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Abstract Models play a crucial role in the development and maintenance of soft-
ware systems, but are often neglected during the development process due to the
considerable manual effort required to produce them. In response to this problem,
numerous techniques have been developed that seek to automate the model gen-
eration task with the aid of increasingly accurate algorithms from the domain of
Machine Learning. From an empirical perspective, these are extremely challenging
to compare; there are many factors that are difficult to control (e.g. the richness of the
input and the complexity of subject systems), and numerous practical issues that are
just as troublesome (e.g. tool availability). This paper describes the StaMinA (State
Machine Inference Approaches) competiton, that was designed to address these
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problems. The competition attracted numerous submissions, many of which were
improved or adapted versions of techniques that had not been subjected to extensive
empirical evaluations, and had not been evaluated with respect to their ability to
infer models of software systems. This paper shows how many of these techniques
substantially improve on the state of the art, providing insights into some of the fac-
tors that could underpin the success of the best techniques. In a more general sense it
demonstrates the potential for competitions to act as a useful basis for empirical
software engineering by (a) spurring the development of new techniques and (b)
facilitating their comparative evaluation to an extent that would usually be pro-
hibitively challenging without the active participation of the developers.

Keywords Model inference · Software specification · Competition · State machines

1 Introduction

Models are crucial for the effective development and maintenance of software
systems. They describe the system requirements at a level of abstraction that is un-
derstandable to the developers, providing them with a definitive point of reference.
Models of software behaviour, which are the subject of this paper, are particularly
valuable, because they can form the basis for powerful automated techniques for
tasks such as verification, validation and refinement (Lee and Yannakakis 1996; van
Lamsweerde 2009).

Despite their apparent advantages, models are often neglected during the soft-
ware development process. Generating an accurate model for any non-trivial system
can be prohibitively time-consuming. Given the routine time and cost pressures in-
volved in software development, resources are usually invested directly into the rapid
development and implementation instead. The major downside in doing so is that
developers are consequently forced to understand the system in terms of its source
code, and to resort to ad-hoc verification and validation techniques that are invari-
ably more time-consuming and less effective than their automated counterparts.

Numerous techniques have been developed that attempt to address this problem
by reducing or even eliminating the human effort involved in producing useful mod-
els. These can be used in either a forward- or a reverse-engineering context, using
a selection of “examples” of software behaviour (either in the form of hand-supplied
scenarios, or recorded program traces) to infer models with the help of algorithms
from the domain of Machine Learning. Although the idea dates back to the work
by Biermann and Feldman in the mid-seventies (Biermann and Feldman 1972;
Biermann and Krishnaswamy 1976), research in the area has only recently increased
in intensity, in large part due to advances in the Machine Learning domain that
have made it possible to infer larger models to a greater degree of accuracy. State-
based software model inference techniques have taken a number of directions. Many
of these are substantial adaptations of Biermann and Feldman’s original ‘k-tails’
algorithm (Ammons et al. 2002; Cook and Wolf 1998; Lorenzoli et al. 2008; Reiss
and Renieris 2001). Some approaches have focussed on adapting alternative Machine
Learning algorithms including probabilistic inference approaches to learn Markov
models or PFSAs (Cook and Wolf 1998; Lo and Khoo 2006). Others have capitalised
on recent advances in a subfield of Machine Learning known as Regular Grammar
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Inference (Damas et al. 2005; Dupont et al. 2008; Lambeau et al. 2008; Raffelt et al.
2009; Shahbaz and Groz 2009; Walkinshaw and Bogdanov 2008; Walkinshaw et al.
2007). The above list of techniques is merely a small sample of the plethora of
techniques to have emerged.

The emergence of so many techniques gives rise to the question of which one is
best-suited for the task. Providing an empirically sound answer to this question is
difficult. There are numerous factors that may affect the performance of a given
technique, such as the “richness” of the input, or the complexity of the software
system in question. Then there are also numerous significant practical factors. Imple-
mentations that are associated with a given technique may not be openly available.
They are often complex to implement, or might have parameter settings that require
a lot of algorithm-specific knowledge to use effectively. As a consequence, there is
no convincing empirical basis by which to choose model inference techniques, and to
guide further research in the area.

This paper describes the StaMInA (State Machine Inference Approaches) compe-
tition, which is intended to provide an empirically sound basis for the comparison of
techniques for the inference of models in the form of Deterministic Finite Automata.
The rationale for adding a competitive element (as opposed to simply establishing a
standard benchmark) was to (a) increase participation and (b) encourage partici-
pants to develop technological advances that would result in techniques that would
advance the state of the art. The competition was a success - it attracted numerous
competitors, and the winning technique made significant advances on the other
competitors and on the baseline. The winning technique is described in detail in an
accompanying paper in this issue.

This paper provides an overview of the competition, and shows how competi-
tions can be useful drivers for the empirical comparison of software-engineering
techniques. Section 2 introduces finite state machines – the type of model that is
produced by the techniques compared in the competition. It also provides a brief
overview of previous attempts and competitions in the domain of Machine Learning
that have sought to compare different techniques. Section 3 provides an overview
of the StaMInA competition framework, including a description of the protocol, the
baseline technique, and the web infrastructure. Section 4 provides an analysis of the
submissions to the competition and a comparison of the techniques (the winning
technique is described in detail by its authors in an accompanying paper). Section 5
provides a discussion of the competition, including threats to validity and providing
some suggestions for future competitions. Section 6 presents some related work.
Finally, Section 7 provides conclusions and discusses future work.

2 Background

This section provides an introduction to the problem of state machine inference, and
discusses the characteristics of software models that make them especially difficult
to infer. It presents a brief overview of the Blue-Fringe (also known as RedBlue)
algorithm (Lang et al. 1998), which has already been extensively used for software
model inference (Damas et al. 2005; Dupont et al. 2008; Lambeau et al. 2008;
Walkinshaw and Bogdanov 2008; Walkinshaw et al. 2007) and forms the baseline
for this competition.
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2.1 Deterministic Finite Automata and Their Languages

Software behaviour is commonly modelled in sequential terms, i.e. the sequences of
permissible and impermissible events or inputs/outputs that constitute its function-
ality. These sequences are usually modelled with the help of Deterministic Finite
Automata (DFA).

Definition 1 A Deterministic Finite Automaton is a quintuple (Q, �,�, F, q0),
where Q is a finite set of states, � is a finite alphabet, � : Q × � → Q is a partial
function and q0 ∈ Q. F is a subset of Q and represents the set of final (accepting)
states where the system may terminate. A DFA can be visualised as a directed graph,
where states are the nodes, and transitions are the edges between them, labelled by
their respective alphabet elements.

In practice, software systems are often modelled with a closely related formalism:
The Labelled Transition System (LTS) (Keller 1976; Magee and Kramer 1999). This
is effectively a DFA where F = Q. These can be used to model a subset of the lan-
guages that can be modelled by DFAs, where every prefix of an accepting sequence
is also accepted (this is known as the set of pref ix-closed languages). Throughout the
rest of this paper, the term state machine refers to both DFAs and LTSs.

When discussing the behaviour of a DFA, we are referring to the possible (and
impossible) sequences of elements in � (denoted �∗). The set of all possible se-
quences in a DFA is referred to as its language.

To formally define the language of a DFA, we draw on the inductive definition for
an extended transition function δ̂ used by Hopcroft et al. (2007). For a state q and a
string w, the extended transition function δ̂ returns the state p that is reached when
starting in state q and processing sequence w. For the base case δ̂(q, ε) = q. For the
inductive case, let w be of the form xa, where a is the last element, and x is the prefix.
Then δ̂(q, w) = δ(δ̂(q, x), a).

Definition 2 The language L(A) of a DFA A is the set of strings reaching an
accepting state from its initial state. Given the extended transition function, L(A) is
defined as follows: L(A) = {w ∈ �∗ | δ̂(q0, w) ∈ F}. The complement of a language
L is denoted LC (i.e. the set �∗ \ L of strings that do not belong to L). Sequences w ∈
�∗ for which δ̂(q0, w) is not defined are considered to be rejected by the automaton.

2.2 The Inference Challenge

Despite their benefits, state machines are rarely produced during development due
to the amount of effort involved. Instead, developers will often only document the
system in a selective, less formal manner. The absence of sufficiently comprehen-
sive documentation means that they are forced to resort to ad-hoc techniques for
verification and testing tasks.

The desire to automate or at least partially automate the generation of state
machines has driven the development of numerous automated model inference
approaches (Ammons et al. 2002; Cook and Wolf 1998; Damas et al. 2005; Dupont
et al. 2008; Lambeau et al. 2008; Lo and Khoo 2006; Lorenzoli et al. 2008; Reiss
and Renieris 2001; Walkinshaw and Bogdanov 2008; Walkinshaw et al. 2007). These
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approaches operate by observing examples of the software behaviour, either supplied
by the developer as scenarios, or by recording actual program traces. The challenge
is to, given such a set of examples, produce a model that has a similar language to the
idealised (hidden) model of the system.

To present this more formally, we denote the (hidden) target DFA as A. The set
of examples is presented in the form of a set of sequences in �∗. In the software-
engineering domain these may be program traces, or scenarios that have been sup-
plied by the developer. A set of examples can be divided into two sets of sequences;
one set S+ is the set of examples that is known to belong to L(A), and the other
set S− is known to belong to L(A)C (these represent valid and invalid sequences
respectively).

To guarantee the inference of an accurate model, the contents of S+ and S−
need to satisfy certain properties. In their early work on regular grammar inference
(regular grammars are DFAs), Oncina and Garcia showed that their Regular Positive
Negative Inference (RPNI) algorithm (Oncina and Garcia 1992) would be guaran-
teed to produce an accurate result if the set S+ ∪ S− is structurally complete and
characteristic of the target model (Dupont et al. 1994). In other words, they would
need to contain a sufficiently diverse set of samples for (a) samples in S+ to reach
every state transition and accepting state, and (b) samples in S− to distinguish every
pair of non-equivalent states.

This is the root of the inference problem; in most practical situations the example
sets are highly unlikely to contain a sufficiently diverse range of examples to fulfil the
above criteria. The states in a DFA model of a software system can require a highly
specific choice of sequences to distinguish between each other, which is unlikely to
be present in a set of examples unless it contains some detailed prior knowledge of
the system (Walkinshaw et al. 2008). Given the inevitable incompleteness of the set
of examples, the challenge is to infer a model that is at nonetheless accurate.

The notion of what constitutes an ‘accurate’ model is not absolute. The ability
to obtain models that are guaranteed to be exact has been shown to be intractable
(Angluin 1978; Gold 1978). However, early empirical work by Lang (1992) showed
that it is possible to infer approximate models. Thus, the goal for practical model
inference techniques is not to obtain exact models, but merely to induce good approx-
imate models.

This is what forms the basis for the StaMInA competition. By allowing for a small
degree of error, the challenge is to identify those techniques that are best able to
infer reasonably accurate DFAs for given sets of examples.

2.3 The State-merging Approach

One family of techniques that has proven to be relatively successful for inferring
models from examples is the state-merging approach. The basic idea is to lay out all of
the examples in S+ ∪ S− into a pref ix-tree acceptor (PTA), a tree-shaped automaton
where any two sequences with the same prefixes share the same root. The PTA is
a state machine that exactly represents the given set of sequences. The challenge is
to produce a more general DFA that can not only correctly accept or reject strings
in S+ ∪ S−, but also correctly classify further unseen examples. This is achieved by
selecting pairs of states that are deemed to be equivalent, and merging them. In this
context, the task is ultimately to find those groups of states in the PTA that are
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equivalent; the search for an accurate DFA can thus be characterised as the search
for a suitable partition of the set of states in the PTA, where equivalent states form
a single block in the partition (Dupont et al. 1994).

This is the basic process that is adopted by the Blue-Fringe technique (Lang
et al. 1998) (a specific variant of what is often referred to as the EDSM algorithm),
which is used as a base-line technique for this competition and was (before the
competition) considered to be the state of the art in model inference. Since it is
practically infeasible to compare every pair of states, successful techniques rely on
adopting an effective strategy to select those pairs of states that are most likely to be
equivalent. The strategy employed by the Blue-Fringe technique (see Appendix A
for details) is to confine the comparison of state-pairs to a small subset of states
close to the root of the PTA. Pairs of states are selected to be merged following
the heuristic that those with the greatest overlapping suffixes are most likely to be
equivalent. As will be shown in the results of this competition in Section 4, most of
the successful competing techniques (including the winning one) are state-merging
variants, and significantly improve on the performance of the Blue-Fringe algorithm
by adopting different strategies to select state pairs.

2.4 The Evaluation and Comparison of Inference Techniques

Empirically evaluating the performance of model inference techniques is challeng-
ing, because their performance can be affected by numerous factors. The size and
complexity of the target machine (the number of states and transitions, and the size of
�) are indicators of this complexity, as is the depth (the longest “shortest walk” from
the initial state q0 to any other state). Besides the target model characteristics, the
“richness” of the training set (a set of sequences and class labels indicating whether
or not they belong to the language of the target) is another key factor; the more
information about the target that it contains, the easier it is to infer the states and
transitions in the final model. This explains the difficulty in reliably assessing the
performance of a technique. All of these variables need to be controlled, to ensure
that the experiment is not unfairly biased (either for the better or worse).

Within the domain of software engineering, model inference techniques are
usually evaluated on a case-study basis (e.g., Lo and Khoo (2006) used a CVS
system, Walkinshaw et al. (2007) used a drawing tool, and Damas et al. (2005) used a
water pump controller). A real software specification is selected as the target for the
inference technique, and is used as the basis for eliciting a set of traces/scenarios. Al-
though this serves the purpose of establishing the feasibility of the technique, it fails
to provide any reliable basis for comparison with other techniques.

In the machine learning domain, this problem has been addressed by organising
competitions. Competitions offer a means to compare different techniques with
respect to the same set of target models, with the same set of samples. Most compe-
titions follow the example set by the successful Abbadingo-One competition (Lang
et al. 1998) held in 1997. The organisers generate a set of quasi-random target models,
but the competitors are only given a training set, and a test set (a set of sequences
without labels). Once the competitors have induced a model with the training set,
they classify each string in the test set as either belonging or not belonging to their
hypothesis model. This results in a binary string, which they submit to the compe-
tition web server. If their classifications are at least 99% correct, they are deemed
to have successfully inferred the model.
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The target models and their respective training/test sets are usually arranged
into categories that correspond to different levels of difficulty. The techniques to
correctly infer the most difficult models are selected as winners. The Abbadingo-One
competition was won by the Blue-Fringe algorithm by Price, which, before StaMInA,
was deemed to be the current benchmark for grammatical inference algorithms (the
algorithm is described in Appendix A).

Unfortunately, competitions such as Abbadingo-One have been unsuitable for the
evaluation of inference techniques that are intended to infer models of software
systems. There are two underlying reasons for this: (1) the target models do not
exhibit characteristics that tend to arise with software models, and (2) the method
used to generate the training and test sequences can lead to accuracy scores that are
misleading. These two issues are elaborated below.

Model Generation The alphabets used to generate the random machines in
Abbadingo-One are only binary (� = {a, b}), meaning that each state can have at
most two outgoing edges. The complexity of the target machines is modulated by a
nominal value n. Given this value, a random degree-2 directed graph (representing
the transition structure of the machine) is generated on 5

4 n nodes. The edges between
states are inserted at random, and then a sub-machine consisting only of the useful
states (states that are reachable, and themselves lead to accepting states) and the
transitions between them is selected. For a given n, this results in a set of machines
with roughly the same depth and size.

These machines are however not at all representative of typical software models.
DFAs that model software systems involve state transitions that may be triggered
by any of a large number of events (mouse-clicks, function names, IO events, etc.).
The size of the alphabet, and the number of outgoing transitions from a given state
can be very large, and vary significantly from state to state. The previously described
random graph generation algorithm produces a homogeneous network, where any
pair of states are equally likely to be connected. In practice, software DFAs do not
obey this law; certain states represent “hub” states, e.g. the root of a menu system,
or a defacto error-handling state, whereas other states may be intermediate parts of
a longer sequence of specific operations.

Training/Test Sample Generation Generating random training and testing samples
for past competitions has been straightforward. The approach for competitions such
as Abbadingo has been to simply generate random sequences without regard to the
target model (it is only used to assign labels to the random sequences). Essentially,
this has involved producing random binary sequences (because the alphabet only
contains two elements) up to a prescribed length, and to subsequently use the target
model to classify them as “accept” or “reject”. The nature of the synthesised models
is such that the resulting sets of sequences are roughly balanced between examples
that lead to an accept state and examples that do not.

If, however, we are using state machines that are more representative of software
models, this balance would no longer hold. This is down to the factors that are
characteristic of software models—a large alphabet and an uneven distribution of
transitions. As the alphabet size increases, the set of possible sequences up to a given
length in �∗ that could be chosen as possible examples grows exponentially. At the
same time, the fact that the set of alphabet elements that are possible from a given
state is often a highly specific subset (and that this will vary substantially from state
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to state) means that only a highly specific subset of sequences in �∗ are liable to
lead to an accept state. Ultimately, given such state machines, the current standard
sample generation approach would result in sets of sequences where a substantial
majority of the sequences would lead to reject states. This would result in an equally
unbalanced assessment of the state machine accuracy (for example, a DFA that
trivially rejects everything would score very well with a test set generated in this
manner (Walkinshaw et al. 2008)).

3 The StaMInA Competition

The aim of the StaMInA competition is to identify the best inference technique for
models of software systems. Specifically, the aim is to identify the technique that
is best able to infer accurate DFAs with reasonably large alphabets, and is able to
infer accurate models from a relatively sparse set of examples. From an empirical
software engineering standpoint, the competition can be seen as an experiment, where
the competing techniques are the subjects, and the size of the alphabet and sparsity of
the examples are the control variables.

The competition is presented to the competitors in the form of a 20 problem-
sets of varying difficulty, where each set contains five hidden randomly generated
DFAs that are about 50 states in size. For each DFA, competitors are provided
with a training set. Having used the sample to infer a hypothesis model, competitors
are then provided with a test set, and each test sequence is then classified as
accepted or rejected by the hypothesised model. The solution is then submitted to the
competition webserver as a binary string, where a ‘1’ represents a test that is accepted
by the hypothesis, and a ‘0’ represents a test that is not accepted. This is compared to
the correct binary string to establish whether the hypothesis is a sufficiently accurate
approximation. The aim is to solve the hardest problem set (also referred to as a ‘cell’
in in Table 1), by accurately inferring all five models (the process of establishing this
accuracy is also discussed below).

Participants can register one or more inference algorithms to attempt on these
problem sets. The performance of each algorithm is evaluated independently. The
risk of using one algorithm to tune another is attenuated by the limited amount of
feedback (in the form of a bit string)—as discussed in Section 5.1.

3.1 Synthesis of Target Models

The task of generating a random DFA that shares the characteristics of a software
system is not trivial. As mentioned previously, conventional algorithms (c.f. those

Table 1 Table with mean BCR results for the five challenges in each cell, as computed by the
baseline Blue-Fringe technique

|�| Sparsity

100% 50% 25% 12.5%

2 0.99 (1) 0.95 (1) 0.67 (3) 0.66 (3)
5 0.97 (1) 0.78 (2) 0.59 (4) 0.52 (4)
10 0.93 (1) 0.64 (3) 0.51 (4) 0.5 (4)
20 0.91 (1) 0.63 (3) 0.54 (4) 0.51 (4)
50 0.81 (2) 0.64 (3) 0.57 (4) 0.5 (4)

Scores are associated with a difficulty grade from 1 (easiest) to 4 (hardest)
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used in grammatical inference competitions (Lang et al. 1998)) generate transition
structures that are homogeneous; there is a uniform probability that any pair of states
is connected by a transition. In reality this is unlikely to be the case—in software
systems certain states invariably play a more central role than others.

For this competition we have developed a customised algorithm to generate
random DFAs that share characteristics that are typical for software models. To gain
an insight into the key characteristic of software state machines, a small informal
survey of existing state machine models was carried out. Its findings are discussed
below. This is followed by a description of the random DFA generation algorithm
itself.

3.1.1 Observed Software Model Characteristics

To gain an insight into the characteristics of a “typical” software model, a diverse
sample of 20 software models was analysed, sourced primarily from publications
involving state machines and RFCs (memoranda that are generally used to specify
standard network protocols such as SSH and FTP). The rationale for this was to
obtain an idea of the relationship between particular factors such as alphabet size and
depth, so that these could be used to parameterise the DFA generation algorithm.

The DFAs were analysed by encoding their transition structures in such a way that
they could be analysed by the iGraph extension for the R statistics framework.1 The
main purpose of the results is to act as guidelines for the generation algorithm; any
statistically justified statistics about general software models would require a much
larger set of models. The subject DFAs that formed the basis for this precursory
analysis, along with an informal report on its results have been made available.2 The
main conclusions are briefly listed below.

1. Alphabet size. There was no statistically significant relationship between the size
of an alphabet and structural features, such as the number of states/transitions,
or the depth of the DFA.

2. Relationship between depth and states. There was a strong relationship between
the depth (the longest shortest path from q0) and number of states, modelled as
follows (as established by linear regression): depth = (0.36 ∗ states) + 1.3 (R2 =
0.75).

3. In/Out degrees for states. No statistically significant relationship was found
between the in- and out-degrees for states. However, a visual inspection of the
transition structures clearly indicated that some states tend to play a more central
role than others. This was confirmed by plotting histograms of Kleinberg’s
“hub” and “authority” scores (Kleinberg 1999) for each state. These showed that
although most states play a relatively passive role in the state machine—perhaps
being an interim state as part of a sequential process with one or two in/out-
going transitions, there are consistently one or two states that have a high hub or
authority score. These states tend to represent the starting or finishing points for
a range of possible sequences of events.

1http://igraph.sourceforge.net/
2http://www.cs.le.ac.uk/people/nwalkinshaw/stamina/

http://igraph.sourceforge.net/
http://www.cs.le.ac.uk/people/nwalkinshaw/stamina/
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3.1.2 Model Synthesis

The above observations were used as guidelines to develop an algorithm to synthesise
random DFAs that have similar characteristics to those found in realistic software
systems. In other words, the models have to have a reasonably large alphabet, with
some states and transitions that are more ‘central’ than others. This is on top of the
conventional constraints on DFAs (they should contain no equivalent states, they
should be deterministic, and every state must be reachable from the initial state).

Generating graphs with uneven edge distributions is not trivial, and has been
the subject of much study in social network research, where certain nodes (often
representing web pages, or humans in a social environment) will often feature more
centrally than others. Following this observation, the organisers developed a random
DFA generator that builds on an existing algorithm to synthesise social networks
(the Forest-Fire algorithm (Leskovec et al. 2007)).

In broad terms, the original Forest-Fire algorithm produces graphs with uneven
edge distributions by iteratively selecting a random “ambassador” node, adding a
new node, and subsequently adding edges to a selection of nodes that are linked
(or transitively linked) to the ambassador node. As nodes are added, this produces
clusterings of edges around certain nodes. Our extension takes these unlabelled
graphs, adds transition labels, and ensures that the final model is deterministic, does
not contain equivalent states, and that all states are reachable. States are randomly
labelled as final as they are added. Further details are provided in Appendix B.

Although the synthesised models adhere to the characteristics observed in
Section 3.1.1, the claim that they are representative of software models in general
is difficult to validate. This must be taken into account when interpreting the results
of the competition, and is discussed more fully in the ‘threats to validity’ section
(Section 5.1).

3.2 Generation of Training and Test Sets

As stated in Section 2.4, the algorithms that are used to generate random samples
for previous competitions are no longer suitable for DFAs with large alphabets and
varying out-degrees, because they fail to generate a sufficiently large number of valid
sequences. The sampling procedure used in this competition computes direct walks
over the target machine as opposed to randomly combining elements of the alphabet.
The procedure can be summarized as follows:

1. Using a random walk algorithm (see details below) a first sample is generated
from the target DFA. The sample contains exactly 20,000 sequences but may
contain duplicates. This is nonetheless established to be a sufficiently populous
pool to enable the baseline Blue-Fringe algorithm to infer an accurate models.

2. The sequences are equally partitioned in two disjoint sets (satisfying a positive/
negative balance). One is designated as the training pool, and the other as the
test pool. Any duplicate sequences are removed from the test pool to avoid
influencing the performance metric.

3. The final testing sample is computed by randomly selecting 1,500 sequences from
the testing pool. This number was chosen by experimenting with the test results
produced with respect to the baseline Blue-Fringe algorithm; larger numbers of
sequences were found to have no effect on the reported test accuracy.
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4. The training sample generation is parameterised by a desired sparsity value. As
was explained in Section 2, the difficulty of an inference problem is determined
not only by the characteristics of the target machine, but also by the completeness
of the given training set. In our competition, we incorporate four levels of
sparsity: 100% is a notionally rich sample, and 50%, 25%, 12.5% are subsets.
The calibration of the number of training samples required for 100% is discussed
in Section 3.3.2.

3.2.1 Random Walk Algorithm

A random walk algorithm has been implemented to generate the sample pool
described above. It generates positive sequences by walking the automaton from the
initial state, randomly selecting outgoing state transitions from a uniform distribu-
tion. The set of sequences is generated in such a way that the distribution of sequence
lengths is approximately centered on 5 + depth(automaton), ensuring a high proba-
bility of generating samples that fully cover the states and transitions of the model in
question (this is inspired by the Abbadingo competition (Lang et al. 1998)). This
is achieved by terminating a walk with a probability of 1.0/(1 + 2 ∗ outdegree(v))

every time some terminal state v is reached (this probability was chosen by
experimentation).

Negative sequences are generated by editing positive strings obtained as above.
Three kinds of edits are used: substituting, inserting, or deleting a symbol. In all
cases, the edit-location is chosen from a uniform distribution on the sequence length.
The number of edits is chosen with a Poisson distribution centred on three, and the
edit kind with a uniform distribution. The sequence is simply discarded if the edited
version still ends in an accepting state.

3.3 Competition Setup and Calibration

The two key factors that can affect the performance of a model inference algorithm
are (1) the complexity of the target model and (2) the richness of the sample set.
To gain insights into the respective strengths of the competing techniques, these
two factors have to be modulated carefully. This is especially the case with DFA
complexity, which is a compound property that is affected by several properties of
the DFA. The rest of this subsection describes how these factors were regulated for
the competition.

There are many ways in which one can define the term ‘complexity’ with respect
to DFAs, such as the number of transitions, the manner in which the transitions
are arranged in the DFA, the number of states, and the alphabet size. By using our
adaptation of the Forest Fire algorithm, all of these variables apart from the number
of states and the size of the alphabet are implicitly factored into the model generation
process. The number of states and alphabet size can be controlled explicitly. The
decision was taken by the organisers to modulate the complexity of the DFAs only
in terms of their alphabet size, and to keep the number of states at approximately 50
states. In generating the models, a slight variance of ±9 was allowed and the true size
was not disclosed to competitors (to prevent them from tailoring their technique to
focus exclusively on models with exactly 50 states).

The two core problem factors, alphabet size and sample sparsity, are controlled
to produce 20 problem categories of varying difficulty. The size of the alphabet is
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adjusted to either 2, 5, 10, 20 or 50. The sparsity of the sample ranges from 100% to
50%, 25% and 12.5%. For each combination of alphabet size and sample sparsity,
five random DFAs are generated, resulting in 100 DFAs in total. The categories are
shown in the column/row labels in Table 1.

Having generated the set of target models, and arranged them into their problem
categories, the rest of this subsection will discuss how the models that are inferred
by competitors are assessed, and how these are scored. The accuracy is assessed by
comparing bit-strings produced by test cases on the inferred model against the bit-
strings produced with respect to our reference models. The difficulty of the problem
categories in Table 1 (important for determining the winning entry) is calibrated with
respect to the performance of the baseline Blue-Fringe algorithm.

3.3.1 Measuring the Accuracy of an Hypothesis Model

Once a competitor has inferred a model, each test sequence in the test set is supplied
to the model, to determine whether it is accepted by the model or not, producing
a binary string to represent the classifications for the whole test set. To establish
the accuracy of the model, this binary string is compared against the correct binary
string produced by the hidden target model. The overlap between the two strings is
measured with a measure called the harmonic Balanced Classif ication Rate (BCR).

BCR is chosen for this competition because it has two important advantages over
the standard error-rate measure. The standard approach of counting the proportion
of correctly classified test sequences can be highly misleading if (a) the distribution
of test sequences is imbalanced and (b) the target model happens to be imbalanced
with respect to the proportion of sequences that it accepts or rejects (often the case
with software models (Walkinshaw et al. 2008)). The BCR measure accounts for
this imbalance by taking an average of two measures (elaborated below), which
account for the abilities of a model to both accept the sequences it should, whilst
correctly rejecting those that it shouldn’t (sensitivity and specificity). Not only does
this produce results that are more reliable, but it also enables us to scrutinise the
results in more detail, with respect to its two base-measures (c.f. the bag plots in
Figs. 4, 5, 6 and 7).

The standard BCR combines two factors. The sensitivity SE is the proportion
of positive matches that are predicted to be positive. So in terms of the sets true
positives (T P) and false negatives (F N), SE = |T P|

|T P∪F N| . The specificity SP is the

proportion of true negatives that are predicted to be negative, so SP = |T N|
|T N∪F P| . The

standard BCR is simply computed as the arithmetic mean of SE and SP.
To prevent a massive disparity between sensitivity and specificity from skewing

the score, we choose to compute the BCR as the harmonic mean. This is computed as:

BCR = 2 ∗ SE ∗ SP
SE + SP

A model is considered to be accurately inferred from a sample (or solved) if the
harmonic BCR computed from the hypothesis model on the test strings is at least
99%. For each attempt by a competitor, the competition website returns a yes/no
answer stating whether their model reaches this threshold. No further details on the
actual performance are given to the competitor, to prevent hill-climbing on the test
samples.
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Table 2 Calibrating the mean
BCR scores for a given cell,
based on the scores of the
benchmark Blue-Fringe
algorithm shown in Table 1

Difficulty level Score

1 0.9 ≤ score ≤ 1
2 0.7 ≤ score < 0.9
3 0.6 ≤ score < 0.7
4 0 ≤ score < 0.6

3.3.2 Calibration

Table 1 gives rise to two important questions: (1) How many strings are required
for a 100% sample, and (2) how do we find out how difficult each cell actually is?
Both of these questions are answered by referring to what was considered to be the
best inference technique before this competition—the Blue-Fringe algorithm (Lang
et al. 1998) (see Appendix A). In doing so, the competition is being calibrated against
the state-of-the-art, and any technique that succeeds to solve a cell can only do this
by achieving some form of significant improvement. For the sake of calibration,
and to provide potential competitors with a possible basis for developing their own
algorithms, an implementation of the Blue-Fringe algorithm was produced in Ruby,
and is available.3

The size of a 100% sample was calibrated by finding the training set for which
the Blue-Fringe algorithm produces an accurate result for the simplest problems (i.e.
the five models in top left cell of Table 1 where |�| = 2) without fully solving the
cell.4 Thus, any solution that manages to solve the cell will have to out-perform the
baseline technique.

The difficulty of the cells was calibrated by establishing the average Blue-Fringe
BCR score for each of the cells (shown in Table 1). Based on these averages, the cells
are categorised into four levels from easy (1) to hard (4) according to the scheme
in Table 2. These categories represent the number of points that are awarded to a
technique for solving a given cell. The first algorithm to solve a cell was awarded
the points, and the algorithm with the most points at the end of the competition was
the winner. In the event that multiple algorithms achieved equal numbers of points
(which turned out not to be the case) the first algorithm to have solved the harder
cells would have been selected as the winner.

3.4 Running the Competition

The competition was run from March 2010, with the deadline for the final submission
announced as the 31st of December 2010. It was advertised on software engineering
mailing lists such as SEWORLD, and machine learning lists such as Google ml-news,
and to authors from both the Software Engineering and Machine Learning commu-
nities who had previously developed DFA inference techniques were encouraged to
participate. To incentivise the broader participation of challengers a prize of £700
was offered for the winning entry.5

3http://stamina.chefbe.net/baseline
4Although the average score for cell |�| = 2, 100% is 0.99, the Blue-Fringe algorithm did not achieve
this performance for each of the five target models, and so did not successfully solve the cell.
5This was based on the value of the prize for the Abbadingo competition (Lang et al. 1998) which
has been $1,024.

http://stamina.chefbe.net/baseline
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Fig. 1 Participation timeline—scale is capped at 400 submissions per challenger so as not to obscure
lower participation levels on less competitive months. The DFASAT technique ultimately made 745
attempts in December

A Ruby implementation of the baseline algorithm was made available on the
competition website (http://stamina.chefbe.net). The implementation is written in
such a way that it is relatively straightforward to alter and extend. This was to en-
courage the involvement of people who did not have an existing framework of their
own, and to provide them with a basis upon which to develop their own improved
version.

The Google Analytics statistics (which should be interpreted with the usual
caveats that accompany website statistics) suggest that the competition attracted a
significant amount of interest. The StaMInA website was visited 3,885 times by 1,118
‘unique’ visitors. There were visits to the site from 69 countries. Of the top ten coun-
tries in terms of visits, seven were based in Europe, with significant visitor numbers
from the US (ranked third), Brazil and Japan (ranked 9th and 10th).

Figure 1 shows the participation levels throughout the competition. It shows
how, after an initial flurry of activity, there were four months of a small amount of
sporadic activity, followed by a significant surge in activity before the deadline of the
competition. By the end of the competition, 1,856 attempts had been made by eleven
competitors. The names of the challenger techniques are given in the legend of the
figure; the next section will discuss some of their individual performances in more
detail.

4 Competition Results

Of the eleven competitors, five managed to solve problems that had not been
solved by the baseline Blue-Fringe algorithm. Two of them (DFASAT and Equipo)
managed to solve entire cells. In total, there were 61 successful attempts to solve
problems, and competitors managed to solve a total of 43 distinct problems in 10
different cells.

http://stamina.chefbe.net
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The StaMInA hall of fame, of which a live version was kept on the website, is
shown in Table 3 as it stood at the end of the competition. It shows that the DFASAT
algorithm won by a significant margin.

From an empirical perspective, the competition is interesting because it provides
an empirically sound basis for comparing different techniques against each other.
There is no opportunity for competitors to bias the outcome of their techniques, and
all are compared in a uniform way against the same success criteria. Furthermore, the
competition provides a useful basis for collating data about the different techniques.
Competitors submit their bit-strings for the respective problems, and although they
only get to see the table shown in Table 3, the bit-strings provide a useful basis for
gaining more detailed insights into the respective strengths and weaknesses of their
techniques.

The box plots in Fig. 2 show the relative distributions of BCR scores for the
various participating techniques, with respect to the four difficulty levels. Although
the difficulty of the problems is in the same broad category, there is a degree of
internal variance (inferring a hidden model with an alphabet of 25 might be harder
than inferring a model with an alphabet of two). Furthermore, there is a major
variance in the extent to which different techniques have been used to solve different
cells in the category (the number of attempts is also reported in Fig. 2). As a result,
these plots can only be treated as rough indicators of the comparative performances
of the techniques. Level 4 needs to be treated particularly carefully; there were very
few submissions, and several techniques (e.g. pbc) only attempted to solve cells
that remained virtually untouched by the other competitors. Despite this caveat,
the relative performance of those techniques that attempted a large number of cells
adheres to a pattern that is broadly consistent across the different difficulty levels.

The remainder of this section will discuss some of the key techniques, and provide
an overview of the main results. To investigate potential relationships between com-
peting techniques, it is possible to resort to the data collected during the competition
(in the form of bit-strings submitted by the competitors for the different techniques).
This illustrates how the general mechanism of a competition is not only valuable from
a perspective of prompting the development of new approaches (as will be seen with
DFASAT), but also shows how it forms a valuable basis for gathering empirical data
to gain insights into their performance.

In certain cases it is useful to compare the performance of two techniques in more
detail than simply in terms of their BCR scores. In fact, a distribution of BCR scores
can be represented in two dimensions in terms of sensitivity against specificity (of
which the BCR score is the harmonic mean). When comparing the BCR distributions

Table 3 StaMInA hall of fame. Solved cells are annotated with the winning technique

|�| Sparsity

100% 50% 25% 12.5%

2 Equipo (1) 4 solved (1) − (3) − (3)
5 DFASAT (1) 1 solved (2) − (4) − (4)
10 DFASAT (1) 3 solved (3) − (4) − (4)
20 DFASAT (1) 4 solved(3) − (4) − (4)
50 DFASAT (2) DFASAT (3) − (4) − (4)

In any unsolved cells where individual problems had been broken, the number of solved problems is
listed. The difficulty of each cell is included in parentheses, as based on Table 1
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Fig. 2 Bar plots comparing performance of all algorithms according to difficulty level (see Tables 1
and 3). The number of attempts is noted under each box

for two different techniques, it is helpful to make the main concentrations of points
explicit (as a box-plot does in single dimensions). To do this, we use bag plots
(Rousseeuw et al. 1999), which are in effect two-dimensional analogs to box plots.
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The bags centre upon the “median” point of the data, which is calculated as the point
with the highest “halfspace depth” (Tukey 1975). The halfspace depth of a point p
relative to a dataset P within a two-dimensional scatter plot is the smallest number
of data points in P lying in any closed half-plane determined by a line drawn through
p. In a bagplot, the inner bag contains the 50% of points with the highest depth. The
outer fence is constructed by inflating the bag and taking the convex hull of the points
inside the inflated bag, in analogy with the method for obtaining the whiskers in the
box plot. Within the inner bag there is a further zone to indicate the 95% confidence
region for the depth median of the set of points. The plots were produced with the
bagplot function in the aplpack library6 for the R statistical package.

4.1 Successful Techniques

4.1.1 DFASAT

The competition was ultimately won by the DFASAT algorithm, developed by Sicco
Verwer and Marijn Heule. It solved all of the cells for 100% sparsity, and solved
one of the cells for 50%. The algorithm is consistently the strongest performer, with
both quartiles above 90% accuracy for all difficulty levels. This is even the case for
difficulty level four where, with accuracy results that were mostly above 90%, it came
very close to solving those cells that it attempted.

The DFASAT technique is based on previous work by the competitors (Heule
and Verwer 2010). A detailed description of the algorithm and its adaptation for
StaMInA is available in an accompanying paper (Heule and Verwer 2012), so it
will be only summarised in abstract terms here. The essential idea that underpins
the technique is to recode the DFA inference problem as a constraint satisfaction
problem (and so to take advantage of many well-developed constraint satisfaction
mechanisms). They achieve this by adopting a technique first proposed by Coste and
Nicolas (1997), namely by encoding the inference challenge as a graph colouring
problem, which can be solved reasonably efficiently with SAT solvers. This is
however subject to scalability constraints, so the authors address this by first using
a slightly modified version of the standard baseline technique (see Appendix A)
to generate a partial solution, and then use the SAT technique to home-in on the
exact DFA.

For the StaMInA competition, the original published DFASAT technique had to
be altered in two significant ways (the competitors have noted that, in its orignal
form, it was incapable of solving cells beyond the lowest difficulty level). The first
alteration was to change the algorithm to take advantage of the characteristics of the
StaMInA models. The way state pairs are chosen was changed from the traditional
approach used in the baseline approach, taking advantage of the fact that large al-
phabets mean that any pair of states that have any outgoing transitions with identical
symbols are much more likely to be equivalent than would be the case with smaller
alphabets. Furthermore, the decision procedure used to select pairs of states to
merge was perturbed stochastically. As a consequence, several candidate automata
could be inferred for a single problem, and a heuristic was used to select the best
candidate. This took into account knowledge about the likely size of the models

6http://cran.r-project.org/web/packages/aplpack/index.html

http://cran.r-project.org/web/packages/aplpack/index.html
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(about 50 states). Further details are available in the accompanying paper by Heule
and Verwer (2012).

One outcome that might initially appear curious is the fact that, as shown in
Table 3, DFASAT managed to solve the cell for an alphabet of 50, with a sample of
50%, but did not succeed in solving the seemingly easier cells for smaller alphabets in
the same column. It is however important to bear two facts in mind. First, DFASAT
still performed very strongly in the other cells; it was the only challenger to solve
any problems in the column, and ultimately managed to solve 17 out of the 25
possible problems. Second, effort was not invested uniformly into solving each cell.
The DFASAT algorithm employs heuristics to take advantage of large alphabets
(this is discussed in the next subsection), and those cells with large alphabets are
also associated with higher difficulty ratings, so their solution would lead to a greater
reward for the competitors.

Having concluded the competition, the DFASAT authors ran their algorithm
on the complete set of problems and cells. This performance is provided in Fig. 3.
It shows clearly how, at every level of sparsity, the DFASAT comprehensively
outperforms the Blue Fringe algorithm. One point of interest is that the performance
of DFASAT does not deteriorate with higher alphabet sizes (as is the case with Blue
Fringe). On the contrary, the charts clearly indicate that DFASAT excels at inferring
models with a higher alphabet.

4.1.2 Equipo and Menor

The Equipo and Menor techniques are both based on the notion of automata teams
(García et al. 2010). This approach is more closely aligned to the baseline Blue-Fringe
technique than DFASAT. It uses the same Blue-Fringe approach (see Appendix A)
to identify possible pairs of states to be merged. However, at this point it differs
in a significant way. Instead of always choosing a specific pair based on a specific
heuristic, pairs are chosen randomly. In this way, the algorithm can be executed
several times on the same sample, and produce several different candidate DFAs. In
this way, ‘teams’ of automata can be produced. Given a test set, each test sequence
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sample sparsity, compared to equivalent performance by the baseline Blue-Fringe algorithm (right)
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can be classified by arranging a vote within the team. One way to vary these
algorithms (and perhaps the way in which Equipo and Menor differ) is to specify
different voting strategies.

Judging from the box plots in Fig. 2, Equipo and Menor perform similarly to each
other, achieving a reasonable accuracy for the first three difficulty levels. In such
situations where the performance of two techniques is difficult to distinguish, the
wealth of data collected during the competition becomes a valuable basis for carrying
out a more detailed analysis. This is shown in the bag plot in Fig. 4. In the case of
Equipo and Menor, the bag and fence corresponding to Menor are almost entirely
subsumed by their Equipo equivalents. This indicates that, although their overall
performance is effectively the same, the accuracy of Menor has a lower variance.

4.1.3 pbc

The pbc submission (which stands for Pattern Based Classification) by David Lo and
Leonardo Mariani was one of the few competitors to have been based on a technique
that had been specifically developed with a software-engineering application in mind.
The underlying technique was developed by Lo et al. (2009), to infer software models
from program traces. The approach also stands out from other techniques because
it is the only approach to have been reasonably successful (see Fig. 2), yet is not a
variant of the state merging algorithm that underpins the other approaches and the
baseline approach. It is based on a kernel method, which applies statistical analysis
to the given set of sequences to derive a model that can discriminate between valid
and invalid sequences.

In terms of performance, pbc cannot be compared extensively to other com-
petitors, because it was the only significant challenger for the cells it attempted
(this highlights a danger in interpreting the broader boxplots in Fig. 2). The pbc
challengers especially focussed on the six hardest cells (|�| ≥ 10, sparsities of 25%
and 12.5%). Given their relatively late entry into the competition (see Fig. 1), it is
possible that this was due to the strategic aim of leapfrogging the other challengers
instead of concentrating on the easier cells. Although the technique did not solve
any of the problems in these cells, its accuracy was reasonably strong. This is shown
in Fig. 5. The mean sensitivity is 0.71, and the mean specificity is 0.72, which is a

Fig. 4 Plot of Sensitivity
versus Specificity for the
Equipo and Menor techniques.
Menor (lighter bag) is
overlayed onto Equipo (darker
bag). Note that the plot is
rescaled
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Fig. 5 Plot of Sensitivity
versus Specificity for the pbc
technique. Note that the plot is
rescaled
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major improvement on the baseline technique for those cells. In the light of the
post-competition data from the DFASAT technique, the BCR performance of pbc is
however still an average of 0.21 lower than the DFASAT technique.

4.1.4 SatinDFA

The SatinDFA technique only made a small number of submissions, but performed
consistently well. Its performance across problems of difficulty level one is shown in
Fig. 6. Of course it is important to bear in mind that there are only 16 SatinDFA
submissions, against 576 submissions by DFASAT. Nonetheless, it is striking that
the range of accuracy for SatinDFA is tightly focussed around the 0.98 in both
dimensions.

SatinDFA was developed by Adriaans and Jacobs (2006) and Mulder et al. (2009).
As with most of the other competitors, it is roughly based on the state merging
process used by the Blue-Fringe technique (Appendix A). However, it differs from
the baseline process in the strategy it uses to decide whether or not to merge a pair of
states, which is based on the notion of a Minimum Description Length (MDL)
Rissanen (1983). Since the computation of solutions using this heuristic is heavily

Fig. 6 Bag plots of Sensitivity
versus Specificity for the
SatinDFA technique (light
bag) superimposed on the
DFASAT technique results
(dark bag) for difficulty level
one. Note that the plot is
rescaled
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resource consuming, the SatinDFA technique is implemented with the Satin grid
computation infrastructure (van Nieuwpoort et al. 2010), a Java framework that
enables resource-intensive computations to be distributed accross a grid.

4.1.5 Test1

Judging by the boxplots in Fig. 2, the Test1 algorithm performed well in the cells it
competed in (which were mostly at a difficulty level two). Looking at the bagplot in
Fig. 7, this shows that the algorithm is distinctive in terms of its performance. There
is a significant variance in terms of its sensitivity, but almost no variance in terms
of its specificity. The standard deviation for sensitivity is 0.258, and is only 0.09 for
specificity. This indicates that the inferred models can be susceptible to the tendency
to reject too many sequences that ought to be accepted.

The algorithm was developed by James Scicluna and, appropriately for this
competition, is specifically developed for DFAs with large alphabets. It differs from
the baseline algorithm in the way that it compares states. The underlying idea is
that a relatively long sequence of symbols is unlikely to be the suffix for more than
one state. In other words, if two states in the prefix tree acceptor (see Section 2.3)
share a relatively long suffix, they are likely to be equivalent and can be merged. The
inference technique simply merges those states with matching suffixes that contain
matching n-grams (according to the author, n = 3 worked best in this case). The algo-
rithm is a version of the k-tails approach proposed by Biermann and Feldman (1972).
This explains the relatively poor sensitivity results discussed above—one of the
widely acknowledged problems with the k-tails is that it will fail to merge states that
are equivalent but happen to not have matching k-tails (Reiss and Renieris 2001),
producing models that can falsely reject a large proportion of sequences. Neverthe-
less, the basic criterion for selecting states was still relatively successful, producing
a reasonably high BCR score.

4.2 Attributes of Successful Inference Techniques

The competition has a much broader aim than simply to select a specific winning
technique. Several of the participating techniques excelled in particular areas of the
competition. To supplement what has so far been a purely quantitative perspective

Fig. 7 Bag plots of Sensitivity
versus Specificity for the Test1
technique (light bag)
superimposed on the results
for the DFASAT technique
(dark bag) for difficulty
level two
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on the accuracy of techniques, this subsection provides an overview of a selection of
factors that potentially played a role in the success of the algorithms.

Stochasticity and Hypothesis Diversity Several contributors to the competition
(DFASAT, Equipo and Menor), all involve a degree of randomness, to generate
populations of potential solutions to the same problem. This mitigates the risks that
are involved in conventional algorithms, such as the baseline Blue-Fringe algorithm,
where any inadequate state merging early in the inference process will lead to a
solution that is potentially highly inaccurate.

Encoding Model Inference in Formats that are Ef f iciently Computable Both
DFASAT and SatinDFA are able to adopt inference procedures that would usually
be prohibitively expensive from a computational viewpoint. This is achieved by
encoding aspects of the grammatical inference problem in a format that can be solved
more efficiently. DFASAT maps the original problem to a boolean satisfiability
problem that can be solved efficiently by SAT solvers. SatinDFA involves what
would conventionally be a prohibitively expensive merging heuristic, but is able to
use this by using the Satin platform to evaluate several merges in parallel.

Alternatives to State Merging The success of the pbc algorithm in the harder
cells of the competition demonstrates that there are powerful alternatives to state
merging. Alternative techniques (such as the kernel-based approach used by pbc)
can potentially complement the standard state-merging approaches used by the other
techniques.

Exploiting Characteristics of the Target Models DFASAT, Test1, and pbc were
particularly successful because of the large alphabets in the StaMInA models, a
target characteristic that would be seen as detrimental to the performance of other
traditional techniques. DFASAT exploited knowledge about the rough size7 of the
target models to reduce the search space. Test1 and pbc both took advantage of
the frequency of particular sequences, which becomes a more reliable indicator of
equivalent states as the alphabet increases in size.

5 Discussion

This section will look at the threats to validity that arise when interpreting the
StaMInA results. This will be followed by some suggestions for future competitions.

5.1 Threats to Validity

The competition has successfully encouraged the development and adaptation of
techniques to infer models of software systems. However, on top of this, the argu-
ment is made that the competition can be seen as a form of experiment, to make

7The number of states of the target models was undisclosed but known to be approximately equal to
50, with actual values between 41 and 59 states.
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empirically sound decisions about the relative accuracy of the various techniques.
This has to however be qualified; any conclusions that are drawn from this data are
subject to threats to validity.

5.1.1 Representativeness of the Models

The target models used in the StaMInA competition are meant to be broadly
representative of typical software models. Given the diverse nature of software
systems, and the different levels of abstraction at which they might be modelled, the
notion of what constitutes a “typical software model” is very difficult to pin down.
Any algorithm that claims to produce realistic software models is going to be very
difficult to validate for the same reason.

Even though the realism of the models is difficult to validate in a formal sense,
their key characteristics (large alphabets and non-uniform transition structures) are
typical of software models and are widely acknowledged. It is therefore reasonable
to conclude that an inference technique that is capable of inferring these models is
likely to be capable of inferring other non-synthetic models of software systems.

5.1.2 Representativeness of the Traces

The traces from which models are inferred are generated according to a process that
enables one to carefully control the amount of information about the target model
that is contained within a given set of traces. Although this ensures internal validity
from an experimental point of view, it leads to a possible question mark over the
external validity. There is a danger that a technique might excel at inferring accurate
models from StaMIna traces, but fail to perform as well (relatively to competing
techniques) on software traces in a specific application domain.

There is a trade-off between the control exercised over the information content
of the traces, and their representativeness with respect to software engineering
applications. Ensuring that there are even proportions of positive and negative
sequences, and generating negative sequences as mutations of positive ones will
invariably lead to distributions of traces that could be construed to be artificial and
not representative of “typical” traces that arise in software engineering application
domains. However, this provides the benefit of being able to carefully monitor the
performance of a technique with respect to varying degrees of information contained
in the traces.

It is unclear how the trace-generation approach might be changed to become
more reflective of general software engineering tasks, due to the inherent diversity
of the types of traces they use. For example, biasing the approach to produce a
greater proportion of positive trace would be more representative of certain areas
(e.g. passive testing and runtime verification), but less representative of others (e.g.
debugging from failure traces). The current selection is deliberately application-
neutral. Accordingly, the implications for the conclusions about algorithm perfor-
mance are best interpreted on the understanding that certain algorithms might excel
for different selections of traces.

5.1.3 Intervention by Competitors

One factor that cannot be controlled in a competition setting is the behaviour of the
competitors. Invariably, if a technique fails to work in the first instance, there will be
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a tendency to alter its behaviour tweaking its parameters to better suit the training
samples or target model characteristics. This means that, when interpreting the data
collected throughout the competition, it will include the results of techniques that
were produced throughout. For example, the winning DFASAT entry required a rea-
sonably substantial amount of alteration to successfully solve the harder cells in the
competition. However there is no way of distinguishing between different ‘phases’
of the technique in the raw results data. The only way for a participant to enable
this distinction is to submit different configurations of their technique as separate
entries into the competition, as happened with the Equipo and Menor entries.

5.1.4 Strategic/Uneven Participation

One factor that hampers the comprehensive comparison of different techniques is
the fact that competitors concentrated their efforts on different parts of the grid. For
example, from an empirical perspective it would have been nice to directly compare
the performances of DFASAT and pbc, however neither technique attempted any of
the same cells during the competition, although they performed well independently.
In some cases the choice to focus on particular cells would have been a strategic
choice by the competitors. In other cases, participants seemed to give up, under the
(often false) perception that their technique was not performing very well because it
failed to hit the 99% accuracy mark for any.

This means that broad comparisons of the competition data alone, such as the box-
plot view shown in Fig. 2, have to be interpreted with some caution. When carrying
out more detailed comparisons, as with the bag plots, care has been taken to ensure
that the techniques at least competed for the same cells. To facilitate a more in-depth
analysis of the performances, all competitors were invited to rerun their techniques
on all of the problems after the competition had completed. One competitor that did
volunteer to do so was the winning DFASAT team. Their performance (as charted
in Fig. 3) can thus be confirmed to have outperformed the other competitors on all
of the cells.

5.2 Current Use

Although the formal competition has been completed, the StaMInA website is being
maintained, to act as a benchmark platform for the evaluation of future techniques.
This will also enable those competitors who had given up under the false impression
that their techniques performed poorly to attempt the rest of the cells.

One lesson that was drawn from the competition is that the lack of feedback
to the competitor, designed to prevent hill-climbing, was ultimately perhaps too
opaque. If competitors failed to obtain a score of 99%, the only feedback they
obtained was that their technique had failed. This will lead to despondency for
competitors whose techniques fail to reach this high margin, and seemed to prevent
several StaMInA competitors from seriously attempting cells that they might have
eventually succeeded in solving.

For a conventional benchmarking system, the absence of a prize means that there
is less of an incentive for participant to cheat. As a consequence, the feedback system
has been opened up, and now provides the conventional BCR score on a per-problem
basis. This also addresses one of the threats to validity listed above, by encouraging
competitors to attempt all of the problems in a given cell/difficulty level.
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6 Related Work

To the best of the author’s knowledge, there have been no competitions in the past to
drive software engineering research. Competitions have however been used to spur
the development of novel techniques in numerous other research areas. One popular
example from the field of bioinformatics is the Critical Assessment of Techniques
for Protein Structure Prediction (CASP) competition series,8 a biennial competition
series that has become one of the main drivers for the development of protein
structure prediction techniques. In the field of automated reasoning, the CADE
ATP System Competition (CASC)9 has been a successful series of competitions to
compare the performances of automated theorem provers.

6.1 State Machine Inference Competitions

At its heart, the StaMInA competition is a state machine inference competition.
There is an intrinsic relationship between state machine inference and grammatical
inference. The StaMInA fits the mould of numerous grammatical inference compe-
titions that have been arranged over the past decade. However, this competition is
specifically intended for learning models typically found in the Software-Engineering
domain.

The Abbadingo-One competition (Lang et al. 1998) took place in 1997, and gave
rise to the Blue-Fringe algorithm, which is used as the baseline technique in this
competition. This was followed by the Gowachin noisy DFA inference competition
in 2004, which was followed up by the similar GECCO 2004 noisy DFA inference
competition.10 The Gowachin and the GECCO competition however involve a step
that adds noise to the training data. As mentioned in the background, StaMInA
differs from these competitions in three ways: (1) the target models have larger alpha-
bets, (2) the testing and training samples are derived directly from the target model,
and (3) results are evaluated with the BCR metric as opposed to simply counting the
proportion of correct classifications.

The ZULU competition11 (Combe et al. 2010) is a recent competition for the
inference of DFAs, however this is developed for the active learning setting—i.e.,
where there is an oracle present that is capable of answering questions from the
inference technique. Unlike StaMIna, ZULU also reuses the usual target model
generation algorithm from Abbadingo-One or Gowachin.

6.2 Benchmarking in Software Engineering Research

One area that has become increasingly prevalent in empirical software engineering
research is the use of benchmarks. In essence, a benchmark consists of a collection of
subject data that can be consumed by different techniques, and can be used to draw
coherent and valid conclusions about the respective performance of these techniques.
The case for benchmarking is discussed comprehensively by Sim et al. (2003).

8http://predictioncenter.org/
9http://www.cs.miami.edu/~tptp/CASC/
10http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html
11http://labh-curien.univ-st-etienne.fr/zulu/

http://predictioncenter.org/
http://www.cs.miami.edu/~tptp/CASC/
http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html
http://labh-curien.univ-st-etienne.fr/zulu/
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The StaMInA competition can be seen as a form of benchmark. According to Sim
et al.’s definition of a benchmark, it should compare relevant aspects of techniques,
the data used to compare techniques should be representative of realistic tasks, and it
should use well-defined measurements of performance. These three aspects all apply
to the StaMInA competition.

Perhaps one aspect that stands out with respect to competitions is the fact that, by
the nature of a competition, it encourages wide-spread participation in the way that
a conventional benchmark might not. Competitions offer an incentive to participate
(the offer of a prize, and the potential to top the hall of fame). This not only broadens
the participation, but also spurs the development of new techniques to tackle the pro-
blem at hand. This has been evident in the StaMinA competition, where competitors
actively attempted to tune and improve their techniques to outperform others.

7 Conclusions and Future Work

It is widely acknowledged that the widespread empirical comparison of software
engineering techniques can be exceptionally difficult. Tool-support for techniques
is often poor, tools tend to be poorly maintained, are difficult to obtain, or configure,
and can often be too expensive to re-implement. This is further exacerbated by the
challenge of encoding the subject data into a suitable format, and to obtain coher-
ent results. Competitions such as StaMInA circumvent this problem, by providing
incentives for the participants to run their own tools, and so removing these major
practical issues.

The competition was successful at motivating the participation of challengers,
who contributed several techniques that mark a significant improvement on the
state of the art. The DFASAT technique, which was altered to suit the competition
and ultimately won, represents a major step forward in the use of software model
inference techniques. Were a new competition to be held in the area, it would
represent the new base-line algorithm for other challengers to improve on.

From an empirical software engineering viewpoint, the StaMInA competition is
interesting. Software techniques are difficult to compare in a systematic way, because
their tools (often prototypes) are often difficult to obtain or execute. The competition
removes these restrictions by placing the onus on the developer. It also provides
an incentive for widespread participation by offering participants the opportunity to
directly compare the performance of their techniques against the state of the art, and
against other techniques.

As a legacy, the StaMInA website has been converted into a standard benchmark-
ing site. The actual models and test labels remain undisclosed, but each participant
can obtain the actual BCR scores for their technique (as opposed to the Boolean
correct/incorrect feedback that was used during the competition). This is in the
process of being expanded, to provide a more detailed hall of fame, along with more
detailed performance indicators for the top three techniques.

As far as future work is concerned, there are several ways in which the StaMInA
framework could be extended or improved for future competitions. One point of
interest would be to consider more advanced types of target models. For example,
probabilistic state machines are of particular interest, not least because they can be
inferred from samples that contain only positive examples, which are much easier to
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obtain with respect to software systems. Models with a data state such as Extended
Finite State Machines (EFSMs) are another interesting, albeit more challenging
prospect for use as targets. Besides extending the type of model under consideration,
there is also the potential to consider different domains. As an example, there are
several biological datasets that would fit this competition framework.
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Appendix A: The Baseline Blue-fringe Algorithm

The ultimate aim of the competition is to find algorithms that improve on the state of
the art. To ensure this, the competition is calibrated with respect to what was believed
to be the best Algorithm before the competition—Price’s Blue-Fringe algorithm ,
which was the winner of the Abbadingo One grammatical inference competition
and is described by Lang et al. (1998). This subsection gives a brief overview of the
algorithm, to provide a context to the challenge presented by the competition. The
reader can refer to Lang’s original paper for more details.
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The basic state-merging algorithm is shown in Algorithm 1 (from Lambeau et al.
2008). The basic process of the algorithm can be explained as follows:

1. (line 2) Initialise the PTA from S+ ∪ S−.
2. (line 3) Initialise the partition of the set of states in the PTA (denoted π), such

that each state has its own block in the partition.
3. (lines 4–7) In the loop, pairs of blocks are selected iteratively, following the

strategy specified by the ChoosePair function. The choice of state pairs is
key to the accuracy of the final model, and it is the strategy employed in
Choosepair that distinguishes state-merging algorithms from each other. The
strategy employed by Blue-Fringe is discussed briefly below.

4. (line 5, 9–12) Every time a pair of states are selected, they are merged using the
Merge function. This removes the two individual blocks from π and replaces
them with a single super block. When applying this set union to the PTA, it
entails the removal of the two states represented by the blocks, and replacing
them with a single state with all of the incoming/outgoing transitions of the two
individual states.

5. (line 11–12) If the two blocks have outgoing transitions that share the same
labels, merging them will produce a non-deterministic state machine. This is
addressed by recursively calling the Merge function to merge the blocks that
are the targets of the respective non-deterministic transitions until the machine
is deterministic.

6. (line 6) By construction, any DFA that is the product of a merge will still accept
every example in S+. However, it can occur that it also wrongly accepts examples
in S− (this is known as overgeneralisation). To ensure that such merges do not
contribute to the final inferred model, the call to the Compatible function
in line 6 checks that the DFA that is produced by merging the states in PTA
according to πnew (denoted PT A/πnew) still rejects the negative examples in S−.

7. (line 7) If the merged hypothesis is compatible, the current state partition π is
updated to reflect the updated hypothesis πnew.

8. (lines 4, 8) Once ChoosePair cannot produce any more pairs of blocks, the final
state machine can be returned by applying the partition π to the PTA (denoted
PT A/π in line 8).

The Blue-Fringe algorithm is distinguished from other algorithms by its specific
implementation of the ChoosePair function. It is practically impossible to assess
every possible set of merges – the number of partitions of the set of states in the
PTA is computed by the Bell number of the number of states in the PTA, which rises
exponentially as the size of the PTA increases. The trick of the Blue-Fringe algorithm
is to only consider a small fraction of the possible merges, but to select the candidate
state pairs according to a strategy that is most likely to yield pairs that are in fact
equivalent.

The Blue-Fringe version of ChoosePairs works from the root of the PTA
outwards. At each iteration of Infer, it considers a pool of possible candidates
pairs (Lang et al. 1998). This pool is determined by identifying the set of states
that cannot be merged with each other (coloured red), and the set of states that are
adjacent to these red states (coloured blue). This is illustrated in Fig. 8. The pool of
candidate merges consists of every possible red-blue pair of states.
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Fig. 8 Illustration of Blue-Fringe state selection

The best pair is chosen by scoring each pair (computed by measuring the extent
to which the outgoing set of paths from each state overlap). The rationale for this
heuristic is to reduce the likelihood of merging a pair of states that are actually not
equivalent by concentrating on those pairs for which there is a greater amount of
evidence that they are actually equivalent. Once a pair has been merged, the red-
blue sets are recomputed and the process continues with the new pool of candidate
pairs.

Appendix B: Random DFA Generation Algorithm

A random DFA must obey several constraints. Every state must be reachable from
the initial state, it must be deterministic (no state can have two outgoing transitions
with the same label) and minimal (no two states can be equivalent). On top of
that, it must be possible to generate a population of those machines that obey the
characteristics listed above.

The observation that software models tend to have an uneven distribution of in-/
out-degrees and a small number of hubs and authorities is significant. This is a feature
of a family of directed graphs that are generally referred to as “complex networks”
(Kleinberg 1999; Leskovec et al. 2007), which are commonly used to model networks
such as the world-wide web and social networks. The observation implies that
algorithms for the generation of random complex networks (which constitute a sig-
nificant part of complex network research) make a reasonable starting point for the
generation of random state machines.

The Forest-Fire algorithm by Leskovec et al. (2007) has been shown to produce
directed graphs that are especially suited for representing complex networks in a
variety of domains. It is based on an iterative algorithm, where a new node is added
at each iteration, and is connected to other nodes in the graph by selecting the closest
connections of the first node it connected to. The rest of this section provides a brief
overview of the forest fire algorithm, and shows how it has been adapted to produce
state machines.

This description closely follows that of Leskovec et al. (2007), who can be referred
to for further details. The algorithm has three parameters: a forward-burning proba-
bility f , a backward-burning ratio b , and the number of vertices n. Consider a node v
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to be added to the graph at a time t where 0 < t ≤ n. Node v forms an edge to nodes
in the graph at time t as follows:

1. Choose a random ambassador node w �= v and form an edge v → w.
2. Generate two random numbers x and y that are geometrically distributed with

means f/(1 − f ) and f b/(1 − f b) respectively. Node v selects x out-edges and
y in-edges of w to nodes that are not yet visited. If there are not enough nodes
available, it selects as many as it can.

3. v forms out-edges to the end-points of the selected edges from and to w and
applies step (2) recursively for each of those nodes. As the process continues,
nodes cannot be revisited.

The above algorithm cannot be used as-is to synthesise state-machines. As new
nodes are added, they are unreachable from any of the other nodes in the machine.
By default, an edge cannot be added from one node to itself, ruling out self-looping
states, which are common in software models. The original algorithm does not
account for the notion of terminal states. Furthermore, a strategy is required to
ensure that the state transitions in the final machine are suitably labelled (i.e., that
the machine is deterministic and minimal). This needs to account for the fact that
there could be multiple transitions between the same pair of states.

The following adaptations have been made to ensure that the final graph is state-
machine like.

– Alphabet To add the transition labels, an additional parameter a is used, which is
the upper limit on the size of a vector of numbers representing different elements
of the alphabet. Every time an edge is added, it is labelled with a random element
from that vector. The possible choices are curtailed to ensure that a selected
element will not cause the machine to be non-deterministic. If there are no
available alphabet elements left, the edge is not added.

– State reachability To ensure that each state is reachable, every time a state is
added, instead of connecting an edge from the new state to an ambassador state,
the reverse edge is added (from the ambassador to the new state).

– Accepting states Every time a state is added it is randomly labelled (with a
probability of 0.5) as an accepting (final) state or not.

– Self-loops In step 2 of the conventional algorithm, it is impossible to add edges
from a state to itself. We have added a parameter s to make it possible to specify
the probability for this to occur.

To identify suitable parameter values for the algorithm, random DFAs were
synthesised for a range of parameters f , b and the self-looping probability s. The
alphabet-size parameter a only affects the structure of the machine for small alphabet
sizes (i.e. a = 2), constraining states to an out-degree of 2. However, since this is
a special case it is not factored in to the calibration of the main parameters. For
every configuration, certain measurements were plotted, including the number of
transitions, states, depths, and hub/authority distributions. These were compared
to the equivalent plots from the real sample of machines. Several configurations
produced reasonable looking DFAs, but the configuration f = 0.31, b = 0.385 and
s = 0.2 resulted in measurements that were deemed to be most suitable in terms of
the plots, as well as a manual inspection of the DFAs themselves.
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van Nieuwpoort R, Wrzesińska G, Jacobs C, Bal H (2010) Satin: a high-level and efficient grid
programming model. ACM Trans Progr Lang Syst 32(3):1–39

Oncina J, Garcia P (1992) Inferring regular languages in polynomial update time. In: Pattern Recog-
nition and Image Analysis, vol 1. World Scientific, Singapore, pp 49–61

Raffelt H, Steffen B, Berg T, Margaria T (2009) Learnlib: a framework for extrapolating behavioral
models. STTT 11(5):393–407

Reiss S, Renieris M (2001) Encoding program executions. In: International conference on software
engineering(ICSE), pp 221–230

Rissanen J (1983) A universal prior for integers and estimation by minimum description length. Ann
Stat 11(2):416–431

Rousseeuw P, Ruts I, Tukey J (1999) The bagplot: a bivariate boxplot. Am Stat 53(4)
Shahbaz M, Groz R (2009) Inferring mealy machines. In: FM 2009: formal methods, second world

congress, Proceedings. Lecture notes in computer science, vol 5850. Springer, Eindhoven, The
Netherlands, pp 207–222, 2–6 November 2009

Sim S, Easterbrook S, Holt R (2003) Using benchmarking to advance research: a challenge to
software engineering. In: International conference on software engineering (ICSE), pp 74–83

Tukey J (1975) Mathematics and the picturing of data. In: Proceedings of the international congress
of mathematicians, vol 2, pp 523–531

Walkinshaw N, Bogdanov K (2008) Inferring finite-state models with temporal constraints. In:
International conference on automated software engineering (ASE)

Walkinshaw N, Bogdanov K, Holcombe M, Salahuddin S (2007) Reverse engineering state machines
by interactive grammar inference. In: International working conference on reverse engineering
(WCRE)

Walkinshaw N, Bogdanov K, Holcombe M, Salahuddin S (2008) Improving dynamic software analy-
sis by applying grammar inference principles. J Softw Maint Evol: Res Pract 20(4)

Walkinshaw N, Bogdanov K, Johnson K (2008) Evaluation and comparison of inferred regular
grammars. In: International colloquium on grammatical inference: algorithms and applications
(ICGI). Lecture notes in computer science, vol 5278. Springer, pp 252–265

Neil Walkinshaw received a B.Sc. in Computer Science from the University of Sheffield in 2002, and
a Ph.D. in Computer Science from the University of Strathclyde in 2006. He was subsequently a post-
doctoral researcher with the Verification and Testing group at the University of Sheffield until 2010.
Since 2010 he has been a lecturer in Computer Science at the University of Leicester. His research
interests revolve around the activities of software verification and validation, and the use of inference
and automated reasoning techniques to support these.



Empir Software Eng (2013) 18:791–824 823

Bernard Lambeau received the MSc (2003) and PhD (2011) degrees in computer science from the
Université catholique de Louvain. He is currently a postdoctoral researcher working with Axel van
Lamsweerde. His research interests include grammar induction applied to model synthesis as well as
requirements engineering, software design and development.

Christophe Damas received the MSc (2003) and PhD (2011) degrees in computer science from
the Université catholique de Louvain. He is currently a postdoctoral researcher working with Axel
van Lamsweerde. His research interests include requirements engineering, process modeling and
analysis.



824 Empir Software Eng (2013) 18:791–824

Kirill Bogdanov is currently a lecturer in the Department of Computer Science at the University of
Sheffield. Bogdanov got his BSc from the Moscow Institute of Physics and Technology and a PhD
from The University of Sheffield. Until his appointment as a lecturer in year 2000, he worked as a
Research Associate on the “Method for Object Testing, Integration and Verification (MOTIVE)”
project. His interests are in methods for rigorous state-based testing of software, aided by reverse-
engineering in order to obtain state-based models. Testing is a part of exploration of a system being
reverse-engineered. Recent work involves using state-based representation of domain constraints
and type inference to improve the quality of reverse-engineered models.

Pierre Dupont received an M.S. in Electrical Engineering from the Université catholique de
Louvain (Belgium) in 1988, and a Ph.D. in Computer Science from l’Ecole Nationale Supérieure des
Télécommunications, Paris (France) in 1996. From 1988 to 1991, he was a research staff member of
the Philips Research Laboratory Belgium. In 1992, he joined the France Telecom Research Center,
Lannion (France). Its primary research was in automatic speech recognition with a special focus
on search algorithms and language modeling. He has been visiting researcher at Carnegie Mellon
University, Pittburgh (USA) in 1996–1997, and at Universidad Politécnica de Valencia (Spain)
in 1994, 1995 and 2000. From 1997–2001, he was Associate Professor in the Computer Science
Department of the University of Saint-Etienne, France. He is currently Full Professor at the Louvain
School Engineering and co-founder of the Machine Learning Group of the Université catholique
de Louvain, Belgium. His current research interests include machine learning with applications to
computational biology and medicine, feature selection and biomarker discovery, statistical language
modeling, grammar and automata induction, graph mining.


	STAMINA: a competition to encourage the development and assessment of software model inference techniques
	Abstract
	Introduction
	Background
	Deterministic Finite Automata and Their Languages
	The Inference Challenge
	The State-merging Approach
	The Evaluation and Comparison of Inference Techniques

	The StaMInA Competition
	Synthesis of Target Models
	Observed Software Model Characteristics
	Model Synthesis

	Generation of Training and Test Sets
	Random Walk Algorithm

	Competition Setup and Calibration
	Measuring the Accuracy of an Hypothesis Model
	Calibration

	Running the Competition

	Competition Results
	Successful Techniques
	DFASAT
	Equipo and Menor
	pbc
	SatinDFA
	Test1

	Attributes of Successful Inference Techniques

	Discussion
	Threats to Validity
	Representativeness of the Models
	Representativeness of the Traces
	Intervention by Competitors
	Strategic/Uneven Participation

	Current Use

	Related Work
	State Machine Inference Competitions
	Benchmarking in Software Engineering Research

	Conclusions and Future Work
	The Baseline Blue-fringe Algorithm
	Random DFA Generation Algorithm
	References


