
Software & System Modeling (2005) 00: 1–13
DOI 10.1007/s10270-005-0087-0

SPECIAL ISSUE PAPER

Øystein Haugen · Knut Eilif Husa ·

Ragnhild Kobro Runde · Ketil Stølen

STAIRS towards formal design with sequence diagrams

Received: date / Revised version: date / Published online: 15 June 2005
c© Springer-Verlag 2005

Abstract The paper presents STAIRS [1], an approach to
the compositional development of UML interactions sup-
porting the specification of mandatory as well as potential
behavior. STAIRS has been designed to facilitate the use of
interactions for requirement capture as well as test specifica-
tion. STAIRS assigns a precise interpretation to the various
steps in incremental system development based on an ap-
proach to refinement known from the field of formal meth-
ods and provides thereby a foundation for compositional
analysis. An interaction may characterize three main kinds
of traces. A trace may be (1) positive in the sense that it
is valid, legal or desirable, (2) negative meaning that it is
invalid, illegal or undesirable, or (3) inconclusive meaning
that it is considered irrelevant for the interaction in ques-
tion. The basic increments in system development proposed
by STAIRS, are structured into three main kinds referred to
as supplementing, narrowing and detailing. Supplementing
categorizes inconclusive traces as either positive or negative.
Narrowing reduces the set of positive traces to capture new
design decisions or to match the problem more adequately.
Detailing involves introducing a more detailed description
without significantly altering the externally observable be-
havior.

Keywords UML interactions · Formal semantics · Explicit
non-determinism · Refinement · Sequence diagrams

Ø. Haugen
Department of Informatics, University of Oslo
E-mail: oysteinh@ifi.uio.no

K. E. Husa
Department of Informatics, University of Oslo and Ericsson
E-mail: knutehu@ifi.uio.no

R. K. Runde
Department of Informatics, University of Oslo
E-mail: ragnhilk@ifi.uio.no

K. Stølen (B)
Department of Informatics, University of Oslo and SINTEF ICT,
Norway
E-mail: Ketil.Stolen@sintef.no

1 Introduction

A UML interaction is a specification of how messages are
sent between objects or other instances to perform a task. In-
teractions are used in a number of different situations. They
are used to get a better grip of a communication scenario for
an individual designer or for a group that needs to achieve a
common understanding of the situation. Interactions are also
used during the more detailed design phase where the pre-
cise inter-process communication must be set up according
to formal protocols. When testing is performed, the behavior
of the system can be described as interactions and compared
with those of the earlier phases.

Interactions seem to have the ability to be understood
and produced by professionals of computer systems design
as well as potential end-users and stakeholders of the (fu-
ture) systems.

Interactions will typically not tell the complete story.
There are normally other legal and possible behaviors that
are not contained within the described interactions. Some
people find this disturbing and some project leaders have
even tried to request that all possible behaviors of a system
should be documented through interactions in the form of
e.g. sequence diagrams or similar notations.

Our position is that UML interactions are expressed
through notations that lend themselves well to conveying im-
portant information about the interplay between objects, but
interactions are not so well suited to define the complete be-
havior.

Partial information is not worthless because it is incom-
plete. Most statements about a system are partial in their na-
ture. The informal statement “When pushing the ON-button
on the television, the television should show a program” is
definitely not a complete definition of a television set, but it
is a piece of requirement that the TV vendors should take
into account. The same can be said for interactions; they
are partial statements about a system (or a part of a system)
defining properties of the system, but not necessarily all rel-
evant properties.

2 Ø. Haugen et al.

This paper advocates an approach, in the following re-
ferred to as STAIRS, aiming to provide a formal foundation
for the use of UML interactions in step-wise, incremental
system development. STAIRS views the process of develop-
ing the interactions as a process of learning through describ-
ing. From a fuzzy, rough sketch, the aim is to reach a precise
and detailed description applicable for formal handling. To
come from the rough and fuzzy to the precise and detailed,
STAIRS distinguishes between three main sub-activities: (1)
supplementing, (2) narrowing and (3) detailing.

Supplementing categorizes (to this point) inconclusive
behavior as either positive or negative recognizing that early
descriptions normally lack completeness. The initial require-
ments concentrate on the most obvious normal situations and
the most obvious exceptional ones. Supplementing supports
this by allowing less obvious situations to be treated later.
Narrowing means reducing the allowed behavior to match
the problem better. Detailing involves introducing a more
detailed description without significantly altering the exter-
nally observable behavior.

Although the starting point for STAIRS is UML interac-
tions in shape of UML 2.0 sequence diagrams, the approach
should be considered generic to all types of behaviors.

The remainder of the paper is structured into seven sec-
tions. Section 2 provides further motivation and background
in the form of requirements we would like STAIRS to ful-
fill. Section 3 explains how STAIRS meets these require-
ments. Sections 4–6 spell out STAIRS in an example-driven
manner addressing respectively the notions of supplement-
ing, narrowing and detailing. Section 7 describes the formal
semantics of STAIRS. Section 8 provides a brief summary
and relates STAIRS to approaches known from the literature.

2 Requirements to STAIRS

In order to explain its overall structure and architecture,
we formulate and motivate a number of requirements that
STAIRS has been designed to fulfill.

1. Should allow specification of potential behavior. Under-
specification is a well-known feature of abstraction. In
the context of interactions, “under-specification” means
specifying several behaviors, each representing a poten-
tial alternative serving the same purpose, and that fulfill-
ing only some of them (more than zero but not all) is
acceptable for an implementation to be correct.

2. Should allow specification of mandatory behavior.
Under-specification as described in the previous para-
graph gives rise to non-determinism in the specifica-
tion. Under-specification allows the system developer to
choose between several potential behaviors. Sometimes,
however, it is essential to retain non-determinism in the
implementation reflecting choice. For example, in a lot-
tery, it is critical that every lottery ticket has the pos-
sibility to win the prizes. Otherwise, the lottery is not
fair. This means that every behavior given by the dif-
ferent tickets should appear as possibilities in an imple-

mentation even though in any given execution only a
few prizes are awarded. It seems unproblematic to re-
duce non-determinism if the different alternatives rep-
resent implementation dependent variations of the same
behavior. It is quite different, however, to reduce non-
determinism if each alternative represents a distinct and
intended behavior. As a consequence, we need to dis-
tinguish explicit non-determinism capturing mandatory
behavior from non-determinism expressing potential be-
havior.

3. Should allow specification of negative behavior in addi-
tion to positive behavior. Interactions are not only suited
to capture system requirements. They may just as well
describe illegal or undesirable behavior. For example, se-
curity is a major issue in most modern systems. To iden-
tify security requirements, risk analysis is a well-known
measure. To be able to assign risk values to risks we
need a clear understanding of the circumstances under
which the risks may appear, and the impact they may
have on system assets. Interactions are well suited to de-
scribe this kind of threat scenario. Hence, we need an in-
tegrated approach to specifying negative as well as posi-
tive behavior.

4. Should capture the notion of refinement. The notion of
refinement was formalized in the early 1970s [2–4], and
has since then been thoroughly investigated within nu-
merous so-called formal methods. STAIRS should build
on this theory, but the theory must be adapted to take into
account that interactions may be partial, describe posi-
tive as well as negative situations, and may be used to
formalize both potential and mandatory behavior.

5. Should formalize aspects of incremental development.
Incremental development of interactions involves vari-
ous sub-activities as described informally in the intro-
duction. STAIRS should provide precise and intuitive
definitions of these activities.

6. Should support compositional analysis, verification and
testing. Models are of little help if they cannot be used
as a basis for analysis, verification and testing. STAIRS
should provide a foundation for these activities facili-
tating compositionality [5, 6] in the sense that compo-
nents can be developed independently from their speci-
fications.

3 How STAIRS meets the requirements

The most visible aspects of a UML interaction are the mes-
sages between the lifelines. The sequence of the messages is
considered important for the understanding of the situation.
The data that the messages convey may also be very impor-
tant, but the interactions do not focus on the manipulation of
data even though data can be used to decorate the diagrams.

The sequencing is the heart of what is explained through
an interaction. The possible flows of control throughout
the process are described in two dimensions, the horizontal

STAIRS towards formal design with sequence diagrams 3

dimension showing the different active objects, and the ver-
tical dimension showing the ordering in time.

Interactions focus on the interplay between objects. In
the tradition of telecommunications these objects are in-
dependent and themselves active as stand-alone processes.
Therefore, when a message is sent from one lifeline to an-
other, what happens on the sending lifeline is independent
from what happens on the receiving side. The only invariant
is that the sending of a message must occur before the re-
ception of that very message. Most people find this obvious.

The sending of a message and the reception of a message
are examples of what we call events. An event is something
that happens on a lifeline at one point in time. An event has
no duration.

A trace is a sequence of events ordered by time. A trace
describes the history of message-exchange corresponding to
a system run. A trace may be partial or total. Interactions
may be timed in the sense that they contain explicit time
constraints. Although STAIRS with some minor adjustments
carry over to timed interactions (see [7]), such interactions
are not treated in this paper.

3.1 Spelling out the trace semantics of UML 2.0

In this section we will give a very brief introduction to the
trace semantics of UML 2.0 interactions expressed in se-
quence diagrams and interaction overview diagrams [8]. For
more on UML 2.0, see also [9].

The interaction in Fig. 1 is almost the simplest interac-
tion there is – only one message from one lifeline to an-
other. Following our introduction above, this message has
two events – the sending event on L1 (which we here choose
to denote !x) and the reception event on L2 (which we
choose to denote ?x). The sending event must come before
the receiving event and the semantics of this interaction is
described by one single trace which we denote 〈!x, ?x〉.

The interaction of Fig. 2 shows two messages both orig-
inating from L1 and targeting L2. The order of the events
on each lifeline is given by their vertical positions, but the
two lifelines are independent. Each of the messages has the
semantics given for the message in Fig. 1, and they are com-
bined with what is called weak sequencing. Weak sequenc-
ing takes into account that L1 and L2 are independent. The
weak sequencing operator on two interactions as operands is
defined by the following invariants:

1. The ordering of events within each of the operands is
maintained in the result.

2. Events on different lifelines from different operands may
come in any order.

sd S
L1 L2

x

Fig. 1 Simple interaction with only one message

sd W
L1 L2

x

y

Fig. 2 Weak sequencing

sd IO
L1 L2

y

ref S

Fig. 3 Interaction occurrence

3. Events on the same lifeline from different operands are
ordered such that an event of the first operand comes be-
fore that of the second operand.

Thus, if we denote the weak sequencing operator by seq
according to UML 2.0, we get:

W = 〈!x, ?x〉 seq 〈!y, ?y〉

= {〈!x, ?x, !y, ?y〉, 〈!x, !y, ?x, ?y〉}

The sending of x must be the first event to happen, but
after that either L1 may send y or L2 may receive x .

In Fig. 3 we show a construct called an interaction oc-
currence. The interaction S specified in Fig. 1 is refer-
enced from within IO. Intuitively, an interaction occurrence
is merely shorthand for the contents of the referenced inter-
action. Semantically we get that:

IO = S seq 〈!y, ?y〉

= 〈!x, ?x〉 seq 〈!y, ?y〉

= {〈!x, ?x, !y, ?y〉, 〈!x, !y, ?x, ?y〉}

In Fig. 4 we introduce another construct called combined
fragment. Combined fragments are expressions of interac-
tions combined differently according to which operator is
used. In fact, also weak sequencing is such an operator. In
Fig. 4 we have an alternative combined fragment, and its
definition is simply the union of the traces of its operands.
The dashed vertical line separates the operands. We get:

A = 〈!x, ?x〉 alt 〈!y, ?y〉

= {〈!x, ?x〉, 〈!y, ?y〉}

sd A
L1 L2

x

y

alt

Fig. 4 Combined fragment (alternative)

4 Ø. Haugen et al.

sd P
L1 L2

x

y

par

Fig. 5 Parallel combined fragment

UML 2.0 defines also a number of other operators, but
in this paper we only apply one other, namely the parallel
merge operator as depicted in Fig. 5. The definition of par-
allel merge says that a parallel merge defines a set of traces
that describes all the ways that events of the operands may
be interleaved without obstructing the order of the events
within the operand. This gives the following traces for P:

P = 〈!x, ?x〉 par 〈!y, ?y〉

= {〈!x, ?x, !y, ?y〉, 〈!x, !y, ?x, ?y〉,

〈!x, !y, ?y, ?x〉, 〈!y, ?y, !x, ?x〉,

〈!y, !x, ?y, ?x〉, 〈!y, !x, ?x, ?y〉}

Finally we show the alternative syntax of interaction
overview diagrams for these combined fragments. Figure 6
presents a more complicated interaction with the definition:

IOD = S seq (IO par W) seq (IO alt W)

where the diamond joins represent alternatives and the verti-
cal bars represent parallel merge. We have not taken the time
and space to calculate the explicit traces, but it is a mechan-
ical task that only requires patience or tool support.

3.2 Capturing positive behavior

To illustrate our approach we use an everyday example that
we hope seems intuitive. We describe the behavior of an

Fig. 6 Interaction overview diagram

Fig. 7 Automatic teller machine

ATM (Automatic Teller Machine). The ATM offers with-
drawal of native money or the purchase of a number of for-
eign currencies. We have specified euros (EUR) or US dol-
lars (USD). The ATM must also have cash refill such that
the customers can get what they order.

In an interaction overview diagram the behavior of the
ATM may look like Fig. 7. To look into the details down to
the events, we can follow e.g. Withdrawal as shown in Fig. 8.

Our withdrawal sequence diagram shows a trace that
makes up some of the traces of the full ATM. Our with-
drawal sequence is a positive one, one that is acceptable to
the customers and as such desirable. It does not define all
possible scenarios of a withdrawal of native money.

Each of the interaction occurrences in Fig. 7 represents
a set of positive traces. The vertical bars between the with-
drawal side and refill side represents a parallel merge combi-
nation meaning that all traces of the withdrawal are braided
(interleaved) with every trace of the refill order. This must
in practice be restricted, but that is not significant for the
subject of this paper. The branching within the withdrawal
side represents alternative choices and their combination is
essentially a union of traces. Abbreviating the subsequences
such that W stands for Withdrawal, E for CurrencyEUR, U
for CurrencyUSD and C for CashRefill and then using the
operators of UML 2.0 combined fragment, the following for-
mula defines the positive traces:

ATM = ((W alt (E alt U)) par C)

To expand this to a set of traces, all the interactions refer-
enced must be defined and the operations applied accord-
ing to the UML 2.0 definition. We believe that the contained
traces of the behavior of the ATM are intuitively understood.

Summary 1 Semantically, each positive behavior is repre-
sented by a trace. Considering positive (potential) behav-
ior only, the semantics of an interaction may be represented
by a set of traces, each capturing a (potential) positive
behavior.

STAIRS towards formal design with sequence diagrams 5

:Bank:User

sd Withdrawal

alt

Withdrawal

msg("Enter amount!")

ok

:ATM

amount(v) checkaccount(v)

alt money(v)

receipt(v)

nok
msg(”Amount too large”)

msg(”Illegal entry”)

card

card taken

Cardid (cid)

msg(”Enter PIN”)

Digit

Digit

Digit

Digit Code(cid, pin)

NOK

OKmsg(”Enter service”)

Fig. 8 Withdrawal (positive traces)

3.3 Capturing negative behavior

In general the withdrawal procedure may include more than
a single trace which is shown in Fig. 8 by the fact that there
are alternative courses of the traces given by the alterna-
tive combined fragments. We have described both situations
where the user is eligible for money and when his identifica-
tion or funds are inadequate. These are all normal situations
of an ATM and as such are considered “positive” as they will
occur in an implementation.

On the other hand what should not be expected of an
ATM is that the machine pretends to function correctly, but
the user receives no money. In Fig. 9 we show a more elab-
orated scenario where this negative scenario has been in-
cluded through a combined fragment with the operator neg.

This indicates that all traces in this fragment are “neg-
ative” or undesirable. In combination with other traces this
negative fragment gives negative traces for every trace lead-
ing up to it. The diagram in Fig. 9 also defines a set of pos-
itive traces that just omit the negative fragment. This also
includes the trace where the card is returned directly after

:Bank:User

sd Withdrawal

alt

Withdrawal

msg("Enter amount!")

ok

:ATM

amount(v) checkaccount(v)

money(v)

receipt(v)

nok
msg(”Amount too large”)

msg(”Illegal entry”)

card

card taken

Cardid(cid)

msg(”Enter PIN”)

Digit

Digit

Digit

Digit Code(cid, pin)

NOK

OKmsg(”Enter service”)

alt

okreceipt(v)

neg

Fig. 9 Withdrawal with negative traces

the code has been entered. This trace is included because the
neg fragment also introduces the empty but positive trace 〈〉.

In our example the intuition is simple; any trace that
gives no money back when the receipt says it should have, is
a negative scenario. The subtraces that will follow the nega-
tive fragment, the return of the card, certainly does not make
the scenario less negative. Still we have not defined all pos-
sible scenarios of withdrawing money in an ATM. At this
stage it is up to our imagination and the scope of our specifi-
cation what cases we care to describe. It may or may not be
relevant to specify what happens when the customer leaves
the ATM without taking the card. Our diagram in Fig. 9
leaves that scenario inconclusive.

Summary 2 Semantically, each negative behavior is repre-
sented by a trace. Ignoring mandatory behavior that is the
issue for the next section, but considering both positive and
negative behavior, the semantics of an interaction may be

6 Ø. Haugen et al.

xalt

ref
Withdrawal alt

currency

ref
CurrencyEUR

ref
CurrencyUSD

ref
CashRefill

sd ATM

Fig. 10 Mandatory alternatives (xalt)

represented by a pair of sets (p, n) where n contains the
negative traces and p contains the positive traces. The same
trace should not be both positive and negative. Traces that
are neither negative nor positive are inconclusive, i.e. con-
sidered irrelevant for the specification.

3.4 Distinguishing mandatory from potential behavior

Assume that we intend to use our ATM scenario as a require-
ment specification for purchasing ATMs. The question then
becomes whether every ATM needs to be able to perform
every positive trace. This would mean that every ATM must
be able to offer both euros and US dollars. This would in
some places be cumbersome and costly. Thus, this is not an
adequate interpretation. On the other hand, we would like
to convey that every ATM should offer withdrawal of native
money. We specify that this is a mandatory requirement. We
need a way to say that it is provisional whether both euros
and US dollars are offered, but there is no choice not to offer
withdrawal of native money. The latter distinction cannot be
expressed directly by the operators of UML 2.0, but we have
introduced a small extension and called this choice between
alternatives that are mandatory as xalt. We have shown our
modified specification in Fig. 10.

The semantics of ATM now can be described by an ex-
pression on the form:

ATM = ((W xalt (E alt U)) par C)

supplementing

Forgotten card,

Omitted money

Native, EUR, USD, DKK, Yen

Omitted money

DKK, Yen

Forgotten card

Native, EUR, USDPositive traces

Negative traces

Inconclusive traces

Fig. 11 Supplementing

In terms of our semantic model this is captured by traces re-
siding in so called interaction obligations discriminated by
the xalt operation. Thus, we have for ATM, two such interac-
tion obligations, one for withdrawal and one for foreign cur-
rency. Any correct implementation must support both. The
currency obligation may, however, be refined to support only
euros or only US dollars.

Summary 3 Semantically, we represent an interaction as
a set of interaction obligations O = {o1, . . . , on}, where
o j = (p j , n j), and p j and n j are the sets of positive
and negative traces, respectively. An implementation satis-
fying the specification must fulfill each interaction obliga-
tion. Each interaction obligation represents potential vari-
ations of mandatory behavior that must be kept separate
from other interaction obligations representing variations of
other mandatory behavior. The traces within the same inter-
action obligation serve the same overall purpose.

4 STAIRS spelled out: supplementing

Supplementing categorizes inconclusive traces as either pos-
itive or negative recognizing that early descriptions normally
lack completeness. Supplementing supports the incremen-
tal process of requirements capture. The initial requirements
concentrate on the most obvious normal situations and the
most obvious exceptional ones. Supplementing supports this
by allowing less obvious situations to be treated later. Hence,
in the course of interaction development the overall picture
may be filled in with more situations.

In our ATM example specified in Fig. 7, we may supple-
ment the services by offering more kinds of foreign currency
such as Danish kroner, or Japanese yen. We may likewise of-
fer completely new services such as paying bills.

Furthermore, we may supplement the detailed produc-
tion traces with more unwanted scenarios like when the user
leaves without his card or forgets to key in the right number
of digits in his personal identification number. We illustrate
this with a Venn-diagram in Fig. 11 where the ovals and their
subdivisions represents sets of traces. The traces of interest
are explicitly named.

Summary 4 Supplementing means reducing the set of in-
conclusive traces by defining more traces as either positive
or negative. Any originally positive trace remains positive,
and any originally negative trace remains negative.

STAIRS towards formal design with sequence diagrams 7

Small Town ATM

Native money EUR, USD

narrowing

Native money

USD

EURPositive traces

Negative traces

Inconclusive traces

Fig. 12 Narrowing (small town ATM)

5 STAIRS spelled out: narrowing

When the designers have reached a description that they
consider sufficiently complete, they will focus on making
the descriptions suitable for implementation. Typically an
implementation may decline to produce every positive po-
tential trace. We define narrowing to mean reducing under-
specification by eliminating positive traces without really
changing the effect of the system.

Narrowing is a relation between descriptions such
that the refined description has less variability/under-
specification than the former. In our context of interactions,
reducing the variability/under-specification means to move
traces from the sets of positive traces to the set of negative.
A narrowing cannot eliminate traces of the negative trace
set since that would mean that some traces specified as il-
legal would suddenly be acceptable. This would be simply
ignoring the specification. In our ATM example specified in
Fig. 10, narrowing could mean that some ATMs would elim-
inate a subset of the possible foreign currencies. We illus-
trate this by a Venn-diagram in Fig. 12.

Summary 5 Narrowing means, within one or more interac-
tion obligations, reducing the set of positive traces, and at
the same time, moving any trace deleted from the set of pos-
itive traces to the set of negative traces. Any inconclusive
trace remains inconclusive and any negative trace remains
negative.

6 STAIRS spelled out: detailing

Detailing involves introducing a more detailed description
without significantly altering the externally observable be-
havior. In Fig. 13 we have chosen to decompose the ATM as
it actually consists of a number of components.

The resulting activity of the diagram in Fig. 13 is that
of the :ATM lifeline of Fig. 8. This is done through the de-
composition mechanism of UML 2.0. In addition we have
detailed the outcoming result by specifying that the money
is delivered in distinct notes. We show the simple message
translation in the separate diagram. Clearly, the external be-
havior of ATM Withdrawal is the same as the external be-
havior of :ATM in Fig. 8 given the Notes Translator trans-
lation on the outcome. This shows how STAIRS supports
the decomposition of the money message in Withdrawal into
the different notes values messages in ATM Withdrawal.

The Notes Translator diagram documents this decomposi-
tion and is in contrast to ATM Withdrawal not supposed to
be implemented.

Summary 6 Detailing means that the sets of positive, neg-
ative and inconclusive traces are refined with respect to
a translation between the more detailed and the given
interaction.

7 Formal foundation

Here, we demonstrate how the concepts in this paper may be
formalized. For more details, we refer to [7].

7.1 Representing runs by traces

As explained in Sect. 3, a trace is a sequence of events, used
to represent a system run. In each trace, a send event (tagged
by an !) should always be ordered before the corresponding
receive event (tagged by ?). We let H denote the set of all
traces that complies with this requirement.

A message is a triple (s, tr, re) of a signal s, a transmitter
tr , and a receiver re. M denotes the set of all messages. The
transmitters and receivers are lifelines. L denotes the set of
all lifelines. An event is a pair of kind and message

(k, m) ∈ {!, ?} × M

E denotes the set of all events. We define the functions

k. ∈ E → {!, ?}, tr. , re. ∈ E → L

to yield the kind, transmitter and receiver of an event, re-
spectively.

For concatenation of sequences, filtering of sequences,
and filtering of pairs of sequences, we have the functions ⌢,
�, and ©T , respectively.

Concatenating two sequences implies gluing them to-
gether. Hence, a1 ⌢ a2 denotes a sequence that equals a1 if
a1 is infinite. Otherwise, a1 ⌢ a2 denotes a sequence that is
prefixed by a1 and suffixed by a2. In both cases, the length
of a1 ⌢ a2 is equal to the sum of the lengths of a1 and a2.

The filtering function � is used to filter away elements.
By B � a we denote the sequence obtained from the se-
quence a by removing all elements in a that are not in the
set of elements B. For example, we have that

{1, 3} � 〈1, 1, 2, 1, 3, 2〉 = 〈1, 1, 1, 3〉

8 Ø. Haugen et al.

Fig. 13 Detailing the ATM

The filtering function ©T may be understood as a general-
ization of �. The function ©T filters pairs of sequences with
respect to pairs of elements in the same way as � filters
sequences with respect to elements. For any set of pairs of
elements P and pair of sequences t , by P©T t we denote the
pair of sequences obtained from t by

– truncating the longest sequence in t at the length of the
shortest sequence in t if the two sequences are of unequal
length;

– for each j ∈ [1 . . . k], where k is the length of the
shortest sequence in t , selecting or deleting the two
elements at index j in the two sequences, depending
on whether the pair of these elements is in the set
P .

For example, we have that

{(1, f), (1, g)}©T (〈1, 1, 2, 1, 2〉, 〈 f, f, f, g, g〉)

= (〈1, 1, 1〉, 〈 f, f, g〉)

7.2 Semantics of sequence diagrams

The semantics of sequence diagrams is defined by a function
[[]] that for any sequence diagram d yields a set [[d]] of inter-
action obligations. As explained in Sect. 3.4, an interaction
obligation is a pair (p, n) of sets of traces where the first set
is interpreted as the set of positive traces and the second set
is the set of negative traces. The term obligation is used to
explicitly convey that any implementation of a specification
is obliged to fulfill each specified alternative.

For a sequence diagram consisting of a single event e, its
semantics is given by:

[[e]]
def
= {({〈e〉}, ∅)}

More complex sequence diagrams are constructed
through the application of various operators. We focus on
the operators that we find most essential, namely negation
(neg), potential choice (alt), mandatory choice (xalt), paral-
lel execution (par), and weak sequencing (seq).

STAIRS towards formal design with sequence diagrams 9

As can be expected, we have associativity of alt, xalt,
par and seq. We also have commutativity of alt, xalt and par.
Proofs can be found in [7].

7.2.1 Negation

The neg construct defines negative traces:

[[neg d]]
def
= {({〈〉}, p ∪ n) | (p, n) ∈ [[d]]}

Notice that a negative trace cannot be made positive by
reapplying neg. Negative traces remain negative. Negation is
an operation that characterizes traces absolutely and not rel-
atively. The intuition is that the focus of the neg construct is
on characterizing the positive traces in the operand as nega-
tive. Negative traces will always propagate as negative to the
outermost level. The neg construct defines the empty trace as
positive. This facilitates the embedding of negs in sequence
diagrams also specifying positive behavior.

7.2.2 Potential choice

The alt construct defines potential traces. The semantics is
the union of the trace sets for both positive and negative:

[[d1 alt d2]]
def
= {(p1 ∪ p2, n1 ∪ n2) |

(p1, n1) ∈ [[d1]] ∧ (p2, n2) ∈ [[d2]]}

7.2.3 Mandatory choice

The xalt construct defines mandatory choices. All implemen-
tations must be able to handle every interaction obligation.

[[d1 xalt d2]]
def
= [[d1]] ∪ [[d2]]

7.2.4 Parallel execution

The par construct represents a parallel merge.
In order to define par, we first define parallel execution

on trace sets:

s1 ‖ s2
def
= {h ∈ H | ∃ p ∈ {1, 2}∞ :

π2(({1} × E)©T (p, h)) ∈ s1 ∧
π2(({2} × E)©T (p, h)) ∈ s2}

In this definition, we make use of an oracle, the infinite
sequence p, to resolve the non-determinism in the interleav-
ing. It determines the order in which events from traces in s1

and s2 are sequenced. π2 is a projection operator returning
the second element of a pair.

The par construct itself is defined as:

[[d1 par d2]]
def
= {o1 ‖ o2 | o1 ∈ [[d1]] ∧ o2 ∈ [[d2]]}

where parallel execution of interaction obligations is defined
as:

(p1, n1) ‖ (p2, n2)
def
=

(p1 ‖ p2, (n1 ‖ p2) ∪ (n1 ‖ n2) ∪ (p1 ‖ n2))

Note how any trace involving a negative trace will remain
negative in the resulting interaction obligation.

7.2.5 Weak sequencing

Weak sequencing is the implicit composition mechanism
combining constructs of a sequence diagram.

First, we define weak sequencing of trace sets:

s1 � s2
def
= {h ∈ s1 ‖ s2 |

∃ h1 ∈ s1, h2 ∈ s2 : ∀l ∈ L :
e.l � h = e.l � h1 ⌢ e.l � h2}

where e.l denotes the set of events that may take place on the
lifeline l. Note that weak sequencing degenerates to parallel
execution if the operands have disjoint sets of lifelines.

The seq construct itself is defined as:

[[d1 seq d2]]
def
= {o1 � o2 | o1 ∈ [[d1]] ∧ o2 ∈ [[d2]]}

where weak sequencing of interaction obligations is defined
as:

(p1, n1) � (p2, n2)
def
=

(p1 � p2, (n1 � p2) ∪ (n1 � n2) ∪ (p1 � n2))

Note how anything involving a negative trace remains nega-
tive.

7.3 Refinement

Refinement means to add information to a specification such
that the specification becomes closer to an implementation.
Supplementing and narrowing are special cases of this gen-
eral notion. Detailing is defined in terms of lifeline decom-
position and interface refinement that are both defined in
terms of the basic notion of refinement.

An interaction obligation (p2, n2) is a refinement of an
interaction obligation (p1, n1), written

(p1, n1) � (p2, n2)

iff
n1 ⊆ n2 ∧ p1 ⊆ p2 ∪ n2

A sequence diagram d ′ is a refinement of a sequence di-
agram d , written d � d ′, iff

∀ o ∈ [[d]] : ∃ o′ ∈ [[d ′]] : o � o′

The refinement semantics supports the classical notions
of compositional refinement providing a firm foundation for
compositional analysis, verification and testing. In [7] we
prove that refinement as defined above is transitive as well as
monotonic with respect to the operators defined in Sect. 7.2.

10 Ø. Haugen et al.

7.3.1 Supplementing

Supplementing categorizes inconclusive behavior as either
positive or negative. An interaction obligation (p2, n2)

supplements an interaction obligation (p1, n1), written
(p1, n1) �s (p2, n2), iff

(n1 ⊂ n2 ∧ p1 ⊆ p2)

∨
(n1 ⊆ n2 ∧ p1 ⊂ p2)

7.3.2 Narrowing

Narrowing reduces the allowed (positive) behavior to match
the problem better. An interaction obligation (p2, n2) nar-
rows an interaction obligation (p1, n1), written (p1, n1) �n

(p2, n2), iff

p2 ⊂ p1 ∧ n2 = n1 ∪ (p1 \ p2)

7.3.3 Black-box refinement

Black-box refinement may be understood as refinement re-
stricted to the externally visible behavior. We define the
function

ext ∈ H × P(L) → H

to yield the trace obtained from the trace given as first ar-
gument by filtering away those events that are internal with
respect to the set of lifelines given as second argument, i.e.:

ext (h, l)
def
=

{e ∈ E | (k.e = ? ∧ tr.e �∈ l) ∨ (k.e = ! ∧ re.e �∈ l)}
� h

The ext operator is overloaded to sets of traces and pairs
of sets of traces in the standard pointwise manner, e.g.:

ext (s, l)
def
= {ext (h, l) | h ∈ s}.

A sequence diagram d ′ is a black-box refinement of a
sequence diagram d , written d �b d ′, iff

∀o ∈ [[d]] : ∃ o′ ∈ [[d ′]] : ext (o, ll(d)) � ext (o′, ll(d ′))

where the function ll yields the set of lifelines of a sequence
diagram.

7.3.4 Detailing

When we increase the granularity of sequence diagrams we
call this a detailing of the specification. The granularity can
be altered in two different ways: either by decomposing the
lifelines such that their inner parts and their internal behav-
ior are displayed in the diagram or by changing the data-
structure of messages such that they convey more detailed
information.

Black-box refinement is sufficiently general to formal-
ize lifeline decompositions that are not externally visible.

However, many lifeline decompositions are externally vis-
ible. As an example of a lifeline decomposition that is ex-
ternally visible, consider the decomposition of the ATM in
Fig. 13. The messages that originally (in Fig. 8) had :ATM
as sender/receiver, now have the different components of the
ATM (such as :CardReader or :Screen) as sender/receiver.

To allow for this, we extend the definition of black-box
refinement with the notion of a lifeline substitution. The re-
sulting refinement relation is called lifeline decomposition.
A lifeline substitution is a partial function of type L → L .
L S denotes the set of all such substitutions. We define the
function

subst ∈ D × L S → D

such that subst (d, ls) yields the sequence diagram obtained
from d by substituting every lifeline l in d for which ls is
defined with the lifeline ls(l).

We then define that a sequence diagram d ′ is a lifeline
decomposition of a sequence diagram d with respect to a
lifeline substitution ls, written d �ls

l d ′, iff

d �b subst (d ′, ls)

Changing the data-structure of messages may be under-
stood as black-box refinement modulo a translation of the
externally visible behavior. This translation is specified by
a sequence diagram t , and we refer to this as an interface
refinement.

We define that a sequence diagram d ′ is an interface re-
finement of a sequence diagram d with respect to a sequence
diagram t , written d �t

i d ′, iff

d �b (t seq d ′)

Detailing may then be defined as the transitive and re-
flexive closure of lifeline decomposition and interface re-
finement.

8 Conclusions

We have presented STAIRS, a formal approach to the step-
wise, incremental development of interactions. It is based on
trace semantics. Traces are sequences of events. Events are
representations of sending and receiving messages. STAIRS
meets the requirements of Sect. 2 in the following sense:

1. Different potential behaviors are expressed through life-
line independence and by alt combined fragments. Se-
mantically, each potential behavior is represented by a
trace.

2. Different mandatory behaviors are expressed using
combined fragments with xalt. Semantically, different
mandatory behaviors are separated by placing them in
the different interaction obligations.

3. The potential and the mandatory behavior constitute the
positive behavior. Negative behavior may be specified by
the neg-construct. Also negative behavior is represented
semantically by a set of traces in every interaction obli-
gation.

STAIRS towards formal design with sequence diagrams 11

4. The classical notion of refinement is supported. Firstly,
under-specification in the form of potential behavior
may be reduced (narrowing). This corresponds to refine-
ment by strengthening the post-condition in traditional
pre/post specification [10]. Secondly, the scope of the
specification may be enlarged (supplementing). This cor-
responds to refinement by weakening the pre-condition
in traditional pre/post specification [10]. Thirdly, the
granularity and data-structure of messages may be al-
tered (detailing). This corresponds to classical data-
refinement [2], or more exactly, to the more recent form
of interface refinement as e.g. in TLA [11] and Focus
[12].

5. Incremental development of interactions in the form of
supplementing, narrowing and detailing has been for-
malized.

6. The underlying semantics supports the classical nota-
tions of compositional refinement providing a firm foun-
dation for compositional analysis, verification and test-
ing. In [7] we show that the basic notions of supplement-
ing and narrowing are reflexive, transitive and monotonic
with respect to the operators specified in Sect. 7. The
same holds for detailing modulo the specified transla-
tion.

8.1 Related work

To consider not only positive traces, but also negative ones,
has been suggested before. In [13] the proposed methodol-
ogy stated that specifying negative scenarios could be even
more practical and powerful than only specifying the possi-
ble or mandatory ones. It was made clear that the MSC-92
standard [14] was not sufficient to express the intention be-
hind the scenarios and that the MSC documents had to be
supplemented with informal statements about the intended
interpretation of the set of traces expressed by the different
MSCs.

The algebraic semantics of MSC-92 [15] gave rise to a
canonical logical expression restricted to the strict sequenc-
ing operator and a choice operator. When the MSC standard
evolved with more advanced structuring mechanisms, the
formal semantics as given in [16] and [17] was based on sets
of traces, but it was still expressed in algebraic terms. The
MSC approach to sequence diagram semantics is an inter-
leaving semantics based on a fully compositional paradigm.
The set of traces denoting the semantics of a message se-
quence chart can be calculated from its constituent parts
based on definitions of the semantics of the structuring con-
cepts as operators. This is very much the approach that we
base our semantics on as we calculate our semantics of an
interaction fragment from the semantics of its internal frag-
ments. The notion of negative traces, and the explicit distinc-
tion between mandatory and potential behavior is beyond the
MSC language and its semantics. The Eindhoven school of
MSC researchers led by Sjouke Mauw concentrated mainly
on establishing the formal properties of the logical systems

used for defining the semantics, and also how this could be
applied to make tools.

The need for describing also the intention behind the sce-
narios motivated the so-called “two-layer” approaches. In
[18] they showed how MSC could be combined with lan-
guages for temporal logics such as CTL letting the scenarios
constitute the atoms for the higher level of modal descrip-
tions. With this one could describe that certain scenarios
should appear or should never appear.

Damm and Harel brought this further through their aug-
mented MSC language LSC (Live Sequence Charts) [19].
This may also be characterized as a two-layer approach as
it takes the basic message sequence charts as starting point
and add modal characteristics upon those. The modal ex-
pressiveness is strong in LSC since charts, locations, mes-
sages and conditions are orthogonally characterized as ei-
ther mandatory or provisional. Since LSC also includes a
notion of subchart, the combinatory complexity can be quite
high. The “inline expressions” of MSC-96 (corresponding to
combined fragments in UML 2.0) and MSC documents as in
MSC-2000 [20] (corresponds to classifier in UML 2.0) are,
however, not included in LSC. Mandatory charts are called
universal. Their interpretation is that provided their initial
condition holds, these charts must happen. Mandatory as in
LSC should not be confused with mandatory as in STAIRS,
since the latter only specifies traces that must be present in
an implementation while the first specifies all allowed traces.
Hence, mandatory as in STAIRS does not distinguish be-
tween universal or existential interpretation, but rather gives
a restriction on what behaviors that must be kept during a
refinement. Provisional charts are called existential and they
may happen if their initial condition holds. Through manda-
tory charts it is of course indirectly also possible to define
scenarios that are forbidden or negative. Their semantics is
said to be a conservative extension of the original MSC se-
mantics, but their construction of the semantics is based on a
two-stage procedure. The first stage defines a symbolic tran-
sition system from an LSC and from that a set of runs ac-
cepted by the LSC is produced. These runs represent traces
where each basic element is a snapshot of a corresponding
system.

The motivation behind LSC is explicitly to relate se-
quence diagrams to other system descriptions, typically de-
fined with state machines. Harel has also been involved in
the development of a tool-supported methodology that uses
LSC as a way to prescribe systems as well as verifying
the correspondence between manually described LSCs and
State Machines [21].

Our approach is similar to LSC since it is basically inter-
leaving. STAIRS is essentially one-stage as the modal dis-
tinction between the positive and negative traces in principle
is present in every fragment. The final modality results di-
rectly from the semantic compositions. With respect to lan-
guage, we consider almost only what is UML 2.0, while LSC
is a language extension of its own. LSC could in the future
become a particular UML profile. Furthermore, our focus is
on refinement of sequence diagrams as a means for system
development and system validation. This means that in our

12 Ø. Haugen et al.

approach the distinction between mandatory and provisional
is captured through interaction obligations.

The work by Krüger [22] addresses similar concerns as
the ones introduced in this article and covered by the LSC-
approach of Harel. Just as with LSC MSCs can be given
interpretations as existential or universal. The exact and
negative interpretations are also introduced. Krüger also pro-
poses notions of refinement for MSCs. Binding references,
interface refinement, property refinement and structural
refinement are refinement relations between MSCs at
different level of abstraction. Narrowing as described in
STAIRS corresponds closely to property refinement in
[22] and detailing corresponds to interface refinement and
structural refinement. However, Krüger does not distinguish
between intended non-determinism and non-determinism as
a result of under–specification in the refinement relations.

Although this paper presents STAIRS in the setting of
UML 2.0 sequence diagrams, the underlying principles ap-
ply just as well to MSC given that the MSC language is ex-
tended with an xalt construct similar to the one proposed
above for UML 2.0. STAIRS may also be adapted to support
LSC. STAIRS is complementary to software development
processes based on use-cases, and classical object-oriented
approaches such as the Unified Process [23]. STAIRS pro-
vides formal foundation for the basic incremental steps of
such processes.

Acknowledgements The research on which this paper reports has
partly been carried out within the context of the IKT-2010 project
SARDAS (15295/431) funded by the Research Council of Norway.
We thank Mass Soldal Lund, Fredrik Seehusen and Ina Schieferdecker
for helpful feedback.

References

1. Haugen, Ø. and Stølen, K.: STAIRS—Steps to analyze interac-
tions with refinement semantics. In: Sixth International Confer-
ence on UML (UML’2003), no. 2863 in Lecture Notes in Com-
puter Science, pp. 388–402. Springer (2003)

2. Hoare, C.A.R.: Proof of correctness of data representations. Acta
Informatica 1, 271–282 (1972)

3. Jones, C.B.: Formal development of correct algorithms: An exam-
ple based on Earley’s recogniser. In: ACM Conference on Proving
Assertions about Programs, no. 7 in SIGPLAN Notices, pp. 150–
169 (1972)

4. Milner, R.: An algebraic definition of simulation between pro-
grams. In: International Joint Conference on Artificial Intelli-
gence, pp. 481–489. Kaufmann (1971)

5. de Roever, W.-P.: The quest for compositionality: A survey of
assertion-based proof systems for concurrent programs: Part 1.
In Formal Models in Programming, pp. 181–205. North-Holland
(1985)

6. Jones, C.B.: Development Methods for Computer Programs In-
cluding a Notion of Interference. PhD thesis, Oxford University
(1981)

7. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: Why timed se-
quence diagrams require three-event semantics. Technical Report
309, Department of Informatics, University of Oslo (2004)

8. Object Management Group.: UML 2.0 Superstructure Specifica-
tion, document: ptc/04-10-02 edition (2004)

9. Haugen, Ø., Møller-Pedersen, B., Weigert, T.: Structural modeling
with UML 2.0. In: UML for Real, pp. 53–76. Kluwer (2003)

10. Jones, C.B.: Systematic Software Development Using VDM.
Prentice-Hall (1986)

11. Abadi, M., Lamport, L.: Conjoining specifications. ACM Trans.
Prog. Lang. Sys. 17, 507–533 (1995)

12. Broy, M., Stølen, K.: Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer,
Berlin Heidelberg New York (2001)

13. Haugen, Ø.: Using MSC-92 effectively. In: 7th SDL Forum
(SDL’95), pp. 37–49. North-Holland (1995)

14. International Telecommunication Union.: Recommendation
Z.120—Message Sequence Chart (MSC) (1993)

15. International Telecommunication Union.: Recommendation Z.120
Annex B: Algebraic Semantics of Message Sequence Charts
(1994)

16. International Telecommunication Union.: Recommendation Z.120
Annex B: Formal Semantics of Message Sequence Charts (1998)

17. Reniers, M.A.: Message Sequence Chart: Syntax and Semantics.
PhD thesis, Eindhoven University of Technology (1998)

18. Combes, P., Pickin, S., Renard, B., Olsen, F.: MSCs to express
service requirements as properties on an SDL model: Application
to service interaction detection. In: 7th SDL Forum (SDL’95), pp.
243–256. North-Holland (1995)

19. Damm, W., Harel, D.: LSCs: Breathing life into message sequence
charts. In: Formal Methods for Open Object-Based Distributed
Systems (FMOODS’99), pp. 293–311. Kluwer (1999)

20. Haugen, Ø.: MSC-2000 interaction diagrams for the new millen-
nium. Computer Networks 35, 721–732 (2001)

21. Harel, D., Marelly, R.: Specifying and executing behavioral re-
quirements: The play-in/play-out approach. Soft. Sys. Model. 2,
82–107 (2003)

22. Krüuger, I.: Distributed System Design with Message Sequence
Charts. PhD thesis, Technische Universität München (2000)

23. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software De-
velopment Process. Addison-Wesley (1999)

Øystein-Haugen

Knut-Eilif-Husa

STAIRS towards formal design with sequence diagrams 13

Ragnhild-Kobro-Runde Ketil-Stølen

