarded a large weight increase, the adapted
(TSDM , SSDM) estimates clearly use considerably more information than the
original (TSD, SSD) estimates and hence are likely to be more efficient.

6.2 Bank notes data

For our second example, we consider the Swiss bank notes data, consisting of
n = 100 forged old Swiss 1000 franc bills (Flury and Riedwyl , 1988). The
variables correspond to p = 6 different measurements, such as the length and
height of the bill. The Stahel-Donoho outlyingnesses ri of the observations
are shown in Figure 16. A set of 15 outliers is highlighted. We are now again
interested in the componentwise adaptations of the weights of these outliers
provided by SDH, SDC and SDM.

Figure 17 depicts the weights wij for the three respective methods, with the
original SD weight wi again represented by the additional column on the right-
hand side of each plot. In these plots, on the vertical axis the observations are
now shown in the order of decreasing weight wi, which aids the clarity of the
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Fig. 17. Bank notes data: adapted SD weights for (a) SDH, (b) SDC and (c) SDM.
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Fig. 18. Bank notes data: (a) (negative) componentwise outlyingnesses cij , (b) (neg-
ative) coefficients in maximizing direction u (normalized).

results in this example. Figure 18 then again shows the corresponding values
of −cij and −|uij|/‖ui‖ for comparison.

First, we see in the left plot of Figure 17 that the SDH weights deviate little
from the original SD weights. In particular for the outlying observations, the
different components are often treated equally and few components have been
restored through a higher weight. The SDC (middle plot) and SDM (right plot)
on the other hand, both assign very distinct weights to the various components
of the outliers. As in the previous example, the two methods do not fully agree
on which components to hold responsible for the large outlyingnesses. The
SDC method mainly downweights components V1, V4 and V6 in accordance
with the componentwise outlyingnesses cij of Figure 18(a), while SDM largely
targets components V4, V5 and V6 following the coefficients in the maximizing
directions ui in Figure 18(b).

Figure 19 shows the pairwise scatter plots for all six variables in the Bank
notes data. The observations identified as outliers in Figure 16 are marked
in dark. First note that these points are not seriously outlying in any of the
individual components. However, we see that the points clearly are correlation,
or structural, outliers with regard to components V4 and V6. To a lesser extent
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the points also are deviating with regard to the correlations between V4 and
V5 and between V1 and V6. Since both SDC and SDM have recognized the
responsibility of V4 and V6, we may conclude that both methods performed
satisfactorily. The methods then only differ in the way they emphasized the
minor contribution of V1 rather than that of V5 or vice versa. Finally, both
SDC and SDM repair the weights of about half of the components of the
outliers, which is likely to constitute an appreciable gain in precision for the
adapted Stahel-Donoho estimates (TSDC , SSDC) and (TSDM , SSDM).
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Fig. 19. Bank notes data: matrix of all pairwise plots. The (i,j)-th element of the
matrix shows the scatter plot of the i-th variable against the j-th variable. The
outlying observations are marked in dark.

7 Discussion and conclusion

We presented an adaptation of the Stahel-Donoho estimator with separate
weights for each component of the observations. Three cellwise weighted adap-
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tations, denoted as (TSDH , SSDH), (TSDC , SSDC) and (TSDM , SSDM), were con-
sidered. It was shown that both SDC and SDM offer a considerable increase
in weights for non-contaminated components for many outlier situations. This
gain in precision may come at a cost of increased weights for contaminated
components, and thus loss of robustness. But this cost is limited and a simu-
lation study showed that in many situations the cellwise weighted adaptations
enjoy a lower mean squared error than the original Stahel-Donoho estimator.
Especially in the setting of independent componentwise contamination, our
methods yield very good results. In some cases with structural outliers, how-
ever, the gain in precision does not outweigh the loss of robustness. It is clear
that further research is required to optimize the cellwise weighting method, in
particular to avoid the loss of robustness as much as possible. The results in
this paper are promising and are meant to show that research in this direction
is worthwhile. Finally, apart from increasing the precision of the location and
scatter estimates, the identification of contaminated components in outliers
may be of interest in its own right in the context of outlier detection.
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