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Abstract—Emerging application domains such as interactive vision, animation, and multimedia collaboration display dynamic scalable

parallelism and high-computational requirements, making them good candidates for executing on parallel architectures such as SMPs

and clusters of SMPs. Stampede is a programming system that has many of the needed functionalities such as high-level data sharing,

dynamic cluster-wide threads and their synchronization, support for task and data parallelism, handling of time-sequenced data items,

and automatic buffer management. In this paper, we present an overview of Stampede, the primary data abstractions, the algorithmic

basis of garbage collection, and the issues in implementing these abstractions on a cluster of SMPS. We also present a set of

micromeasurements along with two multimedia applications implemented on top of Stampede, through which we demonstrate the low

overhead of this runtime and that it is suitable for the streaming multimedia applications.

Index Terms—Middleware, cluster computing, streaming applications, garbage collection, virtual time.
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1 INTRODUCTION

EMERGING application domains such as interactive vision,
animation, and multimedia collaboration display dy-

namic scalable parallelism and high-computational require-
ments, making them good candidates for executing on
parallel architectures such as SMPs and clusters of SMPs.
There are some aspects of these applications that set them
apart from scientific applications that have been the main
target of high performance parallel computing in recent
years. First, time is an important attribute in such emerging
applications due to their interactive nature. In particular,
they require the efficient management of temporally
evolving data. For example, a stereo module in an
interactive vision application may require images with
corresponding timestamps from multiple cameras to com-
pute its output, or a gesture recognition module may need
to analyze a sliding window over a video stream. Second,
both the data structures as well as the producer-consumer
relationships in such applications are dynamic and un-
predictable at compile time. Existing programming systems
for parallel computing do not provide the application
programmer with adequate support for such temporal
requirements.

To address these problems, we have developed an
abstraction for parallel programming called Space-Time
Memory (STM)—a dynamic concurrent distributed data
structure for holding time-sequenced data. STM addresses
the common parallel programming requirements found in
most interactive applications, namely, intertask synchroniza-
tionandmeeting soft real-timeconstraints. These facilities are

useful for this application class even on an SMP. However, in
addition, our system provides the STM abstraction transpar-
ently across clusters. Reclamation of STM’s time-sequenced
data items is an unusual problem quite different from the
usual memory address-based garbage collection. It is further
complicated because the of the spread of the computation
over a cluster. We present an algorithmic basis for automatic
garbage collection across the cluster. We also discuss the
issues in implementing these data abstractions on a cluster of
SMPs.

STM was first implemented on a cluster of Alpha SMPs
(running Digital Unix 4.0) interconnected by Memory
Channel. Recently, we have ported Stampede to run on
x86-Linux, StrongArm-Linux, and x86-NT platforms as
well. We have used STM to implement the following
applications so far:

1. a system for the analysis and synthesis of video
textures which identifies transition points in a video
sequence, and uses them to indefinitely extend the
duration of a video clip,

2. a color-based vision tracking component for an
interactive multimedia application called the Smart
Kiosk, which was developed at the Compaq Cam-
bridge Research Laboratory,

3. an image-based rendering application [8] at Compaq
CRL, and

4. the distributed data management in an audio/video
meeting application at Georgia Tech.

The key contributions of this paper are:1

. the presentation of the STM abstraction for parallel
programming,
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1. An overview of the Stampede programming system first appeared in a
workshop [16]. The channel abstraction of Stampede and arguments of ease
of use were presented in a conference [17]. Details of the garbage collection
problem in Stampede were presented in another conference [15]. Discussion
of the complete system details of Stampede and the performance study
reported in this paper (Sections 6 and 7) have not appeared in any other
forum.
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. a demonstration of ease of use in the context of
programming interactive multimedia applications,
and

. a performance study using this abstraction on a
cluster of SMPs. In particular, we show that STM’s
significant programming advantage (over, say,
direct message-passing) incurs only low perfor-
mance overheads.

We begin by giving the application context in Section 2.
In Section 3, we enumerate the parallel programming
requirements engendered by interactive multimedia appli-
cations. The Space-Time Memory abstraction and the
unusual garbage collection problem in this class of applica-
tions are discussed in Section 4. The ease of use of STM is
demonstrated via programming examples in Section 4.7.
We discuss design rationale in Section 4.8 and present
related work in Section 4.9. A brief discussion of the
implementation of Stampede is discussed in Section 5.
Micromeasurements of the Stampede primitives, as well as
application level studies using Stampede, are presented in
Sections 6 and 7, and concluding remarks are given in
Section 8.

2 APPLICATION CONTEXT

To set the context for the emerging application classes for
which our cluster programming system is targeted, we
briefly describe a new type of public computer device called
the Smart Kiosk [25], [4], which has been developed at the
Cambridge Research Laboratory of Compaq Computer
Corporation. The Smart Kiosk could be located in public
spaces such as a store, museum, or airport and is designed
to interact with multiple people in a natural, intuitive
fashion. For example, we envision Smart Kiosks that
entertain passers-by while providing directions and infor-
mation on local events. The kiosk may initiate contact with
customers, greeting them when they approach and ac-
knowledging their departure.

A Smart Kiosk may employ a variety of input and output
devices for human-centered interaction: video cameras,
microphones, infrared and ultrasonic sensors, loudspea-
kers, and touch screens. Computer vision techniques are
used to track, identify, and recognize one or more
customers in the scene [19]. A future kiosk will use
microphone arrays to acquire speech input from customers
and will recognize customer gestures. Synthetic emotive
speaking faces [24] and sophisticated graphics, in addition
to Web-based information displays, are currently used for
the kiosk’s responses.

We believe that the Smart Kiosk has features that are
typical of many emerging scalable applications, including

mobile robots, smart vehicles, intelligent rooms, and
interactive animation. These applications all have advanced
input/output modes (such as computer vision), very
computationally demanding components with dynamic
structure, and real-time constraints because they interact
with the real world.

3 APPLICATION PROGRAMMING REQUIREMENTS

The parallel structure of the Smart Kiosk is highly dynamic.
The environment in front of the kiosk (number of customers
and their relative position) and the state of its conversation
with the customers affect which threads are running, their
relative computational demands, and their relative prio-
rities (e.g., threads that are currently part of a conversation
with a customer are more important than threads searching
the background for more customers). There are a number of
other applications (such as interactive animation and
distributed audio/video meetings) that have similar char-
acteristics to the Smart Kiosk.

A major problem in implementing these kinds of applica-
tion is “buffer management.” This is illustrated in the simple
vision pipeline shown in Fig. 1. The digitizer produces
digitized images every 30th of a second. The Low-fi tracker
and the Hi-fi tracker analyze the frames produced by the
digitizer for objects of interest and produce their respective
tracking records. The decisionmodule combines the analysis of
such lower level processing to produce a decision output
which drives the GUI that converses with the user. From this
example, it should be evident that, even though the lowest
levels of the analysis hierarchy produce regular streams of
data items, four things contribute to complexity in buffer
management as we move up to higher levels:

. Threads may not access their input data sets in a
strict stream-like manner. In order to conduct a
convincing real-time conversation with a human a
thread (e.g., the Hi-fi tracker) may prefer to receive
the “latest” input item available, skipping over
earlier items. The conversation may even result in
canceling activities initiated earlier so that they no
longer need their input data items. Consequently,
producer-consumer relationships are hints and not
absolute, complicating efficient data sharing, espe-
cially in a cluster setting.

. Data sets from different sources need to be com-
bined, correlating them temporally. For example,
stereo vision combines data from two or more
cameras, and stereo audio combines data from two
or more microphones. Other analyzers may work
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multimodally, e.g., by combining vision, audio,
gestures, and touch-screen inputs.

. Newly created threads may have to reanalyze earlier
data. For example, when a thread (e.g., a Low-fi
tracker) hypothesizes human presence, this may
create a new thread (e.g., a Hi-fi tracker) that runs a
more sophisticated articulated-body or face-recogni-
tion algorithm on the region of interest, beginning
again with the original camera images that led to this
hypothesis. This dynamism complicates the recy-
cling of data buffers.

. Since computations performed on the data increase
in sophistication as we move through the pipeline,
they also take more time to be performed. Conse-
quently, not all the data that is produced at lower
levels of the processing will necessarily be used at
the higher levels. As a result, the data sets become
temporally sparser and sparser at higher levels of
processing because they correspond to higher and
higher-level hypotheses of interesting events. For
example, the lowest-level event may be: “a new
camera frame has been captured,” whereas a higher-
level event may be: “John has just pointed at the
bottom-left of the screen.” Nevertheless, we need to
keep track of the “time of the hypothesis” because of
the interactive nature of the application.

These algorithmic features bring up two requirements. First,
data items must be meaningfully associated with time and,
second, there must be a discipline of time that allows
systematic reclamation of storage for data items (garbage
collection).

In addition to the buffer management issue, specific
tasks within these applications lend themselves very nicely
to data parallelism. Consider, for example, the High-fi
tracker in the vision pipeline shown in Fig. 1. The latency
for processing a frame by this tracker could well exceed the
rate at which the Digitizer (upstream) may produce frames
for analysis. In such situations, an obvious approach would
be to apply multiple processors to the tracking task
operating in data parallel mode on distinct image frames
or on parts of the same frame.

4 SPACE-TIME MEMORY

The Stampede project addresses the parallel programming
requirements posed by interactive multimedia applications
such as those discussed in Section 2. Stampede allows the
creation of multiple address spaces in the cluster and an
unbounded number of dynamically created application
threads within each address space. The threading model

within an address space is basically standard OS threads
such as pthreads (POSIX threads) on Tru64 Unix and Linux
[6], and Win32 threads on Windows NT. Stampede
provides high-level data sharing abstractions that allow
threads to interact with one another without regard to their
physical locations in the cluster or the specific address
spaces in which they execute.

A novel component of Stampede is Space-Time Memory
(STM), a distributed data structure that addresses the
complex “buffer management” problem that arises in
managing temporally indexed data items as in the Smart
Kiosk application. Traditional data structures such as
streams and lists are not sufficiently expressive to handle
the requirements enumerated in the previous section.

STM channels provide random access to a collection of
time-indexeddata items,while STM queuesgive a FIFOaccess
to a similar collection. We will first describe the channel and
then remark on the similarities and differences between
channels and queues. STM channels can be envisioned as a
two-dimensional table. Each row, called a channel, has a
system-wide unique id. A particular channel may be used as
the storage area for an activity (e.g., a digitizer) to place the
time-sequenced data records that it produces. Every column
in the table represents the temporally correlated output
records of activities that comprise the computation. For
example, in thevisionpipeline inFig. 1, thedigitizerproduces
a frame Ft with a timestamp t. The Low-fi tracker produces a
tracking record LFt analyzing this video frame. The decision
module produces its output Dt based on LFt. These three
items are on different channels and may be produced at
different real times, but they are all temporally correlated and
occupy the same column t in the STM. Similarly, all the items
in the next column of the STM channel table have the
timestamp tþ 1. Fig. 2 shows an example of how the
STM channels may be used to orchestrate the activities of
the vision processing pipeline introduced in Fig. 1. The
rectangular box at the output of each activity in Fig. 1 is an
STM channel. The itemswith timestamp 1 (F1,LF1,HF1, and
D1) in each of the four boxes in Fig. 1 is a column in the STM.

4.1 API to the STM Channel Abstraction

The API has operations to create a channel dynamically, and
for a thread to attach and detach a channel. Each attachment is
known as a connection, and a thread may have multiple
connections to the same channel. Fig. 3 shows an overview of
how channels are used. A thread can put a data item into a
channel via a given output connection using the call:
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spd channel put item ðo connection; timestamp;

buf p; buf size; . . .Þ:

The item is described by the pointer buf_p and its
buf_size in bytes. A channel cannot have more than
one item with the same timestamp, but there is no
constraint that items be put into the channel in increasing
or contiguous timestamp order. Indeed, to increase
throughput, a module may contain replicated threads that
pull items from a common input channel, process them, and
put items into a common output channel. Depending on the
relative speed of the threads and the particular events they
recognize, it may happen that items are placed into the
output channel out of order. Channels can be created to
hold a bounded or unbounded number of items. The put

call takes an additional flag that allows it to either block or
return immediately with an error code if a bounded output
channel is full.

A thread can get an item from a channel via a given
connection using the call:

spd channel get item ði connection; timestamp;

& buf p; & buf size;

& timestamp range; :::Þ:

The timestamp can specify a particular value, or it can
be a wildcard requesting, for example, the newest/oldest
value currently in the channel, or the newest value not
previously gotten over any connection. As in the put call, a
flag parameter specifies whether to block if a suitable item
is currently unavailable, or to return immediately with an
error code. The parameters buf_p and buf_size can be
used to pass in a buffer to receive the item or, by passing
NULL in buf_p, the application can ask Stampede to
allocate a buffer. The timestamp_range parameter
returns the timestamp of the item returned, if available; if
unavailable, it returns the timestamps of the “neighboring”
available items, if any.

The put and get operations are atomic. Even though a
channel is a distributed data structure and multiple threads
on multiple address spaces may simultaneously be perform-
ing operations on a given channel, these operations appear to
all threads as if they occur in a particular serial order.

The semantics of put and get are copy-in and copy-out,
respectively. Thus, after a put, a thread may immediately
safely reuse its buffer. Similarly, after a successful get, a
client can safely modify the copy of the object that it
received without interfering with the channel or with other
threads.

Puts and gets, with copying semantics are, of course,
reminiscent of message-passing. However, unlike message-
passing, these are location-independent operations on a
distributed data structure. These operations are one-sided:
there is no “destination” thread/process in a put, nor any
“source” thread/process in a get. The abstraction is one of
putting items into and getting items from a temporally
ordered collection, concurrently, not of communicating
between processes.

4.2 STM Queues

The primary reason for providing the STM queue abstraction
is to support data parallelism in a cluster. As we mentioned
earlier, the targeted application classes provide plenty of

opportunities for exploiting data parallelism. For example, in
the vision pipeline (see Fig. 1), data parallel instances of the
tracker could operate in parallel on distinct image frames or
on parts of the same frame. STMqueues are provided for this
purpose. Similar to the channel, a queue has a system-wide
unique id. The queue abstraction supports the same set of
calls as a channel: get, put, and attach. The runtime system
allows a “timestamp” attribute to be associated with an item
in a queue just as in the case of a channel. Aside from the
“timestamp” attribute associated with a queue item, the get/
put operations on a queue are semantically the same as the
enqueue/dequeue operations on a traditional queue data
structure. The nature of a traditional queue data structure
coupled with the fact that the queue items have a timestamp
attribute leads to the following differences between an
STM queue and an STM channel:

. A get on a queue gives an item in strictly FIFO order
(i.e., irrespective of the timestamp order of the queue
items); the runtime provides the timestamp and
ticket associated with this item to the getting thread.

. A queue item has to be gotten exactly once
(otherwise, it will never go away as we will see in
the next section) and cannot be gotten more than
once; a channel item may be gotten zero times or as
many times as the number of connections to that
channel (modulo any reference count specification
for that item, see Section 4.8).

. Multiple items with the same timestamp can be put
into the queue; this may be necessary in a vision
pipeline, for instance, if the strategy for data
parallelism is to carve out a given image frame into
smaller segments; the runtime system associates a
tag (called a ticket) with each fragment that uniquely
identifies a particular item in a queue.

4.3 STM Registers

In addition to channels and queues, Stampede also provides
cluster-wide abstraction called registers. A thread can attach
and detach to a register just like channels or queues. A
register can be used like a cluster-wide shared variable.
Writing to a register overwrites its previous contents. A
register read operation returns successfully if a new value is
written onto it. A thread can block on such a read until a
new write happens. The full/empty synchronization seman-
tics provides a mechanism to implement interthread
signaling and event notification.

4.4 Garbage Collection

In dealing with timestamped data in this application
domain, we encounter an unusual notion of garbage
collection, where “reachability” concerns timestamps and
not memory addresses. If physical memory were infinite,
STM’s put and get primitives would be adequate to
orchestrate the production and access to time-sequenced
data in any application. However, in practice, it is necessary
to garbage collect data items that will no longer be accessed
by any thread. When can we reclaim an item from a
timestamp-indexed collection? The problem is analogous to
the classical “space leak” situation where, whenever a table
is reachable from the computation, no item in that table can
be garbage collected on the basis of reachability alone, even
if there are items that will never be accessed subsequently
in the computation. A complication is the fact that
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application code can do arithmetic on timestamps. Time-
stamp-based GC is orthogonal to any classical address-
based GC of the STM’s host language. This section discusses
the guarantees provided by the STM for producing and
accessing time-sequenced data, and the guarantees that the
application must provide to enable garbage collection.

To enable garbage collection of an STM item, the API
provides a consume operation by which the application
declares to STM that a specific STM item2 is garbage from
the perspective of a particular connection. A queue item has
an implicit reference count of one. So, as soon as the thread
that got that item calls consume on that item, STM can
safely garbage collect it. Although get semantics is copy-
out as we shall see in Section 4.5, because of items that may
involve embedded pointers, it is mandatory that consume
be explicitly called. Garbage collection is a little more
involved in the case of a channel. STM can safely garbage
collect an item once it has determined that the item can no
longer be accessed through any existing connection or any
future connection to this channel. So, the discipline imposed
by STM on the application programmer is to get an item
from a channel, use it, andmark it as consumed. An objectX
in a channel is in one of three states with respect to each
input connection ic attaching that channel to some thread.
Initially, X is “unseen.” When a get operation is performed
on X over connection ic, then X is in the “open” state with
respect to ic. Finally, when a consume operation is
performed on the object, it transitions to the “consumed”
state. We also say that an item is “unconsumed” if it is
unseen or open. The contract between the runtime system
and the application is as follows: The runtime system
guarantees that an item will not be garbage collected at least
until it has been marked consumed on all the connections
that have access to it. An application thread has to
guarantee to mark each item on its input connections as
consumed. The consume operation can specify a particular
object (i.e., with a particular timestamp), or it can specify all
objects up to and including a particular timestamp. In the
latter case, some objects will move directly into the
consumed state, even though the thread never performed
a get operation on them.

Similarly, there are rules that govern the timestamp
values that can be associated with items produced by a
thread on a connection (be it a channel or a queue). A thread
can associate a timestamp twith an item it produces so long
as this thread has an item X with timestamp t currently in
the open state on one of its input connections. This
addresses the common case (e.g., the Low-fi tracker thread
in Fig. 1) where a thread gets an item from its input
connection, processes it, produces a timestamped output
(correlated to the timestamp of the item it is processing,
possibly even the same timestamp) as a result of the
processing, and marks the item consumed. We say that the
output item inherits the timestamp of the input item.

However, there are situations where timestamped out-
put may have to be generated without getting an item from
the STM channel. This is, in general, true for application
“source” threads that have no input connections (e.g., the
digitizer thread in Fig. 1, with the corresponding code
fragment shown in Fig. 6), or a root thread in a task

connectivity graph that drives the whole computation. For
this purpose, the STM maintains a state variable for each
thread called virtual time. An application may choose any
application-specific entity as the virtual time. For example,
in the vision pipeline (Fig. 1), the frame number associated
with each camera image may be chosen as the virtual time.
The current visibility of a thread is the minimum of its
virtual time and the timestamps of any items that it
currently has open on any of its input connections. When
a thread puts an item, it can give it any timestamp � its
current visibility. When a thread creates a new thread, it can
initialize the child thread’s initial virtual time to any value
� its own current visibility. When a thread creates a new
input connection to a channel, it implicitly marks as
consumed on that connection all items < its current
visibility. A thread can explicitly change its own virtual
time to any value � its current visibility. In most cases, a
thread can set its own virtual time to the special value
INFINITY because the timestamps of items it puts are
simply inherited from those that it gets.

These rules enable the runtime system to transitively
compute a global minimum tsmin, which is the minimum of:

. virtual times of all the threads,

. timestamps of all items on all queues, and

. timestamps of all unconsumed items on all input
connections of all channels.

This is the smallest timestamp value that can possibly be
associated with an item produced by any thread in the
system. It is impossible for any current thread, or any
subsequently created thread, ever to refer to an object with
timestamp less than the global minimum. Thus, all objects
in all channels with lower timestamps can safely be garbage
collected. Stampede’s runtime system has a distributed
algorithm that periodically recomputes this value and
garbage collects dead items. To ensure that this global
minimum advances and, thus, garbage collection is not
stymied, a thread must guarantee that it will advance its
virtual time, for which STM provides an API call:

spd set virtual time ðnew virtual timeÞ:

The consume call is reminiscent of reference counting.
However, this gets complicated in the case of an STMchannel
because the number of consumers of an item is unknown—a
threadmay skip over items on its input connections and new
connections can be created dynamically. These interesting
and subtle issues, as well as our distributed, concurrent
garbage collection algorithmare described in greater detail in
a separate paper [15].

4.5 Communicating Complex Data Structures
through STM

The put and getmechanisms described above are adequate
for communicating contiguously allocated objects through
channels and queues; but, what about linked data structures?
In the Smart Kiosk vision code, for example, a “color model”
data structure is actually a complex of four ormore separately
allocated components linked with C pointers. We wish to
treat them as a single unit that can be communicated through
STM. The Cpointers are, of course,meaningless in a different
address space.
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To solve this problem, Stampede extends the basic

STM system with a notion of “object types.” The

following call:

spd dcl type ðtype; marshall hook; unmarshall hook; . . .Þ;

declares a new object type (represented by an integer) with
an associated set of methods or procedures. Two of these
are hooks that assist in marshalling and unmarshalling
objects for transmission between address spaces.

A variant of the channel/queue put procedure is based
on types instead of object sizes. Its parameters include a
pointer to the data structure and its type instead of its size
(which is not particularly meaningful for a linked data
structure). Similarly, a variant of the channel/queue get

call returns a pointer to the linked data structure, and its
type instead of size. Fig. 4 shows an overview of how these
facilities are used. Stampede takes care of the marshalling,
communication, and unmarshalling of the data structure,
using the supplied hooks to decompose and reconstitute the
“object.” These actions are done lazily, i.e., only when a
consumer actually attempts to get an item, and inter-
mediate results are cached (at the producer and the
consumers) to avoid repeating this work in the presence
of multiple get’s. The normal garbage collection process,
described in the previous section, is extended to reclaim any
such cached intermediate results.

If we implement Stampede in a language with a richer
type system, the application programmer could perhaps be
relieved of the burden of specifying these hooks (cf.
“serializer” mechanisms in Java). However, even in this
case, it would be useful to have the ability to override these
default methods. For example, image data structures in the
Smart Kiosk vision code include a linked list of attributes
which can, in fact, be recomputed from the object during
unmarshalling and, therefore, do not need to be transmitted
at all. Further, the image data itself can be compressed
during marshalling and decompressed during unmarshal-
ling. Such application and type-specific generalizations of
“marshalling” and “unmarshalling” cannot be provided
automatically in the default methods.

In addition to serilization routines, the application can
install specific garbage-handler routines to clean up such
complex items. Although get has a copy-out semantics, it
may copy out just a pointer to such an item. Therefore,
typically, the runtime has no idea of when the item can be
garbage collected. Only after an explicit consume call is
made can the runtime run the installed routine to reclaim
the memory.

4.6 Synchronization with Real-Time

The virtual time and timestamps described above with
respect to STM are merely an indexing system for data
items and do not in of themselves have any direct
connection with real-time. For pacing a thread relative to
real-time, Stampede provides an API for loose temporal
synchrony that is borrowed from the Beehive system [22].
Essentially, a thread can declare real-time “ticks” at which it
will resynchronize with real-time, along with a tolerance
and an exception handler. As the thread executes, after each
“tick,” it performs a Stampede call attempting to synchro-
nize with real-time. If it is early, the thread waits until that
synchrony is achieved. It if is late by more than the specified
tolerance, Stampede calls the thread’s registered exception
handler which can attempt to recover from this slippage.
Using these mechanisms, for example, the digitizer in the
vision pipeline can pace itself to grab images from a camera
and put them into its output channel at 30 frames per
second, using absolute frame numbers as timestamps.

4.7 Programming Examples

In this section, we show some STM programming examples.
Fig. 5 shows the relationship of an application thread to the
STM abstraction. The only interaction it has with the other
threads in the application is via the Stampede data
abstractions it is connected to on the input and output
sides. Other than the specific calls to the STM to get, put, or
consume an item, the thread executes its sequential
algorithm.

For the vision pipeline in Fig. 1, we present code
fragments for the digitizer thread and a tracker thread in
Figs. 6 and 7, respectively.

It can be seen from the code fragments that the extent of
application modification required to use the STM is small
and localized to the specific regions where a thread would
need to communicate with its peers under any parallel
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programming regime. More importantly, all such commu-
nication and synchronization are encapsulated in the get,
put, and consume calls. The threads never have to explicitly
synchronize with other threads, nor do they have to know
the existence of other threads in the applications. All that a
particular thread needs to know is the names of the
channels it should expect inputs from and the channels to
which it should send its outputs (see Fig. 5). Thus, STM
relieves the application programmer from low-level syn-
chronization and buffer management. Moreover, the virtual
time and timestamp mechanisms of the STM provide a
powerful facility for the application programmer to
temporally correlate disparate data items produced at
different real-times by different threads in a complex
application.

Space limitations prevent us from presenting more
elaborate programming examples here. The program
represented by the code fragments in Figs. 6 and 7 could
perhaps have been written using straight message-passing,
except that the STM code is still simpler because of its
location-independence (producer and consumer need not
be aware of each other), and because the consumer has the

capability of transparently skipping inputs (using the
STM_LATEST_UNSEEN flag in its get call). A more elaborate
example would involve dynamic thread and channel
creation, dynamic attachments to channels, multiple pro-
ducers and consumers for a channel with complex produc-
tion and consumption patterns, etc. These features, along
with STM’s automatic garbage collection, would be difficult
to reproduce with message-passing code.

In addition to the Smart Kiosk system we have used
throughout as a motivating example, Stampede is also
being used in another application called image-based
rendering [8], [20] at CRL. At Georgia Tech, it has been
used to implement an audio/video meeting application,
and a video texture generation application. A variant of the
STM model has been investigated at Rice University for
irregular scientific computations [3].

4.8 Design Rationale

In designing the STM abstraction, we have attempted to
keep the interface simple and intuitive. We provide the
reasoning behind some of the design choices we made
along the way:
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. Virtual versus Real Timestamps: Despite the fact
that the primary intent of this abstraction is to
support interactive applications, we chose an appli-
cation-derived quantity to be used as timestamps.
While some applications may benefit by using real-
time for temporal correlation, it was not clear that, in
general, the runtime could make correlations (using
real-time) between independent streams that may
use different sampling rates on input data (e.g., voice
versus video). Further, data may be captured at
some real-time but, processed at a much later real-
time. By virtualizing time, the same timestamp index
can be associated with both the raw and processed
data, thus empowering applications to propagate
temporal causality. We chose to allow the applica-
tion to specify the mapping of the virtual time ticks
to real-time and use that relationship purely for

scheduling the threads (i.e., pacing an individual
thread’s activity) and not for temporal correlation.

There could be application scenarios in which
there are streams (possibly with different time
bases) that are semantically independent of one
another from the application perspective. Clearly,
the garbage collection of such streams should be
independent of one another. However, garbage
collection in Stampede relies on a single value,
namely, the global virtual time. Thus, from the point
of view of garbage collection, data items that are in
such independent streams will be deemed by the
runtime system as temporally related to one
another if they happen to have the same time-
stamp. This is clearly a limitation of the current
system. One possibility for circumventing this
limitation is to define independent virtual time
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Fig. 7. Tracker code using the STM calls.



zones, and we will explore this possibility in future
evolutions of the system.

. Virtual Time Management: As mentioned in
Section 4.4, a “source” thread (with no input
connections) must manage its virtual time explicitly,
purely for the purpose of garbage collection,
whereas most other threads implicitly inherit time
based on what is available on their input connec-
tions. A more complex and contrived alternative
would have been to let source threads make input
connections to a “dummy” channel whose items can
be regarded as “time ticks.”

. Connections to Channels and Queues: A design
choice is to allow operations directly on channels
and queues instead of via explicit connections, thus
simplifying the API. However, there are two reasons
why we chose a connection-based access to channels
and queues:

- The first reason has to do with flexibility. Our
approach allows a thread to have multiple
connections to the same channel. Such a
flexibility would be valuable, for instance, if a
thread wants to create a debugging or a
monitoring connection to the same channel in
addition to the one that it may need for data
communication. While the same functionality
could be achieved by creating a monitoring
thread, we think that connections are a more
intuitive and efficient way to achieve this
functionality.

- The second reason has to do with performance.
Connections can play a crucial role in optimiz-
ing communication especially in a cluster setting
by providing a hint to the runtime system as to
who may be potential consumers for a data item
produced on a channel (so that data can be
communicated early).

. Garbage Collection: STM provides transparent
garbage collection by performing reachability ana-
lysis on timestamps. In a cluster, this could be quite
expensive since the put and get operations on a
channel or a queue are location transparent, and can
be performed by threads anywhere in the cluster
that have connections to that channel or queue. The
alternative would have been to associate a reference
count and garbage collect a channel item as soon as
its reference count goes to zero. There are two issues
with this alternative:

- As we discussed earlier, not all produced items
may necessarily be used in a dynamic applica-
tion such as interactive vision. Thus, an item
that was skipped over by all potential consumer
threads will never be garbage collected since its
reference count will never go to zero.

- Further, in many such dynamic applications, a
producer may not know how many consumers
there may be for an item it produces.

We do, however, allow a channel put operation to
specify an optional reference count (a special value
indicates that the consumer count is unknown to the
producer). The runtime employs two different
algorithms. The first algorithm uses reference
counts.3 A second algorithm based on reachability

analysis to garbage collect channel items with
unknown reference counts is run less frequently.

4.9 Related Work

The STM abstraction may be viewed as a form of structured
shared memory. In this sense, it is related to recent
distributed shared memory systems (such as Cashmere
[10], Shasta [21], and Treadmarks [9]). DSM systems
typically offer the same API as any hardware SMP system
and, therefore, are too low level to simplify programming of
the complex synchronization and communication require-
ments found in interactive multimedia applications (as
mentioned earlier, STM is useful, even on an SMP). Further,
from a performance perspective, DSM systems are not
particularly well-suited for supporting applications with
highly dynamic sharing characteristics.

There have been several language designs for parallel
computing such as Linda [1] (and its more recent
derivatives such as JavaSpaces [12] and T-Spaces [26]),
Orca [2], and Cid [13]. The data sharing abstractions in these
languages are at a lower level than STM; of course, they
could be used to implement STM.

Temporal correlation of independent data streams is a
key distinguishing feature of our work from all prior work.
The work most closely related to ours is the Beehive [22]
software DSM system developed by one of the authors and
his colleagues at the Georgia Institute of Technology. The
delta consistency memory model of Beehive is well-suited
for applications that have the ability to tolerate a certain
amount of staleness in the global state information. Beehive
has been used for real-time computation of computer
graphical simulations of animated figures. STM is a higher
level structured shared memory that can use the lower-level
temporal synchronization and consistency guarantees of
Beehive.

The idea of Space-Time memory has also been used in
optimistic distributed discrete-event simulation [7], [5]. The
purpose and, hence, the design of Space-Time memory in
those systems is very different from ours. In those systems,
Space-Time memory is used to allow a computation to roll-
back to an earlier state when events are received out of
order. In this paper, we have proposed Space-Time Memory
as the fundamental building block around which the entire
application is constructed.

5 IMPLEMENTATION

Stampede was originally implemented (at Compaq CRL) on
a cluster of 4-way Alpha SMPs interconnected by Memory
Channel and running Tru64 Unix. Since then, it has been
ported to clusters of x86-Linux, x86-Solaris, StrongArm-
Linux, and Windows nodes. The Stampede runtime
systems assumes a reliable messaging layer underneath.
We have built Stampede on top of two such messaging
layers: MPI [11] and CLF [14]. Both MPI and CLF provide
basic message transport. While MPI uses TCP/IP for
reliability, CLF implements its own packet-based reliability
layer on top of UDP. Stampede facilitates the creation of any
number of address spaces in each node of the cluster, and
threads within each address space. The channels/queues
can be created in any of the address spaces and have
system-wide unique ids allowing transparent access to
them by a thread running anywhere in the cluster. The
runtime implements caching of items fetched from remote
channels and queues for transparent sharing by Stampede
threads collocated on the same node of the cluster. Detailed
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discussion of the implementation details of the Stampede
runtime library is beyond the scope of this paper.

6 BASELINE PERFORMANCE OF STAMPEDE

In addition to simplifying programming, STM has the
potential to provide good performance on clusters for several
reasons. First, synchronization and data transfer are com-
bined in STM, permitting fewer communications. Second,
connections provide useful hints for optimizing data com-
munication across clusters. Third, sharing across address
spaces is orchestrated via the STM abstraction, which can
therefore optimize it in a more targeted manner than the
indiscriminate sharing that can occur in a DSM system for
dynamic applications.

We have conducted two sets of experiments to
evaluate the performance of Stampede: first, a set of
microbenchmarks and, next, a set of applications. In the
microbenchmarking experiments, we measured the la-
tency and bandwidth of put/get calls in Stampede.
Comparison of the latencies taken by the Stampede calls
against the latencies taken by the messaging layer
underneath reveals that STM incurs only nominal margin-
al processing cost. Similarly, recording the sustained
bandwidth at the STM runtime level reveals that STM
offers bandwidth comfortably above what is required for
continuous display of moderate resolution camera images
at 30 frames/second. Due to space restrictions, we
provide detailed description of the experiments and the
results in Appendix A. “Appendix A can be found on the
Computer Society Digital Library at http://computer.org/
tpds/archives.htm.”

In Section 7, we present performance studies for
representative multimedia applications implemented using
Stampede.

The computing platform for all the experiments is a
cluster of SMP nodes running Linux. The hardware consists
of 17 Dell 8450 servers, each with eight 550MHz Pentium III
Xeon CPUs, 2MB of L2 cache per CPU, and 4GB of memory
per node. The 8450 uses the Intel ProFusion chipset which
provides two 64-bit/100MHz system (front-side) busses,
one for each bank of four CPUs. The nodes are inter-
connected with doubled Gigabit Ethernet through a
dedicated switch.

7 APPLICATION-LEVEL PERFORMANCE

In this section, we describe a set of experiments for
evaluating the performance of two interactive multimedia
applications on the Stampede cluster. The first is a video
textures application. This application takes an input video
sequence and calculates a set of cut points which can be
used to “loop” the video sequence indefinitely, by
randomly transitioning between the computed cuts. This
requires calculating the best matches across all pairs of
frames in order to identify the best places to cut. This is a
computationally-demanding batch video processing task.

The second application is a color tracker that operates
on a live video stream and tracks the locations of multiple
moving targets on the basis of their color signatures. This
application requires real-time color analysis of the video
frames and comparison against multiple color models.
These two applications are typical of the kinds of
computations that new multimedia systems will require.
They exhibit an interesting range of computational
properties, which are illustrated in the experiments that

follow. Due to space restriction, we present the second
application and its performance in Appendix B. “Appen-
dix B can be found on the Computer Society Digital
Library at http://computer.org/tpds/archives.htm.”

The software is Linux-based with Intel-provided li-
braries. The operating system is Linux with the 2.4.9 kernel.
The system scheduler in this kernel is oblivious to the 8450’s
split system bus. The compiler is GCC version 2.96 with
optimization set to -O2. The video textures application uses
the ippiNormDiff_L2_8u_C1R() procedure in Intel’s
Integrated Performance Primitives (IPP) library, version 1.1
at the core of its processing. For these application level
studies, we use Stampede on top CLF.

7.1 Experiments with Video Textures

The overall application pipeline is shown in Fig. 8. The
computationally intensive part of the application is the box
labeled Analysis. This represents the kernel of the applica-
tion that we parallelize on the cluster. The distinguishing
characteristic of this application kernel is that the input data
set of N images are all produced by a digitizer thread that is
on one node of the cluster (the images come from one
camera source which can be thought of as attached to that
cluster node). The core computation in the kernel is a
comparison of every image with every other image in the
sequence. Thus, the total work to be done in the kernel is
the total number of image comparisons: W ¼ NðN � 1Þ=2.
The actual computation is an L2 differencing4 between
every two images. Note that every pair of image compar-
ison is independent of other comparisons. In this sense, the
kernel is embarrassingly parallel. The tricky part of
parallelizing this kernel is determining an efficient parti-
tioning scheme to minimize the data distribution costs,
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4. The L2 norm of the difference of two vectors u and v is:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sumððu� vÞ2Þ
q

. Each image is “unwrapped” in raster scan order to form

a vector.

Fig. 8. Video Texutre System Overview: An input video clip is fed into the
Analysis component, which finds good transition points where the video
can be looped back on itself. These transitions (the Video Structure) are
fed to one of two Synthesis components: either Random Play, which
sequences the transitions stochastically, or Generate Loops, which finds
a set of transitions that together create a single overall video loop of a
given length. The Rendering component takes the generated sequence
of frames, together with the original video clip, and produces either an
infinite video texture sequence, or a video loop that can be played
indefinitely by a standard Video Player in “loop” mode.



improve cache performance and, thus, optimize the overall
execution time on the cluster.

Fig. 9 shows the input data set and the computation
space of the kernel. In the experimental study, we use a total
of 316 images amounting to a total of 49,770 image
comparisons. Each image is of size 640� 480 color pixels,
approximately 900KB.

7.1.1 Mapping the Video Texture Analysis

onto Stampede

We use the Stampede programming library to implement
the video texture analysis kernel. Fig. 10 shows the
implementation using Stampede threads, channels, and
queues. AS0, AS1, . . . , ASN denote the cluster nodes.
Stampede threads within the same node share memory. The
digitizer thread, a channel for image distribution, a queue for
collecting the correlation results, and a completion recognizer
thread that is notified when the analysis is complete are all
located on AS0. Each of the other cluster nodes participating
in the computation has one data mover thread and some
number of worker threads. The data mover thread prefetches
images from the image distribution channel and, depending

on the data distribution scheme (to be discussed shortly),
may also pass them around to other nodes of the cluster via
Stampede channels. The worker threads carry out the image
comparisons. The digitizer gives sequential numbers as the
“timestamp” for an image that is put on a channel, and the
data mover and worker threads use this timestamp to get a
particular image from the channel. The timestamp essen-
tially serves as an index into the image array that is
contained in the image distribution channel. This is an
interesting and unintended use of the Stampede timestamp
mechanism and has two consequences. The first is a
programming convenience in that the channel appears
logically like shared memory across the cluster nodes. The
second is a performance consequence in that an image that
is prefetched into a cluster node by the data mover thread is
shared by all the worker threads that are on this node via
the Stampede get operation, since Stampede runtime caches
items that are fetched from remote nodes. Stampede
“registers” are used for event notification purposes (not
shown in the figure) and to exchange global information.

7.1.2 Performance Concerns

While it is straightforward to implement the video texture
kernel using Stampede, it is nontrivial to optimize the
kernel for performance. To address the performance
concerns related to internode distribution of data, we
introduce a work distribution strategy similar to multicast
on top of unicast (Fig. 11). To address memory hierarchy
performance concerns (particularly cache hit ratio), we
compare images in stripes of pixels, rather than as a whole,
and apply heuristics to order the memory requests.

7.1.3 Experimental Setup

The input data set is 316 images of 900KB each. We
conducted the following experiments:

. Stripe size. The intent is to determine the speedup on
a single node with varying stripe size and number of
worker threads.

Even with a single worker thread, we would
expect performance improvement as the stripes
become smaller since the memory bus may not be
able to serve even a single CPU doing full-size image
comparison. The experiments included varying the
number of worker threads from one to eight, and the
size of stripes from two to 480 lines of pixels, where
each line is 1,920 bytes. The optimum stripe size is
nonobvious since the intermediate results have to be
cached and later combined.

. Efficiency of internode distribution strategy. This ex-
periment is intended to test the scalability of the
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Fig. 9. Video Textures Computation Space: The lower triangular nature
of the computation space has a direct impact on choice of work
distribution. The column on the left and the square tile on the right
perform an equal number of image comparisons. However, the column
would require fetching all N images from the digitizer for comparison
against one image, while the square tile requires only a subset of images
and reuses them.

Fig. 10. Video texture implementation.



internode distribution strategy. Each node employs a
single worker thread. The number of nodes is
increased from two to 14, with node AS0 serving
as the source node for the images.

. Overall speedup. This experiment is intended to assess
the overall speedup as the number of nodes is
increased from two to 14, and the number of worker
threads is increased from one to eight.

7.1.4 Results and Discussion

Fig. 12 shows the results of the stripe-size experiment. The

curve for a stripe size of 480 lines represents fetching entire

images; the execution time flattens out at about 27 seconds

(a speedup of about 3.5) corresponding closely to the

memory bandwidth limit of the 8450 system.

The other three curves represent different choices in
stripe sizes intended to fit in the cache and the results reveal
an optimum stripe size of two. The results for stripe size of
four comes close which, at first glance, is surprising since
the worst-case cache capacity needed for this stripe size is
2,370 KB (4� 1; 920� 316), which is more than the available
cache size of 2MB. However, due to the incomplete tiles
along the edges of the triangle the average cache size
needed is much less than the worst case leading to this
result. The best speedup achieved is 5.75 for eight workers,
which is pretty good considering that there is a data mover
thread in addition to the workers taking up some cycles on
the node.

Clearly, the optimum stripe size is a function of the
problem size (i.e., the number of images being compared)
and the available cache on the processor. With smaller tile
sizes and appropriately chosen stripe sizes, machines with
smaller cache sizes will be able to minimize the memory
bottleneck.

In Figs. 13 and 14, we show speedup results for the
networked distribution and for the single-source distribu-
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Fig. 11. Conceptual diagram of the tiling-with-chaining work distribution

strategy.

Fig. 12. Running times (seconds) for different configurations of stripe

sizes and number of threads. A stripe size of 2 corresponds to

performing comparisons one line of pixels (3,840 bytes) at a time.

Fig. 13. Speedup across nodes for one thread per node.

Fig. 14. Speedup across nodes for eight threads per node.



tion. For these results, we have not used cache stripe
optimization, but compare full images. As the number of
nodes are increased, the single source becomes a bottleneck
limiting scalability. This is understandable since with a
problem size of 316 images, the single source has to pump
in the worst case 278 MB to each node of the cluster. Of
course, with tiling, the actual number of images needed by
each node is smaller than this worst case. The maximum
delivered bandwidth we have observed using Stampede is
45 MB/s on Gigabit Ethernet. Thus, with 14 nodes, it would
take � 100sec just for data distribution in the worst case.

As a point of comparison, the entire computation
(without the cache stripe optimization) takes about 90s
using a single CPU on a single node.

Figs. 13 and 14 also show the ideal algorithm-limited
speedup [23] due to the load imbalance inherent in our
choice of tiles. Recall that the tile size decreases with the
number of nodes. As can be seen, the bigger the tiles, the
better the compute : communication ratio, yet the more jagged
but steep is the algorithmic speedup curve. Because the
algorithmic speedup accounts only for load balancing but
not communication costs, if the tile size is 1, the algorithmic
speedup curve will be a 45-degree line, since work can be
distributed perfectly evenly. Needless to say, this tile size is
also the worst possible in terms of communication since all
the nodes will need all the images.

The line labeled tiling-with-chaining shows the overall
performance in the presence of networked distribution.
With one worker per node (Fig. 13), we observe speedup of
about 7.1 for 14 nodes. As can be seen, the corresponding
algorithmic limit is 10.9. For eight workers per node, we
observe speedup of about 4.22 (Fig. 14), while the
algorithmic limit is 11.29.

Since thebasewitheight threadshadaspeedupof5.75, that
translates to an overall speedup of 24.26 on 112 processors.

We attribute the difference between 1-thread and 8-thread
performance (7.1 versus 4.22) to communication costs. Fig. 15
compares the communication costs for one and eight threads
as we vary the number of nodes in the application. As can be
seen, each thread in the 8-thread configuration spends
roughly the same amount of time as the singleton thread in
the 1-thread configuration on network I/O, leading to a
reduction in overall speedup. The communication time is
relatively stable (due to the application-level multicast

distribution tree) instead of increasing, as is the case with a
single source.

With some detailed instrumentation of the Stampede
system, we have been able to ascertain that most of the
communication inefficiency is limited to prefetching the
initial tile. During this phase, there can obviously be no
overlap of computation with communication. This effect is
exacerbated with eight workers per node over the effect
with one worker per node and, hence, the corresponding
disparity in the speedup curves. However, once the initial
tile has been brought in, there is good overlap of
computation and communication due to the data mover
thread at each node.

8 CONCLUDING REMARKS

Stampede is a cluster parallel programming system with
novel data abstractions designed to support emerging
classes of complex interactive stream-oriented multimedia
applications. Space-time memory (with its two variants
channel and queues) provides a rich high level program-
ming support to alleviate the programmer from low level
details in developing such applications on a cluster
computing platform. There are nontrivial systems issues
in implementing this abstraction (most notably the garbage
collection problem) efficiently in a cluster. We presented the
details of the STM abstraction, programming examples to
demonstrate its ease of use, and performance studies on a
cluster of SMPs to show the implementation efficiency.

Directions for future research include asynchronous
notification of item arrival on channels and queues, and
multicasting support at the level of the abstractions.
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