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Stand age and species richness dampen interannual 
variation of ecosystem-level photosynthetic capacity 

 
Talie Musavi1*, Mirco Migliavacca1, Markus Reichstein1,2, Jens Kattge1,2, Christian Wirth2,3, 

T.Andrew Black4, Ivan Janssens5, Alexander Knohl6, Denis Loustau7, Olivier Roupsard8, 

Andrej Varlagin9, Serge Rambal10,11, Alessandro Cescatti12, Damiano Gianelle13,14, Hiroaki Kondo15, 

Rijan Tamrakar6 and Miguel D. Mahecha1,2
 

 

 
The total uptake of carbon dioxide by ecosystems via photosynthesis (gross primary productivity, GPP) is the largest flux in the 
global carbon cycle. A key ecosystem functional property determining GPP is the photosynthetic capacity at light saturation 
(GPPsat), and its interannual variability (IAV) is propagated to the net land–atmosphere exchange of CO2. Given the importance 
of understanding the IAV in CO2  fluxes for improving the predictability of the global carbon cycle, we have tested a range of 
alternative hypotheses to identify potential drivers of the magnitude of IAV in GPPsat in forest ecosystems. Our results show 
that while the IAV in GPPsat within sites is closely related to air temperature and soil water availability fluctuations, the mag- 
nitude of IAV in GPPsat is related to stand age and biodiversity (R2 

= 0.55, P < 0.0001). We find that the IAV of GPPsat is greatly 
reduced in older and more diverse forests, and is higher in younger forests with few dominant species. Older and more diverse 
forests seem to dampen the effect of climate variability on the carbon cycle irrespective of forest type. Preserving old forests 
and their diversity would therefore be beneficial in reducing the effect of climate variability on Earth's forest ecosystems. 

 

 
 

nterannual  variability  (IAV) of the net carbon dioxide exchange 
over land is globally  the main determinant  of the variability  of 
atmospheric CO2 growth rate1,2. So understanding the factors con- 

fluxes is essential to improve the predictability 

 

annual GPP8, but also correlates with net ecosystem CO2 exchange5. 
The magnitude of IAV in GPPsat has been shown to exhibit con- 
siderable  variation  across  ecosystems9,  yet  no  obvious  explana- 
tion for this pattern has been reported in the literature. However, trolling the IAV in CO2 

of the  global  carbon  cycle3.  Ecosystem  biotic  properties  ----- such 
as soil and canopy nutrient status, rates of change in physiological 
properties  of the vegetation,  or the sensitivity  of these properties 
to environmental factors ----- influence ecosystem CO2  exchange. 
Recent studies have shown that the IAV of the carbon budget can 
be better explained by variation in biotic properties of ecosystems 
such as photosynthetic capacity (GPPsat) than directly by environ- 

mental and climatic drivers4---6. GPPsat is defined as the value of gross 

primary productivity (GPP) at saturating light under non-stressed 
conditions, minimizing the influence of anomalous hydrometeo- 
rological conditions (for example, droughts and heatwaves), which 
potentially affect photosynthesis. A robustly retrieved character- 
ization of GPPsat  can be regarded as an ecosystem functional prop- 

erty reflecting the physiological response of the ecosystem to the 
environment. Given that IAV of GPPsat  must propagate to observed 

GPP, this quantity  is thought  to be a key variable  in understand- 
ing IAV of carbon fluxes7. In fact, recent studies demonstrated that 
GPPsat   correlates  more  strongly  than  any  climatic  variable  with 

the consequences  are important:  a low IAV in GPPsat  would sug- 
gest that ecosystem functioning is not very sensitive to climatic 
variability,  and that it preserves  its functionality  under the influ- 
ence of that variability ----- and, likewise, high IAV is a consequence 
of high sensitivity. The capability of an ecosystem to preserve its 
functioning  and  structure  over  time  (after  external  disturbances 
or climate extremes), is often defined as ecosystem stability and is 
linked to ecosystem resilience10. Using this terminology, low values 
of IAV in GPPsat can be understood as a characterization of high 
ecosystem functional stability. 

The  relation  of  ecosystem  functionality,  structure  and  stabil- 
ity has been a matter of debate for many decades in the field of 
ecology. In particular, the diversity of vascular plants has been 
investigated as a stabilizing factor with respect to variations in 
productivity,  for example  by buffering  the ecosystem’s  sensitivity 
to climate extremes11. However, it is also well known that plant 
diversity is co-limited by soil properties12, ecosystem management, 
and climate conditions.  Another  variable to consider  is stand age 
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Table  1 | Summary of the linear models fitted for cvGPPsat (the 
interannual variability of ecosystem photosynthetic capacity 
computed for each FLuXnet site) with the chosen predictors 
for the different groups of sites classified according to 
vegetation type. 

properties at the global scale. In particular, we do not understand 
the causes of variability of specific ecosystem functional properties, 
such as photosynthetic capacity across ecosystem types, which ulti- 
mately controls ecosystem productivity. Here we hypothesize that 
stand age and species diversity play an important role in stabilizing 
ecosystem  photosynthetic  capacity.  We test this hypothesis  while 

Sites 

PFt 

R2  adj. 

R2 

Predictors  Coeffici- 

ents 

s.e. d.f. P also considering other factors related to climate, water availability, 
forest structure and soil properties that might have direct or indirect 

DBMF  0.65  0.60   Intercept  0.38 0.05    13 <0.0001 

ln(Age) −0.06  0.01 0.0004 

Sp. no.  −0.01 0.00  0.02 

DBMF  0.46   0.42   Intercept  0.31 0.05    14 <0.0001 

ln(Age) −0.05  0.01 0.004 

EF 0.49   0.46   Intercept  0.38 0.04    31 <0.0001 

ln(Age) −0.05  0.01 <0.0001 

Sp. no.  −0.02  0.007  0.02 

EF 0.40   0.38   Intercept  0.35 0.05    32 <0.0001 

ln(Age) −0.05  0.01 <0.0001 

PFT, plant functional types; s.e., standard  error; d.f., degree of freedom; DBMF, deciduous broad 

leaf and mixed forests; EF, evergreen forests. ln(Age) is the natural logarithm of the average stand 

age, and sp. no. is the number of dominant plant species that have a cumulative abundance of 

90% at the sites. 

 

 
(the  mean  age  of  the  forest  stand  or  the  number  of  years  after 
a major stand replacement after disturbance), which may affect 
ecosystem stability through adaptation, particularly of trees to their 
environment ----- hence increasing ecosystem resilience to climate 
variability13. Moreover, structural parameters such as canopy cover, 
rooting depth, canopy height or leaf area index (LAI), which also 
depend on tree species diversity and stand age14, have an important 
effect on the ecosystem response to variation in environmental driv- 
ers since they define the capacity of trees to access resources such as 
water and light15. For instance, a regional study in the Amazon basin 
has shown that GPP, derived from the remotely sensed enhanced 
vegetation index, is less sensitive to environmental influences in 
regions with high canopy cover16. 

Despite this growing body of ecological  knowledge,  it remains 
largely   uncertain   which   factors   stabilize   ecosystem   functional 

effects on ecosystem photosynthetic capacity. 
In this study, we used measurements of ecosystem-level fluxes, and 

climate variables (temperature, precipitation, and water availability), 
species richness, stand age, forest structure (canopy cover, height, and 
LAI), and soil properties (nutrient availability17) derived from satel- 
lite data, in situ observations and the literature (see the Methods). 

We used half-hourly  ecosystem-level  GPP fluxes  estimated  by 
the means of the eddy-covariance technique at 50 FLUXNET sites18

 

with at least 4 years of measured fluxes, and with different vegeta- 
tion types across different climatic regions. We included data from 
evergreen forest (EF) as well as deciduous broadleaved  and mixed 
forest (DBMF) located in temperate, boreal, mediterranean,  tropi- 
cal and dry climate  regions  (Supplementary  Fig. 1 and Table  1). 
All 50 sites have information on stand age (referred to simply as ‘age’ 
in Figs 1---3) and species richness in addition to the CO2  flux data. 
Species richness (‘sp. no.’ in Figs 1---3) is the number of dominant 
plant species (for example tree or herb) that account for a cumu- 
lative abundance of 90 percent at a given site. We collected addi- 
tional information on (i) canopy cover, (ii) canopy height, (iii) LAI, 
(iv) temperature  and precipitation,  and (v) soil water  availability 
index (WAI) for a subset of 44 sites; and (vi) an index of nutrient 
availability for 36 sites compiled from the literature17  (see Methods). 

We  characterized  the  response  of  half-hourly  GPP  estimates 
to incoming shortwave radiation by fitting ecosystem-level light 
response  curves  yielding  daily  estimates  of GPPsat   (see Methods). 
The site-level estimates of annual GPPsat  (that is, GPP at saturating 
light conditions) were then determined by extracting the 90th per- 
centile of the daily estimates of GPPsat. The magnitude  of the IAV 
in GPPsat was computed as the coefficient of variation of annual 

estimates of GPPsat  (cvGPPsat  = σ(GPPsat(t))/μ(GPPsat(t))),  where 
GPPsat(t) is the annual GPPsat  for year t, and σ and μ are the stan- 

dard deviation and mean of GPPsat(t), respectively. Two variable 
selection  methods  based  on  (i)  relative  importance  of  regressors 
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Figure  1 | relationship of cvGPPsat with stand age and species richness. a, The relationship between the interannual variability of ecosystem photosynthetic 

capacity (cvGPPsat) computed for each FLUXNET site and stand age (which is transformed using the natural logarithm, ln(age)): (R2 
= 0.39, P < 0.0001, 

n = 50). The number of plant species at the sites that account for 90% of the total species abundances (sp. no.) is indicated with the size of the points. 

DBMF, deciduous broad leaf and mixed forests (n = 16; black);  EF, evergreen needleleaf and broadleaf forests (n = 34; grey). b, Relative importance metrics 

of ln(age)  and sp. no. as predictors of cvGPPsat. For a version of this figure using age without logarithm transformation, see Supplementary  Fig. 11. 
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Table 2 | Comparison of different models computed using the 
set of predictors chosen by both stepwise model selection 
according to aIC and relative importance methods. 

Model structure  R2
 adj. R2     Predictors Coefficients P 

cvGPPsat ~ sp. no.  0.12 

cvGPPsat ~ age 0.25 

cvGPPsat ~ ln(age)  0.39 

0.10 Intercept 

Sp. no. 

0.24 Intercept 

Age 

0.38 Intercept 

0.18 ± 0.02  0.01 

−0.01 ± 0.00 

0.19 ± 0.01 0.0002 

−0.00 ± 0.00 

0.33 ± 0.04  <0.0001 
 

 
cvGPPsat ~ ln(age) 

+ sp. no. 
 

 
cvGPPsat ~ ln(age) 

+ sp. no. + 

age:sp. no. 

 

 
0.55 

 
 
 
0.55 

ln(Age) 

0.53 Intercept 

ln(Age) 

Sp. no. 

0.52 Intercept 

ln(Age) 

Sp. no. 

ln(Age):sp. 

no. 

−0.05 ± 0.01 

0.39 ± 0.03  <0.0001 

−0.05 ± 0.01 

−0.02 ± 0.00 

0.42 ± 0.06  <0.0001 

−0.06 ± 0.01 

−0.03 ± 0.02 

0.00 ± 0.00 

cvGPPsat is the IAV magnitude of ecosystem photosynthetic  capacity, and sp. no. is the number 

of dominant plant species that have a cumulative abundance of 90% at the sites. ln(Age) is the 

natural logarithm of the average stand age. The number of sites is n = 50. 

 
 

(Gromping  et  al.,  2006)19,  and  (ii)  multivariate  generalized 
regression models and a stepwise algorithm based on Akaike 
Information Criteria (stepAIC) were used to select the most relevant 
predictors of the IAV of GPPsat (see Methods). 

 

Results 
Results from the variable selection and relative importance  meth- 
ods (see Methods) conducted over the 44 sites with all variables are 
consistent with our hypothesis that stand age and species richness of 
the sites are the most important predictors of cvGPPsat, with stand 

age  being  statistically  the  dominant  factor  (Fig.  1a).  We  further 
tested the performance  of a multiple linear model, where cvGPPsat 

is a function of stand age and species richness, using all sites with 
data available for these two predictors (50 sites). The model suggests 

a clear relationship  between  cvGPPsat   and the logarithm  of stand 
age and the species richness (Table 2, R2  

= 0.55, P < 0.0001). Stand 
age, which is negatively correlated with cvGPPsat, is the most impor- 
tant predictor (from the 55% explained variance by both variables, 
the  relative  contribution  to  the  explained  variance  by  stand  age 
and species richness is 74.5% and 25.5%, respectively;  Fig. 1b and 
Supplementary Fig. 2). The relationship between cvGPPsat  and stand 
age also holds across the different  forest types (ENF and DBMF) 
(Fig. 1a and Table 1). Species richness has a complementary  effect: 
for the same age class, higher values of species richness yield lower 
IAVs of GPPsat (Table 2 and Fig. 1a). While species richness has a 
negative relation with cvGPPsat  (Fig. 2a and Table 2), it is not corre- 
lated with stand age (R2 

= 0, Fig. 2b). Furthermore, Fig. 1 shows that 
the slope of cvGPPsat  versus stand age is similar for the two different 
forest types, which suggests that the relationship between cvGPPsat 

and stand age is independent of forest type (Table 1). The relation- 
ship is also independent of LAImax of the sites (Supplementary Fig. 3). 
In young forests, cvGPPsat  might depend also on the expected trend 
in annual growth and GPP, as young stands are expected to rapidly 
increase their biomass and LAI in the first years of establishment20. 
Thus, young stands could have a higher variability of GPPsat  ----- but 
this does not necessarily  reflect instability.  To remove this poten- 
tially  confounding  factor,  we  tested  whether  there  is  a temporal 
trend in our data of annual GPPsat at the sites (Methods). Using a 
Mann-Kendall test, we found only five sites had a significant trend, 
two of which were old sites (>80 years). The results of the model 
selection and the relationship between cvGPPsat, stand age and spe- 
cies richness remains the same regardless of whether the trend in 
GPPsat from these sites is removed (see Supplementary Information). 

While there is a strong relationship  between the annual GPPsat 

and mean growing season temperature and WAI (Fig. 3 and 
Supplementary  Figs  4---7)  across  all  sites,  the  magnitude  of  the 
IAV of GPPsat  is best explained  by stand age differences,  and not 
by the differences in the IAV of climate and environmental  factors 
(that is, standard deviation of annual growing season temperature 
and  WAI).  The  distance  correlation  coefficient  between  GPPsat 

and climate variables, which can account for nonlinearity in statis- 
tical relations, is also not linked to stand age, species richness or 
cvGPPsat  (Supplementary Fig. 8). Pairwise relationships between 
cvGPPsat,  environmental  variables  and  ecosystem  structural  vari- 
ables were also tested. Soil nutrient availability has no effect on the 
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Figure 2 | Relationship of species richness with stand age and cvGPPsat. a, The relationship between cvGPPsat computed for each FLUXNET site and 

species richness (sp. no.) (R2 
= 0.12, P = 0.01, n = 50). b, The relationship between species richness and stand age (R2 

= 0, P = 0.68, n = 50). DBMF are 

deciduous broad leaf and mixed forests (n = 16; black)  and EF are evergreen needleleaf and broadleaf forests (n = 34; grey). 
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Figure 3 | Frequency distribution of the distance correlation coefficients 

computed between the annual ecosystem photosynthetic capacity 

(GPPsat) and the environmental variables WaI and Tair (n = 50). WAI, 

average water availability index; and Tair, temperature (both during the 

growing season). Using the distance correlation coefficient (dcor)32, 

we show the strength of the correlation of GPPsat with WAI and Tair jointly 

(see the Methods). 

 

 
cvGPPsat  (Supplementary Fig. 9), and neither do the other variables 
(Supplementary Fig. 10). 

 

Discussion 
Previous studies have shown that vegetation responses to climate 
variability can explain the IAV of ecosystem fluxes better than cli- 
mate variables themselves on longer timescales4,6,21. Here we show 
further that the magnitude of IAV in GPPsat  (ecosystem photosyn- 

thetic  capacity)  is best  explained  by vegetation  properties  of the 
sites. We identify a joint control of stand age and biodiversity  on 
the  magnitude  of  the  IAV  of  ecosystem  photosynthetic  capacity 
(that is, cvGPPsat). Part of the unexplained variance in cvGPPsat  by 

stand age and species richness could be also associated with man- 
agement and disturbances that were not included in the ancillary 
database of the sites, and can therefore not be formally investigated. 
Accurately simulating GPP in terrestrial biosphere models depends 
crucially on parameters related to GPPsat

22. These parameters are 

typically assumed to be constant over time, but may vary spatially 
according to forest types23. Our findings suggest that stand age and 
species richness should be accounted for to dynamically adjust 
parameters related to photosynthetic capacity. 

Stand age can influence GPPsat  stability in different ways by 

enhancing soil conditions over time (for example, a thicker humus 
layer with favourable microbial communities, increased water stor- 
age capacity, and access to deeper water with a tap root system13). 
Also, a forest may develop a more diverse canopy and rooting struc- 
ture, allowing for more complementary  use of nutrients and water. 
In addition, older forests are more resilient to environmental changes 
because  with  time  species  selection  leads  to  a  better  adaptation 
to the environment24. Site fertility can also improve with stand age, 
following the nutrient losses occurring during major disturbances 
(such as fire or harvest). In fact, the ecosystem internal cycle of 
macronutrients is particularly relevant25,26  and leads to a progressive 
accumulation of nutrients in the living biomass with age27. 

Although species diversity is generally assumed to increase eco- 
system resilience, exceptions have been reported28. For example, 
species  diversity  can enhance  forest resistance  to drought  only if 
the system is prone to drought28. This is considering the gradual 
adaptation of the ecosystem to its environment by changing species 
composition   to  track  environmental   changes.  Facilitation  (spe- 
cies interactions that results in the species benefitting from each 
other) and complementary functioning of plant species can explain 
why  species  richness  is  important   for  ecosystem   stability  and 
how the interaction of species modulates the climate effect on 
ecosystem  functioning29.  In  addition,  mixed  forests  are  able  to 
buffer the effect of climate IAV through competition  and facilita- 
tion in normal and stressful years, respectively29. Facilitation and 
complementary effects are clearly related to the functional richness 
of the species pool (that is, species with different functional traits), 
which is linked to stand age as shown by a regional study in the 
tropics30.   Diverse   ecosystems   with   a  higher   number   of  plant 
species  respond  less dramatically  in their functioning  (compared 
to ecosystems with single or few species) to climate and environ- 
mental stresses. 

The Earth’s forest cover is essential to remove CO2 from the 
atmosphere,  and afforestation  is important to compensate  for for- 
est loss due to land use changes (such as agriculture). While young 
forests established on former agricultural lands, or burned and 
harvested forests for several years cannot compensate for the initial 
carbon loss nor contribute to CO2 sequestration from the atmo- 
sphere, old forest stands retain their capacity to sequester CO2  for 
long periods31,32. We show that the photosynthetic capacity and 
therefore  the gross primary  production  of old growth  forests  are 
more  resilient  to climate  variability  than  young  forests.  In addi- 
tion, our study suggests that species-rich forest stands offer a larger 
potential  for maintaining  a stable  photosynthetic  capacity  across 
time than species-poorer stands. Therefore, preserving our current 
forest (with old forests covering 15% of Earth’s surface32) and their 
species diversity may attenuate the annual fluctuations of global 
forest---atmosphere  CO2 exchange. 
 

Methods 
Data. In this study we brought together a wide range of data: ecosystem--- 
atmosphere CO2  fluxes measured at eddy covariance flux sites, information about 
climate (temperature, precipitation, and water availability index (WAI)), species 
richness, stand age, and plant traits, derived from field campaigns, and information 
about forest structure derived from satellite data for each of the selected sites; 
finally, data about nutrient availability was derived from the literature17. Sites were 
selected according to the availability of eddy covariance flux measurements for at 
least 4 years, information about stand age, canopy cover, canopy height, and species 
abundance. This led to a global dataset of 50 sites with different vegetation types 
across different climatic regions. We included data from evergreen forest (EF) and 
deciduous broadleaved and mixed forest (DBMF) located in temperate, boreal, 
tropical, Mediterranean and dry climate regions. 
 

CO2  fluxes and meteorological data. From the global eddy covariance flux database18 

we downloaded half-hourly ecosystem-level gross primary productivity (GPP) 
fluxes estimated from net ecosystem exchange (NEE) data34. Half-hourly shortwave 
incoming global radiation, temperature, and precipitation were also downloaded. 
From the dataset WAI was computed according to ref. 35. Here the WAI is the 
ratio between soil water storage and plant available water storage capacity at 
lower layer (100 mm)35. 
 

Average stand age. These data were obtained from the Biological, Ancillary, 
Disturbance and Metadata (BADM) of the FLUXNET database36. Stand age 
(expressed in years) reported in the BADM is the average tree age of the stand or 
the age of the stand since the last major disturbance that caused stand replacement. 
Stand age was reported for different years at the sites, and so we normalized the 
data by using the age of all sites at the year 2007 (which is the year of the release 
of FLUXNET LaThuile Database used in this study). 
 

Species richness. Species identity and abundances from the BADM data and literature 
search were collected. Because these data come from diverse sources and are collected 
with different protocols, they can have variable level of details. Therefore, we 
developed a strategy to guarantee comparability of the plant species richness 
computed across sites. For each site we sorted the plant species according to their 
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abundance, from the one with highest abundance to the lowest. Then we considered 
only the number of species that add up to 90% of the total site abundance. 

 

Canopy structure. For the selected sites we extracted satellite products to characterize 
canopy structure: canopy cover, plant height and Leaf Area Index (LAI). 

Canopy cover was extracted from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) vegetation products continuous field version 437 

(http://glcf.umd.edu/data/vcf/). 
Plant height was derived for each site from the estimates reported in ref. 38

 

(http://lidarradar.jpl.nasa.gov/). 
We used estimates of LAI derived at 1 km (0.01°) spatial resolution by the 

39
 

the half-hourly data are filled using ERA-Interim climate data downscaled at the 
FLUXNET, http://www.bgc-jena.mpg.de/~MDIwork/meteo/index.php). Average 
temperature, WAI, and cumulative precipitation over the active growing season 
were computed. Active growing season was considered as the days with daily GPP 
higher than the annual median GPP. From these annual estimates we derived 
the standard deviation (s.d.) of annual mean temperature, WAI and precipitation 
during the growing season as a measure of their IAV. 
 
Statistical analysis. We used a variable selection method and relative importance 
method to select and quantify the contribution of each predictor (for example, 
average stand age (age), ln(age), species richness (sp. no.), canopy cover, canopy 

JRC-TIP from the MODIS broadband visible and near-infrared surface albedo height, and nutrient availability, temperature, WAI) to the cvGPPsat; precipitation 
products40. The processing for the gap filling and the extraction of the time series 
from MODIS-TIP LAI products is described in ref. 9. Annual maximum LAI values 
were derived at each site by extracting for each year the 90th percentile of the 
16-day LAI time series. Finally for each site the maximum LAI (LAImax) and the 
coefficient of variation of the annual maximum LAI (cvLAImax) were estimated. 
In this study we did not use site level LAI data reported in the FLUXNET database 
for the following reasons: 

1.   LAI data have been collected with a variety of different methods, from direct 
(that is, harvesting and litter fall) to indirect (for example, hemispherical 
photography or LAI-2000) methods. Site-level method intercomparisons of 
various techniques always reveal large and non-systematic differences among 
LAI methodologies, rendering the LAI information reported in the FLUXNET 
database not always suited for network synthesis studies. Efforts toward the 
standardization of the collection of these measurements are 
ongoing in the context of the Integrated Carbon Observation System 
(ICOS) and National Ecological Observatory Network (NEON), but these data 
are not yet available. 

2.   The availability of data in regular annual measurement is very different among 
sites. For some sites the LAI is available for each measurement 
year (and sometimes even seasonally), but for many sites only one 
estimate during the whole measurement period is available. 

Considering the limitations of site-level LAI data, we selected the 
MODIS-TIP LAI product. MODIS-TIP LAI is recognized as one of the 
most effective LAI products available and it was successfully evaluated at a 
FLUXNET site included in this study41. 

 
Nutrient availability. Part of the dataset (36 sites) was complemented with soil 
nutrient availability classes derived from literature17. For each site, nutrient 
availability was computed using site-level specific information about the 
following variables: carbon, nitrogen and phosphorus concentrations of soil 
and/or leaves, soil type, soil texture, soil C/N ratio, and soil pH. These data were 
derived for each site from the literature and in some cases provided by the site 
principal investigator. The sites were eventually classified in three classes: low, 
medium and high nutrient availability. Afterwards the classification was approved 
by the site principal investigators17. 

 
Estimation of photosynthetic capacity and its interannual variability 
magnitude. Site-level estimates of the annual photosynthetic capacity 
(GPPsat) were determined from half-hourly GPP estimates and global 
solar radiation (Rg)9. 

In summary, we fit a non-rectangular hyperbolic light response curve 
(NHLRC) to GPP and Rg data42. The NHLRC was fit to 5 days of data selected with 
a moving window approach. The parameters of the NHLRC were estimated and 
we computed the GPP at 1,000 W m---2  of Rg (GPP1,000), which represents the GPP 
at saturating light (that is, ecosystem photosynthetic capacity in the selected 5-day 
window). The estimated parameters and the GPP1,000  values were assigned to the 
day in the middle of the 5-day window. Parameters estimated with R2  of the fitting 
lower than 0.6 were removed. 

To estimate the annual GPPsat, for each year from the daily GPP1,000  time series, 
we calculated the 90th percentile. The interannual variability (IAV) of the annual 
estimates of GPPsat  was computed as the coefficient of variation of GPPsat, that is, 
cvGPPsat  calculated by dividing the standard deviation by the mean 

(
standard deviation 

) 
mean 

In young stands cvGPPsat  might depend on the trend in annual growth and 
GPP that can lead to high cvGPPsat  values that are not related to interannual 
variability in photosynthetic capacity. To remove this confounding factor we first 
tested the presence of a significant trend in GPPsat  time series at each site with the 
Mann-Kendall non-parametric trend test. Finally, for the sites with a significant 
trend (P < 0.1) we recomputed the cvGPPsat  by detrending the GPPsat  time series 
(that is, the standard deviation of detrended GPPsat divided by the mean of the 
GPPsat, hereafter referred as detrended cvGPPsat). 

Aggregation of environmental variables: For the estimation of year-to-year 
variability of climate we used temperature and precipitation measured, and the 
WAI35  estimated at the flux sites. To aggregate temperature and precipitation we 
used only daily values with more than 70% of original half-hourly data (gaps in 

was once used in the calculation instead of WAI. 
The stepwise algorithm based on the Akaike Information Criteria (AIC) 

algorithm with generalized linear regression models was used43. The independent 
variable was cvGPPsat, while the predictors were stand age (referred to in the 
figures simply as ‘age’), species abundance (sp. no.), ln(age), s.d. of temperature 
and of WAI, canopy cover, canopy height, LAI, and so on; interactions of age and 
sp. no., s.d. of temperature and s.d. of WAI and canopy height and LAImax  were 
also included (cumulative precipitation was also used in place of WAI with similar 
results; data not shown). The algorithm was set up with the possibility to account 
for model pairwise interactions, and imposing a selection only if the model is 
statistical significant (P < 0.01). Although the sites used in this study have at least 
4 years of flux data, the number of years (no.years) with available data at each site 
was different. Therefore, we used 
 

1 

no. years 
 

to weight the model selection, weighting more the sites with higher numbers of 
years. A stepwise selection without the weighting was used as well. The distribution 
of the residuals of the best model was tested for normality using the Shapiro and 
Kolmogorov-Smirnov test. The results showed that the residuals were normally 
distributed; therefore the weighting was not strictly necessary, but was used for a 
comprehensive evaluation. 

In order to assess the uncertainty introduced by the potential trend in GPPsat 

in young stands, we repeated the analysis using the detrended cvGPPsat  dataset, 
and the cvGPPsat  for the sites without a significant trend in GPPsat. 

To disentangle the importance of each predictor in determining cvGPPsat we 
used the Lindeman-Merenda-Gold (LMG) relative importance method19. This 
method allows the assessment of the importance of correlated predictors in a 
multiple linear regression model. Moreover, the pairwise linear regression and 
correlation between the different predictors and cvGPPsat, and between the 
predictors themselves, was tested. 

Both stepwise AIC and the LMG identified ln(age) and sp. no. as the most 
important variables controlling the cvGPPsat. We used a generalized linear model to 
fit the coefficients of the multiple linear model. 

To test differences of cvGPPsat  between the age and nutrient availability 
classes, we used the Kruskal-Wallis rank sum test. Sites were divided by age 
class (young, middle aged and mature stands) according to the 33rd and 66th 
percentiles of the distribution of age. Nutrient availability classes were defined 
according to ref. 17  (low, medium and high). 

The correlation between GPPsat  and climate variables was tested with 
distance correlation33. Distance correlation is a measure of statistical dependence 
between random variables and here we tested the dependence between GPPsat 

and temperature and WAI jointly. 
 

Code availability. The analysis was conducted in R version 3.2.4 and the script of 
the analysis is available within the supplementary files of the paper. 
 
Data availability. The authors declare that the data supporting the findings of 
this study are available within the Supplementary Information. 
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