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Stall-induced fatigue damage in nonlinear aeroelastic systems under
stochastic inflow: numerical and experimental analyses

Dheeraj Tripathia, Sai Vishala, Chandan Boseb, J Venkatramania,∗

aDepartment of Mechanical Engineering, Shiv Nadar University, India
bSchool of Engineering, Institute for Energy Systems, University of Edinburgh, United Kingdom

Abstract

This study focuses on characterizing the fatigue damage accumulated in nonlinear aeroelastic sys-
tems subjected to stochastic inflows through both numerical simulations and wind tunnel experi-
ments. In the mathematical model, nonlinearities are assumed to exist either in the structure (via
a cubic hardening nonlinearity in the pitch stiffness), or in the flow (via dynamic stall condition),
or simultaneously in both the structural and aerodynamic counterparts. The aerodynamic loads
in the attached flow and dynamic stall conditions are estimated using Wagner’s formulation and
semi-empirical Leishman-Beddoes model, respectively. To augment the findings to in-field flow con-
ditions, the oncoming wind flow is considered to be randomly time-varying in nature. The stochastic
input flow fluctuations are modeled using a Karhunen-Loeve Expansion formulation. The response
dynamics and the associated fatigue damage of the aeroelastic system, possessing different sources
of nonlinearities, are systematically investigated under isolated cases of deterministic and stochastic
input flows. Specifically, the pertinent role of stochasticity in the input flow is brought out by pre-
senting the response dynamics and the associated fatigue damage accumulation for different values of
noise intensity and time scale of the input flow fluctuation. It is demonstrated that under fluctuating
flow conditions, the dynamics intermittently switch between attached flow and the dynamic stall
regimes even at low mean flow speeds. The intermittent nature of the response varies as the time
scale and intensity of the oncoming flow are varied. The role of torsional stresses as the predominant
component dictating the fatigue damage accumulation irrespective of the source of nonlinearity is
illustrated. Using the rainflow counting method and Miner’s linear damage accumulation theory, it
is shown that the accumulated fatigue damage is substantially higher under stochastic flow condi-
tions as compared to deterministic input flows. Importantly, it is observed that different time scales
and intensities of the oncoming flow fluctuation play a pivotal role in dictating the fatigue damage
in aeroelastic systems. Finally, fatigue damage is observed to be significantly higher for torsionally
dominant oscillations in the dynamical stall regime compared to the oscillations at the attached flow
regime. The numerical findings are strengthened by drawing comparisons with the preliminary re-
sults obtained from wind tunnel experiments performed on a NACA 0012 airfoil undergoing dynamic
stall. To the best of our knowledge, this is the first study that systematically bridges the dichotomy
between the stall induced dynamical signatures in stochastic aeroelastic systems and maps the same
to the corresponding structural damage.

Keywords: Dynamic stall, Stochastic flow, Fatigue damage, Rainflow counting algorithm,
Aeroelastic flutter, Wind tunnel experiments

1. Introduction1

Safe design of aeroelastic systems, such as wind turbine blades and helicopter rotor blades often2

needs to consider the coupled nonlinear interactions of the elastic and inertial forces of the structure3

with the unsteady aerodynamic loads. A ubiquitous dynamic phenomenon observed in aeroelastic4
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structures is flutter instability that occurs due to a continuous energy transfer between the struc-5

ture and the surrounding flow-field. In the presence of nonlinearities in the structure and/or flow,6

phenomenologically rich bifurcation behavior in the system response is observed [1], which in turn7

can potentially jeopardize the structural safety of the underlying aeroelastic system [2]. The charac-8

teristics of these dynamical responses and the route to flutter have been extensively studied in the9

literature by considering a continuous aeroelastic system or a canonical two degrees-of-10

freedom (DoF) pitch-plunge aeroelastic system [3]. The continuous aeroelastic system11

can be modelled in different ways such as beam model, shell model etc. [4] and can be12

solved using finite element based solvers [4, 5, 6]. However, the simplified 2-DoF pitch-13

plunge aeroelastic model is more commonly used for flutter prediction and is faster and14

reasonably accurate [3, 7]. Flutter instability in nonlinear aeroelastic systems is marked by the15

onset of self-sustained Limit Cycle Oscillations (LCOs), typically via a Hopf bifurcation. Under the16

assumption of the attached flow condition, linear aerodynamic models can predict the dynamical17

signatures with sufficient accuracy. However, at higher values of instantaneous angles-of-attack, the18

linear approximations become insufficient with the onset of the dynamic stall phenomenon, involving19

nonlinear wake effects due to flow separation and vortex shedding [1].20

Dynamic stall is commonly encountered in high angle-of-attack applications, such as wind tur-21

bine blades, turbomachinery blades, and helicopter blades. An aeroelastic instability occurring at22

this regime, known as stall flutter, gives rise to large-amplitude pitch-dominated self-sustained oscil-23

lations [8]. Aeroelastic analysis of nonlinear structures under dynamic stall conditions has attracted24

widespread attention in the recent literature [9, 10, 11, 12, 8]. The bifurcation route to stall flutter25

[9, 10] and the stall flutter characteristics have been thoroughly investigated for different structural26

configurations, and sources of nonlinearity [11, 12]. Sai Vishal et al. [13] showed that a pitch-plunge27

aeroelastic system subjected to dynamic stall conditions could exhibit stall or classical flutter re-28

sponse - depending on the particular route to synchronization. It is worth noting the fact that29

most of these studies are carried out assuming uniform flow conditions. However, in actual field30

conditions, aerodynamic loads on structures like wind turbines and helicopter rotor blades are often31

highly stochastic in nature due to the variation of flow speed with time and/or height in the atmo-32

spheric boundary layer. Recent studies by Bethi et al. [14], and Devathi and Sarkar [15] highlight33

the significance of adopting a stochastic flow model and studying the subsequent impact on the34

aeroelastic response dynamics. The authors have shown the presence of noise-induced intermittency35

(NII) even at low mean flow speeds, triggered due to the input flow fluctuations. In a recent study,36

dos Santos and Marques [16] showed that, depending on the intensity of flow fluctuations, the aeroe-37

lastic structures enter high amplitude stall flutter regimes, and the probability of reaching divergent38

oscillations increases rapidly, even at speeds below the linear flutter boundary.39

Aeroelastic structures exhibiting stall flutter oscillations at high angles-of-attack have been spec-40

ulated to be more susceptible to fatigue-induced failure as compared to classical flutter [17, 18].41

A distinct trait of stall flutter is the torsional dominance in the high-amplitude LCOs [7]. Most42

materials used in the engineering applications are prone to failures due to torsional stresses [19],43

necessitating an in-depth investigation of the structures exhibiting stall flutter from the standpoint44

of structural health monitoring. Additionally, the impact of stall-induced oscillations (as well as45

classical flutter oscillations) in the presence of stochastic inflow on structural damage has received46

less attention in the aeroelastic literature. This can be attributed to the fact that failure deter-47

mination due to the aging effects such as fatigue accumulation is a challenging problem to date48

due to the uncertainties associated with the time-varying loads. Although the studies on fatigue49

damage for constant and variable amplitude loading and associated crack growth mechanisms have50

been performed for various aeroelastic applications like suspension bridges [20], wind turbines [19],51

aircrafts [21], similar studies addressing the effects of structural and aerodynamic nonlinearities are52

limited [22, 19] in hitherto literature. Sarkar et al.[22] investigated the fatigue damage induced in53

a randomly vibrating 1-DoF aeroelastic system in the presence of fluctuating flow under dynamic54

stall conditions using the ONERA model. Although the authors demonstrated the impact of flow55

uncertainty on fatigue damage, the aeroelastic structure was modeled using a rather simplistic 1-DoF56

model. Further, the impact of the discontinuous nonlinearity arising from dynamic stall conditions57

was not investigated due to the ONERA aerodynamic model’s limitations. Venkatesh et al.[19] in-58

vestigated the effect of uncertainties on the fatigue damage of wind turbine blades and noted that59
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random flow fluctuations pose a greater threat to the structural integrity as compared to parametric60

uncertainty. However, the flow was considered attached, and hence, does not incorporate the effects61

of aerodynamic nonlinearity associated with the flow separation. In light of these studies, the present62

paper aims to investigate the effect of stochastic inflow on nonlinear pitch-plunge aeroelastic systems63

from the standpoint of structural safety.64

It is worth noting that the hitherto studies, be it for dynamics or fatigue damage analysis, have65

considered either a low-order 1-DoF structural model and a semi-empirical dynamic stall aerody-66

namic model [22] or a 2-DoF structural model with linear aerodynamic model [19]. However, a67

2-DoF airfoil model gives rise to rich dynamical signatures that the 1-DoF model does not capture.68

Galvanetto et al.[10] reports aperiodic oscillations in the bifurcation characteristics of a 2-DoF aeroe-69

lastic system under the stall. Similar observations entailing a period-doubling route to chaos were70

noted by Sarkar and Bijl[9] in a 2-DoF aeroelastic system subjected to dynamic stall. On the other71

hand, only a transition to LCOs via a Hopf bifurcation is reported in typical 1-DoF stall flutter72

problem [23]. Furthermore, the hitherto literature on aeroelastic fatigue damage studies does not73

consider the combined effect of coupled structural and aerodynamic nonlinearities that can give rise74

to radically different response dynamics compared to isolated nonlinearities, either in the structure75

or in the aerodynamics [24]. Furthermore, the presence of random input flow fluctuations may sig-76

nificantly alter the bifurcation scenario and result in the loss of stability under critical conditions77

[25, 26, 27]. Therefore, the incurred fatigue damage in these scenarios will be qualitatively and78

quantitatively distinct from that reported in the existing literature. To that end, structural health79

monitoring of in-field aeroelastic systems demands a systematic investigation under the combined80

effect of structural and aerodynamic nonlinearities with the additional complexity of random input81

flows. A comparative study of the fatigue damage induced in the cases of coupled nonlinearities82

with that of the isolated cases is essential. Similarly, comparing damage values obtained in scenarios83

involving deterministic flows against stochastic input flow fluctuations can provide crucial insights84

into the structural safety of nonlinear aeroelastic systems under gusty conditions. Furthermore, the85

role of probabilistic markers such as noise intensity and time scales of the input flow behind the86

fatigue damage accumulation is not clear in terms of triggering NII [25]. Indeed, typical flexible87

structures such as unmanned aerial vehicles (UAVs) [28], wind turbine blades [29], and88

helicopter blades [30] are often subjected to dynamic stall, hand-in-hand with stochas-89

tically fluctuating wind loads. While the ability of aeroelastic systems to display large90

amplitude periodic oscillations (often LCOs) has motivated the community to estimate91

fatigue damage incurred using RFC [22, 19], the ability of noise-induced dynamical92

signatures like intermittency to incur fatigue damage in aeroelastic systems remains93

unanswered. In wake of low-flow applications like wind turbine blade etc to be sub-94

jected to both noisy wind flow and dynamic stall behavior, attempting to present the95

safety of noise-induced responses in stochastic stall flutter problems is an immediate96

need. To the best of the authors’ knowledge, there have been minimal efforts to systematically97

document the role of coupled structural and aerodynamic nonlinearities and input flow fluctuations98

(and its probabilistic markers) hand-in-hand behind the incurred fatigue damage. The present study99

is devoted to taking up this analysis.100

In this study, a 2-DoF pitch-plunge aeroelastic system subjected to randomly fluctuating loads is101

considered that exhibits flutter oscillations, arising either under attached flow (linear aerodynamics)102

or dynamic stall conditions (nonlinear aerodynamics). The accumulated fatigue damage in the103

structure is compared in these two scenarios. The structure is assumed to possess a cubic hardening104

nonlinearity in the pitch DoF unless stated otherwise. The nonlinear aerodynamic loads at high105

angles-of-attacks during stall flutter are calculated using the Leishman-Beddoes (LB) semi-empirical106

dynamic stall model [31], and the loads in the attached flow regimes (which in turn give rise to107

classical flutter) are calculated using Wagner’s function-based unsteady formulation. The random108

fluctuations in the flow are incorporated using the Karhunen-Loeve Expansion (KLE) formulation109

[25]. The response dynamics of the system at attached flow and dynamic stall regimes for flow speeds110

lying below and above the linear flutter boundary are systematically laid out for both deterministic111

and stochastic inflow scenarios. As a first step to investigate the fatigue damage from the earlier112

investigated aeroelastic responses, the locations of maximum stress applied on the airfoil geometry,113

referred to as critical points, are identified. Then, the corresponding stress cycles are calculated114
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using the rainflow counting (RFC) algorithm [32]. The RFC algorithm can model random stress115

cycles that arise, essentially due to the NII signatures of the response dynamics, and is widely116

used for estimating fatigue damage in most engineering applications. Finally, the linear damage117

accumulation rule developed by Miner [33], based on Palmgren’s linear accumulation theory [34], is118

combined with the RFC algorithm to obtain the cumulative fatigue damage induced in the airfoil for119

both classical and stall flutter cases. Finally, the findings are compared against nonlinear aeroelastic120

scenarios involving deterministic flows. In a nutshell, the focal points of the present study are as121

follows: (i) to investigate the effect of coupled structural and aerodynamic nonlinearity on response122

dynamics of the aeroelastic structure under fluctuating inflow, (ii) to analyze the effect of the time123

scales of oncoming flow on aeroelastic responses, and iii) to compare the resultant fatigue damage124

in structure due to different sources of nonlinearity under different time scales of fluctuating inflow.125

The rest of this paper is organized in the following sections. Section 2 depicts the mathematical126

formulation of structural equations, aerodynamic loads, the stochastic model used to incorporate127

the random fluctuations in the flow, and the methodology deployed to compute the fatigue damage.128

Section 3 presents a comparison of the aeroelastic responses at attached flow and dynamic stall129

regimes for deterministic and stochastic cases. Section 4 details the methods used to calculate the130

critical points and stress cycles. Then, the estimated fatigue loads for the corresponding cases,131

investigated in Section 3, are presented. A preliminary experimental investigation into stall induced132

oscillations and corresponding fatigue damage analysis is presented in Section 5. Finally, the salient133

findings of the study are summarized in Section 6. To summarize the objectives of this work,134

a schematic illustrating the outline of the problem with the methodology and the end-135

outcome of fatigue damage is presented in Fig. 1.136

Figure 1: Schematic representation of the work-flow involved in this study.

2. Mathematical model of the aeroelastic system137

2.1. Structural model138

A 2-DoF aeroelastic system, exhibiting pitch (α) and plunge (ξ) motion through the torsional139

and translational springs, respectively, is considered for the present study. The schematic of the140

representative airfoil-spring system is shown in Fig. 2. Here, b = c/2 denotes the semi-chord length,141

where c is the chord-length. ah is the nondimensional length of mid-chord from the elastic axis,142

and xα is the nondimensional length of the mass center from the elastic axis; both the lengths are143

considered to be positive towards the trailing edge and are nondimensionalized with the value of b.144

kξ and kα represent bending and torsional stiffness, respectively. The structural damping is assumed145
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Figure 2: Schematic representation of the pitch-plunge aeroelastic system. The airfoil section is considered to be
NACA 0012.

to be zero in the present study [3]. For a 2-DoF pitch-plunge aerofoil, the equations of motion in146

the nondimensional form are given by [3]147

ξ′′ + xαα
′′ +

(
ω̄

U

)2

ξ = − 1

πµ
Cl(τ), (1)

xα
rα2

ξ′′ + α′′ +

(
1

U

)2

(α+ βαα
3) =

2

πµrα2
Cm(τ). (2)

Here, ξ = h/b is the nondimensional plunge displacement, where h denotes the dimensional plunge148

deflection and is positive in downward direction. α is the nondimensional pitch angle about the elastic149

axis, considered to be positive at nose up. ω̄ is the ratio of the dimensional natural frequencies of150

plunge (ωξ) and pitch (ωα). U = V/bωα is the nondimensional flow speed, where V is the dimensional151

free-stream velocity. µ = ma/πρb
2 represents the nondimensional mass ratio, where ma is the airfoil152

mass and ρ is the density of the air. The pitch and plunge stiffness in their nondimensional form153

are represented as a function of their respective displacements.154

To compare the fatigue damage accumulation between a linear and a nonlinear aeroelastic sys-155

tem, a linear and a cubic hardening stiffness in the pitch DoF are considered, respectively. A generic156

function representing the pitch stiffness is provided in Eq. 2, where βα is the nondimensional coef-157

ficient of cubic stiffness in pitch. It should be noted that βα value becomes zero when the system158

is linear. The plunge stiffness is considered to be linear throughout the study. τ = V t/b is the159

nondimensional time, where t is the dimensional time and rα represents the nondimensional radius160

of gyration about the elastic axis given by rα =
√
Iα/mab2, where Iα is the moment of inertia161

about pitch. Cl and Cm denote the aerodynamic lift and moment coefficients, respectively. The162

mathematical formulation to estimate the aerodynamic load coefficients is presented in the following163

subsection.164

2.2. Aerodynamic model165

The present study investigates the response dynamics and the corresponding fatigue damage of166

the system under attached flow and dynamic stall conditions. The aerodynamic load coefficients167

under attached flow conditions, considering the flow to be inviscid and incompressible, the lift and168

moment coefficients are estimated using Wagner’s unsteady aerodynamic formulation in the time169

domain [3]. The expression to obtain the load coefficients is given by,170

Cl(τ) = π(ξ′′ − ahα
′′ + α′) + 2π[α(0) + ξ′(0) + (0.5− ah)α

′(0)]ϕ(τ)+

2π

∫ τ

0

ϕ(τ − τ0)[α
′(τ0) + ξ′′(τ0) + (0.5− ah)α

′′(τ0)]dτ0, (3)
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Cm(τ) = π(0.5 + ah)[α(0) + ξ′(0) + (0.5− ah)α
′(0)]ϕ(τ) + π(0.5 + ah)

×
∫ τ

0

ϕ(τ − τ0)[α
′(τ0) + ξ′′(τ0) + (0.5− ah)α

′′(τ0)]dτ0+

π

2
ah(ξ

′′ − ahα
′′)− (0.5− ah)

π

2
α′ − π

16
α′′. (4)

Here, ϕ(τ) is the Wagner function given by ϕ(τ) = 1−0.165e(−0.0455τ)−0.335e(−0.3τ). The expression171

were simplified further and integrated into the equations of motion (see Eqs. 1 and 2) in order to172

obtain a state-space formulation of first order ordinary differential equations (ODEs). The present173

study adopts the state-space formulation to calculate the loads at attached flow regime and the174

details of the same are found out in Lee et al.[3]. The initial conditions for pitch, pitch rate, plunge175

and plunge velocity are chosen as α(0) = π/12, α′(0) = 0, ξ(0) = 0 and ξ′(0) = 0 in the present176

study. Note that this initial condition provides an initial incident angle higher than the177

static stall angle [35].178

Modeling of aerodynamic loads under dynamic stall conditions involves accounting for different179

stages, such as flow separation, vortex shedding, and flow reattachment phases [1], including the180

loads at the attached flow regime. The variation of load coefficients becomes highly nonlinear181

in the flow separation and vortex shedding regimes, which need to be accurately modeled either182

using high fidelity Navier–Stokes solvers [28] or semi-empirical models [35]. Although Navier–Stokes183

solvers provide an accurate estimation of the aerodynamic loads, they are computationally expensive.184

Alternatively, semi-empirical models, such as LB model [35] are capable of estimating the loads185

with an agreeable extent of accuracy while considerably reducing the computation cost. They are186

widely used in the literature for aeroelastic computations of systems subjected to dynamic stall187

[10, 12, 14, 15]. Accordingly, the present study uses the LB model to estimate the loads at dynamic188

stall regimes.189

The LB model was initially developed in the indicial form [30] using the experimental data190

of aerodynamic loads at subsonic speed regimes (Mach number (M) < 0.8) and has subsequently191

been modified into state-space forms [31, 29] for various engineering applications. The LB model192

uses parameters obtained from static and dynamic stall tests to demarcate the flow regimes and193

estimate the load coefficients at regular intervals of M values in the subsonic regime. The state-194

space formulation serves to be advantageous for stability and response analysis as it can be directly195

coupled with the structural governing equations, and the ODEs in the abridged form are given by196

[10],197

x′ = f(x, α̂, q), (5)

where x = [x1, x2, ..., x12]
T are twelve aerodynamic states used to calculate the aerodynamic loads198

representing the unsteady attached flow, flow separation, vortex shedding, and flow reattachment199

regimes. q represents the nondimensional effective pitch rate, given by q = 2α′ and α̂ denotes the200

effective angle of incidence, given by201

α̂ = tan−1

(
sinα+ ξ′cosα

cosα− ξ′sinα

)
. (6)

The aerodynamic forces in the LB model are expressed as components perpendicular and parallel to202

the airfoil chord as it serves to be more convenient in calculations involving rotor blade applications203

[10]. The coefficients of forces are given as204 Cn

Cm

Cc

 = g(x, α, q), (7)

where Cc and Cn represent the coefficients of aerodynamic loads with respect to the chord and the205

normal, respectively. However, the equations of motion require the estimation of lift force (see Eqs.206
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(1) and (2)) which acts perpendicular to the wind flow. In such case, the coefficient of lift (Cl) can207

be resolved such that,208

Cl = Cn cosα− Cc sinα. (8)

The moment and normal force coefficients are estimated using the superposition of loads coefficient209

components at each flow module. The LB model is divided into three modules: (i) Unsteady attached210

flow module - The load coefficients are calculated using the first eight states (x1 − x8) which are211

modified from Wagner’s unsteady formulation by accounting for the compressibility factor of flow,212

(ii) Trailing edge separation and reattachment module - the change in load coefficients with respect213

to the amount of flow separation calculated using the states x9, x10 and x12, and (iii) Dynamic214

stall or vortex-induced aerodynamic loads - additional loads arising due to the formation of the215

vortex on the airfoil surface calculated by state x11. The total loads are given as the summation of216

aerodynamic forces from each module by,217

Cn = CI
n + Cf

n + Cv
n, Cm = CI

m + Cf
m + Cv

m, Cc = Cf
c . (9)

The superscripts, I, f , and v indicate impulsive loads from the attached flow component, trailing218

edge separation component, and vortex shedding component, respectively. A detailed description of219

the formulation of aerodynamic loads and values of Mach number dependent parameters at regular220

intervals of M in the range of 0.3 - 0.8 (the M concerned with the present study ranges from 0.3 -221

0.6) can be found in [30, 10, 14] and is not presented here for the sake of brevity. Since the present222

study involves accounting for random fluctuations in the flow, giving rise to fluctuations in M as223

well, the Mach number dependent empirical parameters inherently become time-varying and need to224

be estimated at each time step. Since the empirical parameter values are only known corresponding225

to specific M values, at intermediate values ofM , a cubic Hermite interpolating polynomial function226

is used to estimate the Mach number dependent parameters. The cubic Hermite interpolation227

polynomial ensures C1 continuity which means the fitted curve is continuously differentiable at the228

known data points. Finally, aeroelastic equations of motion (Eqs. (1) and (2)) are converted to four229

first-order ODEs such that,230 
x′13
x′14
x′15
x′16

 = f̂(α, α′, ξ, ξ′, Cl, Cm). (10)

Here, the state variables x13, x14, x15 and x16 represent α, α′, ξ and ξ′, respectively - which are231

solved using numerical integration.232

2.3. Karhunen-Loeve Expansion for fluctuating inflow233

The fluctuations in the longitudinal inflow are generated using the Karhunen-Loeve expansion234

(KLE) approach using a prescribed correlation [15, 25]. In KLE, a stochastic process is simulated235

as bi-orthogonal decomposition of its correlation function [26]. This essentially means that the on-236

coming flow is represented as a random process involving a series expansion of a set of deterministic237

functions ui(τ) and a vector of independent orthogonal random variables ηi(θ), defined in the prob-238

ability space (Ω, ξ, P ) and θ ∈ ω (where ω is the sample space). The stochastic inflow velocity is239

given by240

U(τ, θ) = Um +
∑
i≥1

√
λiui(τ)ηi(θ). (11)

For the ease of representation, dependence on θ is dropped in this paper. The deterministic functions241

ui(τ) are obtained by solving Fredholm’s equation of the second kind [36] given by242 ∫
Ω

C(τ, τ ′).ui(τ
′) dτ = λiui(τ), (12)
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where C(τ, τ ′) is the correlation function of U(τ). Note that U(τ) is assumed to be a Gaussian243

process with a target auto-correlation function244

RUU,tgt(τ) = σ2.e−c1τlag
2

. (13)

Here, σ2 is the variance of the process, τlag is the time lag and c1 is the correlation coefficient245

that governs the fluctuation time scale. The number of terms needed for simulating Eq. 11 is the246

minimum ”z” satisfying247

z∑
i=1

λi ≥ 0.99

n∑
i=1

λi, (14)

where n is the total number of eigenvalues obtained from the discrete form of Eq. 12.248

2.4. Time scale of the oncoming flow249

In field conditions, the oncoming flow comprises different time scales depending upon natural250

conditions. While studies in the dynamical systems literature are rife with examples, illustrating251

the role played by the time scales of the input noise over the bifurcation characteristics [37], we252

specifically focus on the aeroelastic findings presented by Venkatramani et al.[25]. For a classical253

flutter system, it was shown that based on the correlation length of the input flow and the system254

time scale (here, the LCO time period), stochastic input flows could be classified into ‘long’ and255

‘short’ time scale flow fluctuations. These long or short time scales can individually produce radically256

distinct dynamics (at distinct stability regimes). Therefore, an interplay between different time scales257

(c1) and noise intensity (σ) on the aeroelastic dynamics, and in turn the incurred fatigue damage258

is investigated in this study. Accordingly, three different types of fluctuating inflows with varying259

time-scales are considered in the present study: i) ‘Type A’ (c1 = 0.01, correlation length (τl,A)260

= 30), ii) ‘Type B’ (c1 = 0.001, correlation length (τl,B) = 100) and, iii) ‘Type C’ (c1 = 0.00001,261

correlation length (τl,C) = 1000). Here, the correlation length is defined as τlag needed for RUU,tgt(τ)262

to approach zero [25].263

The chosen fluctuating inflows are classified as long time scale or short time scale by comparing264

their correlation length with nondimensional system time scale (τsys) [25], which is found to be 70265

in the present system. Hence, ‘Type A’ inflow is representative of a short time scale (since τl,A <266

τsys); whereas, ‘Type B’ and ‘Type C’ inflows are indicative of long time scales (since τl,B and τl,C267

> τsys). Figures 3(a)-(c) show the variation of flow speed with time simulated for Um = 6 and268

σ = 0.3 and representing fluctuating inflow model ‘Type A’, ‘Type B’ and ‘Type C’, respectively.269

The corresponding correlation functions are presented in Figs. 3(d)-(f), respectively. It is observed270

that the amplitude of U(τ) also increases as the correlation length of fluctuating inflow increases.271

In the light of the objective of this study to investigate the role of time scales and noise intensity272

of the input flow fluctuations on the response dynamics and the corresponding structural safety,273

we choose three different noise intensities in the present study. Accordingly, the values of σ are274

chosen as 0.1, 0.2 and 0.3. It is worthwhile to mention that a variation in σ is assumed not to275

affect the correlation length of fluctuating inflow significantly and therefore elucidating the need for276

investigating the effects of time scales and noise intensity of U(τ) as isolated cases.277

2.5. Validation of dynamic stall model under stochastic inflow condition278

The solver’s efficacy in estimating the aerodynamic loads in the dynamic stall regime under279

fluctuating flow conditions is inspected in the present subsection. This is done by first comparing280

the value of Cm calculated using the LB model to the findings from dynamic stall experiments by281

McAlister et al.[38] under deterministic flow conditions. The comparison of the Cm vs α hysteresis282

plot for an airfoil, undergoing forced sinusoidal pitching prescribed as: α(τ) = 12 + 10 sin(κτ), with283

the reduced frequency κ = ωb/V = 0.0976, obtained from present computation and experiments at284

M = 0.3 is shown in Fig. 4(a). The hysteresis plot is observed to be in close agreement with the285

experimental result substantiating the model’s validity in the dynamic stall regime.286

Next, the present LB model is examined for the fluctuating flow conditions with the same pitch-287

ing kinematics. The resulting fluctuations in the M at each time step are incorporated in the model288
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Figure 3: Time history of the fluctuating inflow at Um = 6 for, (a) ‘Type A’ inflow (simulated auto-correlation
function depicting the correlation length is shown in (d)), (b) ‘Type B’ inflow (simulated auto-correlation function is
shown in (e)), and (c) ‘Type C’ inflow (simulated auto-correlation function is shown in (f)).

such that the M value varies from 0.3 to 0.5 as the corresponding Mach number dependent empir-289

ical parameter values are available in the literature [35]. Note that the Mach number dependent290

parameters at intermediate values are estimated using the cubic Hermite interpolation technique.291

Due to the lack of suitable literature under stochastic inflow to compare, the validity of the solver is292

tested by comparing the Cm vs. α hysteresis plot with those obtained for deterministic inflow case293

at M = 0.3, 0.4, and 0.5. The idea behind this is that, if the hysteresis plot for the stochastic case is294

in qualitative and quantitative agreement with the individual deterministic cases, the model can be295

considered valid for the given conditions. Accordingly, it is observed in Fig. 4(b) that the hysteresis296

plot for fluctuating flow case matches qualitatively with the deterministic cases and is observed to297

be bounded between the hysteresis plots for M = 0.3 and 0.5 cases, respectively. Hence, the present298

modeling framework is considered valid even under the stochastic inflow.299
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-0.4
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Figure 4: Validation of the LB model in the deterministic and stochastic flow conditions- Cm vs α hysteresis of an
airfoil pitching sinusoidally with kinematics : α(τ) = 12 + 10 sin(κτ) at κ = 0.0976, (a) The efficacy of the LB model
is established by comparing the Cm vs α hysteresis curves with experimental data [38] at M = 0.3, (b) The hysteresis
plots under deterministic flow condition at M = 0.3, 0.4 and 0.5 (ii, iii, and iv, respectively) obtained using the LB
model, are compared with the hysteresis plot under stochastic flow (i) for mean M = 0.4, with the M(τ) randomly
fluctuating between 0.3 - 0.5.

2.6. Overview of the rainflow counting algorithm300

In order to estimate the fatigue damage from the aeroelastic response, RFC is employed in301

the present study. The details of this algorithm are briefly presented in this subsection. Under302

stochastic input flow conditions, the noise-induced aeroelastic responses give rise to random stress303

cycles. Analysis of random stress cycles are done either in frequency domain or in time domain.304

Time-domain-based techniques include cycle counting methods such as level crossing, range counting,305

and RFC [39]. In the level crossing method, only the peak loads above a set limit are counted, and306

others are neglected, while in range counting, the peak and valley of each load cycle are counted to307
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calculate the strength loss after each cycle. However, these approaches result in erroneous fatigue308

life predictions in certain cases, particularly where load cycles consist of a combination of low and309

high amplitude cycles [39]. RFC, despite not accounting for the sequence of load cycles, is the most310

accurate and most widely used method for estimating fatigue damage in most of the engineering311

applications [39].312

The earliest RFC algorithm was developed by Matsuishi and Endo [40] and was named after313

the analogy that raindrops are falling from the surface of vertically drawn stress cycles, analogous314

to the ‘pagoda roof’. Over the years, different RFC algorithms were developed, and some of them315

are listed in [41, 42]. Rychlik[32] gave a new definition of RFC which is illustrated in Fig. 5. This316

definition involves finding the largest minima Lk on both sides (t+ and t−) of each local maxima317

(Hk), between those local maxima (Hk) and the adjacent higher peaks on both sides. Between the318

two minima Lk(t
+) and Lk(t

−), the one that corresponds to the minimum downward excursion is319

defined as kth rainflow minima. The RFC amplitude for kth cycle is thus defined as (Hk − LRFC
k ).

Figure 5: Schematic representation of a typical RFC algorithm [32].

320

To calculate the fatigue damage, a cycle counting rule is typically integrated with a damage321

rule. Most widely accepted damage theories are linear accumulation theory given by Palmgren [34],322

French’s endurance-based theory [43] and Langer’s two-stage damage based approach [44]. A review323

of all the popular fatigue damage methods can be found in Fatemi et al.[45]. Although endurance324

strength and two-stage-based techniques are much more detailed, the process is computationally325

expensive [46]. On the other hand, the linear accumulation theory given by Palmgren is more326

popular, particularly for comparative studies of fatigue damage among different models [22, 19], due327

to its simplicity and can be combined effectively with the RFC algorithm.328

Based on Palmgren’s theory, Miner[33] derived a mathematical model called the linear damage329

accumulation rule (LDAR) given as fd =
∑k

n=1 (ni/Ni), where ni is the number of load cycles330

corresponding to ith load level, Ni is the number of load cycles to fail at that level and k is total331

number of load levels. LDAR is a robust methodology for estimating the fatigue damage based on332

the assumption of constant energy absorption associated with each cycle [45]. If the net fatigue333

damage value (fd) approaches unity, it implies that the structure has failed.334

3. Numerical aeroelastic response analysis335

The present study aims to investigate the dynamical characteristics of a canonical pitch-plunge336

aeroelastic system subjected to deterministic and stochastic inflows. The response dynamics is337

compared among linear and nonlinear structural stiffness cases under attached flow (linear) and338

dynamic stall (nonlinear) conditions. Next, the stresses developed in the structure due to aeroelastic339

oscillations and the resulting fatigue damage accumulated in the structure are estimated. This340

section deals with the analysis of the response dynamics of the system. To that end, the state-341

space form of the coupled governing equations in terms of first-order ODEs are solved using the342

fourth-order Runge-Kutta numerical integration technique with increasing mean flow speed. An343

adaptive time-stepping with a tolerance (both absolute and relative) of O(10−6) is used for the344

deterministic inflow case. On the other hand, a fixed time step of 10−4 is chosen through a time345

step independence test to acquire the numerical solutions for the stochastic inflow case, ensuring the346
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stability of the numerical integration scheme. The nondimensional structural parameters are chosen347

from Lee et al.[3] and are given in Table 1. To incorporate the structural nonlinearity, a cubic348

nonlinear stiffness in the pitch DoF with βα = 5 is chosen for this study. Each case for deterministic349

or stochastic inflow under attached flow and dynamic stall regimes is simulated for τ = 0-8000, and350

the time responses are presented in the following subsections. Note that the average simulation time351

for each deterministic case under isolated structural nonlinearity is approximately 30s, and under352

aerodynamic/coupled structural-aerodynamic nonlinearity is approximately 3000s. For solutions of353

each stochastic case under pure structural nonlinearity, computation time is approximately 1500s,354

and for pure aerodynamic nonlinearity and combined structural/aerodynamic nonlinearity, it is355

approximately 36000s. The present simulations are performed on a workstation configured with an356

Intel® Core™ i7-9700 CPU @ 3.00GHz - 8 processors and 64 GB RAM.357

Table 1: The nondimensional structural parameters of the aeroelastic system [3].

µ rα xα ah ϖ

100 0.5 0.25 -0.5 0.2

3.1. Structural responses under deterministic flow conditions358

This subsection focuses on investigating the system response under deterministic flow scenarios.359

First, the sole effects of isolated structural and aerodynamic nonlinearities on the responses signa-360

tures are studied. To that end, the structure is considered to possess a cubic nonlinear stiffness361

in pitch DoF under attached (linear) flow conditions. The unsteady linear formulation based on362

Wagner’s function is used to model the aerodynamic loads in this regime. The bifurcation plot with363

U as the control parameter is shown in Fig. 6(a). It is observed that the system response transitions364

from a fixed point to LCO response at U = 6.25, beyond which the amplitude of LCOs increases365

gradually, characterized by the occurrence of a super-critical Hopf bifurcation [3].366

Figure 6: Bifurcation diagrams of pitch response considering the flow speed as the control parameter for (a) nonlinear
structure and linear aerodynamics, (b) linear structure and nonlinear aerodynamics, and (c) both nonlinear structure
and aerodynamics.

Next, the response dynamics of a linear structure (i.e., βα = 0 in Eq. 2), subjected to dynamic367

stall conditions are studied using the LB model to investigate the isolated effects of aerodynamic368
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nonlinearity. It is observed in Fig. 6(b) that the onset of LCOs occurs at U = 5.65, which then369

transition into aperiodic responses at U = 5.8. A zoomed view of the responses between U = 5.6-5.9370

is also presented in Fig. 6(b), showing the transition from fixed point to aperiodic oscillations via an371

LCO regime. The onset of aperiodicity marks the first occurrence of a dynamic stall event, which372

is evident from the x9 - x10 and α - α′ phase plots (see Fig. 7). Dynamic stall phenomenon in LB373

model is characterized by the discontinuous boundaries present at x9 = ±Cn1 (onset of stall/ flow374

reattachment) and x10 = 0.7 (dynamic trailing edge separation point corresponding to static stall375

angle). Note that x9 and x10 represent the state values of the LB model and details of the same can376

be found in our recent work [14]. Fig. 7(a) shows that the flow remains attached at U = 5.66, as377

the x9 and x10 values do not cross the discontinuity boundaries. At U = 5.79, value of x9 crosses378

±Cn1 and x10 approaches 0.3, indicating that the trailing edge separation point lies at 0.3c from the379

leading edge and the response dynamics switches aperiodically between deep and light dynamic stall380

events (Fig. 7(b)). Note that light stall regime corresponds to amplitude of oscillations reaching381

static stall angle-of-attack which lies closely to the AoA at x10 = 0.7 and deep stall regimes lie382

beyond light stall regimes, where a large vortex spends significant time on the airfoil surface before383

shedding. The aperiodic nature of the responses at U = 5.79 is further substantiated by the α - α′
384

phase portrait shown in Fig. 7(e). As U reaches 6.6, x9 - x10 phase portrait (see Fig. 7(c)) shows that385

the dynamics enter into deep stall event completely and the response signature becomes periodic,386

marking the onset of stall flutter LCOs (see Fig. 7(f)).387

Next, the combined effect of structural cubic hardening nonlinearity and aerodynamic nonlin-388

earity governed by dynamic stall on the system responses is investigated. The bifurcation plot for389

the same is provided in Fig. 6(c). It is observed that the onset of flutter instability occurs almost at390

the same flow speed (U = 5.65) as in the case of isolated aerodynamic nonlinearity (see Fig. 6(b)).391

It is worth noting that the bifurcation point has shifted to lower flow speed as compared to the392

system with isolated structural nonlinearity. This may be attributed to the LB model’s capability of393

accounting for the nonlinear effects from the flow (wake effects from flow separation and accounting394

for compressibility). Therefore, it is conjectured that the presence of nonlinearities in flow advances395

the bifurcation onset in the response signatures. Furthermore, the LCOs occurring post-bifurcation396

span over a larger flow speed regime, and the transition to aperiodic responses (at U = 6.45) from397

LCOs occurs via a short regime of period-3 oscillations between U = 6.1-6.4. The onset of large-398

amplitude stall flutter LCOs is observed to be postponed to U = 6.8 as compared to U = 6.6 in the399

case of a system with isolated aerodynamic nonlinearity (see Fig. 6(b)).400
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Figure 7: x9 - x10 phase portrait (a) at U = 5.66, corresponding to the onset of LCOs, (b) at U = 5.79, showing the
transition of LCOs to aperiodic oscillations and (c) at U = 6.6, corresponding to the stall flutter oscillations. The
dashed lines in (a-c) indicate ±Cn1. The α - α′ phase portrait of the response signatures at (d) U = 5.66, (e) U =
5.79 and (f) U = 6.6.

So far, the bifurcation scenarios in the deterministic aeroelastic system with isolated nonlinearity401

either in the structure or flow, followed by combined nonlinearities are presented. Equipped with402

this insight, we repeat this exercise for the nonlinear aeroelastic system subjected to randomly403

fluctuating input wind in the next subsection.404

3.2. Structural responses under stochastic flow conditions405

In this part, the time responses of the system with isolated nonlinearity in structure and flow406

are obtained first, followed by an investigation into the effect of coupled nonlinearities on system407
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responses under stochastic flow conditions achieved by randomly varying the inlet velocity about408

a mean value of (Um). It is worthwhile to mention that bifurcation diagrams cannot be explicitly409

presented in the stochastic case - as found in Fig. 6. Indeed, one needs to invoke the concepts of410

stochastic bifurcations via the evolution of probability density function, and/or estimate Lyapunov411

exponents, and/or estimate Shannon entropy as elaborated in Venkatramani et al. [26]. Doing the412

same is beyond the scope of objectives entailing in the present study. Therefore, we restrict our413

discussions by merely presenting the time histories of the responses and use visual inspection to414

discern the qualitative nature of the stochastic aeroelastic responses (in lines with [25]). Recalling415

the discussions in Sec. 2.4, three different types of fluctuating inflow, involving different time scales -416

defined as ‘Type A’, ‘Type B’ and ‘Type C’ are considered in this study with various noise intensities417

ranging from 0.1 to 0.3. It is to be noted that only selected cases representative of notable transitions418

impacting structural safety are discussed in this paper for the sake of brevity.419

Fluctuating inflow imposed upon structure possessing pitch cubic hardening nonlinearity under420

attached flow condition is observed to significantly alter the response dynamics of the system (see421

Fig. 8) and is consistent with the observations reported hitherto [47, 26]. The time scale of the422

flow, on the other hand, is observed to play a major role in defining the qualitative nature of the423

response characteristics. Therefore, as a starting step, a larger emphasis is placed on demarcating424

the response dynamics at different time scales at a constant value of σ = 0.3. Subsequently, the425

effect of different σ values on the system response is investigated in this study and is presented in426

the later part of this subsection.427

Under ‘Type A’ inflow (corresponding to a short time scale), the pitch response at Um = 5.6428

decays to a fixed point (see Fig. 8(a)) and at Um = 6, a transient “burst” of oscillations appear429

which then switch to a fixed point signature; see Fig. 8(b). At Um = 6.6, large-amplitude LCOs430

with random variations in the amplitude are observed; see Fig. 8(c). Finally at Um = 7, response431

transitions to well developed random LCOs; see Fig. 8(d). Note that the intermittency route to432

random LCOs presented here are consistent with the observations of Venkatramani et al. [25, 26, 27].433
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Figure 8: Pitch responses of system possessing structural nonlinearity under attached flow conditions subjected to
stochastic inflow conditions with σ = 0.3; for ‘Type A’ inflow at (a) Um = 5.6, (b) Um = 6, (c) Um = 6.6, and (d)
Um = 7; for ‘Type B’ inflow at (e) Um = 5.6, (f) Um = 6, (g) Um = 6.6, and (h) Um = 7; and for ‘Type C’ flow at
(i) Um = 5.6, (j) Um = 6, (k) Um = 6.6, and (l) Um = 7. The pitch angle presented throughout the manuscript are
in radians.

Under ‘Type B’ fluctuating inflow, involving a time scale slightly larger than the system time434

scale, the system responses at Um = 5 and Um = 6 are seen to be similar to those observed for the435

‘Type A’ inflow (see Fig. 8(e) and Fig. 8(f)). However, as Um is increased, the time responses are ob-436

served to possess sporadic bursts of periodic oscillations switching intermittently with low amplitude437
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oscillations or rest/off regimes (see Fig. 8(g) and Fig. 8(h)). This is indicative of “burst-type” inter-438

mittency [25]. It is to be cautioned that ‘Type B’ input flow possesses a time scale only marginally439

higher than the system time scale and can be perhaps defined as input flows with “moderate” time440

scales. Venkatramani et al. [25] on the other hand, used isolated cases of extremely short time scale441

input flows (wherein the correlation time of the random input wind is very short compared to the442

system time scale) and reported regimes of intermittent periodic oscillations amidst low-amplitude443

aperiodic oscillations - which was termed to be “burst” type intermittency in aeroelastic responses.444

One needs to be mindful of the distinct correlation structure found in the ‘Type B’ fluctuating445

inflow and thereby in interpreting the responses presented in Figs. 8(g) and 8(h) as “burst” type446

intermittency. Studies on the correlation structure of the random input process, hand-in-hand with447

the noise characteristics [48] have shown that the genre of noise-induced intermittency in dynamical448

systems needs closer attention in attributing terminologies. Nevertheless, given that the present449

work is focused on utilizing the stochastic aeroelastic responses to compute the fatigue damage,450

carrying out investigations into the genres of noise-induced intermittent aeroelastic responses will451

be beyond this study.452

Under ‘Type C’ flows (see Figs. 8(i) - 8(l)), involving a long time scale, one observes sporadic453

periodic oscillations at lower values of Um, which eventually gives away to a decaying signature. As454

Um increases, periodic oscillations (“on” state) are found interspersed amidst segments of decaying455

signatures (“off” state), and thereby called noise-induced “on-off” intermittency. The time responses456

presented in Fig. 8 are consistent with the findings presented in [47, 25, 27]. It is worth noting that457

the responses presented in Fig. 8 for flows characterized as ‘Type B’ and ‘Type C’ transition to458

random LCOs for larger values of Um. However, for reasons described in the next part involving459

dynamic stall, we refrained from showing the eventual culmination of intermittent responses into460

random LCOs.461

Next, we turn our attention to the response dynamics of the system with only aerodynamic462

nonlinearity under randomly fluctuating flow conditions with different time scales. In this case,463

the amplitude of the pitch response is much higher than those obtained for isolated structural464

nonlinearity. The qualitative nature of the pitch responses here as well shows different intermittent465

signatures under different time scales. For the ‘Type A’ inflow, one observes a fixed point response466

for low values of Um that transforms itself into fully developed LCOs at higher values of Um; see467

Figs. 9(a)-(d). Though “burst” type intermittency is observed at intermediate values of Um, we468

have refrained from explicitly presenting them here to maintain consistency in the Um values used469

throughout this manuscript. The “burst” type intermittency route to fully developed LCOs are470

shown for the ‘Type B’ inflow; see Figs. 9(e)-(h). In accordance with using a long time scale input471

flow, ‘on-off’ intermittent behavior is observed under ‘Type C’ inflow for Um = 6-7 (see Fig. 9(j),472

Fig. 9(k) and Fig. 9(l)). The amplitude of the ‘on’ states increases gradually with the mean flow speed473

and eventually transforms into LCOs. Note that though the LCOs are observed in higher values474

of Um, we have refrained from presenting them here. This is so because the aerodynamic forces475

modeled via the LB formulation are acceptable and accurate for restrictive values of α [31, 1, 13].476

Indeed, the availability of experimental parameters needed for the LB model is usually well available477

for α < 40◦ (≈ 0.7 radians) [13]. Therefore, though in line with the hitherto studies [25, 14], an478

intermittency route to LCO is encountered in the present case, the accuracy of the responses once479

α > 40◦ becomes a concern. In turn, we avoid presenting the responses obtained at higher values480

of Um. Given the need to compare the time histories of the responses, and correspondingly, the481

accumulated fatigue damage; the LCOs obtained even from unsteady aerodynamic formulations at482

higher values of Um are not presented earlier in Fig. 8.483

Next, the time responses corresponding to the system possessing both structural and aerodynamic484

nonlinearities (coupled nonlinearities) are obtained and shown in Fig. 10. From visual inspection,485

it is evident that the aeroelastic responses obtained from the system with coupled nonlinearities486

are qualitatively similar to the responses of a system with a linear structure subjected to nonlinear487

aerodynamic loads (see Fig. 9). The responses are also found to be consistent with the findings from488

[14]. However, the amplitude of responses is observed to be reduced with the inclusion of a cubic489

hardening nonlinearity in the structural stiffness behavior, as compared to the system responses490

under pure aerodynamic nonlinearity reported in Fig. 9.491

It is worth reiterating that the presented aeroelastic dynamics are stochastic and nonlinear.492
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Figure 9: Pitch responses of system with linear structure under nonlinear flow conditions subjected to stochastic
inflow conditions with σ = 0.3; for ‘Type A’ inflow at (a) Um = 5.6, (b) Um = 6, (c) Um = 6.6, and (d) Um = 7; for
‘Type B’ inflow at (e) Um = 5.6, (f) Um = 6, (g) Um = 6.6, and (h) Um = 7; and for ‘Type C’ inflow at (i) Um =
5.6, (j) Um = 6, (k) Um = 6.6, and (l) Um = 7.
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Figure 10: Pitch responses of system with nonlinear structural stiffness behavior under nonlinear flow conditions
subjected to stochastic inflow conditions with σ = 0.3; for ‘Type A’ inflow at (a) Um = 5.6, (b) Um = 6, (c) Um =
6.6, and (d) Um = 7; for ‘Type B’ inflow at (e) Um = 5.6, (f) Um = 6, (g) Um = 6.6, and (h) Um = 7; and for ‘Type
C’ flow at (i) Um = 5.6, (j) Um = 6, (k) Um = 6.6, and (l) Um = 7.
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In other words, the qualitative and quantitative characteristics are dictated by the genres of the493

nonlinearity (type, location, and strength of the nonlinearity) and genres of the random input flow494

(noise intensity, time scales, and probabilistic distributions). Given the goal of this work to hand-495

in-hand characterize the incurred fatigue damage against the dynamical signature, a brief attempt496

to characterize the time responses by varying the noise intensity of ‘Type A’, ‘Type B’ and ‘Type497

C’ inflow fluctuations are presented next. It is to be cautioned to the reader that though ‘Type498

A - Type C’ inflow have different time scales, a change in the noise intensity can affect the time499

scale of the random process as well [25, 26]. Disregarding the interdependence of the time scale500

and noise intensity of the random process, for the ease of mathematical modeling, we present the501

aeroelastic response dynamics by merely varying the noise intensity σ and assume that this exercise502

has no considerable impact on the time scales of ‘Type A - Type C’ inflow. Another important503

probabilistic marker that can considerably affect the signature of the aeroelastic responses, and504

in turn, the structural safety/fatigue damage accumulation, is the probability distribution of the505

input random wind. Recall that in Eq. 12, U(τ) is assumed to be a Gaussian random process.506

Introduction of non-Gaussian distributions and investigating the aeroelastic dynamics along with507

the fatigue analysis are rife with computational challenges and would demand a separate study.508

Accordingly, fixing Um = 6.6, we present three cases of noise intensity (namely, σ = 0.1, 0.2 and509

0.3) for the flows represented via ‘Type A - Type C’; see Fig. 11. For the ‘Type A’ inflow case,510

representing the short time flow fluctuations, one observes that an increase in the noise intensity511

augments the random variations in the peak amplitudes of the LCOs and is akin to that reported in512

[26]. In the ‘Type B’ case, an increase in the noise intensity transforms the sustained LCOs into a513

“burst” type intermittency, albeit with minimal presence of the aperiodic oscillations. As elaborated514

in Krishna et al. [48], without a hand-in-hand analytical knowledge of the noise intensity, time515

scale, and the probabilistic distributions, it would be premature to comment on the genre of the516

intermittency as well as the extent of laminarity length (which dictates the duration of aperiodic517

fluctuations). Interestingly, increasing the noise intensity to 0.3 transforms the response dynamics518

into a visibly evident “burst” intermittency - indicating a delayed onset of LCOs [26] - which in519

turn can affect the accumulated fatigue damage. This will be taken up in the next part. For the520

‘Type C’ flow case, corresponding to long time scale flow fluctuations, it is observed that despite521

an increase in the noise intensity from 0.1 to 0.3, the “on-off” type intermittency is consistently522

observed; albeit with varying laminarity length. Random LCOs are not captured, perhaps due to523

a considerable shift in its onset [25]. Indeed, the appearance of “on-off” type intermittency and its524

culmination into sustained LCOs depends on the flow speed remaining above or below the critical525

limit for a sufficient duration of time; refer to Venkatramani et al. [25] for detailed discussions on526

the same for a stochastic classical flutter system.527

To demonstrate the same for the present aeroelastic system, we show the variations of U(τ) versus528

τ for the ‘Type C’ flow in Fig. 12. At lower intensity of fluctuations, U(τ) fluctuates continuously529

above the critical flow speed Ucr (see Fig. 12(a)). Consequently, the corresponding aeroelastic530

response is a sustained LCO; see Fig. 12(d). Increasing σ, U(τ) fluctuates above and below Um (see531

Fig. 12(b)) and correspondingly giving rise to “on-off” type intermittency in the aeroelastic response;532

see Fig. 12(e). This trend is observed even when the noise intensity becomes 0.3 (see Fig. 12(c)).533

However, the extent of time it stays above and below the critical speed is different owing to the534

changed noise intensity. As discussed earlier, the time scale and intensity of fluctuations dictate this535

mapping between the randomness in the input flow and the noise-induced “on-off” intermittency in536

the output dynamics [48].537

So far, it is observed that nonlinearity arising from structure and flow has different effects on538

system dynamics under deterministic conditions. Structural nonlinearity restricts the divergent539

oscillations to LCOs beyond the critical flutter boundary under the assumption of the attached wake.540

Under aerodynamic nonlinearity, structure manifests phenomenologically richer dynamic responses541

governed by flow separation and reattachment. On the other hand, time scales and noise intensity542

of the fluctuating inflow are crucial in determining aeroelastic responses under stochastic conditions.543

At this interim juncture we note the following.544

• Based on the time-scales of the input flow fluctuations, one can either encounter “on-off” type545

or “burst” type intermittent behavior.546
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Figure 11: Effect of intensity of fluctuating inflow on aeroelastic responses at Um = 6 under nonlinear aerodynamic
loads and nonlinear structure; time histories with ‘Type A’ inflow for, (a) σ = 0.1, (b) σ = 0.2, and (c) σ = 0.3; time
histories with ‘Type B’ inflow for, (d) σ = 0.1, (e) σ = 0.2, and (f) σ = 0.3; time histories with ‘Type C’ inflow for,
(g) σ = 0.1, (h) σ = 0.2, and (i) σ = 0.3.
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Figure 12: Effect of intensity of fluctuating inflow on aeroelastic responses at Um = 6.6 for ‘Type C’ inflow under
nonlinear aerodynamic loads and nonlinear structure. Time histories of ‘Type C’ inflow at Um = 6.6 for, (a) σ =
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respectively. The critical flutter velocity (Ucr) is 5.65 and shown by dashed lines.
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• If the input wind fluctuates with predominantly long time scales, the aeroelastic dynamics547

switches between high-amplitude periodic oscillations called “on” states, and states of de-548

cayed oscillations called “off” states. A hand-in-hand increase in noise intensity of the flow549

fluctuations result in increased switching between the “on” and “off” states.550

• If the input wind fluctuates with predominantly short time scales, the dynamics of the airfoil551

displays near random switching between states of periodic oscillations interspersed amidst552

states of aperiodic oscillations. As observed in [26], an increase in fluctuation intensity yields553

in an easier hopping of trajectories from one attractor to another, leading to unpredictable554

stitching’s in the intermittent dynamics. In otherwise, the average laminarity length of the555

noise-induced intermittency in our considered stall flutter system gets altered [48].556

It is worth reiterating that though few studies on stochastic stall flutter systems exist hitherto [22,557

15, 14], minimal attempts have been made to characterize the noise-induced transitions in the route558

to stochastic stall flutter. Consequently, the impact of probabilistic markers like time scales of the559

input fluctuating flow, and its noise intensities over the nature of the response dynamics has remained560

largely unexplored. The present study makes its first end of contribution by presenting the noise-561

induced intermittency as an intermediate stage of oscillations that can ultimately culminate into562

torsionally dominant random LCOs (stochastic stall flutter). Indeed, one observes that numerous563

studies on engineering that encountered noise-indudced intermittency have taken elaborate steps to564

develop measures that can predict both (i) transitions to intermittency from state of low amplitude565

oscillations [49, 50, 51] and (ii) transitions from intermittency to large amplitude LCOs [52, 53],566

underscoring the need for structural safety assessment. For the considered stochastic stall problem,567

we address this end of specific concern in the next section. For the sake of comparison, we compare568

the fatigue damages incurred in classical flutter systems as found in [19].569

4. Fatigue damage analysis570

Complex dynamical signatures in stochastic nonlinear aeroelastic systems can presumably induce571

a considerable amount of fatigue damage in the aeroelastic structures. Indeed, one can conjecture572

that repeating time histories (of different patterns) can give rise to complex stress cycle reversal573

and fatigue damage to the aeroelastic system. Unlike the failure that occurs through the first574

passage of time, fatigue damage accumulation is usually not noticed until the appearance of fatigue575

cracks, which can rapidly propagate towards a fracture failure. Noting that the development of576

fatigue failure can be more rampant in the vicinity of LCOs, Venkatramani et al. [26] developed577

a suite of measures that can foretell an impending flutter in a stochastic aeroelastic system with578

cubic stiffness nonlinearity, and thereby changing the operating conditions to dissuade the onset579

of this instability. The present study deals with far more complex nonlinearities and fluctuating580

flow parameters, thereby giving rise to various dynamics and random LCOs. The accumulation of581

fatigue damage in these corresponding response dynamics and the augmenting role of nonlinearities582

and randomness in the input flow remains undocumented in the hitherto literature. Addressing this583

issue is a focal objective of this study, and the methodology to do the same are elucidated next.584

The aeroelastic system is assumed to be a cantilever beam of 20 m length and uniform cross-585

section. Although the loading on wings and blades under fluid-structure interaction is complex, a586

uniformly distributed loading is considered here. The cross-section is taken as a NACA 0012 airfoil587

with a cord length of 0.61 m. Here, only pitch-plunge responses obtained for a 2-DoF reduced-order588

model are used to obtain stresses in a 3D aeroelastic structure- akin to that in Venkatesh et al. [19].589

The airfoil is subjected to multi-axial loading, bending stress due to plunging motion, and tor-590

sional stress due to pitching motion. To convert the state of stress from multi-axial to uniaxial, signed591

von Mises criteria given by Bracessi et al.[54] is implemented. Signed von Mises criterion possesses592

sudden jumps associated with stress reversal, and yet owing to its ease of computing the damage593

accumulation - one resorts to using this criterion. The airfoil material is assumed to be isotropic,594

composed of aluminum alloy Al 6082-T6, having modulus of elasticity (E) = 70 GPa, shear modulus595

(G) = 26.4 GPa and yield strength 250 MPa and is same as that provided in [19]. Under reversible596

loading, S−N characteristics or stress amplitude (S) vs number of cycles to failure (N) relationship597

for Al 6082-T6 are experimentally obtained by Carpinteri et al. [55]. Under reversible bending598
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Figure 13: S-N curves for the material for bending and torsional stress.

stresses, SB = 1067×NB
0.1436 and under reversible torsional stresses, ST = 446.3×NT

0.1207, where599

SB and ST are reversible bending and torsional stress amplitudes, respectively, and NB and NT are600

the number of cycles to fail under SB and ST , respectively.601

Due to plunge motions, normal bending stresses will be developed, proportional to the displace-602

ment (y) of the section above the neutral axis. Additionally, there will be a net shear force and603

hence shear stress in the y-direction. However, the magnitude of the shear stresses due to bending is604

observed to be inconsiderable as compared to normal bending stresses, which is also shown in [19].605

Hence, only normal bending stresses are taken into consideration here. From the theory of simple606

bending, bending stress is given as σzz = (Mb/I)y, where Mb is the bending moment, and I is the607

area moment of inertia of the airfoil cross-section about the x-axis. The stresses will be highest at608

the maximum thickness or ymax.609

Calculation of torsional stresses due to pitching motion is rather complicated to evaluate as610

warping is a significant factor due to non-circular cross-section. Due to warping, there will be out611

of plane displacement also (i.e., in the z-direction), which will be proportional to the rate of twist θ612

and a function ψ(x, y), such that ∆z = θψ(x, y). The product zθ is the rotation of the cross section613

at z distance and is obtained from pitch time histories. All direct strains and shear strain in x-y614

plane are zero and hence corresponding stresses are also zero. Remaining two shear strains (γzx)615

and (γzy) are given as [19],616

γzx = θ

(
∂ψ

∂x
− y

)
, γzy = θ

(
∂ψ

∂y
+ x

)
. (15)

The corresponding shear stresses are given as σzx = Gγzx and σzy = Gγzy. Consequently,617

∂σzy
∂x

− ∂σzx
∂y

= 2Gθ. (16)

A stress function called Prandtl stress function (ϕ) is now introduced such that, σzx = ∂ϕ/∂y and618

σzy = −∂ϕ/∂x. Substituting (ϕ) into Eq. 16, we obtain619

∂2ϕ

∂y2
+
∂2ϕ

∂x2
= −2Gθ. (17)

For a symmetric airfoil such as NACA 0012, the cross section is given as, y = aζ (x/c) and y =620

−a1ζ (x/c), where ζ (x/c) = (x/c)
m1 [1− (x/c)

p1 ]
q1 . The value of stress function ϕ for a symmetric621

airfoil section is given as622

ϕ = A(y − aζ)(y + a1ζ), (18)

where A = −Gθ/[1 + (α1/c
2)(a2 + a1

2 + aa1)] and the parameters a, a1, p1, q1, m1 and α1 are623

constants for a particular airfoil cross section. For a NACA 0012 airfoil section, the parameters are624

obtained as a = 0.94, a1 = 0.94, p1 = 0.139, q1 = 1, m1 = 0.75, α1 = 0.0083. More details of stress625

calculations and NACA 0012 parameters can be found in [19].626
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Figure 14: Variation of (a) σzz , (b) σzx, (c) σzy , and (d) σv , along the chord length x (meters). All the stresses are
in MPa.

Since both torsional and bending stresses act simultaneously, the loading is multiaxial. An627

approximate method to convert the multiaxial stresses to a uniaxial state of stress, ‘signed von628

Mises criterion’ is implemented here, which is given as,629

σv =

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σxy2 + σyz2 + σzx2)

2
. (19)

Here, the sign of the von Mises stress is taken as that of maximum principal stress. Since the system630

responses are random in nature, obtained time histories of bending stress (σzz(τ)), torsional stresses631

(σzx(τ) and σzy(τ)) and von Mises stress (σv(τ)) are also random. RFC algorithm given by Rychlik632

[32] is implemented to extract the load levels and turning points from random stress time histories.633

A MATLAB based ‘WAFO toolbox’ is utilized to calculate the RFC and corresponding damage634

values [56] using the Miner’s rule [33].635

4.1. Estimation of stresses636

For fatigue damage analysis, estimation of critical points or the locations of maximum stresses637

in both bending and torsional modes are required. To that end, bending and torsional stresses are638

calculated individually at arbitrarily chosen nondimensional time instants along the chord length.639

It is observed in Fig. 14(a) that σzz is maximum at x = 0.18 m, measured from the leading edge,640

which corresponds to the location of maximum airfoil thickness (y = 0.037 m). σzy is found to be641

maximum at x = 0.012 m which is a point close to the leading edge (see Fig. 14(b)) and the airfoil642

thickness at this location is y = 0.015 m. σzx is found to be maximum at x = 0.18 m, which again643

corresponds to the location of maximum thickness of airfoil (see Fig. 14(c)). So, the two critical644

points on airfoil surface are obtained as (x = 0.012 m, y = 0.015 m) and (x = 0.18 m, y = 0.037645

m). Note that the location of critical points do not vary with time.646

Next, the concept of signed von Mises stress is invoked to convert the multi-axial state of stress647

to a uniaxial state. The variation of σv along the chord is shown in Fig. 14(d). It is observed that648

σv increase rapidly until a chord length of 0.012 m (the location of maximum σzy developed) and649

continues to increase albeit at a slower rate as chord value approaches 0.18 m, which corresponds650

to the location of maximum thickness. Beyond this location, von Mises stress gradually decreases.651

Thus, the point located at x = 0.18 m, y = 0.037 m is susceptible to maximum von Mises stress and652

treated as the only critical point in this study.653

4.1.1. Developed stresses under deterministic flow654

Stress time histories are generated under deterministic inflow conditions by calculating the655

stresses at the critical point. Under deterministic flow, the stress cycles are time-invariant and656
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Table 2: Stress amplitude (in MPa) of σzz , σzx, σzy and σv under deterministic flow conditions.

Aeroelastic model U σzz σzx σzy σv

Attached flow/ 6.6 3.64 18.11 0.17 29.75
nonlinear structure 7.0 4.81 22.85 0.17 39.53

Nonlinear aerodynamics/ 6.6 3.12 28.39 0.20 49.61
linear structure 7.0 2.70 32.20 0.23 55.83

Nonlinear aerodynamics/ 6.6 2.64 26.55 0.19 45.8
nonlinear structure 7.0 2.10 28.51 0.20 49.28

have a constant stress amplitude. Amplitudes of bending, torsion, and von Mises stress cycles are657

shown in Table 2, for Um = 6.6 and 7, respectively. For nonlinear structures under attached flow658

conditions, stress amplitudes increase with the flow speed. For the other two cases of nonlinearity,659

all the stress amplitudes are proportional to flow speed except the bending stresses, which is due to660

high amplitude plunge responses during the aperiodic regime. It is observed that the amplitude of661

σzy is almost negligible as compared to that of σzx. Also, amplitude of σzz is significantly small as662

compared to σzx. Thus, the resultant von Mises stresses are mainly contributed by σzx. Bending663

stresses are plunge dominant and found to be highest when the flow is attached and the structure664

possessing cubic hardening nonlinearity in pitch, which is due to linearity in plunge stiffness. On665

the other hand, torsional stresses are highest under nonlinear aerodynamics and with linear struc-666

ture, owing to the pitch dominant oscillations under dynamic stall event [1]. Since σzx has greater667

contribution in determining σv, as compared to σzz, the amplitude of σv is highest under nonlinear668

aerodynamics for a linear structure. Incorporating cubic hardening nonlinearity in pitch results in669

reduced torsional stresses and hence the resulting von Mises stresses also reduce significantly. In670

field conditions, stress cycles are random. Hence, a more detailed analysis is presented next, in671

which stresses developed under the fluctuating inflow of different time scales and intensities are ana-672

lyzed. However, the results obtained under deterministic inflow are important as the isolated effect673

of different nonlinearities on bending and torsional stresses is explicitly observed.674

4.1.2. Developed stresses under stochastic flow675

Akin to aeroelastic response analysis, stresses time histories under stochastic flow conditions676

are obtained for three time scales ‘Type A’, ‘Type B’ and ‘Type C’ at intensity σ = 0.1, 0.2 and677

0.3, at constant intervals of mean flow speeds (Um) from 5 to 7. It is observed that the maximum678

amplitudes of resultant random stress cycles are obtained at Um = 7 and σ = 0.3, which are presented679

in Table 3 and Fig. 15. Table 3 shows the maximum stress values from the random time histories680

of σzz, σzx, σzy and σv along with the number of RFC. Similar to deterministic inflow conditions,681

torsional stresses are predominant under stochastic inflow conditions as well. It is noted that stresses682

developed under stochastic inflow are significantly higher than those under deterministic inflow. It683

should be noted that the maximum stress values in all the cases are much below the yield strength684

of the material (250 MPa). Developed stresses are observed to be highest when the structure is685

linear and nonlinearity is solely aerodynamic, and lowest when the nonlinearity is solely structural.686

The combined presence of structural nonlinearity into aerodynamic nonlinearity reduces the stress687

amplitude and requires lesser magnitude stress cycles. It is evident that the longer the time scale,688

the higher the amplitude of stress cycles. Under ‘Type C’ inflow, the stress amplitudes are much689

higher than those under the other two inflow types. However, there are distinct regimes of zero stress690

levels as well. On the contrary, ‘Type A’ inflow, having the shortest time scale among three cases,691

gives rise to relatively lower amplitude random stress cycles, but there is no well-defined regime692

of zero stress levels. Upon estimating the RFC of these stress cycles, it is seen that the shorter693

the time scale, the higher are the rainflow cycles counts, which means higher the number of load694

levels. Prediction of relative fatigue damage at different time scales from stress time histories alone695

21



is challenging. Therefore, a damage rule has been adopted in section 4.2.696

4.2. Fatigue damage estimation697

In this section, fatigue damage is obtained using LDAR from resulting von Mises stresses. The698

RFC algorithm described in subsection 2.6 is used to estimate the number of rainflow cycles from699

each von Mises stress time history. If tk be the time of the kth local maxima, corresponding rainflow700

amplitude for any kth cycle is given as sRFC
k = Hk − LRFC

k (see Fig. 5). The damage at time t is701

given as [56]702

fd = K
∑
tk≤t

(sRFC
k )β . (20)

where K and β are material constants, which are estimated from Fig. 13. Damage values are703

calculated by systematically varying the flow speed under deterministic and stochastic conditions.704

Since the stochastic inflow is modelled as Gaussian random process, assumption of ergodicity can705

be considered while calculating the random stresses. It is worth mentioning that all the damage706

values will numerically vary for different structural and flow parameters as well as for different707

damage criteria. However, comparative inferences can be drawn from fatigue data to understand708

the effect of various factors like the type of nonlinearity, flow speed, time scale, and intensity of flow709

fluctuations on structural damage.710

4.2.1. Fatigue damage under deterministic conditions711

Under deterministic conditions, the damage is estimated for nondimensional flow speed U = 5-7712

for three nonlinear models undertaken in the present study and are presented in Fig. 16. Under713

deterministic flow, the model having a nonlinear structure under attached flow conditions has zero714

fatigue damage below U = 6.3, as the structure has a fixed point response in that regime. Similarly,715

under dynamic stall conditions, linear and nonlinear models have zero damage values below U716

= 5.7. The order of damage is seen to be increasing with flow speed. It is found highest for the717

model having aerodynamic nonlinearity and linear structure and least for the model with a nonlinear718

structure under attached flow conditions. It is observed that the damage caused by pure aerodynamic719

nonlinearity is approximately 30 times more than that caused by pure structural nonlinearity, while720

coupling the structural nonlinearity into the aerodynamic nonlinearity almost halves the fatigue721

damage for the structural parameters considered in this study. Thus cubic hardening structural722

nonlinearity plays a significant role in reducing fatigue damage. This is attributed to the fact723

that the structure becomes stiffer with deformation due to the inherent property of724

structure possessing a hardening type of nonlinearity. On the other hand, nonlinearities725

arising from the flow are seen to aggravate the fatigue damage severely. A detailed fatigue-based726

design is thus essential for aeroelastic systems, such as blades of wind turbines and helicopters, which727

are highly prone to dynamic stall phenomenon.728

4.2.2. Fatigue damage under stochastic conditions729

Finally, fatigue damage analysis is done for different nonlinear systems under the effect of fluc-730

tuating inflow. Due to the stochastic modeling, actual fatigue damage incurred due to aeroelastic731

instability is always uncertain. However, statistical data can be collected by changing several stochas-732

tic parameters like time scale and fluctuation intensity. Under stochastic inflow, fatigue damage is733

found to be higher as compared to that under deterministic flow.734

For nonlinear structure under attached flow, variation in fatigue damage values under ‘Type A’735

(Fig. 17(a)) and ‘Type B’ (Fig. 17(b)) inflow, are seen to be less affected by intensity variation as736

compared to those under ‘Type C’ inflow (Fig. 17(c)). For σ = 0.1, the damage values are only737

slightly higher than fatigue under deterministic flow while for σ = 0.3, the damage is 100 times738

higher. Also at σ = 0.3, significant damage is accumulated even below flutter speed which is a point739

of concern from the structural health perspective. Under ‘Type C’ inflow, maximum fatigue damage740

obtained at σ = 0.3 is almost 30 times of that obtained at σ = 0.1, while for ‘Type A’ inflow, its741

only twice as high at σ = 0.3 as compared to that at σ = 0.1.742

For the model with pure aerodynamic nonlinearity, the damage variation is shown for ‘Type A’,743

‘Type B’ and ‘Type C’ inflow in Fig. 18. Accumulated damage is seen to be almost 60 times higher744
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Table 3: Maximum value (in MPa) of σzz , σzx, σzy , σv and RFC under fluctuating inflow at σ = 0.3 and Um = 7.

Aeroelastic model Inflow type σzz σzx σzy σv RFC
Attached ‘Type A’ 9.48 30.39 0.21 53.00 294

flow/nonlinear ‘Type B’ 12.18 38.69 0.28 70.08 291
structure ‘Type C’ 12.47 52.19 0.37 91.07 284
Nonlinear ‘Type A’ 10.18 42.16 0.28 72.17 373

aerodynamics/linear ‘Type B’ 28.86 49.29 0.38 98.30 349
structure ‘Type C’ 28.50 88.47 0.64 158.71 303
Coupled ‘Type A’ 13.88 39.02 0.27 66.30 406

structural/aerodynamic ‘Type B’ 13.25 42.85 0.31 76.46 387
nonlinearity ‘Type C’ 21.49 61.19 0.44 107.06 373

Figure 15: Sample time histories of σv (MPa) at σ = 0.3 and Um = 7; for nonlinear structure and linear aerodynamics
under (a) ‘Type A’ flow, (b) ‘Type B’ flow, and (c) ‘Type C’ flow; for linear structure and nonlinear aerodynamics
under (d) ‘Type A’ flow, (e) ‘Type B’ flow, and (f) ‘Type C’ flow; and for both nonlinear structure and aerodynamics
under (g) ‘Type A’ flow, (h) ‘Type B’ flow, and (i) ‘Type C’ flow.
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Figure 16: Accumulated damage values under non-fluctuating inflow for (a) Nonlinear structure under attached flow
conditions, (b) Linear structure under nonlinear aerodynamic conditions, and (c) Nonlinear structure under nonlinear
aerodynamic conditions.
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Figure 17: Accumulated damage values under attached flow conditions with the structure possessing cubic hardening
nonlinearity in pitch for, (a) ‘Type A’ inflow, (b) ‘Type B’ inflow, and (c) ‘Type C’ inflow.
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Figure 18: Accumulated damage values under dynamic stall conditions for a linear structure for, (a) ‘Type A’ inflow,
(b) ‘Type B’ inflow, and (c) ‘Type C’ inflow.

for ‘Type A’ inflow at Um = 7 and σ = 0.3, as compared to damage values under deterministic flow745

conditions. While as compared to damage obtained from the model possessing structural nonlinearity746

under attached flow conditions, the corresponding damage is almost 30 times higher. This indicates747

the severity of stall flutter problem in the aeroelastic systems, which can be much more dangerous748

in the presence of material defects like cracks and aging effects. It is quite unrealistic to have749

an aeroelastic system without any structural nonlinearity. However, the present model with linear750

structure demonstrates the isolated effect of aerodynamic nonlinearity on its structural health. Next,751

a more realistic set of fatigue damage results is provided when a coupling between aerodynamic and752

structural nonlinearity is considered.753

Structural stiffness is a major design aspect for aeroelastic systems from both static and dynamic754

analysis perspectives. For a linear structure, flutter amplitude is diverging, and a hardening nonlin-755

earity in stiffness limits the diverging oscillations to LCOs [3]. In the present study, a similar effect756

of cubic hardening pitch nonlinearity is observed. When cubic hardening nonlinearity is coupled757

with aerodynamic nonlinearity, the amplitude of stall flutter LCOs is significantly reduced. Since758

the present study considers only pitch and plunge deformations to calculate the stresses, the stresses759

are also reduced significantly by coupling structural nonlinearity to the aerodynamic nonlinearity.760

However, the number of load levels is also higher in a coupled nonlinear system than in isolated761

aerodynamic nonlinearity. Hence, a fatigue damage analysis is needed to understand the actual im-762
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Figure 19: Accumulated damage values under dynamic stall conditions for a nonlinear structure for, (a) ‘Type A’
inflow, (b) ‘Type B’ inflow, and (c) ‘Type C’ inflow.

pact of structural nonlinearity on a system governed by nonlinear aerodynamic loads. Under ‘Type763

A’ inflow (Fig. 19(a)), the damage values are almost similar to those obtained under deterministic764

conditions and are almost one-third of those obtained for the system under pure aerodynamic non-765

linearity. Under ‘Type B’ inflow (Fig. 19(b)), the damage values are slightly higher, particularly766

at σ = 0.3, the damage values almost double as compared to those under ‘Type A’ inflow for same767

intensity. Damage values are very high under ‘Type C’ inflow (Fig. 19(c)) as compared to those768

under the other two types of inflow, and at σ = 0.3, the values reach almost 20 times higher as769

compared to those obtained under deterministic flow for the same nonlinear model. However, the770

damage values under ‘Type C’ inflow for a system with coupled structural and aerodynamic non-771

linearity are significantly reduced than that with pure aerodynamic nonlinearity. At σ = 0.3, the772

damage incurred by the system under nonlinear aerodynamic load is reduced almost to 1/6
th

with773

the addition of cubic hardening nonlinearity in structure.774

So far, from the numerical simulations, we observe the route to stall flutter in aeroelastic sys-775

tems depending on the source of nonlinearity and nature of the on-coming wind flows (determinis-776

tic/stochastic). For comparison purposes, classical flutter scenarios are as well invoked. From the777

discerned routes to stall flutter, we compute the fatigue damage incurred under a variety of scenar-778

ios. At the interim juncture, we note that the fatigue damage is consistently high for aerodynamic779

nonlinearities (i.e. dynamic stall conditions) irrespective of the deterministic/stochastic nature of780

the input flow. It is to be reminded to the reader that in hitherto studies, minimal attention has781

been devoted towards both resolving the intermittency route to stall flutter as well as the structural782

safety aspect of the same. To glean further into stall-induced fatigue damages in aeroelastic systems,783

a comparison of our numerical findings with wind tunnel experiments becomes highly necessary.784

5. Experimental investigations into stall induced fatigue damage785

A preliminary investigation into stall flutter-induced fatigue damage estimated through wind786

tunnel experiments is presented in this section. The experiments are performed on a NACA 0012787

airfoil in a low speed Eiffel type wind tunnel with closed test section (see Fig. 20 (a)). A photograph788

of the experimental setup inside the wind tunnel test section (dimensions 0.8 m x 0.8 m x 1.2 m)789

is shown in Fig. 20(b). The airfoil has a span of 0.5 m, chord length of 0.1 m, and is mounted790

horizontally at the quarter chord in the experimental mechanism. The mechanism is akin to that in791

Venkatramani et al. [53, 27] and its details are not repeated here for brevity sake. A static experiment792

is performed to obtain load vs deflection curves for plunge (Fig. 20(c)) and pitch (Fig. 20(d)) stiffness,793

respectively and both the modes show approximately linear stiffness behaviour. A pair of laser794

displacement sensors having a Wenglor make, and a resolution of one micron, and a displacement795

range of 50-350 mm is used to obtain the pitch and plunge displacements of the airfoil. A pair of796
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Table 4: The structural parameters for the experiment. my and mα represent the total moving mass in plunge and
pitch respectively and fy and fα represents the natural frequency of plunge and pitch mode, respectively (estimated
from static experiments).

Parameter my (kg) mα (kg) fy (Hz) fα (Hz) ah Iα (kg-m2)

Value 1.908 0.937 2.28 4.01 -0.5 0.0017

Delta HD 4V3 TS3 type air velocity sensors are used to the perpetual acquisition of the flow velocity797

in the wind tunnel test section. Additionally, a stand-alone hot wire anemometer is used to monitor798

the flow velocities inside the test section. An ATALON data acquisition system is used for acquiring799

the flow-velocity and the displacement values from the laser sensors as well. The maximum speed800

achievable in the wind tunnel is approximately 25 m/s. By installing remote controllers over the801

tunnel fan, the direction of wind flow can be changed from suction to blowing mode.802

Under the suction mode of operation, the flows are largely sterile and free from fluctuations803

(holding true both for empty test section and in the presence of experimental setup - albeit that804

the latter case understandably gives rise to a larger turbulence intensity). The turbulence intensity805

under suction mode - obtained from flow data measured using hot-wire anemometers - is less than806

1% in the empty section. The blowing mode of tunnel fan operation, on the other hand, gives rise807

to flows that do not pass via honeycomb meshes, and rather give rise to fluctuating input flows to808

the test section. Further details about the same can be found in Venkatramani et al. [53, 27]. While809

anemometers help us obtain turbulence intensities at different points, we refrain from explicitly810

quoting the turbulence intensity in this case as we feel that the full information of flow fluctuations811

in the test section can be best discerned from particle image velocimetry (PIV) - which is unavailable812

with us. In wake of turbulence levels, varying point to point in the test section, as well as varying for813

increasing levels of mean flow speed, we feel it is premature and incomplete to provide turbulence814

levels in this case. However, given that the focus of the study involves both deterministic (sterile)815

and stochastic (fluctuating) flows, we show two sample wind time histories below for the sake of816

readers’ clarity. As shown in Fig. 21, the flow data obtained under suction conditions at speed (V )817

= 14.11 m/s is predominantly invariant with time. On the other hand, the flow time history at818

mean speed (Vm) = 14.16 m/s measured under blowing conditions shows much higher fluctuations.819

The turbulence intensity for this case, computed in a simplistic manner as the ratio of the variance820

of the random process upon the mean value, gives an intensity of 2.65%. Note that the wind profile821

qualitatively and quantitatively changes at various points inside the test section and also varies822

considerably with an increase in the mean flow speed. However, quantifying the same is beyond the823

scope of the present study.824

Subsequent to characterizing the static parameters associated with the experimental frameware825

(see Table 4), we carry out dynamic experiments under suction mode of fan operation. The flow826

speed (V ) is varied systematically from zero to the critical flow speed in which we encounter the827

onset of LCOs. The initial angle of attack of the airfoil is 6◦, which is well below the static stall828

angle of NACA 0012 [16]. Large amplitude LCOs is observed at V = 13.82 m/s; see Figs. 22(a) and829

22(b). The LCO amplitudes for the pitch DoF are very high and possibly can be attributed to flow830

separation and dynamic stall [7, 12, 8]. The frequencies of pitch and plunge oscillations coalesce at831

the pitch natural frequency (= 4.01 Hz); see Fig. 22(c). This confirms that the oscillations are pitch832

dominant and can be characterized as stall flutter. It’s worth mentioning that the pitch and plunge833

springs behave linearly (see Fig. 20(c) and Fig. 20(d)) and hence the contribution of structural834

nonlinearity can be assumed as insignificant.835

Figure 23 shows the pitch responses of airfoil under blowing conditions from the velocity range836

13.18 - 15.97 m/s. It is observed that airfoil undergoes random oscillations of significant amplitudes837

at V = 13.18 m/s (Fig. 23(a)), which is well below the flutter speed (13.82 m/s). Upon increasing838

the speed to 14.16 m/s (Fig. 23(b)), the random LCOs grow in amplitude, and at 14.93 m/s, large839

amplitude random LCOs are observed (Fig. 23(c)). Finally at 15.97 m/s, the amplitude of the840
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Figure 20: Photographs of the experimental setup; a) Wind tunnel; b) NACA 0012 airfoil in wind tunnel test section
along with sensors. Fig. (c) and Fig. (d) represent the load vs deflection plot for plunge and pitch stiffness respectively,
which are estimated from the static experiments.

Figure 21: Sample time history of flow variation under suction and blowing conditions.

Figure 22: Experimentally obtained responses of NACA 0012 airfoil under suction conditions at stall flutter onset (V
= 13.82 m/s) ; a) Pitch response, b) Plunge response, c) Coalescence of pitch and plunge frequencies at pitch natural
frequency confirming pitch dominant LCOs.
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Table 5: Maximum value of σv (in MPa) and accumulated fatigue damage values calculated from experimentally
obtained airfoil responses using experimental structural parameters (0.5 m span and 0.1 m chord).

Operating conditions flow speed σv fd
Suction 13.82 215.94 0.50
Suction 14.63 221.35 0.55
Blowing 13.18 50.11 2.32×10−8

Blowing 14.16 62.43 1.70×10−7

Blowing 14.93 170.94 1.40×10−2

Blowing 15.97 211.24 0.19

random LCOs further increases and becomes more uniform (Fig. 23(d)). Akin to section 4, the841

stress time histories are obtained from airfoil responses using the same methodology i.e. the airfoil842

is assumed to be a cantilever structure of 0.1 m chord and 0.5 m span subjected to multiaxial843

loading. The material properties are same as mentioned in Section 4. Obtained von Mises stresses844

are presented in Fig. 24. The maximum values of von Mises stresses at various flow speeds are845

tabulated in Table 5, which are below the material yield strength and their order is similar to846

those obtained numerically, albeit slightly higher. For the numerical model with pure aerodynamic847

nonlinearity, the maximum von Mises stress is 158.71 MPa (see Table 3), while for experimentally848

observed stall induced instability, the maximum von Mises stress is obtained as 221.35 MPa (see849

Table 5). One of the reasons for higher stresses obtained in experimental framework is perhaps the850

size of the structure. Since performing wind tunnel experiments in such a big structure, akin to the851

numerical model, is beyond the capacity under current experimental facilities, we take a miniature852

blade model and perform similar analysis.853

Next, we embark into the estimated fatigue damage obtained from the von Mises stresses. Here we854

present two cases under suction conditions, and four cases under blowing conditions. The damage855

is calculated from 60 sec stress data and is presented in Table 5. Although there is significant856

damage under blowing conditions at Vm = 13.18 m/s, which is below the flutter point (13.82 m/s),857

we see that the fatigue damage caused under suction condition is much higher. Hence for current858

set of experimental conditions, deterministic inflow (suction) causes more damage as compared to859

stochastic inflow (blowing). Its worth mentioning that the fatigue damage is highly dependent860

upon the probabilistic markers namely intensity and time scale of stochastic inflow as shown in861

subsection 4.2.2. In fact, observing Fig. 16(b) and Fig. 18(a) from numerical analysis, which are862

cases of pure aerodynamic nonlinearity (akin to experimental case), we see that the fatigue damage863

values under deterministic conditions (Fig. 16(b)) are higher than those under stochastic conditions864

(Fig. 18) specifically for low intensity and short time scale conditions, which is possibly the case865

under blowing experiments also and hence we observe lower fatigue than the suction conditions.866

6. Concluding remarks867

This study is focused on estimating the effect of nonlinearity originating from various sources868

under stochastic flow conditions on the aeroelastic responses and associated fatigue damage. Non-869

linearity arising from the structure is modeled as cubic hardening pitch stiffness; whereas, the aero-870

dynamic nonlinearity is modeled using LB dynamic stall model. Uncertainties in the oncoming flow871

are incorporated by modeling the inlet velocity as a stochastic process using KLE with different time872

scales and intensities. From the same, the following salient findings emerge.873

• First, the dynamical signatures of the system under deterministic and stochastic flow conditions874

are presented by considering isolated cases of nonlinearities and then by studying the combined875

effects. Under deterministic flow, the bifurcation plots show distinct dynamical behavior under876

different types of nonlinearity. For a nonlinear structure under attached flow conditions, fixed877

point response transitions to LCO via a Hopf bifurcation, while for a linear structure under878
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Figure 23: Experimentally obtained pitch responses (in radians) of NACA 0012 airfoil under blowing conditions at;
a) V = 13.18 m/s, b) V = 14.16 m/s, c) V = 14.93 m/s, d) V = 15.97 m/s, showing transitions from random LCOs
to fully developed LCOs as the flow speed is increased

Figure 24: Sample time histories of von Mises stresses calculated from experimentally obtained pitch-plunge responses;
under suction conditions a) at V = 13.82 m/s and b) at V = 14.63 m/s; under blowing conditions c) at V = 13.18
m/s, d) at V = 14.16 m/s, e) at V = 14.93 m/s and f) at V = 15.97 m/s.
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aerodynamic nonlinearity, stall induced aperiodic oscillations presage LCOs. Under combined879

effects of structural and aerodynamic nonlinearity, distinct regimes of period-1, period-3, and880

aperiodic oscillations are observed prior to the onset of stall-induced LCOs.881

• Accounting for random fluctuation in the flow gives rise to far more complex signatures, and882

the qualitative nature of the responses gets largely altered compared to the deterministic883

cases. The responses under fluctuating flow conditions are governed by the time scale and884

intensity of fluctuating inflow. Under short time scale input flows, the response signatures885

depict “burst-type” intermittency. Under long time scale input flows, the responses exhibit886

an “on-off” intermittency phenomenon. Thus, distinct signatures are present in aeroelastic887

responses under different nonlinearity and stochastic inflow conditions.888

• Using this as an impetus, the system is next investigated from the standpoint of structural889

safety by estimating the fatigue damage accumulation in the presence of different nonlinearities890

and inflow conditions. Under stochastic conditions, it is observed that a cubic hardening891

nonlinear stiffness behavior in the structure can potentially reduce the magnitude of induced892

stresses. At the same time, the presence of aerodynamic nonlinearity has an adverse effect on893

stress levels.894

• Next, it is demonstrated that the fatigue damage depends on the mean flow speed, fluctuation895

intensity, and correlation length of stochastic inflow. A comparison between damage-velocity896

plots for different nonlinear models shows much higher damage values when nonlinearity is897

purely aerodynamic than cases with purely structural or coupled nonlinearity.898

• Finally, we analyze stall-induced instability and subsequent fatigue damage in the deterministic899

and stochastic frameworks through wind tunnel experiments. Under suction conditions, large-900

amplitude LCOs are obtained, which are characterized as stall flutter from frequency analysis.901

On the other hand under blowing conditions, random LCOs are observed below the flutter902

point which culminates into well-developed LCOs as the flow speed is increased. Specifically,903

an intermittency route to stall flutter is observed from the experiments as well.904

• Fatigue damage analysis from experimental responses shows higher damages owing to stall-905

induced oscillations - underscoring the larger damages incurred under torsionally dominant906

oscillations. While the numerics specifically underscored the role of noise intensity and time907

scale of the flow fluctuations over the fatigue accumulation, the framework of experiments was908

restrictive for us to depict the same.909

Indeed, the change of noise intensity and scales of input stochastic wind, and in-turn measuring910

it demand stand alone attention. Nevertheless, both the numerical and experimental findings911

concur that stall-induced oscillations can impart substantial fatigue damage to the aeroelastic912

structure.913

Given that nonlinearities and random temporal flows are ubiquitous in a suite of aeroelastic914

problems such as aircraft wings, wind turbine blades, helicopter blades, and even in problems in-915

volving bridge-decks, the findings documented in this study carry relevance from the purview of916

structural safety. Although, the aeroelastic community has heuristically been aware of the impact of917

stochasticity and nonlinearities in jeopardizing structural safety, minimal efforts to quantify the same918

are available so far. In that retrospect, this is perhaps the first study to systematically investigate919

the effect of different nonlinearities and stochastic conditions on fatigue damage of the aeroelastic920

system visa a vis the response dynamics. However, it must be cautioned to the reader that the921

practicability of the findings presented here to in-field problems involving diverse flow-structural in-922

teractions might require further investigations. Present study considers only cubic hardening923

nonlinearity in structure. Similar studies considering structural nonlinearities giving924

raise to subcriticality is indeed an interesting topic and requires a separate study. The925

complexities arising in fatigue damage estimation due to coexisting attractors due to926

subcriticality is interesting problem to address. The authors aim for the same in a927

subsequent study. This study, as a starting step, is undertaken for a prismatic blade model under928
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uniformly distributed fluid loading with isotropic material properties. Extending the present find-929

ings to anisotropic wings (akin to [57]) and even to isotropic structures with material uncertainties930

(akin to [19]) requires fresh investigations. The robustness of the analysis can be improved931

by using CFD solvers to incorporate effects of 3D flow-field behaviour as well as finite932

element based solvers to capture aeroelastic responses more accurately. Furthermore,933

the present study restricts the flow fluctuations to the axial direction. However, it is typical in the934

aeroelastic community to assign a larger for the random vertical gust [47] over both the response935

dynamics and the associated impact on structural health. These are very interesting open problems936

to be taken up by the authors in the future.937
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