
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

Stan: A Probabilistic Programming Language

Bob Carpenter
Columbia University

Daniel Lee
Columbia University

Marcus A. Brubaker
TTI-Chicago

Allen Riddell
Dartmouth College

Andrew Gelman
Columbia University

Ben Goodrich
Columbia University

Jiqiang Guo
Columbia Univesity

Matt Hoffman
Adobe Research Labs

Michael Betancourt
University College London

Peter Li
Columbia University

Abstract

Stan is a probabilistic programming language for specifying statistical models. A Stan
program imperatively defines a log probability function over parameters conditioned on
specified data and constants. As of version 2.2.0, Stan provides full Bayesian inference
for continuous-variable models through Markov chain Monte Carlo methods such as the
No-U-Turn sampler, an adaptive form of Hamiltonian Monte Carlo sampling. Penalized
maximum likelihood estimates are calculated using optimization methods such as the
Broyden-Fletcher-Goldfarb-Shanno algorithm.

Stan is also a platform for computing log densities and their gradients and Hessians,
which can be used in alternative algorithms such as variational Bayes, expectation propa-
gation, and marginal inference using approximate integration. To this end, Stan is set up
so that the densities, gradients, and Hessians, along with intermediate quantities of the
algorithm such as acceptance probabilities, are easily accessible.

Stan can be called from the command line, through R using the RStan package, or
through Python using the PyStan package. All three interfaces support sampling or
optimization-based inference and analysis, and RStan and PyStan also provide access
to log probabilities, gradients, Hessians, and data I/O.

Keywords: probabilistic program, Bayesian inference, algorithmic differentiation, Stan.

http://www.jstatsoft.org/

2 Stan: A Probabilistic Programming Language

1. Introduction

The goal of the Stan project is to provide a flexible probabilistic programming language for
statistical modeling along with a suite of inference tools for fitting models that are robust,
scalable, and efficient.

Stan differs from BUGS (Lunn, Thomas, and Spiegelhalter 2000; Lunn, Spiegelhalter, Thomas,
and Best 2009; Lunn, Jackson, Best, Thomas, and Spiegelhalter 2012) and JAGS (Plummer
2003) in two primary ways. First, Stan is based on a new imperative probabilistic program-
ming language that is more flexible and expressive than the declarative graphical modeling
languages underlying BUGS or JAGS, in ways such as declaring variables with types and
supporting local variables and conditional statements. Second, Stan’s Markov chain Monte
Carlo (MCMC) techniques are based on Hamiltonian Monte Carlo (HMC), a more efficient
and robust sampler than Gibbs sampling or Metropolis-Hastings for models with complex
posteriors.1

Stan has interfaces for the command-line shell (CmdStan), Python (PyStan), and R (RStan),
and runs on Windows, Mac OS X, and Linux, and is open-source licensed.

The next section provides an overview of how Stan works by way of an extended example, after
which the details of Stan’s programming language and inference mechanisms are provided.

2. Core Functionality

This section describes the use of Stan from the command line for estimating a Bayesian model
using both MCMC sampling for full Bayesian inference and optimization to provide a point
estimate at the posterior mode.

2.1. Model for estimating a Bernoulli parameter

Consider estimating the chance of success parameter for a Bernoulli distribution based on a
sequence of observed binary outcomes. Figure 1 provides an implementation of such a model
in Stan.2 The model treats the observed binary data, y[1],...,y[N], as independent and
identically distributed, with success probability theta. The vectorized likelihood statement
can also be coded using a loop as in BUGS, although it will run more slowly than the vectorized
form:

1Neal (2011) analyzes the scaling benfit of HMC with dimensionality. Hoffman and Gelman (2014) provide
practical comparisions of Stan’s adaptive HMC algorithm with Gibbs, Metropolis, and standard HMC samplers.

2This model is available in the Stan source distribution in src/models/basic_estimators/bernoulli.stan.

Journal of Statistical Software 3

data {

int<lower=0> N; // N >= 0

int<lower=0,upper=1> y[N]; // y[n] in { 0, 1 }

}

parameters {

real<lower=0,upper=1> theta; // theta in [0, 1]

}

model {

theta ~ beta(1,1); // prior

y ~ bernoulli(theta); // likelihood

}

Figure 1: Model for estimating a Bernoulli parameter.

for (n in 1:N)

y[n] ~ bernoulli(theta);

A beta(1,1) (i.e., uniform) prior is placed on theta, although there is no special behavior
for conjugate priors in Stan. The prior could be dropped from the model altogether because
parameters start with uniform distributions on their support, here constrained to be between
0 and 1 in the parameter declaration for theta.

2.2. Data format

Data for running Stan from the command line can be included in R dump format. All of the
variables declared in the data block of the Stan program must be defined in the data file. For
example, 10 observations for the model in Figure 1 could be encoded as3

3This data file is provided with the Stan distrbution in file src/models/basic_estimators/bernoulli.R.

stan.

4 Stan: A Probabilistic Programming Language

N <- 10

y <- c(0,1,0,0,0,0,0,0,0,1)

This defines the contents of two variables, an integer N and a 10-element integer array y. The
variable N is declared in the data block of the program as being an integer greater than or
equal to zero; the variable y is declared as an integer array of size N with entries between 0
and 1 inclusive.

In RStan and PyStan, data can also be passed directly through memory without the need to
read or write to a file.

2.3. Compling the model

After a C++ compiler and make are installed,4 the Bernoulli model in Figure 1 can be trans-
lated to C++ and compiled with a single command. First, the directory must be changed to
$stan, which we use as a shorthand for the directory in which Stan was unpacked.5

> cd $stan

> make src/models/basic_estimators/bernoulli

This produces an executable file bernoulli (bernoulli.exe on Windows) on the same path
as the model. Forward slashes can be used with make on Windows.

2.4. Running the sampler

Command to sample from the model

The executable can be run with default options by specifying a path to the data file. The
first command in the following example changes the current directory to that containing the
model, which is where the data resides and where the executable is built. From there, the
path to the data is just the file name bernoulli.data.R.

> cd $stan/src/models/basic_estimators

> ./bernoulli sample data file=bernoulli.data.R

For Windows, the ./ before the command should be removed. This call specifies that sampling
should be performed with the model instantiated using the data in the specified file.

Terminal output from sampler

The output is as follows, starting with a summary of the command-line options used, including
defaults; these are also written into the samples file as comments.

4Appropriate versions are built into Linux. The RTools package suffices for Windows; it is available from
http://cran.r-project.org/bin/windows/Rtools/. The Xcode package contains everything needed for the
Mac; see https://developer.apple.com/xcode/ for more information.

5Before the first model is built, make must build the model translator (target bin/stanc) and posterior
summary tool (target bin/print), along with an optimized version of the C++ library (target bin/libstan.a).
Please be patient and consider make option -j2 or -j4 (or higher) to run in the specified number of processes
if two or four (or more) computational cores are available.

http://cran.r-project.org/bin/windows/Rtools/
https://developer.apple.com/xcode/

Journal of Statistical Software 5

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

adapt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)

delta = 0.80000000000000004 (Default)

kappa = 0.75 (Default)

t0 = 10 (Default)

init_buffer = 75 (Default)

term_buffer = 50 (Default)

window = 25 (Default)

algorithm = hmc (Default)

hmc

engine = nuts (Default)

nuts

max_depth = 10 (Default)

metric = diag_e (Default)

stepsize = 1 (Default)

stepsize_jitter = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

Gradient evaluation took 4e-06 seconds

1000 transitions using 10 leapfrog steps per transition would take

0.04 seconds.

Adjust your expectations accordingly!

Iteration: 1 / 2000 [0%] (Warmup)

Iteration: 100 / 2000 [5%] (Warmup)

...

Iteration: 1000 / 2000 [50%] (Warmup)

Iteration: 1001 / 2000 [50%] (Sampling)

...

Iteration: 2000 / 2000 [100%] (Sampling)

6 Stan: A Probabilistic Programming Language

Elapsed Time: 0.00932 seconds (Warm-up)

0.016889 seconds (Sampling)

0.026209 seconds (Total)

The sampler configuration parameters are echoed, here they are all default values other than
the data file.

The command-line parameters marked Default may be explicitly set on the command line.
Each value is preceded by the full path to it in the hierarchy; for instance, to set the maximum
depth for the no-U-turn sampler, the command would be the following, where backslash
indicates a continued line.

> ./bernoulli sample \

algorithm=hmc engine=nuts max_depth=5 \

data max_depthfile=bernoulli.data.R

Help

A description of all configuration parameters including default values and constraints is avail-
able by executing

> ./bernoulli help-all

The sampler and its configuration are described at greater length in the manual (Stan Devel-
opment Team 2014).

Samples file output

The output CSV file, written by default to output.csv, starts with a summary of the con-
figuration parameters for the run.

stan_version_major = 2

stan_version_minor = 1

stan_version_patch = 0

model = bernoulli_model

method = sample (Default)

sample

num_samples = 1000 (Default)

num_warmup = 1000 (Default)

save_warmup = 0 (Default)

thin = 1 (Default)

adapt

engaged = 1 (Default)

gamma = 0.050000000000000003 (Default)

delta = 0.80000000000000004 (Default)

kappa = 0.75 (Default)

t0 = 10 (Default)

init_buffer = 75 (Default)

term_buffer = 50 (Default)

Journal of Statistical Software 7

window = 25 (Default)

algorithm = hmc (Default)

hmc

engine = nuts (Default)

nuts

max_depth = 10 (Default)

metric = diag_e (Default)

stepsize = 1 (Default)

stepsize_jitter = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 847896134

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

Stan’s behavior is fully specified by these configuration parameters, almost all of which have
default values. The sample configuration

By using the same version of Stan and these configuration parameters, exactly the same
output file can be reproduced. The pseudorandom numbers generated by the sampler are
fully determined by the seed (here randomly generated based on the time of the run, with
value 847896134) and the identifier (here 0). The identifier is used to advance the underlying
pseudorandom number generator a sufficient number of values that using multiple chains
with the same seed and different identifiers will draw from different subsequences of the
pseudorandom number stream determined by the seed.

The output contiues with a CSV header naming the columns of the output. For the default
NUTS sampler in Stan 2.2.0, these are

lp__,accept_stat__,stepsize__,treedepth__,n_divergent__,theta

The values headed by lp__ are the log densities (up to an additive constant), accept_stat__
are the Metropolis acceptance proababilities averaged over samples in the slice used by
the no-U-turn sampler, stepsize__ is the leapfrog integrator’s step size for simulating the
Hamiltonian, treedepth__ is the depth of tree explored by the no-U-turn sampler, and
n_divergent__ is the number of iterations leading to a numerical instability during inte-
gration (e.g., numerical overflow or a positive-definiteness violation).

for each iteration.6 The column stepsize__ indicates the step size (i.e., time interval) of the
simulated trajectory, while the column treedepth__ gives the tree depth for NUTS, defined

6Acceptance is the usual notion for a Metropolis sampler such as HMC (Metropolis, Rosenbluth, Rosenbluth,
Teller, and Teller 1953). For NUTS, the acceptance statistic is defined as the average acceptance probabilities
of all possible samples in the proposed tree; NUTS itself uses a slice sampling algorithm for rejection (Neal
2003; Hoffman and Gelman 2014).

8 Stan: A Probabilistic Programming Language

as the log base 2 of the total number of steps in the trajectory. The rest of the header will
be the names of parameters; in this example, theta is the only parameter.

Next, the results of adaptation are printed as comments.

Adaptation terminated

Step size = 0.783667

Diagonal elements of inverse mass matrix:

0.517727

By default, Stan uses the NUTS sampler with a diagonal mass matrix. The mass matrix is
estimated, roughly speaking, by regularizing the sample covariance of the latter half of the
warmup samples; see (Stan Development Team 2014) for full details. A dense mass matrix
may also be estimated, or the mass matrix may be set to the unit matrix.

The rest of the file contains samples, one per line, matching the header; here the parameter
theta is the final value printed on each line, and each line corresponds to a sample. The
warmup samples are not included by default, but may be included with the appropriate
command-line invocation of the executable. The file ends with comments reporting the elapsed
time.

-7.19297,1,0.783667,1,0,0.145989

-8.2236,0.927238,0.783667,1,0,0.0838792

...

-7.48489,0.738509,0.783667,0,0,0.121812

-7.40361,0.995299,0.783667,1,0,0.407478

-9.49745,0.771026,0.783667,2,0,0.0490488

-9.11119,1,0.783667,0,0,0.0572588

-7.20021,0.979883,0.783667,1,0,0.14527

Elapsed Time: 0.010849 seconds (Warm-up)

0.01873 seconds (Sampling)

0.029579 seconds (Total)

It is evident from the values sampled for theta in the last column that there is a high degree
of posterior uncertainty in the estimate of theta from the ten data points in the data file.

The log probabilities reported in the first column include not only the model log probabili-
ties but also the Jacobian adjustment resulting from the transformation of the variables to
unconstrained space. Here, that is the absolute derivative of the inverse logistic function; see
(Stan Development Team 2014) for full details on all of the transforms and their Jacobians.

2.5. Sampler output analysis

Before performing output analysis, we recommend generating multiple independent chains
in order to more effectively monitor convergence; see (Gelman and Rubin 1992) for more
analysis. Three more chains of samples can be created as follows.

./bernoulli sample data file=bernoulli.data.R random seed=847896134 \

id=1 output file=output1.csv

Journal of Statistical Software 9

Inference for Stan model: bernoulli_model

4 chains: each with iter=(1000,1000,1000,1000); warmup=(0,0,0,0);

thin=(1,1,1,1); 4000 iterations saved.

Warmup took (0.0108, 0.0130, 0.0110, 0.0110) seconds, 0.0459 seconds total

Sampling took (0.0187, 0.0190, 0.0168, 0.0176) seconds, 0.0722 seconds total

Mean MCSE StdDev 5% 50% 95%

lp__ -7.28 1.98e-02 0.742 -8.85e+00 -6.99 -6.75

accept_stat__ 0.909 4.98e-03 0.148 5.70e-01 0.971 1.00

stepsize__ 0.927 7.45e-02 0.105 7.84e-01 1.00 1.05

treedepth__ 0.437 1.03e-02 0.551 0.00e+00 0.000 1.00

n_divergent__ 0.000 0.00e+00 0.000 0.00e+00 0.000 0.000

theta 0.254 3.25e-03 0.122 7.58e-02 0.238 0.479

N_Eff N_Eff/s R_hat

lp__ 1404 19447 1.00e+00

accept_stat__ 887 12297 1.02e+00

stepsize__ 2.00 27.7 5.56e+13

treedepth__ 2856 39572 1.01e+00

n_divergent__ 4000 55424 nan

theta 1399 19382 1.00e+00

Figure 2: Output of bin/print for the Bernoulli estimation model in Figure 1.

./bernoulli sample data file=bernoulli.data.R random seed=847896134 \

id=2 output file=output2.csv

./bernoulli sample data file=bernoulli.data.R random seed=847896134 \

id=3 output file=output3.csv

These calls illustrate how additional parameters are specified directly on the command line
following the hierarchy given in the output. The backslash (\) at the end of each line indicates
that the command continues on the last line; a caret (^) should be used in Windows.

The chains can be safely run in parallel under different processes; details of parallel execution
depend on the operating system and the shell or terminal program. Note that, although the
same seed is used for each chain, the random numbers will in fact be independent as the chain
identifier is used to skip the pseudorandom number generator ahead.

Stan supplies a command-line program bin/print to summarize the output of one or more
MCMC chains. Given a directory containing output from sampling,

> ls output*.csv

output.csv output1.csv output2.csv output3.csv

posterior summaries are printed using

> $stan/bin/print output*.csv

10 Stan: A Probabilistic Programming Language

The output is shown in Figure 2.7 Each row of the output summarizes a different value whose
name is provided in the first column. These correspond to the columns in the output CSV
files. The analysis includes estimates of the posterior mean (Mean) and standard deviation
(StdDev). The median (50%) and 90% posterior interval (5%, 95%) are also displayed.

The remaining columns in the output provide an analysis of the sampling and its efficiency.
The convergence diagnostic that is built into the bin/print command is the estimated po-
tential scale reduction statistic R̂ (Rhat); its value should be close to 1.0 when the chains have
all converged to the same stationary distribution. Stan uses a more conservative version of R̂
than is usual in packages such as Coda (Plummer, Best, Cowles, and Vines 2006), first split-
ting each chain in half to diagnose nonstationary chains; see (Gelman, Carlin, Stern, Dunson,
Vehtari, and Rubin 2013) and (Stan Development Team 2014) for detailed definitions.

The column N_eff is the number of effective samples in a chain. Because MCMC methods
produce correlated samples in each chain, estimates such as posterior means are not as ac-
curate as they would be with truly independent samples. The number of effective samples
is an estimate of the number of independent samples that would lead to the same accuracy.
The Monte Carlo standard error (MCSE) is an estimate of the error in estimating the pos-
terior mean based on dividing the posterior standard deviation estimate by the square root
of the number of effective samples (sd / sqrt(n_eff)). Geyer (2011) provides a thorough
introduction to effective sample size and MCSE estimation. Stan uses the more conservative
estimates based on both within-chain and cross-chain convergence; see (Gelman et al. 2013)
and (Stan Development Team 2014) for motivation and definitions.

Because estimation accuracy is governed by the square root of the number of effective samples,
effective samples per second (or seconds per effective sample) is the most relevant statistic for
comparing the efficiency of sampler implementations. Compared to BUGS and JAGS, Stan is
often relatively slow per iteration but relatively fast per effective sample.

In this example, the estimated number of effective samples per parameter (n_eff) is 1399,
which far more than we typically need for inference. The posterior mean here is estimated
to be 0.254 with an MCSE of 0.00325. Because the model is conjugate, the exact posterior
is known to be p(θ|y) = Beta(3, 9). Thus the posterior mean of θ is 3/(3 + 9) = 0.25 and the
posterior mode of θ is (3− 1)/(3 + 9− 2) = 0.2.

2.6. Posterior mode estimates

Posterior modes with optimization

The posterior mode of a model can be found by using one of Stan’s built-in optimizers. The
following command invokes optimization for the Bernoulli model using all default configura-
tion parameters.

> ./bernoulli optimize data file=bernoulli.data.R

7Aligning columns when printing rows of varying scales presents a challenge. For each column, the program
calculates the the maximum number of digits required to print an entry in that column with the specified
precision. For example, a precision of 2 for the number -0.000012 requires nine characters (-0.000012) to print
without scientific notation versus seven digits with (-1.2e-5). If the discrepancy is above a fixed threshold,
scientific notation is used. Compare the results in the mean column versus the sd column.

Journal of Statistical Software 11

method = optimize

optimize

algorithm = bfgs (Default)

bfgs

init_alpha = 0.001 (Default)

tol_obj = 1e-08 (Default)

tol_grad = 1e-08 (Default)

tol_param = 1e-08 (Default)

iter = 2000 (Default)

save_iterations = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

initial log joint probability = -12.4873

Iter log prob ||dx|| ||grad|| alpha # evals Notes

7 -5.00402 8.61455e-07 1.25715e-10 1 10

Optimization terminated normally:

Convergence detected: change in objective function was below

tolerance

The final lines of the output indicate normal termination after seven iterations by convergence
of the objective function (here the log probability) to the default tolerance of 1e-08. The final
log probability (log prob), length of the difference between the current iteration’s value of
the parameter vector and the previous value (||dx||), and the length of the gradient vector
(||grad||).

The optimizer terminates when any of the log probability, gradient, or parameter values are
within their specified tolerance. The default optimizer uses the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm, a quasi-Newton method which employs exactly computed gra-
dients and an efficient approximation to the Hessian; see (Nocedal and Wright 2006) for a
textbook exposition of the BFGS algorithm.

Optimizer output file

By default, optimizations results are written into output.csv, which is a valid CSV file.

stan_version_major = 2

stan_version_minor = 1

stan_version_patch = 0

model = bernoulli_model

12 Stan: A Probabilistic Programming Language

method = optimize

optimize

algorithm = bfgs (Default)

bfgs

init_alpha = 0.001 (Default)

tol_obj = 1e-08 (Default)

tol_grad = 1e-08 (Default)

tol_param = 1e-08 (Default)

iter = 2000 (Default)

save_iterations = 0 (Default)

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 777510854

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

lp__,theta

-5.00402,0.2000000000125715

As with the sampler output, the configuration of the optimizer is dumped as CSV comments
(lines beginning with #). Then there is a header, listing the log probability, lp__, and the
single parameter name, theta. The next line shows that the posterior mode for theta is
0.2000000000125715, matching the true posterior mode of 0.20 very closely.

Optimization is carried out on the unconstrained parameter space, but without the Jaco-
bian adjustment to the log probability. This ensures modes are defined with respect to the
constrained parameter space as declared in the parameters block and used in the model spec-
ification. The need to suppress the Jacobian to match the scaling of the declared parameters
highlights the sensitivity of posterior modes to parameter transforms.

2.7. Diagnostic mode

Stan provides a diagnostic mode that evaluates the log probability and gradient calculations
at the initial parameter values (either user supplied or generated randomly based on the
specified or default seed).

> ./bernoulli diagnose data file=bernoulli.data.R

method = diagnose

diagnose

test = gradient (Default)

gradient

epsilon = 9.9999999999999995e-07 (Default)

error = 9.9999999999999995e-07 (Default)

Journal of Statistical Software 13

id = 0 (Default)

data

file = bernoulli.data.R

init = 2 (Default)

random

seed = 4294967295 (Default)

output

file = output.csv (Default)

diagnostic_file = (Default)

refresh = 100 (Default)

TEST GRADIENT MODE

Log probability=-6.74818

param idx value model finite diff error

0 -1.1103 0.0262302 0.0262302 -3.81445e-10

Here, a random initialization is used and the initial log probability is -6.74818 and the single
parameter theta, here represented by index 0, has a value of -1.1103 on the unconstrained
scale. The derivative supplied by the model and by a finite differences calculation are the same
to within -3.81445e-10. Non-finite log probability values or derivatives indicate a problem
with the model in terms of constraints on parameter values or function inputs being violated,
boundary conditions in functions, and sometimes overflow or underflow issues with floating-
point calculations. Errors between the model’s gradient calculation and finite differences can
indicate a bug in Stan’s algorithmic differentiation for a function in the model.

2.8. Roadmap for the Rest of the Paper

Now that the key functionality of Stan has been demonstrated, the remaining sections cover
specific aspects of Stan’s architecture. Section 3 covers variable data type declarations as
well as expressions and type inference, Section 4 describes the top-level blocks and execution
of a Stan program, Section 5 lays out the available statements, and Section 6 the built-in
math, matrix, and probability function library. Section 7 lays out MCMC and optimization-
based inference. There are two appendices, Appedix A outlining the development process and
Appendix B detailing the library dependencies.

3. Data types

All expressions in Stan are statically typed, including variables. This means their type is
declared at compile time as part of the model, and does not change throughout the execution
of the program. This is the same behavior as is found in compiled programming languages
such as C(++), Fortran, and Java, but is unlike the behavior of interpreted languages such as
BUGS, R, and Python. Statically typing the variables (as well as declaring them in appropriate
blocks based on usage) makes Stan programs easier to read and easier to debug by making
explicit the modeling decisions and expression types.

14 Stan: A Probabilistic Programming Language

3.1. Primitive types

The primitive types of Stan are real and int, which are used to represent continuous and
integer values. These values are represented directly in C++ as types double and int. Integer
expressions can be used anywhere a real value is required, but not vice-versa.

3.2. Vector and matrix types

Stan supports vectors, row vectors, and matrices with the usual access operations. Indexing
for vector, matrix, and array types starts from one.

Vectors are declared with their sizes and matrices with their number of rows and columns.
Vector, row vector, and matrix elements are accessed using bracket notation, as in y[3] for
the third element of a vector or row vector and a[2,3] for the element in the third column of
the second row of a matrix. Indexing begins from 1. The notation a[2] accesses the second
row of matrix a.

All vector and matrix types contain real values and may not be declared to contain integers.
Collections of integers are represented using arrays.

3.3. Array types

An array may have entries of any other type. For example, arrays of integers and reals are
allowed, as are arrays of vectors or arrays of matrices.

Higher-dimensional arrays are intrinsically arrays of arrays. An entry in a two-dimensional
array y may be accessed as y[1,2]. The expression y[1] by itself denotes the one-dimensional
array whose values correspond to the first row of y. Thus y[1][2] has the same value as
y[1,2].8

Unlike integers, which may be used where real values are required, arrays of integers may not
be used where real arrays are required.9

The manual contains a chapter discussing the efficiency tradeoffs and motivations for sepa-
rating arrays and matrices.

3.4. Constrained variable types

Variables may be declared with constraints. The constraints have different effects depending
on the block in which the variable is declared.

Integer and real types may be provided with lower bounds, upper bounds, or both. This
includes the types used in arrays, and the real types used in vectors and matrices.

Vector types may be constrained to be unit simplexes (all entries non-negative and summing
to 1), unit length vectors (sum of squares is 1), or ordered (entries are in ascending order),
positive ordered (entries in ascending order, all non-negative), using the types simplex[K],
unit_vector[K], ordered[K], or positive_ordered[K], where K is the size of the vector.

Matrices may be constrained to be covariance matrices (symmetric, positive definite) or corre-
lation matrices (symmetric, positive definite, unit diagonal), using the types cov_matrix[K]

8Arrays are stored in row-major order and matrices in column-major order.
9In the language of type theory, Stan arrays are not covariant. This follows the behavior of both arrays and

standard library containers in C++.

Journal of Statistical Software 15

and corr_matrix[K].

3.5. Expressions

The syntax of Stan is defined in terms of expressions and statements. Expressions denote
values of a particular type. Statements represent operations such as assignment and sampling
as well as control structures such as for loops and conditionals.

Stan provides the usual kinds of expressions found in programming languages. This includes
variables, literals denoting integers, real values or strings, binary and unary operators over
expressions, and function application.

Type inference

The type of a numeric literal is determined by whether or not it contains a period or scientific
notation; for example, 20 has type int whereas 20.0 and 2e+1 have type real.

The type of applying an operator or a function to one or more expressions is determined by
the available signatures for the function. For example, the multiplication operator (*) has a
signature that maps two int arguments to an int and two real arguments to a real result.
Another signature for the same operator maps a row_vector and a vector to a real result.

Type promotion

If necessary, an integer type will be promoted to a real value. For example, multiplying an
int by a real produces a real result by promoting the int argument to a real.

4. Top-Level Blocks and Program Execution

In the rest of this paper, we will concentrate on the modeling language and how compiled
models are executed. These details are the same whether a Stan model is being used by one
of the built-in samplers or optimizers or being used externally by a user-defined sampler or
optimizer.

We begin with an example that will be used throughout the rest of this section. (Gelman et al.
2013, Section 5.1) define a hierarchical model of the incidence of tumors in rats in control
groups across trials; a very similiar model is defined for mortality rates in pediatric surgeries
across hospitals in (Lunn et al. 2000, 2009, Examples, Volume 1). A Stan implementation is
provided in Figure 3. In the rest of this section, we will walk through what the meaning of
the various blocks are for the execution of the model.

4.1. Data block

A Stan program starts with an (optional) data block, which declares the data required to
fit the model. This is a very different approach to modeling and declarations than in BUGS
and JAGS, which determine which variables are data and which are parameters at run time
based on the shape of the data input to them. These declarations make it possible to compile
Stan to much more efficient code.10 Missing data models may still be coded in Stan, but

10The speedup is because coding data variables as double types in C++ is much faster than promoting all
values to algorithmic differentiation class variables.

16 Stan: A Probabilistic Programming Language

data {

int<lower=0> J; // number of items

int<lower=0> y[J]; // number of successes for j

int<lower=0> n[J]; // number of trials for j

}

parameters {

real<lower=0,upper=1> theta[J]; // chance of success for j

real<lower=0,upper=1> lambda; // prior mean chance of success

real<lower=0.1> kappa; // prior count

}

transformed parameters {

real<lower=0> alpha; // prior success count

real<lower=0> beta; // prior failure count

alpha <- lambda * kappa;

beta <- (1 - lambda) * kappa;

}

model {

lambda ~ uniform(0,1); // hyperprior

kappa ~ pareto(0.1,1.5); // hyperprior

theta ~ beta(alpha,beta); // prior

y ~ binomial(n,theta); // likelihood

}

generated quantities {

real<lower=0,upper=1> avg; // avg success

int<lower=0,upper=1> above_avg[J]; // true if j is above avg

int<lower=1,upper=J> rnk[J]; // rank of j

int<lower=0,upper=1> highest[J]; // true if j is highest rank

avg <- mean(theta);

for (j in 1:J)

above_avg[j] <- (theta[j] > avg);

for (j in 1:J) {

rnk[j] <- rank(theta,j) + 1;

highest[j] <- rnk[j] == 1;

}

}

Figure 3: Hierarchical binomial model with posterior inferences, coded in Stan.

Journal of Statistical Software 17

the missing values must be declared as parameters; see (Stan Development Team 2014) for
examples of missing data, censored data, and truncated data models.

In the model in Figure 3, the data block declares an integer variable J for the number of
groups in the hierarchical model. The arrays y and n have size J, with y[j] being the number
of positive outcomes in n[j] trials.

All of these variables are declared with a lower-bound constraint restricting their values to
be greater than or equal to zero. Stan’s constraint language is not strong enough to restrict
each y[j] to be less than or equal to n[j].

The data for a Stan model is read in once as the C++ object representing the model is
constructed. After the data is read in, the constraints are validated. If the data does not
satisfy the declared constraints, the model will throw an exception with an informative error
message, which is displayed to the user in the command-line, R, and Python interfaces.

4.2. Transformed data block

The model in Figure 3 does not have a transformed data block. A transformed data block
may be used to define new variables that can be computed based on the data. For example,
standardized versions of data can be defined in a transformed data block or Bernoulli trials can
be summed to model as binomial. Any constant data can also be defined in the transformed
data block.

The transformed data block starts with a sequence of variable declarations and continues with
a sequence of statements defining the variables. For example, the following transformed data
block declares a vector x_std, then defines it to be the standardization of x:

transformed data {

vector[N] x_std;

x_std <- (x - mean(x)) / sd(x);

}

The transformed data block is executed during construction, after the data is read in. Any
data variables declared in the data block may be used in the variable declarations or state-
ments. Transformed data variables may be used after they are declared, although care must
be taken to ensure they are defined before they are used. Any constraints declared on trans-
formed data variables are validated after all of the statements are executed, with execution
terminating with an informative error message at the first variable with an invalid value.

4.3. Parameter block

The parameter block in the program in Figure 3 defines three parameters. The parameter
theta[j] represents the probability of success in group j. The prior on each theta[j] is pa-
rameterized by a prior mean chance of success lambda and prior count kappa. Both theta[j]

and lambda are constrained to fall between zero and one, whereas kappa is constrained to be
greater than or equal to 0.1 to match the support of the Pareto hyperprior it receives in the
model block.

The parameter block is executed every time the log probability is evaluated. This may be
multiple times per iteration of a sampling or optimization algorithm.

18 Stan: A Probabilistic Programming Language

Implicit change of variables to unconstrained space

The probability distribution defined by a Stan program is intended to have unconstrained sup-
port (i.e., no points of zero probability), which greatly simplifies the task of writing samplers
or optimizers. To achieve unbounded support, variables declared with constrained support
are transformed to an unconstrained space. For instance, variables declared on [0, 1] are log-
odds transformed and non-negative variables declared to fall in [0,∞) are log transformed.
More complex transforms are required for simplexes (a reverse stick-breaking transform) and
covariance and correlation matrices (Cholesky factorization). The dimensionality of the re-
sulting probability function may change as a result of the transform. For example, a K ×K
covariance matrix requires only

(K
2

)
+K unconstrained parameters, and a K-simplex requires

only K − 1 unconstrained parameters.

The unconstrained parameters over which the model is defined are inverse transformed back
to their constrained forms before executing the model code. To account for the change of
variables, the log absolute Jacobian determinant of the inverse transform is added to the
overall log probability function.11 The gradients of the log probability function exposed
include the Jacobian term.

There is no validation required for the parameter block because the variable transforms are
guaranteed to produce values that satisfy the declared constraints.

4.4. Transformed parameters block

The transformed parameters block allows users to define transforms of parameters within
a model. Following the model in (Gelman et al. 2013), the example in Figure 3 uses the
transformed parameter block to define transformed parameters alpha and beta for the prior
success and failure counts to use in the beta prior for theta.

Following the same convention as the transformed data block, the (optional) transformed pa-
rameter block begins with declarations of the transformed parameters, followed by a sequence
of statements defining them. Variables from previous blocks as well as the transformed pa-
rameters block may be used. In the example, the prior success and failure counts alpha and
beta are defined in terms of the prior mean lambda and total prior count kappa.

The transformed parameter block is executed after the parameter block. Constraints are val-
idated after all of the statements defining the transformed parameters have executed. Failure
to validate a constraint results in an exception being thrown, which halts the execution of the
log probability function. The log probability function can be defined to return negative infin-
ity or the special not-a-number value, both of which are available through built-in functions
and may be passed to the increment_log_prob function (see below).

If transformed parameters are used on the left-hand side of a sampling statement, it is up
to the user to add the appropriate log absolute Jacobian determinant adjustment to the log
probability accumulator. For instance, a lognormal variate could be generated as follows
without the built-in lognormal density function using the normal density as

parameters {

real<lower=0> u;

11For optimization, the Jacobian adjustment is suppressed to guarantee the optimizer finds the maximum
of the log probability function on the constrained parameters. The calculation of the Jacobian is controlled by
a template parameter in the C++ code generated for a model.

Journal of Statistical Software 19

...

transformed parameters {

real v;

v <- log(u);

// log absolute Jacobian determinant adjustment

increment_log_prob(u);

}

model {

v ~ normal(0,1);

}

The transorm is f(u) = log u, the inverse transform is f−1(v) = exp v, so the absolute log
Jacobian determinant is | ddv exp v| = exp v = u. Whenever a transformed parameter is used
on the left side of a sampling statement, a warning is printed to remind the user of the need
for a Jacobian adjustment for the change of variables.

The increment_log_prob statement is used to add a term to the total log probability function
defined by the model block and the log absolute Jacobian determinants of the transforms. The
variable lp__, representing the currently accumulated total log density, may not be assigned
to directly.

Values of transformed parameters are saved in the output along with the parameters. As an
alternative, local variables can be used to define temporary values that do not need to be
saved.

4.5. Model block

The purpose of the model block is to define the log probability function on the constrained
parameter space. The example in Figure 3 has a simple model containing four sampling state-
ments. The hyperprior on the prior mean lambda is uniform, and the hyperprior on the prior
count kappa is a Pareto distribution with lower-bound of support at 0.1 and shape 1.5, leading
to a probability of κ > 0.1 proportional to κ−5/2. Note that the hierarchical prior on theta

is vectorized: each element of theta is drawn independently from a beta distribution with
prior success count alpha and prior failure count beta. Both alpha and beta are transformed
parameters, but because they are only used on the right-hand side of a sampling statement
do not require a Jacobian adjustment of their own. The likelihood function is also vectorized,
with the effect that each success count y[i] is drawn from a binomial distribution with num-
ber of trials n[i] and chance of success theta[i]. In vectorized sampling statements, single
values may be repeated as many times as necessary.

The model block is executed after the transformed parameters block every time the log prob-
ability function is evaluated.

Implicit uniform priors

The default distribution for a variable is uniform over its declared (constrained) support.
For instance, a variable declared with a lower bound of 0 and an upper bound of 1 implicitly
receives a Uniform(0, 1) distribution. These implicit uniform priors are improper if the variable
has unbounded support. For instance, the uniform distributions over real values with upper
and lower bounds, simplexes and correlation matrices is proper, but the uniform distribution

20 Stan: A Probabilistic Programming Language

over unconstrained or one-side constrained reals, ordered vectors or covariance matrices are
not proper.

Stan does not require proper priors, but if the posterior is improper, Stan will halt with an
error message.12

4.6. Generated quantities block

The (optional) generated quantities allows values that depend on parameters and data, but
do not affect estimation, to be defined efficiently. The generated quantities block is called only
once per sample, not once per log probability function evaluation. It may be used to calculate
predictive inferences as well as to carry out forward simulation for posterior predictive checks;
see (Gelman et al. 2013) for examples.

The BUGS surgical example explored the ranking of institutions in terms of surgical mortality
(Lunn et al. 2000, Examples, Volume 1). This is coded in the example in Figure 3 using the
generated quantities block. The generated quantity variable rnk[j] will hold the rank of
institution j from 1 to J in terms of mortality rate theta[j]. The ranks are extracted using
the rank function. The posterior summary will print average rank and deviation. (Lunn et al.
2000) illustrated posterior inference by plotting posterior rank histograms.

Posterior comparisons can be carried out directly or using rankings. For instance, the model
in Figure 3 sets highest[j] to 1 if hospital j has the highest estimated mortality rate (for
a discussion of multiple comparisions and hierarchical models, see (Gelman, Hill, and Yajima
2012; Efron 2010)).

As a second illustration, the generated quantities block n Figure 3 calculates the (posterior)
probability that a given institution is above-average in terms of mortality rate. This is done
for each institution j with the usual plug-in estimate of theta[j] > mean(theta), which
returns a binary (0 or 1) value. The posterior mean of above_avg[j] calculates the posterior
probability Pr[θj > θ̄|y, n] according to the model.

4.7. Initialization

Stan’s samplers and optimizers all start from either random or user-supplied values for each
parameter. User supplied initial values are validated and transformed to the underlying
unconstrained space; if a parameter value does not satisfy its declared constraints, the program
exits and an informative error message is printed. If random initialization is specified, the
built-in pseudorandom number generator is called once per unconstrained variable dimension.
The default initialization is to randomly generate values uniformly on [−2, 2]; another interval
may be specified with init=x for some non-negative floating-point value x. This supplies fairly
diffuse starting points when transformed back to the constrained scale, and thus help with
convergence diagnostics as discussed in (Gelman et al. 2013). Models with more data or more
elaborate structure require narrower intervals for initialization to ensure the sampler is able
to quickly converge to a stationary distribution in the high mass region of the posterior.

Although Stan is quite effective at converging from diffuse random initializations, the user
may supply their own initial values for sampling, optimization, or diagnosis. The top-level
command-line option is init=path, where path is a path to a file specifying values for all
parameters in R dump format.

12Improper posteriors are diagnosed automatically when parameters overflow to infinity during simulation.

Journal of Statistical Software 21

5. Statements

5.1. Assignment and sampling

Stan supports the same two basic statements as BUGS, assignment and sampling, examples of
which were introduced earlier. In BUGS, these two kinds of statment define a directed acyclic
graphical model; in Stan, they define a log probability function.

Log probability accumulator

There is an implicitly defined variable lp__ (available in the transformed parameters and
model blocks) denoting the log probability that will be returned by the log probability func-
tion.

Sampling statements

A sampling statement is nothing more than shorthand for incrementing the log probability
accumulator lp__. For example, if beta is a parameter of type real, the sampling statement

beta ~ normal(0,1);

has the exact same effect (up to dropping constant terms) as the special log probability
increment statement

increment_log_prob(normal_log(beta,0,1));

Define variables before sampling statements

The translation of sampling statements to log probability function evaluations explains why
variables must be defined before they are used. In particular, a sampling statement does not
sample the left-hand side variable from the right-hand side distribution.

Parameters are all defined externally by the sampler; all other variables must be explicitly
defined with an assignment statement before being used.

Direct definition of probability functions

Because computation is only up to a proportionality constant (an additive constant on the
log scale), this sampling statement in turn has the same effect as the direct implementation
in terms of basic arithmetic,

increment_log_prob(-0.5 * beta * beta);

If beta is of type vector, replace beta * beta with beta’ * beta. Distributions whose
probability functions are not built directly into Stan can be implemented directly in this
fashion.

5.2. Sequences of statements and execution order

Stan allows sequences of statements wherever statements may occur. Unlike BUGS, in which
statements define a directed acyclic graph, in Stan, statements are executed imperatively in
the order in which they occur in a program.

22 Stan: A Probabilistic Programming Language

Blocks and variable scope

Sequences of statements surrounded by curly braces ({ and }) form blocks. Blocks may start
with local variable declarations. The scope of a local variable (i.e., where it is available to be
used) is that of the block in which it is declared.

Other variables, such as those declared as data or parameters, may only be assigned to in the
block in which they are declared. They may be used in the block in which they are declared
and may also be used in any block after the block in which they are declared.

5.3. Whitespace, semicolons, and comments

Following the convention of C++, statements are separated with semicolons in Stan so that
the content of whitespace (outside of comments) is irrelevant. This is in contrast to BUGS
and R, in which carriage returns are special and may indicate the end of a statement.

Stan supports the line comment style of C++, using two forward slashes (//) to comment out
the rest of a line; this is the one location where the content of whitespace matters. Stan also
supports the line comment style of R and BUGS, treating a pound sign (#) as commenting
out everything until the end of the line. Stan also supports C++-style block comments, with
everything between the start-comment (/*) and end-comment (*/) markers being ignored.

The preferred style follows that of C++, with line comment used for everything but multiline
comments.

Stan follows the C++ convention of separating words in variable names using underbars (_),
rather than dots (.), as used in R and BUGS, or camel case as used in Java.

5.4. Control structures

Stan supports the same kind of explicitly bounded for loops as found in BUGS and R. Like R,
but unlike BUGS, Stan supports while loops and conditional (if-then-else) statements.13 Stan
provides the usual comparison operators and boolean operators to help define conditionals
and condition-controlled while loops.

5.5. Print statements and debugging

Stan provides print statements which take arbitrarily many arguments consisting of expres-
sions or string literals consisting of sequences of characters surrounded by double quotes (").
These statements may be used for debugging purposes to report on intermediate states of
variables or to indicate how far execution has proceeded before an error.

As an example, suppose a user’s program raises an error at run time because a covariance
matrix defined in the transformed parameters block fails its symmetry constraint.

transformed parameters {

cov_matrix[K] Sigma;

for (m in 1:M)

for (n in m:M)

Sigma[m,n] <- Omega[m,n] * sigma[m] * sigma[n];

13BUGS omits these control structures because they would introduce ambiguities into the directed, acyclic
graph defined by model.

Journal of Statistical Software 23

print("Sigma=", Sigma);

}

The print statement added at the last line will dump out the values in the matrix.

6. Function and distribution library

In order to support the algorithmic differentiation required to calculate gradients, Hessians,
and higher-order derivatives in Stan, we require C++ functions that are templated separately
on all of their arguments. In order for these functions to be efficient in computing both
values and derivatives, they need to operate directly on vectors of arguments so that shared
computations can be reused. For example, if y is a vector and sigma is a scalar, the logarithm
of sigma need only be evaluated once in order to compute the normal density for every member
of y in

y ~ normal(mu,sigma);

6.1. Basic operators

Stan supports all of the basic C++ arithmetic operators, boolean operators, comparison op-
erators In addition, it extends the arithmetic operators to matrices and includes pointwise
matrix operators.14 The full set of operators is listed in Figure 4.

6.2. Special functions

Stan provides an especially rich set of special functions. This includes all of the C++ math
library functions, as well as numerous more specialized functions such as Bessel functions,
gamma and digamma functions, and generalized linear model link functions and their in-
verses. There are also many compound functions, such as log1m(x), which is more stable
arithmetically for values of x near 0 than log(1 - x). Stan’s special functions are listed in
Figure 7 and Figure 8.

In addition to special functions, Stan includes distributions with alternative parameterizations,
such as bernoulli_logit, which takes a parameter on the log odds (i.e., logit) scale. This
allows a more concise notation for generalized linear models as well as more efficient and
arithmetically stable execution.

6.3. Matrix and linear algebra functions

Rows, columns and subblocks of matrices can be accessed using row, col, and block functions.
Slices of arrays can be accessed using the head, tail, and segment functions. There are also
special functions for creating a diagonal matrix from a vector and accessing the diagonal of a
vector.

14This is in contrast to R and BUGS, who treat the basic multiplication and division operators pointwise
and use special symbols for matrix operations.

24 Stan: A Probabilistic Programming Language

Various reductions are provided for arrays and matrices, such as sums, means, standard
deviations, and norms. Replications are also available to copy a value into every cell of a
matrix. Slices of matrices and vectors may be accessed by row, column, or general sub-block
operations.

Matrix operators use the types of their operands to determine the type of the result. For
instance, multiplying a vector by a (column) row vector returns a matrix, whereas multiply-
ing a row vector by a (column) vector returns a real. A postfix apostrophe (’) is used for
matrix and vector transposition. For example, if y and mu are vectors and Sigma is a square
matrix, all of the same dimensionality, then y~-~mu is a vector, (y~-~mu)’ is a row vec-
tor, (y~-~mu)’~*~Sigma is a row vector, and (y~-~mu)’~*~Sigma~*~(y~-~mu) will be a real
value. Matrix division is provided, which is much more arithmetically stable than inversion,
e.g., (y~-~mu)’~/~Sigma computes the same function as (y~-~mu)’~*~inverse(Sigma).
Stan also supports elementwise multiplication (.*) and division (./).

Linear algebra functions are provided for trace, left and right division, Cholesky factoriza-
tion, determinants and log determinants, inverses, eigenvalues and eigenvectors, and sin-
gular value decomposition. All of these operations may be applied to matrices of param-
eters or constants. Various functions are specialized for speed, such as quadratic prod-
ucts, diagonal specializations, and multiply by self transposed; e.g., the previous example
(y~-~mu)’~*~Sigma~*~(y~-~mu) could be coded as as quad_form(Sigma,~y~-~mu).

The full set of matrix and linear-algebra functions is listed in Figure 9; operators, which also
apply to matrices and vectors, are listed in Figure 4.

6.4. Probability functions

Stan supports a growing collection of built-in univariate and multivariate probability density
and mass functions. These probability functions share various features of their declarations
and behavior.

All probability functions are defined on the log scale to avoid underflow. They are all named
with the suffix _log, e.g., normal_log(), is the log-scale normal distribution density function.

All probability functions check that their arguments are within the appropriate constrained
support and are configured to throw exceptions and print error messages for out-of-domain
arguments (the behavior of positive and negative infinity and not-a-number values are built
into floating-point arithmetic). For example, normal_log(y, mu, sigma) requires the scale
parameter sigma to be non-negative. Exceptions that are raised by functions will be caught by
the sampler, optimizer or diagnostic, and their warning messages will be printed for the user.
Log density evaluations in which exceptions are raised are treated as if they had evaluated to
negative infinity, and are thus rejected by the sampler or optimizer.

The list of probability functions is provided in Figure 10, Figure 11, and Figure 12.

Up to a proportion calculations

All probability functions support calculating results up to a constant proportion, which be-
comes an additive constant on the log scale. Constancy here refers to being a numeric literal
such as 1 or 0.5, a constant function such as pi(), data and transformed data variables, or
a function that only depends on literals, constant functions or data variables.

Non-constants include parameters, transformed parameters, local variables declared in the

Journal of Statistical Software 25

transformed parameters or model statements, as well as any expression involving a non-
constant.

Constant terms are dropped from probability function calculations at the time the model is
compiled, so there is no run-time overhead to decide which expressions denote constants.15 For
example, executing y ~ normal(0,sigma) only evaluates log(sigma) if sigma is a parameter,
transformed parameter, or a local variable in the transformed parameters or model block; that
is, log(sigma) is not evaluated if sigma is constant as defined above.

Constant terms are not dropped in explicit function evaluations, such as normal_log(y,0,sigma).

Vector arguments and shared computations

All of the univariate probability functions in Stan are implemented so that they accept arrays
or vectors of arguments. For example, although the basic signature of the probability function
normal_log(y,mu,sigma) involves real y, mu and sigma, it supports calls in which any any or
all of y, mu and sigma contain more than one element. A typical use case would be for linear
regression, such as y ~ normal(X * beta,sigma), where y is a vector of observed data, X is
a predictor matrix, beta is a coefficient vector, and sigma is a real value for the noise scale.

The advantage of using vectors is twofold. First, the models are more concise and closer
to mathematical notation. Second, the vectorized versions are much faster. They reduce
the number of times expensive operations need to be evaluated and also reduce the number
of virtual function calls required in the compiled C++ executable for calculating gradients
and higher-order derivatives. For example if sigma is a parameter, then in evaluating y
normal(X * beta, sigma), the logarithm of sigma need only be computed once; if either y or
beta is an N -vector, it also reduces the number of virtual function calls from N to 1.

7. Built-in inference engines

Stan includes several Markov chain Monte Carlo (MCMC) samplers and several optimizers.
Others may be straightforwardly implemented within Stan’s C++ framework for sampling
and optimization using the log probability and derivative information supplied by a model.

7.1. Markov chain Monte Carlo samplers

Hamiltonian Monte Carlo

The MCMC samplers provided include Euclidean Hamiltonian Monte Carlo (EHMC, which
in much of the literature is referenced as simply HMC) (Duane, Kennedy, Pendleton, and
Roweth 1987; Neal 1994, 2011) and the no-U-turn sampler (NUTS) (Hoffman and Gelman
2014). Both the basic and NUTS versions of HMC allow estimation or specification of unit,
diagonal, or full mass matrices. NUTS, the default sampler for Stan, automatically adapts
the number of leapfrog steps, eliminating the need for user-specified tuning parameters. Both
algorithms take advantage of gradient information in the log probability function to generate

15Both vector arguments and dropping constant terms are implemented in C++ through template metapro-
grams that infer traits of template arguments to the probability functions. Whether to drop constants is
configurable through a boolean template parameter on the log probability and derivative functions generated
in C++ for a model.

26 Stan: A Probabilistic Programming Language

coherent motion through the posterior that dramatically reduces the autocorrelation of the
resulting transitions.

7.2. Optimizers

In addition to performing full Bayesian inference via posterior sampling, Stan also can per-
form optimization (i.e., computation of the posterior mode). We are currently working on
implementing other optimization-based inference approaches including variational Bayes, ex-
pectation propagation, and and marginal inference using approximate integration. All these
algorithms require optimization steps.

BFGS

The default optimizer in Stan is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer.
BFGS is a quasi-Newton optimizer that evaluates gradients directly, then uses the gradients
to update an approximation to the Hessian. Plans are in the works to also include the more
involved, but more scalable limited-memory BFGS (L-BFGS) scheme. Nocedal and Wright
(2006) cover both BFGS and L-BFGS samplers.

Conjugate gradient

Stan provides a standard form of conjugate gradient optimization; see (Nocedal and Wright
2006). As its name implies, conjugate gradient optimization requires gradient evaluations.

Accelerated gradient

Additionally, Stan implements a crude version of Nesterov’s accelerated gradient optimizer
Nesterov (1983), which combines gradient updates with a momentum-like update to hasten
convergence.

Acknowledgments

First and foremost, we would like to thank all of the users of Stan for taking a chance on a
new package and sticking with it as we ironed out the details in the first release. We’d like
to particularly single out the students in Andrew Gelman’s Bayesian data analysis courses at
Columbia Univesity and Harvard University, who served as trial subjects for both Stan and
(Gelman et al. 2013).

We’d like to thank Aki Vehtari for comments and corrections on a draft of the paper.

Stan was and continues to be supported largely through grants from the U. S. govern-
ment. Grants which indirectly supported the initial research and development included grants
from the Department of Energy (DE-SC0002099), the National Science Foundation (ATM-
0934516), and the Department of Education Institute of Education Sciences (ED-GRANTS-
032309-005 and R305D090006-09A). The high-performance computing facility on which we
ran evaluations was made possible through a grant from the National Institutes of Health
(1G20RR030893-01). Stan is currently supported in part by a grant from the National Sci-
ence Foundation (CNS-1205516).

We would like to think those who have contributed code for new features, Jeffrey Arnold,

Journal of Statistical Software 27

Operation Precedence Associativity Placement Description

|| 9 left binary infix logical or

&& 8 left binary infix logical and

== 7 left binary infix equality
!= 7 left binary infix inequality

< 6 left binary infix less than
<= 6 left binary infix less than or equal
> 6 left binary infix greater than
>= 6 left binary infix greater than or equal

+ 5 left binary infix addition
- 5 left binary infix subtraction

* 4 left binary infix multiplication
/ 4 left binary infix (right) division

\ 3 left binary infix left division

.* 2 left binary infix elementwise multiplication

./ 2 left binary infix elementwise division

! 1 n/a unary prefix logical negation
- 1 n/a unary prefix negation
+ 1 n/a unary prefix promotion (no-op in Stan)

’ 0 n/a unary postfix transposition

() 0 n/a prefix, wrap function application
[] 0 left prefix, wrap array, matrix indexing

Figure 4: Each of Stan’s unary and binary operators follow strict precedences, associativities,
placement within an expression. The operators are listed in order of precedence, from least
tightly binded to most tightly binding.

Function Description

e base of natural logarithm
epsilon smallest positive number
negative_epsilon largest negative value
negative_infinity negative infinity
not_a_number not-a-number
pi π
positive_infinity positive infinity
sqrt2 square root of two

Figure 5: Stan implements a variety of useful constants.

Yuanjun Gao, and Marco Inacio, as well as those who contributed documentation corrections
and code patches, Jeffrey Arnold, David R. Blair, Eric C. Brown, Eric N. Brown, Devin
Caughey, Wayne Folta, Andrew Hunter, Marco Inacio, Louis Luangkesorn, Jeffrey Oldham,
Mike Ross, Terrance Savitsky, Yajuan Si, Dan Stowell, Zhenming Su, and Dougal Sutherland.

Finally, we would like to thank two anonymous referees.

28 Stan: A Probabilistic Programming Language

Function Description

acos arc cosine
acosh arc hyperbolic cosine
asin arc sine
asinh arc hyperbolic sine
atan arc tangent
atan2 arc ratio tangent
atanh arc hyperbolic tangent
cos cosine
cosh hyperbolic cosine
hypot hypoteneuse
sin sine
sinh hyperbolic sine
tan tangent
tanh hyperbolic tangent

Figure 6: Stan implements both circular and hyperbolic trigonometric functions, as well as
their inverses.

A. Developer process

A.1. Version control and source repository

Stan’s source code is hosted on GitHub and managed using the Git version control system
(Chacon 2009). To manage the workflow with so many developers working at any given
time, the project follows the GitFlow process (Driessen 2010). All developer submissions
are managed through pull requests and we have gratefully received patches from numerous
sources outside the core development team.

A.2. Continuous integration

Stan uses continuous integration, meaning that the entire program and set of tests are run
automatically as code is pushed to the Git repository. Each pull request is tested for compat-
ibility with the development branch, and the development branch itself is tested for stability.
Stan uses Jenkins (Smart 2011), an open-source continuous integration server.

A.3. Testing framework

Stan includes extensive unit tests for low-level C++ code. Unit tests are implemented using the
googletest framework (Google 2011). The probability functions and command-line invocations
are complex enough that programs are used to automatically generate test code for googletest.

These unit tests evaluate every function for both appropriate values and appropriate deriva-
tives. This requires an extensive meta-testing framework for the probability distributions
due to their high degree of configurability as to argument types. The testing portion of the
makefile also runs tests of all of the built-in models, including almost all of the BUGS sample
models. Models are tested for both convergence and posterior mean estimation to within

Journal of Statistical Software 29

Function Description

abs double absolute value
abs integer absolute value
binary_log_loss log loss
bessel_first_kind Bessel function of the first kind
bessel_second_kind Bessel function of the second kind
binomial_coefficient_log log binomial coefficient
cbrt cube root
ceil ceiling
cumulative_sum cumulative sum
erf error function
erfc complementary error function
exp base-e exponential
exp2 base-2 exponential
expm1 exponential of quantity minus one
fabs real absolute value
fdim positive difference
floor floor
fma fused multiply-add
fmax floating-point maximum
fmin floating-point minimum
fmod floating-point modulus
if_else conditional
int_step Heaviside step function
inv inverse (one over argument)
inv_cloglog inverse of complementary log-log
inv_logit logistic sigmoid
inv_sqrt inverse square root
inv_square inverse square
lbeta log beta function
lgamma log Γ function
lmgamma log multi-Γ function
log natural (base-e) logarithm
log10 base-10 logarithm
log1m natural logarithm of one minus argument
log1m_exp natural logarithm of one minus natural exponential
log1m_inv_logit natural logarithm of logistic sigmoid
log1p natural logarithm of one plus argument
log1p_exp natural logarithm of one plus natural exponential
log2 base-2 logarithm

Figure 7: Stan implements many special and transcendental functions.

30 Stan: A Probabilistic Programming Language

Function Description

log_diff_exp natural logarithm of difference of exponentials
log_falling_factorial falling factorial (Pochhammer)
log_inv_logit natural logarithm of the logistic sigmoid
log_rising_factorial falling factorial (Pochhammer)
log_sum_exp logarithm of the sum of exponentials of arguments
logit log-odds
max integer maximum
max real maximum
mean sample average
min integer minimum
min real minimum
modified_bessel_first_kind modified Bessel function of the first kind
modified_bessel_second_kind modified Bessel function of the second kind
multiply_log multiply linear by log
owens_t Owens-t
phi Φ function (cumulative unit normal)
phi_approx efficient, approximate Φ
pow power (i.e., exponentiatiation)
prod product of sequence
rank rank of element in array or vector
rep_array fill array with value
round round to nearest integer
sd sample standard deviation
softmax softmax (multi-logit link)
sort_asc sort in ascending order
sort_desc sort in descending order
sqrt square root
square square
step Heaviside step function
sum sum of sequence
tgamma Γ function
trunc truncate real to integer
variance sample variance

Figure 8: Special functions (continued).

Journal of Statistical Software 31

Function Description

block sub-block of matrix
cholesky_decompose Cholesky decomposition
col column of matrix
cols number of columns in matrix
columns_dot_product dot product of matrix columns
columns_dot_self dot product of matrix columns with self
crossprod cross-product
determinant matrix determinant
diag_matrix vector to diagonal matrix
diag_post_multiply post-multiply matrix by diagonal matrix
diag_post_multiply pre-multiply matrix by diagonal matrix
diagonal diagonal of matrix as vector
dims dimensions of matrix
dot_product dot product
dot_self dot product with self
eigenvalues_sym eigenvalues of symmetric matrix
eigenvectors_sym eigenvectors of symmetric matrix
head head of vector
inverse matrix inverse
inverse_spd symmetric, positive-definite matrix inverse
log_determinant natural logarithm of determinant
mdivide_left_tri_low lower-triangular matrix left division
mdivide_right_tri_low lower-triangular matrix right division
multiply_lower_tri_self_transpose multiply lower-triangular by transpose
quad_form quadratic form vector-matrix multiplication
rep_matrix replicate scalar, row vector or vector to matrix
rep_row_vector replicate scalar to row vector
rep_vector replicate scalar to vector
row row of matrix
rows number of rows in matrix
rows_dot_product dot-product of rows of matrices
rows_dot_self dot-product of matrix with itself
segment sub-vector
singular_values singular values of matrix
size number of entries in array or vector
sub_col sub-column of matrix
sub_row sub-row of matrix
tail tail of vector
tcrossprod matrix post-multiply by own transpose
trace trace of matrix
trace_gen_quad_form trace of generalized quadratic form
trace_quad_form trace of quadratic form

Figure 9: A large suite of matrix functions admits efficient multivariate model implementation
in Stan.

32 Stan: A Probabilistic Programming Language

Function Description

bernoulli_cdf Bernoulli cdf
bernoulli_log log Bernoulli pmf
bernoulli_logit_log logit-scale log Bernoulli pmf
bernoulli_rng Bernoulli RNG
beta_binomial_cdf beta-binomial cdf
beta_binomial_log log beta-binomial pmf
beta_binomial_rng beta-binomial rng
beta_cdf beta cdf
beta_log log beta pdf
beta_rng beta RNG
binomial_cdf binomial cdf n
binomial_log log binomial pmf
binomial_logit_log log logit-scaled binomial pmf
binomial_rng binomail RNG
categorical_log log categorical pmf
categorical_rng categorical RNG
cauchy_cdf Cauchy cdf
cauchy_log log Cauchy pdf
cauchy_rng Cauchy RNG
chi_square_log log chi-square pdf
chi_square_rng chi-square RNG
dirichlet_log log Dirichlet pdf
dirichlet_rng Dirichlet RNG
double_exponential_log log double-exponential (Laplace) pdf
double_exponential_rng double-exponential (Laplace) RNG
exp_mod_normal_cdf exponentially modified normal cdf
exp_mod_normal_log log exponentially modified normal pdf
exp_mod_normal_rng exponentially modified normal RNG
exponential_cdf exponentia cdf
exponential_log log of exponential pdf
exponential_rng exponential RNG
gamma_log log gamma pdf
gamma_rng gamma RNG
gumbel_cdf Gumbel cdf
gumbel_log log Gumbel pdf
gumbel_rng Gumbel RNG
hypergeometric_log log hypergeometric pmf
hypergeometric_rng hypergeometric RNG
inv_chi_square_cdf inverse chi-square cdf
inv_chi_square_log log inverse chi-square pdf
inv_chi_square_rng inverse chi-square RNG

Figure 10: Most common probability distributions have explicitly implemented in Stan.

Journal of Statistical Software 33

Function Description

inv_gamma_cdf inverse gamma cdf
inv_gamma_log log inverse gamma pdf
inv_gamma_rng inverse gamma RNG
inv_wishart_log log inverse Wishart pdf
inv_wishart_rng inverse Wishart RNG
lkj_corr_cholesky_log log LKJ correlation, Cholesky-variate pdf
lkj_corr_cholesky_rng LKJ correlation, Cholesky-variate RNG
lkj_corr_log log of LKJ correlation pdf
lkj_corr_rng LKJ correlation RNG
logistic_cdf logistic cdf
logistic_log log logistic pdf
logistic_rng logistic RNG
lognormal_cdf lognormal cdf
lognormal_log log of lognormal pdf
lognormal_rng lognormal RNG
multi_normal_cholesky_log log multi-normal Cholesky-parameterized pdf
multi_normal_log log multi-normal pdf
multi_normal_prec_log log multi-normal precision-parameterized pdf
multi_normal_rng multi-normal RNG
multi_student_t_log log multi student-t pdf
multi_student_t_rng multi student-t RNG
multinomial_log log multinomial pmf
multinomial_rng multinomial RNG
neg_binomial_cdf negative binomial cdf
neg_binomial_log log negative binomial pmf
neg_binomial_rng negative biomial RNG
normal_cdf normal cdf
normal_log log normal pdf (c.f. log lognormal pdf)
normal_rng normal RNG
ordered_logistic_log log ordinal logistic pmf
ordered_logistic_rng ordinal logistic RNG
pareto_cdf Pareto cdf
pareto_log log Pareto pdf
pareto_rng Pareto RNG
poisson_cdf Poisson cdf
poisson_log log Poisson pmf
poisson_log_log log Poisson log-parameter pdf
poisson_rng Poisson RNG

Figure 11: Probability functions (continued)

34 Stan: A Probabilistic Programming Language

Function Description

rayleigh_log log Rayleigh pdf
rayleigh_rng Rayleigh RNG
rayleigh_cdf Rayleigh cdf
scaled_inv_chi_square_cdf scaled inverse-chi-square cdf
scaled_inv_chi_square_log log scaled inverse-chi-square pdf
scaled_inv_chi_square_rng scaled inverse-chi-square RNG
skew_normal_cdf skew-normal cdf
skew_normal_log log of skew-normal pdf
skew_normal_rng skew-normal RNG
student_t_cdf Student-t cdf
student_t_log log of Student-t pdf
student_t_rng Student-t RNG
uniform_log log of uniform pdf
uniform_rng uniform RNG
weibull_cdf Weibull cdf
weibull_log log of Weibull pdf
weibull_rng Weibull RNG
wishart_log log of Wishart pdf
wishart_rng Wishart RNG

Figure 12: Probability functions (continued 2)

MCMC standard error.

A.4. Builds

The build process for Stan is highly automated through a cross-platform series of make files.
The top-level makefile builds the Stan-to-C++ translator command bin/stanc and posterior
analysis command bin/print. It also builds the library archive bin/libstan.a. Great care
was taken to avoid complicated platform-dependent configuration requirements that place a
high burden on user system knowledge for installation. All that is needed is a relatively recent
C++ compiler and version of make.

As exemplified in the introduction, the makefile is automated enough to build an executable
form of a Stan model in a single command. All libraries and other executables will be built
as a side effect.

The top-level makefile also supplies targets to build all of the documentation C++ API
documentation is generated using the doxygen package (van Heesch 2011). The Stan manual
(Stan Development Team 2014) is typeset using the LATEX package (Mittelbach, Goossens,
Braams, Carlisle, and Rowley 2004).

The makefile also has targets for all of the unit and functional testing, for building the source-
level distribution, and for cleaning any temporary files that it creates.

B. Library dependencies

Journal of Statistical Software 35

Stan’s modeling language is only dependent on two external libraries.

B.1. Boost

Stan depends on several of the Boost C++ libraries (Schäling 2011). Stan makes extensive
use of Boost’s template metaprogramming facilities including the Enable if package, the Type
Traits library, and the Lexical Cast library. The Stan language is parsed using Boost’s Spirit
parser, which itself depends on the binding libraries Phoenix, Bind, and Lambda, the variant
type library Variant, and the container library Fusion. Exceptions are largely handled and
configured through the error checking facilities in the Math and Exception packages. Out-
put formatting and ad-hoc input parsing for various formats is facilitated with the Format
library. Stan relies heavily on the special functions defined in the Math subpackages Special
Functions and Statistical Distributions. Random number generation is carried out using the
Random package. The posterior analysis framework and some built-in functions depend on
the Accumulators package.

B.2. Eigen

Stan’s handling of matrices and linear algebra is implemented through the Eigen C++ tem-
plate library (Guennebaud and Jacob 2012). Eigen uses template metaprogramming to
achieve state-of-the-art performance for matrix and linear algebra operations with a great
deal of flexiblity with respect to input types. Unfortunately, many of the expression templates
that Eigen uses for efficient static anaysis and lazy evaluation are short-circuited because of
Stan’s need to have mixed type operations (i.e., multiplying a constant predictor matrix of
double values by a parameter vector of algorithmic differentiation values). To make up for
this in some important cases, Stan has provided compound functions such as the quadratic
form, which allow speedups of both the matrix operations and their derivatives compared to
a direct implementation using Stan’s built-in operators.

36 Stan: A Probabilistic Programming Language

References

Chacon S (2009). Pro Git. Apress. ISBN 978-1-4302-1833-3.

Driessen V (2010). “A Successful Git Branching Model.” URL http://nvie.com/posts/

a-successful-git-branching-model/.

Duane A, Kennedy A, Pendleton B, Roweth D (1987). “Hybrid Monte Carlo.” Physics Letters
B, 195(2), 216–222.

Efron B (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing,
and Prediction. Institute of Mathematical Statistics Monographs. Cambridge University
Press.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013). Bayesian Data
Analysis. Third edition. CRC/Chapman-Hall, London.

Gelman A, Hill J, Yajima M (2012). “Why We (Usually) Don’t Have to Worry about Multiple
Comparisons.” Journal of Research on Educational Effectiveness, 5, 189–211.

Gelman A, Rubin DB (1992). “Inference from Iterative Simulation Using Multiple Sequences.”
Statistical Science, 7(4), 457–472. ISSN 0883-4237.

Geyer CJ (2011). “Introduction to Markov Chain Monte Carlo.” In Handbook of Markov
Chain Monte Carlo. Chapman & Hall/CRC.

Google (2011). “Google Test: Google C++ Testing Framework.”
http://code.google.com/p/googletest/.

Guennebaud G, Jacob B (2012). “Eigen C++ Library, Version 3.1.”
http://eigen.tuxfamily.org/.

Hoffman MD, Gelman A (2014). “The No-U-Turn Sampler: Adaptively Setting Path Lengths
in Hamiltonian Monte Carlo.” Journal of Machine Learning Research, 15(Apr), 1593–1623.

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS Book—A Practical
Introduction to Bayesian Analysis. CRC Press / Chapman and Hall.

Lunn D, Spiegelhalter D, Thomas A, Best N (2009). “The BUGS project: Evolution,
Critique, and Future Directions.” Statistics in Medicine, 28, 3049–3067. URL http:

//www.openbugs.info/w/.

Lunn D, Thomas A Best N, Spiegelhalter D (2000). “WinBUGS—A Bayesian Modelling
Framework: Concepts, Structure, and Extensibility.” Statistics and Computing, 10, 325–
337. URL www.mrc-bsu.cam.ac.uk/bugs/.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller A, Teller E (1953). “Equation of State
Calculations by Fast Computing Machines.” Journal of Chemical Physics, 21, 1087–1092.

Mittelbach F, Goossens M, Braams J, Carlisle D, Rowley C (2004). The LaTeX Companion.
Tools and Techniques for Computer Typesetting, 2nd edition. Addison-Wesley.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://code.google.com/p/googletest/
http://eigen.tuxfamily.org/
http://www.openbugs.info/w/
http://www.openbugs.info/w/
www.mrc-bsu.cam.ac.uk/bugs/

Journal of Statistical Software 37

Neal R (2011). “MCMC Using Hamiltonian Dynamics.” In S Brooks, A Gelman, GL Jones,
XL Meng (eds.), Handbook of Markov Chain Monte Carlo, pp. 116–162. Chapman and
Hall/CRC.

Neal RM (1994). “An Improved Acceptance Procedure for the Hybrid Monte Carlo Algo-
rithm.” Journal of Computational Physics, 111, 194–203.

Neal RM (2003). “Slice Sampling.” Annals of Statistics, 31(3), 705–767.

Nesterov Y (1983). “A Method Of Solving A Convex Programming Problem with Convergence
Rate O(1/K2).” Soviet Mathematics Doklady, 27(2), 372–376.

Nocedal J, Wright SJ (2006). Numerical Optimization. Second edition. Springer-Verlag. ISBN
978-0-387-30303-1.

Plummer M (2003). “JAGS: A Program for Analysis of Bayesian Graphical Models Using
GIbbs Sampling.” In Proceedings of the 3rd International Workshop on Distributed Statisti-
cal Computing. Vienna, Austria. URL www-fis.iarc.fr/\simmartyn/software/jags/.

Plummer M, Best N, Cowles K, Vines K (2006). “CODA: Convergence Diagnosis and Out-
put Analysis for MCMC.” R News, 6(1), 7–11. URL http://CRAN.R-project.org/doc/

Rnews/.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org.

Schäling B (2011). The Boost C++ Libraries. XML Press. URL http://www.boost.org/.

Smart JF (2011). Jenkins: The Definitive Guide. O’Reilly Media.

Stan Development Team (2014). Stan Modeling Language Users Guide and Reference Manual.
Version 2.1.0, URL http://mc-stan.org/manual.html.

van Heesch D (2011). “Doxygen: Generate Documentation from Source Code.”
http://www.stack.nl/~dimitri/doxygen/index.html.

Affiliation:

Bob Carpenter
Department of Statistics
Columbia University
1255 Amsterdam Avenue
New York, NY 10027
U.S.A.
E-mail: carp@alias-i.com
URL: http://mc-stan.org/

Journal of Statistical Software http://www.jstatsoft.org/

published by the American Statistical Association http://www.amstat.org/

Volume VV, Issue II Submitted: yyyy-mm-dd
MMMMMM YYYY Accepted: yyyy-mm-dd

www-fis.iarc.fr/$\sim $martyn/software/jags/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org
http://www.boost.org/
http://mc-stan.org/manual.html
http://www.stack.nl/~dimitri/doxygen/index.html
mailto:carp@alias-i.com
http://mc-stan.org/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Core Functionality
	Model for estimating a Bernoulli parameter
	Data format
	Compling the model
	Running the sampler
	Command to sample from the model
	Terminal output from sampler
	Help
	Samples file output

	Sampler output analysis
	Posterior mode estimates
	Posterior modes with optimization
	Optimizer output file

	Diagnostic mode
	Roadmap for the Rest of the Paper

	Data types
	Primitive types
	Vector and matrix types
	Array types
	Constrained variable types
	Expressions
	Type inference
	Type promotion

	Top-Level Blocks and Program Execution
	Data block
	Transformed data block
	Parameter block
	Implicit change of variables to unconstrained space

	Transformed parameters block
	Model block
	Implicit uniform priors

	Generated quantities block
	Initialization

	Statements
	Assignment and sampling
	Log probability accumulator
	Sampling statements
	Define variables before sampling statements
	Direct definition of probability functions

	Sequences of statements and execution order
	Blocks and variable scope

	Whitespace, semicolons, and comments
	Control structures
	Print statements and debugging

	Function and distribution library
	Basic operators
	Special functions
	Matrix and linear algebra functions
	Probability functions
	Up to a proportion calculations
	Vector arguments and shared computations

	Built-in inference engines
	Markov chain Monte Carlo samplers
	Hamiltonian Monte Carlo

	Optimizers
	BFGS
	Conjugate gradient
	Accelerated gradient

	Developer process
	Version control and source repository
	Continuous integration
	Testing framework
	Builds

	Library dependencies
	Boost
	Eigen

