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Abstract. The orbital-timescale dynamics of the Quaternary

Asian summer monsoons (ASM) are frequently attributed

to precession-dominated northern hemispheric summer in-

solation. However, this long-term continuous ASM variabil-

ity is inferred primarily from oxygen isotope records of sta-

lagmites, mainly from Sanbao cave in mainland China, and

may not provide a comprehensive picture of ASM evolu-

tion. A new spliced stalagmite oxygen isotope record from

Yangkou cave tracks summer monsoon precipitation vari-

ation from 124 to 206 thousand years ago in Chongqing,

southwest China. Our Yangkou record supports that the evo-

lution of ASM was dominated by the North Hemisphere so-

lar insolation on orbital timescales. When superimposed on

the Sanbao record, the precipitation time series referred from

Yangkou cave stalagmites supports the strong ASM periods

at marine isotope stages (MIS) 6.3, 6.5, and 7.1 and weak

ASM intervals at MIS 6.2, 6.4, and 7.0. This consistency

confirms that ASM events affected most of mainland China.

Except for the solar insolation forcing, the large amplitude

of minimum δ18O values in Yangkou record during glacial

period, such as MIS 6.5, could stem from the enhanced pre-

vailing Pacific trade wind and/or continental shelf exposure

in the Indo–Pacific warm pool.

1 Introduction

Climate in East Asia, the most densely populated region in

the world, is profoundly influenced by the Asian monsoon

(AM), which includes the Indian monsoon and East Asian

monsoon sub-systems. Asian summer monsoon (ASM) pre-

cipitation strongly governs regional vegetation, agriculture,

culture, and economies (e.g., Cheng et al., 2012a), and even

affected the stability of Chinese dynastic rule (Zhang et al.,

2008; Tan et al., 2011).

Our current understanding of ASM variation over the past

500 kyr BP (before AD 1950) has been reconstructed using

oxygen isotope records of Chinese stalagmites (Wang et

al., 2008; Cheng et al., 2012b) with the advantages of ab-

solute and high-precision chronologies (e.g., Cheng et al.,

2000, 2013; Shen et al., 2002, 2012). Stalagmite-inferred

orbital-scale ASM intensity closely follows the change in

precession-dominated northern hemispheric (NH) summer

insolation (NHSI) (Wang et al., 2008; Cheng et al., 2012b).

However, these 100s kyr records were mainly from a sin-

gle cave, namely Sanbao cave, located in Hubei Province,

China (Fig. 1; Wang et al., 2008; Cheng et al., 2012b). Uti-

lizing only one site leads to uncertainties in the spatial ex-

tent of Quaternary ASM evolution. These uncertainties stem

from differences in local or regional climatic and environ-

mental conditions (Lachniet, 2009), hydrological variability
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Figure 1. (A) Map of precipitation anomaly (mm day−1) in June,

July, and August (JJA) of AD 1998–2000 during a La Niña

event from July 1998 to April 2001 (http://www.cpc.ncep.noaa.

gov/products/analysis_monitoring/ensostuff/ensoyears.shtml) com-

pared with the averaged state of JJA from 1980 to 2010. Triangle

symbols denote cave sites of Yangkou (this study), Sanbao (Wang

et al., 2008), and Hulu (Cheng et al., 2006). Solid circles indi-

cate marine sediment cores of ODP806B and TR163-19 (Lea et al.,

2000). Arrows depict present ground wind directions of the ISM

and EASM and also trade wind in the equatorial Pacific. Summer

precipitation intensity in eastern and southern China was enhanced

during the La Niña event. (B) An enlarged map of precipitation

anomaly with cave sites of Yangkou, Sanbao, and Hulu.

of monsoonal sources (e.g., Dayem et al., 2010; Clemens et

al., 2010; Pausata et al., 2011), and interactions between cli-

matic subsystems (e.g., Maher and Thompson, 2012; Tan,

2014).

Sanbao records, for example, show distinct ASM events at

marine isotope stages (MIS) 6.3 and 6.5 during the penulti-

mate glacial time and a weaker summer monsoon during the

penultimate glacial maximum (PGM) at MIS 6.2 (Fig. 1 of

Wang et al., 2008). To clarify whether this combination of

weak PGM ASM intensities and strong ASM events during

the penultimate glacial–interglacial (G–IG) period are local

effects, we built an integrated stalagmite oxygen stable iso-

tope record from Yangkou cave, Chongqing, China, covering

124–206 kyr BP (Fig. 1). Through comparison with records

from other Chinese caves (Cheng et al., 2006, 2009; Wang et

al., 2008) confirms the fidelity of Sanbao cave-inferred ASM

intensities.

2 Material and methods

2.1 Regional settings and samples

Stalagmites were collected from Yangkou cave (29◦02′ N,

107◦11′ E; altitude: 2140 m; length: 2245 m), located at

Jinfo Mountain National Park, Chongqing City, southwestern

China (Fig. 1) during two field trips in October 2010 and July

2011. The cave, developed in Permian limestone bedrock, is
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Figure 2. Photographs of the five stalagmites collected from

Yangkou cave. Brown dashed curves show hiatuses. Straight lines

represent subsampling routes for oxygen isotope measurement. Yel-

low curves denote drilled subsamples for U-Th dating. White dots

are the subsamples collected for Hendy test (Hendy, 1971).

400 km southwest of Sanbao cave (31◦40′ N, 110◦26′ E) in

Hubei Province (Wang et al., 2008). The cave air tempera-

ture is 7.5 ◦C and the average relative humidity is > 80 %

(October 2011–October 2013). The regional climate is influ-

enced by both the Indian summer monsoon (ISM) and East

Asian summer monsoon (EASM). Annual rainfall is 1400–

1500 mm, 83 % from April to October (Zhang et al., 1998).

Five stalagmites, YK05, YK12, YK23, YK47, and YK61,

which formed within a time interval of 124–206 kyr BP, were

halved and polished for U-Th dating and oxygen stable iso-

tope analysis.

2.2 U-Th dating

Chemistry and instrumental analysis were conducted in the

High-Precision Mass Spectrometry and Environment Change

Laboratory (HISPEC), Department of Geosciences, National

Taiwan University. Fifty three powdered subsamples, 60–

80 mg each, were drilled from the polished surface along

the deposit lamina of the five stalagmites (Fig. 2, Table 1),

on a class-100 bench in a class-10 000 subsampling room.

U-Th chemistry (Shen et al., 2003) was performed in a

class-10 000 clean room with independent class-100 benches

and hoods (Shen et al., 2008). A multi-collector inductively

coupled plasma mass spectrometer (MC-ICP-MS), Thermo

Fisher Neptune with secondary electron multiplier protocols

was used for the determination of U-Th isotopic contents

and compositions (Shen et al., 2012). The decay constants

used are 9.1577 × 10−6 yr−1 for 230Th, 2.8263 × 10−6 yr−1

for 234U (Cheng et al., 2000), and 1.55125 × 10−10 yr−1 for
238U (Jaffey et al., 1971). All errors of U-Th isotopic data

and U-Th dates are two standard deviations (2σ ) unless oth-

erwise noted. Age (before AD 1950) corrections were made

using an 230Th/232Th atomic ratio of 4 ± 2 ppm, which are

the values for material at secular equilibrium with the crustal
232Th/238U value of 3.8 (Taylor and McLennan, 1995) and

an arbitrary uncertainty of 50 %.
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Table 1. U-Th isotopic compositions and 230Th ages for subsamples of five Yangkou stalagmites on MC-ICP-MS at the HISPEC, NTU.

Subsample ID Depth 238U 232Th δ234U [230Th/238U] [230Th/232Th] Age (kyr) Age (kyr, BP) δ234Uinitial

(mm) (ppb) (ppt) measureda activityc (ppm)d uncorrected correctedc,e correctedb

S
ta

la
g
m

it
e:

Y
K

5

YK5-01 3.0 8730 ± 13 553.0 ± 7.1 215.8 ± 2.1 1.0192 ± 0.0024 265626 ± 3445 179.7 ± 1.3 179.6 ± 1.3 358.5 ± 3.7

YK5-02 24.0 7335 ± 14 263.1 ± 7.1 218.4 ± 2.7 1.0235 ± 0.0027 471128 ± 12563 180.4 ± 1.6 180.4 ± 1.6 363.6 ± 4.8

YK5-03 57.0 4322.4 ± 7.6 5997 ± 17 192.9 ± 2.3 1.0002 ± 0.0024 11903 ± 39 181.2 ± 1.4 181.1 ± 1.4 321.9 ± 4.1

YK5-04 79.0 5041 ± 10 500.2 ± 5.7 187.7 ± 2.9 0.9997 ± 0.0026 166348 ± 1928 183.2 ± 1.7 183.2 ± 1.7 315.1 ± 5.0

YK5-05 88.0 5729.6 ± 9.4 356.1 ± 5.1 184.6 ± 2.4 0.9986 ± 0.0027 265267 ± 3814 184.2 ± 1.6 184.1 ± 1.6 310.6 ± 4.2

YK5-06 103.0 5375.3 ± 9.9 593.2 ± 5.0 202.1 ± 2.6 1.0161 ± 0.0022 152028 ± 1290 184.2 ± 1.5 184.1 ± 1.5 340.1 ± 4.7

YK5-07 128.0 4986.2 ± 8.8 137.6 ± 5.8 201.6 ± 2.3 1.0175 ± 0.0023 608876 ± 25827 185.1 ± 1.4 185.0 ± 1.4 340.0 ± 4.1

YK5-08 149.0 6076 ± 14 269.0 ± 5.2 205.0 ± 3.0 1.0259 ± 0.0028 382639 ± 7471 187.2 ± 1.8 187.2 ± 1.8 348.1 ± 5.3

YK5-09 177.0 8808 ± 11 1103.7 ± 7.2 215.0 ± 1.9 1.0374 ± 0.0016 136699 ± 889 187.9 ± 1.1 187.8 ± 1.1 365.7 ± 3.5

YK5-10 188.0 12100 ± 19 168.3 ± 6.1 210.0 ± 2.5 1.0368 ± 0.0027 1230671 ± 44610 189.9 ± 1.7 189.8 ± 1.7 359.2 ± 4.7

S
ta

la
g
m

it
e:

Y
K

1
2

YK12-01 3.6 6262.6 ± 4.1 3895 ± 24 309.6 ± 1.2 0.9620 ± 0.0015 25540 ± 164 133.76 ± 0.46 133.69 ± 0.46 451.8 ± 1.9

YK12-02 10.5 5016.7 ± 2.5 12393 ± 25 296.1 ± 1.2 0.9590 ± 0.0017 6410 ± 17 135.88 ± 0.51 135.78 ± 0.51 434.7 ± 1.8

YK12-03 21.5 6384.1 ± 3.6 1050 ± 21 296.2 ± 1.1 0.9796 ± 0.0014 98334 ± 1947 141.43 ± 0.46 141.36 ± 0.46 441.8 ± 1.7

YK12-04 40.0 5675.3 ± 5.8 9675 ± 32 273.0 ± 1.6 0.9792 ± 0.0017 9483 ± 34 147.07 ± 0.67 146.98 ± 0.67 413.7 ± 2.6

YK12-05 57.5 13314 ± 13 1488 ± 21 259.4 ± 1.5 0.9840 ± 0.0015 145382 ± 2094 152.20 ± 0.62 152.14 ± 0.62 398.9 ± 2.4

YK12-06 78.0 1746.6 ± 5.5 1425 ± 24 253.54 ± 0.90 0.9852 ± 0.0013 134061 ± 2272 154.30 ± 0.49 154.24 ± 0.49 392.1 ± 1.5

YK12-07 80.0 8830.3 ± 5.3 38573 ± 98 212.8 ± 1.2 0.9796 ± 0.0027 3702 ± 14 165.3 ± 1.1 165.1 ± 1.1 339.4 ± 2.2

YK12-08 92.0 7106.6 ± 3.6 7546 ± 25 199.70 ± 0.89 0.9823 ± 0.0014 15274 ± 55 171.08 ± 0.64 170.99 ± 0.64 323.9 ± 1.5

YK12-09 101.0 9513.1 ± 6.5 4483 ± 23 203.4 ± 1.1 0.9976 ± 0.0013 34954 ± 182 175.80 ± 0.72 175.73 ± 0.72 334.3 ± 2.0

YK12-10 105.0 5118.6 ± 6.7 2378 ± 21 185.4 ± 1.9 0.9924 ± 0.0018 35265 ± 317 181.0 ± 1.1 180.9 ± 1.1 309.3 ± 3.3

YK12-11 109.5 6109.1 ± 3.8 572 ± 18 178.4 ± 1.2 0.9875 ± 0.0013 174125 ± 5633 181.93 ± 0.77 181.87 ± 0.77 298.4 ± 2.1

S
ta

la
g
m

it
e:

Y
K

2
3

YK23-01 2.4 2893.2 ± 2.3 13899 ± 26 102.8 ± 1.5 0.8935 ± 0.0018 3070.9 ± 8.0 172.8 ± 1.0 172.6 ± 1.0 167.6 ± 2.4

YK23-02 9.6 2608.9 ± 1.7 13210 ± 23 99.6 ± 1.1 0.9008 ± 0.0016 2937.3 ± 7.1 177.70 ± 0.95 177.53 ± 0.95 164.5 ± 1.9

Hiatus

YK23-03 11.2 2705.2 ± 1.3 1370 ± 17 59.55 ± 0.91 0.8799 ± 0.0016 28683 ± 355 187.3 ± 1.0 187.3 ± 1.0 101.1 ± 1.6

YK23-04 14.8 2541.1 ± 1.2 10313 ± 20 60.06 ± 0.89 0.8830 ± 0.0015 3592.3 ± 8.9 188.73 ± 0.98 188.57 ± 0.98 102.4 ± 1.5

Hiatus

YK23-05 16.8 3255.5 ± 2.0 1365 ± 14 32.5 ± 1.1 0.8632 ± 0.0012 33986 ± 363 193.47 ± 0.99 193.40 ± 0.99 56.1 ± 1.8

YK23-06 27.6 3084.7 ± 1.5 2354 ± 14 32.53 ± 0.92 0.8671 ± 0.0012 18764 ± 112 195.87 ± 0.93 195.79 ± 0.93 56.6 ± 1.6

YK23-07 35.6 2208.7 ± 1.3 2343 ± 15 47.1 ± 1.0 0.8848 ± 0.0014 13768 ± 89 197.5 ± 1.1 197.5 ± 1.1 82.2 ± 1.8

YK23-08 42.4 1917.04 ± 0.90 4503 ± 17 39.3 ± 1.1 0.8795 ± 0.0013 6182 ± 25 199.3 ± 1.1 199.2 ± 1.1 68.9 ± 1.9

Hiatus

YK23-09 43.0 2720.4 ± 1.5 1128 ± 14 21.23 ± 0.90 0.8633 ± 0.0013 34369 ± 430 201.0 ± 1.1 200.9 ± 1.1 37.5 ± 1.7

YK23-10 62.4 3355.3 ± 2.2 698 ± 23 16.2 ± 1.0 0.8657 ± 0.0014 68753 ± 2263 206.2 ± 1.2 206.1 ± 1.2 29.0 ± 1.8

YK23-11 77.2 2262.6 ± 1.5 899 ± 19 15.0 ± 1.1 0.8655 ± 0.0015 35976 ± 777 206.9 ± 1.3 206.8 ± 1.3 26.9 ± 2.1

S
ta

la
g
m

it
e:

Y
K

4
7

YK47-01 118.8 812.37 ± 0.81 6437 ± 11 395.2 ± 1.8 1.0173 ± 0.0022 2120.0 ± 6.0 130.19 ± 0.61 129.99 ± 0.61 570.7 ± 2.8

YK47-02 137.5 765.96 ± 0.70 2997.5 ± 7.6 398.9 ± 1.8 1.0295 ± 0.0019 4343 ± 13 132.27 ± 0.57 132.14 ± 0.57 579.7 ± 2.8

S
ta

la
g
m

it
e:

Y
K

6
1

YK61-01 13.6 3427.4 ± 2.1 13736 ± 25 295.8 ± 1.2 0.9172 ± 0.0019 3779 ± 10 125.39 ± 0.51 125.26 ± 0.51 421.5 ± 1.8

YK61-02 15.5 3636.8 ± 1.9 4502 ± 12 275.4 ± 1.2 0.9027 ± 0.0013 12039 ± 37 125.80 ± 0.41 125.72 ± 0.41 393.0 ± 1.8

YK61-03 17.0 3974.8 ± 2.4 4663 ± 10 261.5 ± 1.2 0.8936 ± 0.0013 12577 ± 32 126.29 ± 0.41 126.21 ± 0.41 373.6 ± 1.8

YK61-04 20.0 3418.6 ± 3.7 1271.0 ± 8.9 302.6 ± 1.8 0.9278 ± 0.0013 41205 ± 291 126.64 ± 0.48 126.58 ± 0.48 432.9 ± 2.6

YK61-05 22.4 1520.4 ± 2.4 3627 ± 33 340.2 ± 2.4 0.9619 ± 0.0024 6658 ± 63 127.60 ± 0.72 127.50 ± 0.72 487.8 ± 3.5

YK61-06 26.0 2414.5 ± 4.3 2217 ± 29 315.2 ± 2.4 0.9448 ± 0.0027 16993 ± 229 128.33 ± 0.80 128.25 ± 0.80 453.0 ± 3.6

YK61-07 28.3 4454.4 ± 4.8 801.0 ± 8.8 313.7 ± 1.7 0.9452 ± 0.0013 86784 ± 959 128.70 ± 0.47 128.63 ± 0.47 451.4 ± 2.5

YK61-08 30.1 2434.4 ± 2.3 657.4 ± 8.6 314.5 ± 1.6 0.9479 ± 0.0012 57958 ± 756 129.21 ± 0.43 129.15 ± 0.43 453.1 ± 2.3

YK61-09 40.8 3633.5 ± 4.6 207 ± 25 302.5 ± 2.1 0.9389 ± 0.0019 271567 ± 32442 129.37 ± 0.64 129.31 ± 0.64 436.1 ± 3.2

YK61-10 47.8 3140.5 ± 3.0 132.3 ± 7.0 305.6 ± 1.6 0.9459 ± 0.0013 370865 ± 19563 130.52 ± 0.45 130.46 ± 0.45 441.9 ± 2.3

YK61-11 61.3 5420.5 ± 6.6 3648 ± 10 306.2 ± 1.8 0.9502 ± 0.0016 23311 ± 67 131.47 ± 0.55 131.39 ± 0.55 443.9 ± 2.7

Hiatus

YK61-12 63.1 2307.3 ± 1.8 1947.5 ± 8.3 303.9 ± 1.3 0.9801 ± 0.0012 19171 ± 84 139.78 ± 0.45 139.70 ± 0.45 451.0 ± 2.0

YK61-13 74.0 5853.2 ± 7.4 3435 ± 11 287.2 ± 1.7 0.9743 ± 0.0017 27409 ± 90 142.09 ± 0.63 142.01 ± 0.63 429.2 ± 2.7

YK61-14 88.0 3614.8 ± 7.1 352 ± 20 321.2 ± 2.9 1.0365 ± 0.0027 175586 ± 9727 151.4 ± 1.1 151.3 ± 1.1 492.7 ± 4.7

YK61-15 110.0 4705.3 ± 8.5 672 ± 16 320.3 ± 2.6 1.0476 ± 0.0026 121199 ± 2976 154.9 ± 1.1 154.9 ± 1.1 496.2 ± 4.4

YK61-16 130.0 5173.2 ± 8.0 646 ± 18 303.7 ± 2.3 1.0495 ± 0.0022 138661 ± 3763 160.25 ± 0.98 160.18 ± 0.98 477.6 ± 3.8

YK61-17 137.8 6174.8 ± 8.5 405.3 ± 7.9 299.4 ± 2.0 1.0514 ± 0.0019 264459 ± 5140 162.16 ± 0.87 162.10 ± 0.87 473.5 ± 3.4

YK61-18 167.8 4766.3 ± 5.3 347.8 ± 7.3 274.1 ± 1.7 1.0478 ± 0.0014 237115 ± 4998 169.06 ± 0.77 168.99 ± 0.77 441.9 ± 3.0

YK61-19 185.8 2984.1 ± 2.9 1897.4 ± 9.4 239.0 ± 1.7 1.0238 ± 0.0015 26585 ± 135 172.56 ± 0.84 172.49 ± 0.84 389.2 ± 2.9

Chemistry was performed during 2011–2012 (Shen et al., 2003) and instrumental analyses on MC-ICP-MS (Shen et al., 2012). Analytical errors are 2σ of the mean.
a δ234U = ([234U/238U]activity − 1) · 1000.

b δ234U initial corrected was calculated based on 230Th age (T ), i.e., δ234Uinitial = δ234U · eλ234·T , and T is corrected age.
c [230Th/238U]activity = 1 − e−λ230T + (δ234U/1000)[λ230/(λ230 − λ234)](1 − e−(λ230−λ234)T ), where T is the age.
Decay constants used are available in Cheng et al. (2000).
d The degree of detrital 230Th contamination is indicated by the [230Th/232Th] atomic ratio instead of the activity ratio.
e Age [yr BP (before AD 1950)] corrections were made using an 230Th/232Th atomic ratio of 4 ± 2 ppm.

Those are the values for material at secular equilibrium, with the crustal 232Th/238U value of 3.8. The errors are arbitrarily assumed to be 50 %.

www.clim-past.net/10/1211/2014/ Clim. Past, 10, 1211–1219, 2014



1214 T.-Y. Li et al.: Stalagmite-inferred variability of the Asian summer monsoon

2.3 Stable isotopes

Five-to-seven coeval subsamples, 60–120 µg each, were

drilled from one layer per stalagmite to measure the oxy-

gen and carbon isotopic compositions as part of the so-called

“Hendy test” (Hendy, 1971). To obtain oxygen time series,

604 subsamples, 60–120 µg each, were drilled at 0.5–3.0 mm

intervals along the maximum growth axis. Measurement of

oxygen stable isotopes was performed by two isotope ratio

mass spectrometers, including a Finnigan Delta V Plus in

the Southwest University, China, and a Micromass IsoPrime

instrument at the National Taiwan Normal University. Oxy-

gen isotope values were reported as δ18O (‰) with respect

to the Vienna Pee Dee Belemnite standard (V-PDB). An in-

ternational standard, NBS-19, was used in both laboratories

to confirm that the 1σ standard deviation of δ18O was better

than ±0.1 ‰.

3 Results and discussion

3.1 Chronology

U-Th isotopic and concentration data and dates of all stalag-

mite subsamples are given in Table 1. High uranium levels

range from 0.8 to 13 ppm and relatively low thorium contents

from 100 s to 10 000 ppt. Corrections for initial 230Th are

less than 90 years, much smaller than dating uncertainties of

400–1800 years that are common for stalagmites with these
230Th ages (Table 1). Determined age intervals are 179.6–

189.8, 133.7–181.9, 172.6–206.8, 130.0–132.1, and 97.2–

172.5 kyr BP for stalagmites YK05, YK12, YK23, YK47,

and YK61, respectively (Fig. 3). One to two hiatuses are ob-

served for stalagmites YK12, YK23, and YK61 (Figs. 2, 3).

The chronology of each stalagmite was developed using lin-

ear interpolation between U-Th dates, which are all in strati-

graphic order (Fig. 3).

3.2 Yangkou oxygen isotope data

The well-known Hendy test has been taken as an essential re-

quirement when assessing the ability of stalagmites to serve

as paleoclimate archives (Hendy, 1971) (Fig. 4). Despite rel-

ative large δ13C variations of 0.1–0.4 ‰ (1σ ) for coeval sub-

samples on the five selected layers (Fig. 4a), only a small

variations in δ18O of ±0.1 − 0.2 ‰ (1σ ) are observed on in-

dividual horizons of coeval subsamples (Fig. 4b). There is no

relationship (0.01 < r2 < 0.36) between δ18O and δ13C val-

ues for coeval subsamples of four layers (Fig. 4c), which is

an additional part of the Hendy test. Although an apparent

high correlation (r2 = 0.94) for the plot of δ18O versus δ13C

is expressed for the depth of 134.3 mm of stalagmite YK61

(Fig. 4c), the δ18O values, from −8.2 ‰ to −8.4 ‰, change

only 0.2 ‰. The absence of a clear increasing δ18O trend out-

ward on the same layer (Fig. 4b) also suggests an insignif-

icant effect of kinetic fractionation. The replication of the
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Figure 3. Age models of Yangkou stalagmites, established with U-
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Figure 4. Hendy test on the arbitrarily selected laminae of five sta-

lagmites with coeval data of (A) δ13C and (B) δ18O. (C) Plots of

δ18O versus δ13C for coeval subsamples.

δ18O records both within Yangkou cave (Fig. 5) and between

Chinese caves (Fig. 6), as well as successful Hendy tests, in-

dicates that the stalagmites formed under an oxygen isotopic

equilibrium condition. The Yangkou stalagmite δ18O data

therefore represent rainfall oxygen isotopic change, which

is a reflection of regional hydrological variability in the AM

territory (e.g., Wang et al., 2001, 2008; Cheng et al., 2009;

Li et al., 2011).

The oxygen isotope sequences for all of the Yangkou sta-

lagmites are illustrated in Fig. 5a. The spliced record covers a

time interval from 124 to 206 kyr BP, with three narrow hia-

tuses at 132.1–133.5, 190.4–193.2, and 200.3–200.9 kyr BP.

This δ18O record varies from −10 ‰ to −4 ‰. The highest

δ18O data of −5 ‰ ~−4 ‰ occurs at 128–136 kyr BP, the

PGM.
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Figure 5. Cave stalagmite oxygen isotope records of (A) Yangkou

(this study), (B) Sanbao (Wang et al., 2008; Cheng et al., 2009), and

(C) Hulu (Cheng et al., 2006). U-Th ages and 2σ errors were color-

coded by stalagmite. Numbers of MIS 5.5–7.3 are given by Sanbao

record. Gray line is NHSI on 21 July at 30◦ N.

3.3 Comparison with other Chinese stalagmite records

The new spliced stalagmite δ18O sequence from Yangkou

cave over the time period of 124–206 kyr BP shows four

strong ASM intervals at MIS 5.5, 6.3, 6.5, and 7.1 and four

weak ASM intervals corresponding to MIS 6.2, MIS 6.4,

MIS 7.0, and MIS 7.2 (Fig. 5a). This variation of stalagmite-

inferred ASM recorded in Yangkou cave is aligned with

previous ASM changes from other Chinese caves, such as

Sanbao (Wang et al., 2008; Cheng et al., 2009) and Hulu

(32◦30′ N, 119◦10′ E) (Cheng et al., 2006), from MIS 5.5 to

7.2 (Fig. 5).

The onsets of strong ASM intervals at MIS 5.5, 6.5, and

7.1 are at 128.3 ± 0.8, 179.9 ± 0.9, and 201.5 ± 1.1 kyr BP,

respectively, in the Yangkou record and concurrent with

their counterparts in Sanbao (Wang et al., 2008; Cheng et

al., 2009) and Hulu (Cheng et al., 2006). Transients from

strong to weak ASM states occur at 135–136 kyr BP dur-

ing MIS 6.2–6.3, and 164–165 kyr BP during MIS 6.4–6.5.

These also match changes in the Sanbao and Hulu records.

Over the past 200 kyr BP, the weakest ASM interval has

been suggested to be at MIS 6.2 in the Sanbao records (Wang

et al., 2008). For example, the δ18O data are 1 ‰ higher

than those at weak ASM intervals of MIS 6.4, 7.0, and 7.2

(Fig. 5). Concurrence between ASM records and ice-rafted

debris events in the North Atlantic supports the hypothesis
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Figure 6. Comparison of Chinese cave δ18O records of

(A) Yangkou and (B) Sanbao (Wang et al., 2008; Cheng et al., 2009)

with (C) reconstructed SST records in the WPWP (core ODP806B)

and EEP (core TR163-19) (Lea et al., 2000), and (D) a global stack

benthic foraminifer δ18O sequence LR04 (Lisiecki and Raymo,

2005). Numbers of MIS 5.5–8 are given by LR04 record. Gray line

is NHSI on 21 July at 30◦ N. Vertical bars denote high insolation

intervals.

of a NH high-latitude forcing of the ASM (Cheng et al.,

2009). δ18O values at MIS 6.2 in Yangkou record are 1.5–

2 ‰ higher than those at MIS 6.4, 7.0, and 7.2 (Fig. 5). This

large difference suggests that this event in Chongqing may

have been relatively intensified through NH forcing as com-

pared with the Hubei regions during the PGM.

The Sanbao record indicates that the strongest ASM con-

dition over the past 500 kyr BP occurs at MIS 6.5 (Cheng et

al., 2012b). This ASM event, lasting 13 kyr, is 3 kyr longer

than a comparable event (in terms of intensity) at interglacial

MIS 5.3, and was stronger than at any time during MIS 1, 5.5,

7.3, 9.5, and 11.3, which experienced higher sea level and

NH insolation (Fig. 1 of Cheng et al., 2012b). The lowest

contemporaneous δ18O data in the Yangkou record (Fig. 5)

show a similar ASM intensity at MIS 6.5 in southwest China.

During the MIS 5, the variations of Chinese stalagmite

δ18O records are not consistent among caves (Cheng et

al., 2012). In Sanbao record (Wang et al., 2008), the δ18O
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minimum at MIS 5.3 is more depleted than at MIS 5.5. This

phenomenon is seemingly illustrated in Yangkou records

(Fig. 5a). However, Dongge (Kelly et al., 2006) and Tian-

men (Cai et al., 2010a) stalagmite records are characterized

by the most depletion in 18O at MIS 5.5 (Fig. 2 of Cai et

al., 2010a). This discrepancy may be attributable to differ-

ent hydrological conditions at MIS 5. Long time series from

more Chinese caves are required to derive a clear picture of

amplitude changes in relation to orbital forcing at MIS 5.

Overall, consistency of the stalagmite δ18O sequences

between Yangkou and other Chinese caves supports the

idea that ASM intensity primarily follows NHSI on orbital

timescales and is driven by precessional forcing and is punc-

tuated by NH high-latitude climatic fluctuations (e.g., Wang

et al., 2001, 2008; Cheng et al., 2009). Agreement in the am-

plitude and the transition of δ18O dynamics during different

MIS also confirms that the Sanbao stalagmite-inferred ASM

events at MIS 6, including a very weak one at MIS 6.2 and

the strongest one at MIS 6.5, are likely predominant over the

entire mainland during the penultimate G–IG cycles (Cheng

et al., 2012a) (Fig. 6).

3.4 Forcings for the abnormally strong ASM at MIS 6.5

The extraordinarily strong ASM condition at MIS 6.5 dur-

ing the penultimate glacial period is one of the most striking

features revealed by stalagmite records from three different

Chinese caves (Fig. 5). This strong summer monsoon event

is also observed in Chinese Loess plateau record (Rousseau

et al., 2009). Modeling experiments suggest this increased

monsoon intensity is primarily attributed to high NH insola-

tion (Masson et al., 2000).

Wang et al. (2008) found a correlation between the

stalagmite-inferred ASM intensity and the atmospheric δ18O

records from Antarctic Vostok ice-core O2 bubbles (Sowers

et al., 1991; Petit et al., 1999), and suggested that the Dole

effect (Dole, 1936; Bender et al., 1994) can explain this

similarity. A minimum atmospheric δ18O (δ18Oatm) peak at

170 kyr BP in the Vostok ice core (Petit et al., 1999), for ex-

ample, matches the strong-ASM period at MIS 6.5.

The evolution of δ18Oatm inferred from the Vostok ice

core most likely results from changes in summer insolation

and precipitation in NH, where land provides space for the

growth of vegetation and photosynthesis during glacial pe-

riods (Sun et al., 2000). However, the summer insolation at

MIS 6.5 is less than the interglacial periods at MIS 5.5 and

7.3 (Fig. 5), suggesting that the minimal stalagmite δ18O val-

ues at MIS 6.5 could also be associated with additional sec-

ondary forcing(s).

Climate conditions around Yangkou and Sanbao caves are

influenced by the Indian summer monsoon (ISM) and East

Asian summer monsoon (EASM) (Fig. 1). The ISM is pri-

marily driven by a south–north land–sea thermal gradient; in-

stead, the EASM is controlled by both south–north and east–

west land–sea gradients (Wang and Lin, 2002). The EASM

precipitation is influenced by the northwestern Pacific trop-

ical high, developed by the mainland-Pacific thermal gradi-

ent (Wang et al., 2003). The Pacific climatic variability can,

therefore, affect EASM precipitation (Tan, 2014).

Cai et al. (2010b) and Jiang et al. (2012) argued for a

significant impact of the western tropical Pacific sea sur-

face temperature (SST) on the EASM precipitation. They

proposed that the evolution and spatial asynchroneity of

stalagmite-inferred Holocene precipitation histories at dif-

ferent AM regions could be attributed to SST changes in

the western Pacific. Planktonic foraminiferal-inferred SST

records of the marine sediment core ODP806B (0◦19′ N,

159◦22′ E) in the western Pacific warm pool (WPWP) and

TR163-19 (2◦16′ N, 90◦57′ W) in the eastern equatorial Pa-

cific (EEP) (Lea et al., 2000) are plotted in Fig. 6, along

with the LR04 stacked benthic δ18O sequence (Lisiecki and

Raymo, 2005) and Yangkou and Sanbao cave time series. A

SST gradient between the WPWP and EEP during the glacial

periods of MIS 6 and 8 is 2 ◦C, larger than the 0.5–1.5 ◦C

gradient during the warm interglacial windows of MIS 5.5

and 7 (Fig. 6). Combined with salinity gradient data, Lea et

al. (2000) suggested that the transport of water vapor to the

western Pacific was enhanced during glacial times. This large

SST gradient could result in an enhanced Walker circulation

in the Pacific, similar to the modern La Niña state, which

moves the rainfall zone westward and intensifies EASM pre-

cipitation (Clement et al., 1999) (Fig. 1). Under a weak

Walker circulation, analogous to present El Niño conditions,

the rainfall zone in the Pacific migrated eastward and EASM

precipitation was reduced (Clement et al., 1999). We specu-

late that the extremely strong EASM precipitation at MIS 6.5

was not only governed by high NHSI, but also partially af-

fected by the Pacific SST gradient.

This speculation is supported by modern meteorological

observations (e.g., Xue et al., 2007; Tan, 2014) and resolved

decadal marine records (Oppo et al., 2009). La Niña years

accompany precipitation probabilities above normal in main-

land China (Tan, 2014, and references therein). However,

comparison of SST histories in the South China Sea and east-

ern equatorial Pacific SST suggests an El Niño-like condition

for the last glacial time (Koutavas et al., 2002), opposite to

the findings by Lea et al. (2000). The study by Koutavas et

al. (2002) does not support our argument at MIS 6.5.

Sea level change could be one of the secondary factors.

Marine proxy records and model simulations show that the

exposure of the Sunda shelf at the Last Glacial Maximum

(LGM) associated with a low sea level condition can alters

regional hydrologic pattern in Southeast Asia (DiNezio and

Tierney, 2013). During the LGM, the strong Pacific equa-

torial SST gradient could strengthen the Pacific Walker cir-

culation and increase rainfall in the west tropical Pacific. As

pointed out by DiNezio and Tierney (2013), both of the prox-

ies and model simulations are highly uncertain renditions of

climate history, and thus multi-proxy records and high pre-

cise models are critical to understand paleoclimate.
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3.5 Abrupt ASM changes

One prominent feature of ASM dynamics is the occurrence

of sudden δ18O shifts at about the midpoint of precession-

dominated NHSI change expressed in all Chinese caves over

the study time window (Kelly et al., 2006; Cai et al., 2010a;

Wang et al., 2008; Cheng et al., 2012a) (Fig. 5). For ex-

ample, the jumps from weak to strong ASM states lasted

< 100 years from MIS 6.2 to 5.5 and 500 years from MIS 7.2

to 7.1 (this study; Wang et al., 2008; Cheng et al., 2009). Cli-

mate in Hulu Cave is primarily dominated by EASM; on the

other hand, Yangkou and Sanbao caves are located in a region

influenced by both EASM and ISM. This agreement of local

abrupt δ18O changes supports the synchroneity of both mon-

soon sub-system variations on precessional timescale (e.g.,

Cheng et al., 2012a) and confirms the robustness and region-

ality of these abrupt transitions in the vast ASM territory.

Yangkou records also support the phase lag between ASM

and NHSI (Cheng et al., 2009, 2012a). This phase lag could

be attributed to the influence of millennial-scale abrupt cli-

mate change in NH high latitudes (Porter and An, 1995; Sun

et al., 2012), which delayed the response of ASM to the ris-

ing NHSI (Ziegler et al., 2010; Cheng et al., 2012a).

4 Conclusions

In this study, our new spliced δ18O record of five stalagmites

from Yangkou cave, Chongqing, exhibits ASM variability

over the time period during 124–206 kyr BP. The prominent

consistency between the Yangkou and previous Chinese cave

δ18O sequences confirms the duration and intensity of the

encompassed ASM events in the entire mainland. Our data

supports the hypothesis that the ASM change primarily fol-

lows NHSI on a precessional timescale. The weakest ASM

condition during low-insolation MIS 6.2 was influenced by

forcing originating from the North Atlantic. The strongest

ASM intensity at MIS 6.5 over the past 500 kyr BP (Cheng

et al., 2012b) was presumably partially related to zonal forc-

ing and/or sea level change associated with G–IG dynamics

of Walker circulation in the Pacific. More robust geological

archives and model simulations are needed to decipher de-

tailed mechanism and forcings for G–IG ASM evolution.
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