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Abstract: The transfer matrix of the standard and fractional linear discrete-time linear systems is investigated. Necessary and sufficient 
conditions for zeroing of the transfer matrix of the linear discrete-time systems are established. The considerations are illustrated  
by examples of the standard and fractional linear discrete-time systems. 
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1. INTRODUCTION 

The notion of controllability and observability and the decom-
position of linear systems have been introduced by Kalman [13, 
14]. This theory was developed in the following years (e.g. Kailath 
[12], Klamka [15], Rosenbrock [22]), and became the basic con-
cepts of the modern control theory (e.g. Antsaklis [2], Farina and 
Rinaldi [5], Poldermann [21]) and modern data-driven system 
theory and control (see e.g. Dörfler et al. [4], Markovsky and 
Dörfler [16] and other works cited in this paper). The notion of 
controllability and observability have been also extended to posi-
tive linear systems [5, 9] and electrical circuits [7, 11]. A dynamical 
system is called positive if its trajectory starting from any non-
negative initial state remains forever in the positive orthant for all 
non-negative inputs. Variety of positive models can be found in 
electrical engineering, economics, social sciences, biology and 
medicine, etc. 

Fractional calculus is the branch of mathematics that studies 
integrals and derivatives of non-integer order. Mathematical fun-
damentals of the fractional calculus are given in various mono-
graphs (e.g. Oldham and Spanier [18], Ostalczyk [19], Podlubny 
[20]). The fractional calculus and its application in many fields of 
science and engineering have been recently investigated. Numer-
ous applications have been found in mechanics, electricity, chem-
istry, signal processing, etc. [19, 24, 27]. Fractional-order models 
of real world phenomena have become more accurate than clas-
sical integer order ones. Theory of fractional systems is a rapidly 
growing field and it concerns properties of processes and control 
systems, including stability, controllability, observability, realisabil-
ity, etc. [1, 3, 6, 7, 17, 23, 26, 28]. The standard and positive 
fractional linear systems have been investigated in monographs 
by Kaczorek [9] and Kaczorek and Rogowski [11] and the positive 
linear systems with different fractional orders have been analysed 
by Kaczorek [8] and Sajewski [25]. 

Transfer functions (matrices) are very popular in modelling 
physical phenomena and represent the relation between input and 
output signals. They are commonly used in the analysis of dynam-
ical systems. In this paper the standard and fractional linear dis-

crete-time systems with zero transfer matrices will be investigated. 
To the authors’ knowledge, this problem for the fractional discrete-
time linear systems has not been considered yet. This paper 
extends the theory of fractional-order systems on this topic. 

The remainder of this paper is organised as follows. In Section 
2 the basic definitions and theorems concerning the linear dis-
crete-time are given and a class of standard linear discrete-time 
with zero transfer matrices is investigated. The basic definitions 
and theorems concerning the fractional linear discrete-time sys-
tems and an extension of the results of Section 2 are presented in 
Section 3. The considerations have been illustrated by linear 
discrete-time systems. Concluding remarks are given in Section 4. 

The following notation will be used: ℜ is the set of real num-

bers; ℜ𝑛×𝑚 represents the set of 𝑛 × 𝑚 real matrices; ℜ+
𝑛×𝑚 

denotes the set of 𝑛 × 𝑚 matrices with non-negative and 

ℜ+
𝑛 = ℜ+

𝑛×1; and 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix. 

2. STANDARD LINEAR DISCRETE-TIME SYSTEMS 

Consider a linear discrete-time system described by the fol-
lowing equations: 

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 ,  𝑖 ∈ 𝑍+ = {0, 1, . . . },    (2.1a) 

𝑦𝑖 = 𝐶𝑥𝑖 ,    (2.1b) 

with the initial condition 𝑥0, where 𝑥𝑖 ∈ ℜ𝑛, 𝑢𝑖 ∈ ℜ𝑚 and 

𝑦𝑖 ∈ ℜ𝑝 are the state, input and output vectors and 𝐴 ∈ ℜ𝑛×𝑛, 

𝐵 ∈ ℜ𝑛×𝑚 and 𝐶 ∈ ℜ𝑝×𝑛. 
The transfer matrix of the linear system (2.1) is given by the 

following equations: 

𝑇(𝑧) = 𝐶[𝐼𝑛𝑧 − 𝐴]−1𝐵.      (2.2) 

Definition 2.1. [11, 15] The linear system (2.1) is called reachable 
in 𝑞 ≤ 𝑛 steps if there exists an input 𝑢𝑖 ∈ ℜ𝑚 for 𝑖 =
0, 1, . . . , 𝑞 ≤ 𝑛 − 1 that transfers the state of the system from 

the initial state 𝑥0 ∈ ℜ𝑛 to the given final state 𝑥𝑓 = 𝑥𝑞 in the 𝑞 

steps. 

https://orcid.org/0000-0002-1270-3948
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Theorem 2.1. [11, 15] The linear system (2.1) is reachable in 𝑞 
steps if and only if one of the following equivalent conditions is 
satisfied: 

  𝑟𝑎𝑛𝑘[𝐵, 𝐴𝐵, . . ., 𝐴𝑛−1𝐵] = 𝑛,       (2.3) 

  𝑟𝑎𝑛𝑘[𝐼𝑛𝑧 − 𝐴, 𝐵] = 𝑛 for all 𝑧 ∈ C  
  (the field of complex numbers).      (2.4) 

Definition 2.2. [11] The linear system (2.1) is called observable in 
𝑞 steps if knowing the input 𝑢𝑖 and the output 𝑦𝑖  in the 𝑞 ≤ 𝑛 −
1 steps it is possible to find its unique initial state 𝑥0. 

Theorem 2.2. [11] The linear system (2.1) is observable in 𝑞 
steps if and only if one of the following equivalent conditions is 
satisfied: 

𝑟𝑎𝑛𝑘 [

𝐶
𝐶𝐴
⋮
𝐶𝐴𝑛−1

] = 𝑛,       (2.5) 

  𝑟𝑎𝑛𝑘 [
𝐼𝑛𝑧 − 𝐴
𝐶

] = 𝑛 for all 𝑧 ∈ C.       (2.6) 

It is well-known [11] that if the linear system (2.1) is unreacha-
ble or unobservable then some cancelation of common factors in 
the numerator and denominator of the transfer matrix (2.2) occurs. 
Theorem 2.3. Let the transfer matrix (2.2) of the linear system 
(2.1) be a zero matrix. Then: 

1. if the matrix 𝐶 is non-zero, then the pair (𝐴, 𝐵) of the linear 
system (2.1) is unreachable; and 

2. if the matrix 𝐵 is non-zero, then the pair (𝐴, 𝐶) of the linear 
system (2.1) is unobservable. 

Proof. It is well-known that the impulse response matrix 𝑔𝑖 of the 
linear system satisfies the condition 

𝑔𝑖 = 𝐶𝐴𝑖−1𝐵 = 0 for 𝑖 = 1, . . . , 𝑛.       (2.7) 

if and only if the transfer matrix (2.2) is a zero matrix. 
From Eq. (2.7), we have 

𝐶[𝐵, 𝐴𝐵, . . ., 𝐴𝑛−1𝐵] = 0.       (2.8) 

Therefore, if 𝐶 ≠ 0 then 

  𝑟𝑎𝑛𝑘[𝐵, 𝐴𝐵, . . ., 𝐴𝑛−1𝐵] < 𝑛       (2.9) 

and the pair (𝐴, 𝐵) is unreachable. 

Similarly, if 𝐵 ≠ 0 then 

𝑟𝑎𝑛𝑘 [

𝐶
𝐶𝐴
⋮
𝐶𝐴𝑛−1

] < 𝑛     (2.10) 

and the pair (𝐴, 𝐶) is unobservable. 
The following theorem gives the necessary and sufficient con-

ditions for zeroing of the transfer matrix (2.2) of the linear system 
(2.1). 
Theorem 2.4. The transfer matrix (2.2) of the unreachable and 
unobservable linear system (2.1) is a zero matrix if and only if 

𝑛 ≥ 𝑚 + 𝑝 and 

𝐶𝐵 = 0.     (2.11) 

Proof. It is well known [2, 5, 9, 11] that if the pair (𝐴, 𝐵) is un-

reachable then there exists a non-singular matrix 𝑃 ∈ ℜ𝑛×𝑛 such 
that 

𝑃𝐴𝑃−1 = [
𝐴1 𝐴2

0 𝐴3
], 𝑃𝐵 = [

𝐵1

0
], 𝐶𝑃−1 = [𝐶1 𝐶2]   (2.12a) 

where 𝐴1 ∈ ℜ𝑛1×𝑛1 , 𝐴2 ∈ ℜ𝑛1×𝑛2 , 𝐴3 ∈ ℜ𝑛2×𝑛2 , 𝐵1 ∈
ℜ𝑛1×𝑚, 𝐶1 ∈ ℜ𝑝×𝑛1, 𝐶2 ∈ ℜ𝑝×𝑛2, 𝑛1 + 𝑛2 = 𝑛, 

  𝑟𝑎𝑛𝑘[𝐵, 𝐴𝐵, . . ., 𝐴𝑛−1𝐵] = 𝑛1   (2.12b) 

and the pair (𝐴1, 𝐵1) is reachable, i.e.   𝑟𝑎𝑛𝑘[𝐵1 , 𝐴1𝐵1, . . .,

𝐴1
𝑛1−1𝐵1] = 𝑛1. 

Note that 

𝐶𝐵 = 𝐶𝑃−1𝑃𝐵 = [𝐶1 𝐶2] [
𝐵1

0
] = 𝐶1𝐵1 = 0,     (2.13) 

since the pair (𝐴, 𝐶) is unobservable and 𝐶1 = 0. 
Using (2.2) and (2.12a) we obtain 

𝑇(𝑧) = 𝐶[𝐼𝑛𝑧 − 𝐴]−1𝐵 = 𝐶𝑃−1[𝑃𝑃−1𝑧 − 𝑃𝐴𝑃−1]−1𝑃𝐵

= [𝐶1 𝐶2] [
[𝐼𝑛1

𝑧 − 𝐴1] −𝐴2

0 [𝐼𝑛2
𝑧 − 𝐴3]

]

−1

[
𝐵1

0
]

= [𝐶1 𝐶2] [
[𝐼𝑛1

𝑧 − 𝐴1]−1 ∗

0 [𝐼𝑛2
𝑧 − 𝐴3]−1] [

𝐵1

0
]

= 𝐶1[𝐼𝑛1
𝑧 − 𝐴1]−1𝐵1 = 0

    (2.14) 

if and only if the condition (2.11) is satisfied, where * denotes a 
matrix unimportant in these considerations. Therefore, the transfer 
matrix (2.2) of the unreachable and unobservable linear system 

(2.1) is a zero matrix if and only if 𝑛 ≥ 𝑚 + 𝑝 and the condition 
(2.11) is satisfied. 
Example 2.1. Consider the linear system (2.1) with the matrices 

𝐴 = [
1 2 0
1 0 0
1 0 −1

], 𝐵 = [
4
2
1

], 𝐶 = [−0.5 1 0].     (2.15) 

The pair (𝐴, 𝐵) with (2.15) is unreachable and the pair 

(𝐴, 𝐶) is unobservable, since 

𝑟𝑎𝑛𝑘[𝐵, 𝐴𝐵, 𝐴2𝐵] = 𝑟𝑎𝑛𝑘 [
4 8 16
2 4 8
1 3 5

] = 2 < 𝑛 = 3 

  (2.16a) 
and 

𝑟𝑎𝑛𝑘 [
𝐶
𝐶𝐴
𝐶𝐴2

] = 𝑟𝑎𝑛𝑘 [
−0.5 1 0
0.5 −1 0
−0.5 1 0

] = 1 < 𝑛 = 3. 

  (2.16b) 

The condition (2.11) is also satisfied, since 

𝐶𝐵 = [−0.5 1 0] [
4
2
1

] = 0.    (2.17) 

In this case the matrix 𝑃 has the form  

𝑃 = [
1 −2 0
0.5 0 0
−0.5 1 0

]    (2.18) 

and 

�̅� = 𝑃𝐴𝑃−1 = [
−1 2 0
0 2 1
0 0 −1

], �̅� = 𝑃𝐵 = [
1
2
0

],  

𝐶̅ = [0 0 1].     (2.19) 
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The transfer function of the linear system with (2.15) has the 
form 

𝑇(𝑧) = 𝐶[𝐼3𝑧 − 𝐴]−1𝐵 =

[−0.5 1 0] [
𝑧 − 1 −2 0
−1 𝑧 0
−1 0 𝑧 + 1

]

−1

[
4
2
1

] = 0     (2.20) 

and 

�̅�(𝑧) = 𝐶̅[𝐼3𝑧 − �̅�]−1�̅� =

[0 0 1] [
𝑧 + 1 −2 0
0 𝑧 − 2 −1
0 0 𝑧 + 1

]

−1

[
1
2
0

] = 0.     (2.21) 

This confirms Theorem 2.4. 

3. FRACTIONAL LINEAR DISCRETE-TIME SYSTEMS 

Consider the fractional discrete-time linear system described 
by the equations 

Δα𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 ,  0 < α < 1,  𝑖 ∈ 𝑍+,     (3.1a) 

𝑦𝑖 = 𝐶𝑥𝑖 ,     (3.1b) 

where 

Δα𝑥𝑖 = ∑ 𝑐𝑗𝑥𝑖−𝑗
𝑖
𝑗=1      (3.2a) 

𝑐𝑗 = (−1)𝑗 (
α
𝑗 ), (

α
𝑗 ) = {

1 for 𝑗 = 0
α(α−1)...(α−𝑗+1)

𝑗!
for 𝑗 = 1,2, . . .

 

    (3.2b) 

is the fractional α-order difference of 𝑥𝑖 and 𝑥𝑖 ∈ ℜ𝑛, 𝑢𝑖 ∈ ℜ𝑚 
and 𝑦𝑖 ∈ ℜ𝑝 are the state, input and output vectors, 𝑥0is the 

initial condition and 𝐴 ∈ ℜ𝑛×𝑛, 𝐵 ∈ ℜ𝑛×𝑚 and 𝐶 ∈ ℜ𝑝×𝑛 . Eq. 
(3.2a) is the definition of the Grünwald–Letnikov fractional deriva-
tives. 

Substitution of Eq. (3.2) into Eq. (3.1a) yields  

𝑥𝑖+1 = 𝐴α𝑥𝑖 − ∑ 𝑐𝑗𝑥𝑖−𝑗+1
𝑖+1
𝑗=2 + 𝐵𝑢𝑖, 𝑖 ∈ 𝑍+,     (3.3a) 

where 

𝐴α = 𝐴 + 𝐼𝑛α.     (3.3b) 

The solution of Eq. (3.1a) is given by 

𝑥𝑖 = Φ𝑖𝑥0 + ∑ Φ𝑖−𝑗−1𝐵𝑢𝑗
𝑖−1
𝑗=0 ,     (3.4a) 

where the matrices Φ𝑖 are defined by 

Φ𝑖+1 = Φ𝑖𝐴α + ∑ (−1)𝑗+1 (
α
𝑗 )𝑖+1

𝑗=2 Φ𝑖−𝑗+1,  Φ0 = 𝐼𝑛 ,  

𝑖 = 0, 1, . ..     (3.4b) 

It is well-known [9] that if 0 < α < 1 then 

1)  −𝑐𝑗 > 0 for 𝑗 = 1,2, . ..     (3.5a) 

2)  ∑ 𝑐𝑗
𝑛
𝑗=1 = −1    (3.5b) 

The transfer matrix of the fractional linear discrete-time sys-
tem is given by 

𝑇(𝑧̅) = 𝐶[𝐼𝑛𝑧̅ − 𝐴α]−1𝐵,        (3.6a) 

where 

𝑧̅ = 𝑧 − 𝑐α,  𝑐α = ∑ (−1)𝑗−1 (
α
𝑗 )𝑖+1

𝑗=2 𝑧1−𝑗 .      (3.6b) 

Definition 3.1. [9] The fractional linear discrete-time system (3.1) 

is called reachable in 𝑞 steps if for any given final state 𝑥𝑓 ∈ ℜ𝑛 

there exists an input sequence 𝑢𝑖 for 𝑖 ∈ [0, 𝑞] that steers the 
state of the system from 𝑥0 = 0 to the given final state 𝑥𝑞 = 𝑥𝑓 . 

Theorem 3.1. [9] The fractional linear discrete-time system (3.1) 
is reachable if and only if one of the equivalent conditions is satis-
fied: 

1)    𝑟𝑎𝑛𝑘[𝐵, 𝐴𝛼𝐵, . . ., 𝐴𝛼
𝑞−1𝐵] = 𝑛,     (3.7a) 

2)    𝑟𝑎𝑛𝑘[𝐼𝑛𝑧 − 𝐴𝛼 , 𝐵] = 𝑛 for all 𝑧 ∈ C  
       (the field of complex numbers).     (3.7b) 

Definition 3.2. [9] The fractional linear discrete-time system (3.1) 

is called observable in 𝑞 steps if knowing the input 𝑢𝑖 ∈ ℜ𝑚 and 

the output 𝑦𝑖 ∈ ℜ𝑝 in the 𝑞 steps it is possible to find its unique 
initial state 𝑥0 ∈ ℜ𝑛. 
Theorem 3.2. [9] The fractional linear discrete-time system (3.1) 

is observable in 𝑞 steps if and only if one of the following equiva-
lent conditions is satisfied: 

1) 𝑟𝑎𝑛𝑘 [

𝐶
𝐶𝐴𝛼

⋮

𝐶𝐴𝛼
𝑞−1

] = 𝑛,             (3.8a) 

2)   𝑟𝑎𝑛𝑘 [
𝐼𝑛𝑧 − 𝐴𝛼

𝐶
] = 𝑛 for all 𝑧 ∈ C.     (3.8b) 

Theorem 3.3. The transfer matrix (3.6) of the unreachable and 
unobservable linear system (3.1) is a zero matrix if and only if 
𝑛 ≥ 𝑚 + 𝑝 and 

𝐶𝐵 = 0.      (3.9) 

Proof. It is well-known that the transfer matrix 𝑇(𝑧) = 0 if and 
only if the corresponding matrix of impulse responses 𝑔𝑖 = 0. If 
the pair (𝐴α, 𝐵) is unreachable then the pair by similarity trans-
formation can reduced to the form 

𝐴α = [
𝐴1α 𝐴2α

0 𝐴3α
], 𝐴1α ∈ ℜ𝑛1×𝑛1 , 𝐴3α ∈ ℜ𝑛2×𝑛2 , 𝐵 = [

𝐵1

0
], 

𝐵1 ∈ ℜ𝑛1×𝑚, 𝑛1 + 𝑛2 = 𝑛   (3.10a) 

and  

𝐶 = [𝐶1 𝐶2], 𝐶1 ∈ ℜ𝑝×𝑛1 , 𝐶2 ∈ ℜ𝑝×𝑛2 .   (3.10b) 

In this case, from Eq. (3.4b), it follows that 

Φ𝑞 = [
Φ1α Φ2α

0 Φ3α
], Φ1α ∈ ℜ𝑛1×𝑛1 , Φ3α ∈ ℜ𝑛2×𝑛2 ,     (3.11) 

𝑔(𝑞) = 𝐶Φ𝑞𝐵 = [𝐶1 𝐶2] [
Φ1α Φ2α

0 Φ3α
] [

𝐵1

0
] = 𝐶1Φ1𝑞𝐵1 =

0,     (3.12) 

since the system is unobservable and 𝐶1 = 0. 
Therefore, the transfer matrix is a zero matrix if the system is 

an unreachable and unobservable system and the condition (3.9) 
is satisfied. 

Note that the Theorem 3.3 can be also proved in a manner 
similar to Theorem 2.4. 
Example 3.1. Consider the fractional discrete-time linear system 
(3.1) for α = 0.4 with the matrices 

𝐴 = [
0.4 0.1 0.2
0 0.3 0
0 0 0.4

], 𝐵 = [
0.4 0
0 1
0 0

], 𝐶 = [0 0 1]. 

    (3.13) 

https://en.wikipedia.org/wiki/Gr%C3%BCnwald%E2%80%93Letnikov_derivative
https://en.wikipedia.org/wiki/Gr%C3%BCnwald%E2%80%93Letnikov_derivative
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In this case we have 

𝐴α = 𝐴 + 𝐼3α = [
0.6 0.1 0.2
0 0.7 0
0 0 0.8

] = [
𝐴1α 𝐴2α

0 𝐴3α
],  

𝐴1α = [
0.6 0.1
0 0.7

], 𝐴3α = [0.8].     (3.14)  

Note that the pair (𝐴α, 𝐵)  

𝑟𝑎𝑛𝑘[𝐵, 𝐴α𝐵] 

= 𝑟𝑎𝑛𝑘 [
0.4 0 0.24 0.1
0 1 0 0.7
0 0 0 0

] = 2 < 𝑛 = 3     (3.15) 

is unreachable and the pair (𝐴α, 𝐶)  

𝑟𝑎𝑛𝑘 [
𝐶
𝐶𝐴
𝐶𝐴2

] = 𝑟𝑎𝑛𝑘 [
0 0 1
0 0 0.4
0 0 0.32

] = 1 < 𝑛 = 3     (3.16) 

is unobservable. 
The transfer matrix of the system with Eq. (3.13) can be given as 

𝑇(𝑧̅) = 𝐶[𝐼3𝑧̅ − 𝐴α]−1𝐵

= [0 0 1] [
𝑧̅ − 0.6 −0.1 −0.2
0 𝑧̅ = 0.7 0
0 0 𝑧̅ − 0.8

]

−1

[
0.4 0
0 1
0 0

]
  

= [0 0].     (3.17) 

This confirms Theorem 3.3. 
From a comparison of the considerations presented in Sec-

tions 2 and 3, we have the following important conclusion. 
Conclusion 3.1. The zeroing of the transfer matrix of the linear 
systems is invariant under the order of the differential equations 
describing the linear discrete-time systems. 

The above considerations can be extended to normal linear 
discrete-time systems [10]. 

4. CONCLUDING REMARKS 

The problem of zeroing of the transfer matrix of standard and 
fractional linear discrete-times has been investigated. Necessary 
and sufficient conditions for the zeroing of the transfer matrices of 
linear discrete-time systems have been established (Theorem 2.3 
and 2.4).These conditions have been extended to fractional linear 
discrete-time systems (Theorem 3.3). It has been shown that the 
necessary and sufficient conditions are invariant under the frac-
tional orders of the linear discrete-time systems. The considera-
tions have been illustrated by standard and fractional examples of 
linear discrete-time systems. The considerations can be extended 
to linear discrete-time systems characterised by different orders. 
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