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Abstract—We design staircase codes with overheads between
6.25% and 33.3% for high-speed optical transport networks.
Using a reduced-complexity simulation of staircase coded trans-
mission over the BSC, we select code candidates from within
a limited parameter space. Software simulations of coded BSC
transmission are performed with algebraic component code
decoders. The net coding gain of the best code designs are
competitive with the best known hard-decision decodable codes
over the entire range of overheads. At 20% overhead, staircase
codes are within 0.92 dB of BSC capacity at a bit error-rate of
10−15. Decoding complexity and latency of the new staircase
codes are also significantly reduced from existing hard-decision
decodable schemes.

Index Terms—Fiber-optic communications, forward error-
correction (FEC), high-speed optical transport network, staircase
codes, syndrome decoder.

I. INTRODUCTION

STAIRCASE codes, a class of hard-decision algebraically-
decodable codes with close to capacity performance, were

introduced in [1] as an improvement upon the enhanced for-
ward error-correction (FEC) schemes recommended in ITU-T
G.975.1. The authors described the staircase code structure and
decoding algorithm and designed an ITU-T G.709 compatible
6.69% overhead (OH) staircase code. Hardware simulation
showed a net coding gain (NCG) of 9.41 dB at a bit-error
rate (BER) of 10−15, or 0.56 dB from the binary-symmetric
channel (BSC) capacity. Decoder data-flow was estimated to
be 100 times less than that of low-density parity-check (LDPC)
codes at similar block-lengths and performance.

Since the publication of [1], the optical transport FEC
community has shifted its goal to the design of high-overhead
codes, for example 12% or 20%, for next-generation 100Gb/s
applications [2], [3]. Proposed coding schemes include hard-
decision algebraically-decodable codes [4], [5] and soft-
decision message-passing decodable codes [6], [7]. A number
of real-world system implementations based on FEC with 20%
overhead have been reported [8], [9].

In this paper, we present staircase code designs for over-
heads between 6.25% and 33.3%. Following the code structure
described in [1], we search within a parameter space limited
by decoding complexity and latency to find a set of code
candidates. Extensive software simulations are performed to
characterize the NCG of these code designs. We compare the
NCG of the new staircase codes to the best available FEC
solutions at different overheads.
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In Sec. II we review staircase codes and describe the
encoding and decoding algorithms. Details of the code pa-
rameter search are presented in Sec. III. Simulation results
are presented in Sec. IV with comparisons to existing codes.
We present conclusions and discuss topics for future work in
Sec. V.

II. STAIRCASE CODES

In the following, we use rate R = (OH + 1)−1 instead of
overhead to characterize the amount of redundancy in a code.
Consider a staircase code of rate R. It consists of a sequence
of blocks Bi of w × w coded bits indexed by i ≥ 0. Let
k = wR and assume k is an integer by the choice of w. The
code structure is illustrated in Fig. 1.

To encode block Bi, assume we have access to the previ-
ously encoded block Bi−1. It contains coded bits except for
B0, where it is initialized to all-zeros. Arrange kw information
bits column-wise into the first k columns of Bi. Form the
w×2w matrix [BT

i−1 Bi], where ( )T denotes matrix transpose.
Encode across each row of the matrix using a systematic
component code with parameters nc = 2w, kc = w + k, and
unique decoding radius t. At the end of the row encoding
the matrix is filled and Bi is a fully encoded staircase block.
For example, encoding at index i = 1 fills the gray area
shown in Fig. 1. In this paper, we consider shortened binary
primitive BCH codes as component codes with non-shortened
parameters n0 = 2m − 1, k0 = 2m − 1−mt, where m is the
field extension degree.

Decoding of staircase codes is performed iteratively over a
window of L blocks. Consider Fig. 1 now to be a decoding
window of L = 6 blocks and denote the staircase block
received at time i by Yi. At the very beginning of the decoding
process, Y0 is known to be the all-zeros block and {Y1,. . . ,Y5}
are the first 5 received staircase blocks from the channel. In the
decoding window, for each i ∈ {1, . . . , 5} the decoder forms
the matrix [Y T

i−1 Yi] and calculates a syndrome for each row of
the matrix. At each decoding iteration, the decoder proceeds
from i = 1 by forming the [Y T

0 Y1] matrix and decodes each
row using an algebraic decoder. For sufficiently small t, the
decoder can be implemented efficiently by using look-up tables
[1, Appendix]. Corrections are made to blocks Y0 and Y1 and
the matrix formation continues until the end of the window is
reached at i = 5. The decoding iterates until all row syndromes
are zero or a maximum number of iterations is reached. At the
end of decoding iterations, the decoding window outputs the
Y0 block and takes as input the newest received block Y6.
The decoding process continues indefinitely as the decoding
window slides across each newly received block.
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Fig. 1. Illustration of staircase code structure.

III. CODE SEARCH

Without an effective theoretical analysis of finite block-
length staircase codes, we must resort to a brute-force search
of component code parameters using a simplified decoder to
find good staircase codes with high overheads. Using the
expressions for nc, kc, and R we can write the required
component code rate rc as

rc =
kc
nc

=
1 +R

2
.

Let s be the number of information bits to shorten each
component code in order to achieve rc. For binary primitive
BCH codes, nc = 2m − 1 − s and kc = 2m − 1 − mt − s.
Substituting into the above equation and solving for s gives

s = 2m − 1− 2mt

1−R
,

rounded to the nearest integer. Thus, there exists a unique s
(possibly negative) for each (R,m, t) triple such that the short-
ened binary primitive BCH code with parameters (nc, kc, t)
is a valid component code for a staircase code of rate R and
w = nc/2. Code designs requiring negative s are unachievable
and discarded. We restricted our search space to the product
set of R ∈ {l/(l+1) : l = 3, 4, . . . , 16}, m ∈ {8, 9, 10, 11, 12}
and t ∈ {2, 3, 4, 5, 6}. The values of t were bounded to 6 or
below in order to limit component code decoding complexity.
The values of m were bounded to 12 and below in order to
limit the largest possible size of the staircase blocks.

In the search routine, for each (R,m, t) triple we simulated
staircase coded transmissions over a BSC with error probabil-
ity p. We simplified the decoding significantly by assuming no
undetected errors occurred during component code decoding.
The component decoders corrected all errors if there were
indeed fewer than or equal to t of them in a codeword, and
did nothing otherwise. For all values of R, the best performing
code had t = 4 or t = 5. In cases where performance was
similar between the two values, we included both in our list
of the best search results given in Tables I and II. Note that
we used the simplified decoder (no undetected errors) only in
the search routine to quickly identify good code parameters.
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Fig. 2. Simulated staircase code bit-error rate and their extrapolations to
10−15. Arranged by decreasing code rate from left to right as listed in Table
I (circles) and II (squares). Note the different x-axis scales used in each of
the shaded and unshaded regions. Solid lines indicate extrapolation based on
high confidence performance data. Dashed lines indicate extrapolation based
on low confidence performance data.

True bounded-distance algebraic component decoders (which
have the possibility to commit undetected errors) were used
in all of the simulations reported in the following section.

IV. SIMULATION RESULTS

We simulated staircase coded systems over the BSC using
the best codes identified by our search routine. True algebraic
component decoders with a decoding radius t were used,
implemented using the hybrid Chien search/look-up table
method. Such decoders have a possibility of committing un-
detected errors when the received word falls within Hamming
distance t of a codeword other than the transmitted one. To
reduce the effect of undetected errors, we reject the bit-flips
from decoding of the newest block if they conflict with a
previous zero syndrome. A maximum of 8 decoding iterations
were performed over a decoding window of 7 blocks. Due
to limited computing resources and simulation time, we must
extrapolate our BER results down to 10−15 to find the required
p∗. The simulated BER results and extrapolations are shown
in Fig. 2.

In Fig. 3, we compare the NCG of the staircase code
designs to BSC capacity and several existing hard-decision
FEC solutions at different overheads. The filled symbols
represent simulations in which at least 10 block errors have
accumulated at the lowest non-zero block-error rate, and
represent a high-confidence performance estimate. The open
symbols represent simulations in which fewer than 5 block
errors have accumulated, and hence they represent a lower-
confidence estimate.

As shown in Fig. 3, staircase codes are competitive with the
best hard-decision FEC schemes at 6.67% and 12% overheads.
At 20% overhead it outperforms the code in [5], which used
a more complex beyond bounded-distance decoder. It appears
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Fig. 3. Simulated NCG of staircase code designs with comparison to BSC
capacity and references. Refer to Sec. IV for details on the filled and open
symbols for staircase codes.

TABLE I
STAIRCASE CODE DESIGNS WITH t = 4 COMPONENT CODES. NCG
CALCULATED FROM EXTRAPOLATED p∗ . GAP IS NCG GAP TO BSC

CAPACITY.

OH (%) m w p NCG (dB) Gap (dB)
6.25 11 748 4.70e-03 9.44 0.45
9.09 10 480 7.04e-03 9.82 0.52

10.00 10 440 7.54e-03 9.87 0.59
11.11 10 400 8.33e-03 9.96 0.63
12.50 10 360 9.29e-03 10.05 0.68
14.29 10 320 1.03e-02 10.13 0.77
16.67 9 252 1.25e-02 10.32 0.78
20.00 9 216 1.44e-02 10.41 0.92
23.10 9 192 1.62e-02 10.49 1.03
25.00 9 180 1.76e-02 10.56 1.06
33.33 9 144 2.12e-02 10.60 1.38

TABLE II
STAIRCASE CODE DESIGNS WITH t = 5 COMPONENT CODES. NCG
CALCULATED FROM EXTRAPOLATED p∗ . GAP IS NCG GAP TO BSC

CAPACITY.

OH (%) m w p NCG (dB) Gap (dB)
6.67 11 880 5.16e-03 9.54 0.43
7.15 11 825 5.54e-03 9.60 0.45
7.69 11 770 5.90e-03 9.66 0.48

23.10 9 240 1.71e-02 10.58 0.94
25.00 9 225 1.82e-02 10.62 1.00
33.33 9 180 2.24e-02 10.70 1.28

that the code in [4] slightly outperforms staircase codes at 20%
overhead. However, the decoding complexity and latency of
the staircase code is much less than the code in [4] since a
staircase block is 2162 = 46656 bits (7× 2162 = 326592 bits
in a decoding window) while the reported size of the code in
[4] is around 8 million bits.

V. CONCLUSION

In this paper, we designed staircase codes according to the
structure defined in [1] with overheads between 6.25% and

33.3%. For each target code rate, a parameter space defined
over different component code block-lengths and unique de-
coding radii was searched by simulating transmission over the
BSC under a simplifying assumption. Software simulations
of transmission over the BSC were performed with algebraic
component code decoders. The NCG of the staircase code
designs are competitive with the best known hard-decision
decodable code designs over the entire range of overheads.
Decoding complexity and latency of the staircase code designs
are much less than existing codes at 20% overhead.

For future work, a theoretical analysis of staircase code per-
formance would allow for a much more efficient and effective
design of staircase codes. An analysis for a generalization of
the staircase code structure has been developed [10].
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