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Abstract: Iterative Learning Control (ILC) is a technique for improving the performance of
systems or processes that operate repetitively over a fixed time interval. The basic idea of ILC
is that it exploits every possibility to incorporate past repetitive control information, such as
tracking errors and control input signals into the construction of the present control action.
Past control information is stored and then used in the control action in order to ensure that
the system meets the control specifications such as convergence. The goal of the research
presented in this paper is to liken two different ILC techniques applied to the wafer stage of
a wafer scanner motion system. Namely, we consider briefly the concepts of standard and
lifted ILC and we evaluate the ILC performance in terms of tracking errors.
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1. INTRODUCTION

Iterative Learning Control (ILC) is a technique for im-
proving the performance of systems or processes that
operate repetitively over a fixed time interval, see for
instance (Bien 1998). The basic idea of ILC is that it
exploits every possibility to incorporate past repetitive
control information, such as tracking errors and con-
trol input signals into the construction of the present
control action. Past control information is stored and
then used in the control action in order to ensure that
the system meets the control specifications such as
convergence.
ILC might be seen as a technique to generate a feed-
forward signal effective for providing good tracking
control.

1 Research performed while working for Philips Center for Indus-
trial Technology (CFT), Eindhoven, The Netherlands

The application we consider is a wafer scanner motion
system. Wafer scanners are opto-mechanical machines
for producing Integrated Circuits (ICs) on a silicon
wafer using a photolithographic process. One of the
main components of a wafer scanner is the six degrees
of freedom (DOF’s) wafer stage (Wal 2002). This
is an electromechanical servo system that positions
the wafer (200-300 mm diameter) with respect to the
imaging optics. The wafer stage largely determines
the throughput (80-100 wafers/h, 80-200 ICs/wafer)
and the accuracy of the products is subject to severe
performance requirements. Normal scan speeds and
accelerations are 0.5 m/s and 10 m/s2, respectively.
The positioning accuracy is in terms of nanometers
and microradians. Such high accuracy is needed for
the fine patterns to be produced (typical dimension:
180-250 nm). Moreover, various layers (typically: 20)
of different patterns have to be aligned very accurately
with respect to each other.



To achieve the demanding specifications, a sound
mechatronic design is very important. The design of
mechanics, electronics, software, and control must go
hand-in-hand. The performance may be limited by
sensor noise, actuator dynamics and constraints, sam-
ple rate limitations, control structure restrictions, or
hard nonlinearities like Coulomb friction and back-
lash. Nowadays, wafer stages move almost frictionless
due to air bearings. Modern theory on systems and
control offers a large number of (different) techniques
for designing a high-performance motion control sys-
tem, like H∞ feedback control, Iterative Learning
Control, and many others. The goal of the research
presented in this paper is to compare two different ILC
techniques applied to the y direction of a wafer stage.

This paper is organized as follows: in Section 2 we
describe in short standard ILC, we explain the lim-
itations a fixed robustness filter in the standard de-
sign. We present the experimental results in terms of
tracking errors while scanning on a wafer. In Section
3 we consider briefly the concept of lifted ILC and
its performance in terms of tracking errors. Section 4
concludes the most important issues.

2. STANDARD ILC

In this section we will introduce the basic rules and
control design of standard ILC. Figure 1 shows the
standard ILC loop. We restrict the study to the case
where the plant is a causal, LTI dynamical system G.
C is a feedback controller which insures the stability
of the closed loop system.
We suppose that the desired response r is defined on
the interval (t0, tf ), where tf ≤ ∞ and the initial
conditions are the same at the beginning of each trial.
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Fig. 1. Closed-loop LC configuration.

The goal of ILC design is to produce the signal u∗

such that r = Gu∗. We seek a sequence of inputs uk

with the property that limk→∞ uk = u∗, where the
index k is the iteration trial. A prototype update law
that implements iterative learning control by updating

the past iteration input uk on the basis of the past error
is

uk+1 = uk + Lek, (1)

where L is the learning filter to be designed. Taking
into account that

ek = Sr − Psuk, (2)

where S and Ps are operators corresponding to the
sensitivity (S = 1

1+GC
) respectively the process

sensitivity (Ps = G
1+GC

) function, the recursion for
the input is given by

uk+1 = (I − LPs)uk + LSr. (3)

Using the Fixed point theorem (Moore 1993), the
sequence of inputs {uk}k converges to a fixed point
u∗ if

‖I − LPs‖ < 1, (4)

where ‖ · ‖ is any norm over a Banach space of
operators. For example, we may consider H∞ control
theory for solving problems involving the H∞ norm
(Moore 1993). For LTI systems, the H∞ convergence
condition is equivalent (see (Moore 1993)) with the
following frequency domain description:

|I − L(s)Ps(s)| < 1, for any s ∈ jR. (5)

From (5) it follows easily that the optimal L filter
is given by L(s) = (Ps(s))

−1. In this paper we
show how to implement learning control for systems
which are not necessarily invertible over the hole
frequency band. The robustness filter Q will take
care that the convergence criterion (5) is satisfied
for all frequencies. We shall consider as a robustness
filter Q a low-pass filter whom cut-off frequency is
determined such that

|Q(s)(I − L(s)Ps(s))| < 1 for any s ∈ jR(6)

holds and Q(s) ≈ 1 when (5) already holds. The
closed-loop learning control configuration is depicted
in the Figure 1.

In order to design a learning controller for our experi-
ments, the following steps will be followed:

• Plant modeling based on measured Frequency
Response Function (FRF). For the y direction
a model is determined using a polynomial fit
routine.

• Design a feedback controller; the feedback com-
pensators should be known and fixed over a se-
quence of ILC experiments.

• Design learning filter L and the robustness filter
Q such that the convergence criterion (6) is valid.

As we have previously explained, the learning filter
L has to approximate the inverse of the modeled



Ps(s) function as good as it is possible. For a proper
minimum phase modeled process sensitivity function,
one can compute and implement its inverse without
any problems. For non-minimum phase plants, a stable
approximation of the real inverse is used. In this paper,
in order to obtain a stable inverse of the process
sensitivity function, the ZPETC algorithm is used
(Tomizuka 1987).

For the wafer stage system as depicted in the Figure 2,
we observe a good inverse of the process sensitivity
function (Figure 3) up to the Nyquist frequency of
4000 [Hz].
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Fig. 2. The wafer stage test rig: The measured
FRFy→y(blue) and its approximation (green).
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Fig. 3. The wafer stage test rig: Ps for the modeled
plant and the 100 [Hz] bandwidth FB controller
(blue) y. The inverse of the Ps function (green)

In the case of learning control implemented for y DOF
of the short stroke of the motion system, we see that
the inverse is reasonable compared to the modeled
process sensitivity function up to a high frequency.

Since the learning filter is not able to ensure conver-
gence, a robustness filter Q is necessary. In this paper
we use as robustness filter a low pass Butterworth
filter. The cut-off frequency depends on the learning

controller : a good stable approximation of the inverse
of the process sensitivity function up to a high fre-
quency will allow a high cut-off frequency of the Q
filter. Then the learning compensator will learn up to
this high cut-off frequency.

The ILC is applied for a representative scan of velocity
0.5 [m/s], acceleration 5 [m/s2], jerk 1000 [m/s3] over
0.1 [m]. We first design a robust feedback controller
(good stability margins) with respect to the varia-
tion of y dynamics along the scanning trajectory. The
bandwidth of the feedback controller (0 dB crossing
of the open loop) is about 100 [Hz]. We first design a
high cut-off frequency of the Q-filter, namely at 1000
[Hz]. Notice that this frequency is ten times higher
than the feedback bandwidth. We observe (see Figure
4) that the errors converge to zero around the position
(0, 0) (middle of time slot) but does not converge to
zero at (x, y) = (0,−25) (beginning of setpoint).
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Fig. 4. Servo errors in the y direction cut-off frequency
of the Q-filter=1000 [Hz]

We consider the convergence criterion plotted for
measured y FRF at different points on the wafer stage
((0, 0), (0,−50), (0,−25), (0, 25), (0, 50)) and for the
modeled FRF at (0, 0). Using the same ILC for all
these positions for the y DOF, we see that convergence
criterion is not satisfied (Figure 5).

Then we adapt adequately the cut-off frequency of
the Q filter (Figure 6). Implementing ILC with robust
stabilizing feedback controllers and position depen-
dent convergent cut-off frequencies of the Q-filters, we
obtain good tracking errors (Figure 7) for the y DOF.

Even during the acceleration phase we see very small
errors.

3. LIFTED ITERATIVE LEARNING CONTROL

In this section we briefly present the lifted system
representation and lifted ILC design setting (Dijkstra,
June 2002). The system dynamics is considered as
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Fig. 5. Convergence criterion, y direction cut-off fre-
quency of the Q-filter=1000 [Hz]
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Fig. 6. Convergence criterion, y direction cut-off fre-
quency of the Q-filter=750 [Hz]
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Fig. 7. Servo errors in the y direction cut-off frequency
of the Q-filter=750 [Hz]

a static map, which describes the system behavior
along a finite time interval. Lifted ILC will be used to
obtain a feed-forward signal u that results in minimal
tracking errors e with respect to the desired trajectory
r. A general ILC-setup design for a single trial for

lifted ILC (Dijkstra, September 2002) is shown in
figure 8. The trajectory r to be followed is constant
from trial to trial. The ILC controller L is the feedback
interconnection between the error signal ek and the
input of the system xk . All signals in Figure 8 are
vectors of length N describing a finite discrete time
signal. The blocks are system descriptions defined
over a finite interval of length N .
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Fig. 8. Lifted ILC setting

In Figure 8, Ps is a matrix describing the finite time
input-output map of the plant under consideration (the
wafer stage stabilized by a feedback controller), Ps =

G
1+GC

.
For a causal LTI system, such a matrix will be a lower
triangular Toeplitz matrix containing the Markov pa-
rameters of the LTI system (Dijkstra, June 2002). For
a LTI system, the matrix Ps will be the input response
of the process sensitivity function of the system. The
principle of the ILC is that the measurement of the
tracking error from the current trial ek (k denotes the
trial index of ILC) is used to connect the error to the
next trial ek+1. In Figure 8 this means that the error
vector ek (based on the input xk and the reference r)
is used to obtain the input for the next trial, namely the
new learned feed-forward signal xk+1. The block z−1

denotes one trial delay for the entire input vector xk.

The goal of the ILC is to obtain a good error track-
ing ek or, in other words, to eliminate the errors in-
troduced by the reference signal r. By the internal
model principle it follows that in order to eliminate
the disturbances introduced by the reference signal r,
the feedback controller of the plant Ps has to contain
an integrator, shown with the feedback loop around
delay z−1 which introduces one trial delay. L is the
feedback gain matrix to stabilize the system. The con-
troller L that stabilizes the system is a convergent ILC
controller.

Therefore, the lifted ILC configuration translates the
open loop design procedure of a learned feed-forward
signal design into a feed-back control design problem.
The filter L becomes a feedback controller which sta-
bilizes the system given by the process sensitivity Ps

function. The ideal ILC is, as in the case of standard
ILC, the inverse of the Ps function.

Any feedback design method can be used for the
design of L. Here, a LQR (linear-quadratic regulator)



design is considered with a linear quadratic objective
to balance the outputs (yk = r−ek) and the inputs uk.
Such a balance gives exactly a trade-off between non
systematic noise amplification and ILC convergence
(Dijkstra, June 2002). The LQR solution is given as a
closed-loop feedback control.
Let us consider the linear quadratic performance index

J =

M
∑

k=1

yT
k R1yk + uT

k R2uk =

=

M
∑

k=1

xT
k (Ps)

T R1(Ps)xk + uT
k R2uk. (7)

Choose the control that minimizes the quadratic per-
formance index (7). The control weighting R2 and
the state weighting R1 are symmetric matrices cho-
sen by the designer depending on control objectives.
Weight matrix R1 is assumed positive semi-definite
(R1 ≥ 0) and R2 is positive definite (R2 > 0). Thus,
J is always bounded below by zero and a sensible
minimization problem results. Since the squares of
the inputs respectively outputs (therefore implicitly
the squares of the states of the system) occurs, the
performance index (7) is a form of generalized energy
and minimizing it will keep the states and controls
small.

Important remarks for the next steps (we refer here to
implementation algorithm) are:

• The system tends to be very large when long
trajectories are considered.

• The matrix Ps may be a (nearly)singular matrix
(when the underlying plant contains delays or
non-minimum phase zeros). In this case the sys-
tem is not fully observable, which is a problem
for an optimal control solution. As solution for
this problem, the Lifted ILC with SVD deviation
and Lifted ILC with adjustment for observable
part of Ps is considered (Dijkstra, June 2002),
(Dijkstra, September 2002).

We consider now the solution of the optimal control
problem (7) with R1 = I and R2 = βI . An approx-
imation for the solution of the corresponding Ricatti
equation is given by

S = Ps
T Ps + βI, (8)

with the feedback interconnection

LPs = S−1Ps
T Ps L = S−1Ps

T . (9)

Remark. Substitution of this approximate solution in
the Ricatti equation shows that this is a solution of
an optimal control problem with a slightly different
R1, namely R1 =

(

Ps
T Ps + β2I(Ps

T Ps + 2βI)−1
)

.
The fact that it is a solution of an optimal control
problem means that it yields a stable solution and thus
a convergent lifted ILC.

When using the lifted ILC solution (9) on a singular
system matrix Ps, the singular values of Ps will be
limited by β. Essentially, P T

s Ps may not be invertible
but P T

s Ps + βI is invertible for any β > 1. This
enables the method to be used even when the lifted
ILC system is not fully observable (although it does
result in some unused integrators in the ILC feedback).

The lifted ILC design has been shown to be able
to handle both convergence and noise amplification
in practical setting (Dijkstra, September 2002). The
parameter β might be seen as a tuning parameter in
order to control the balance between the tracking error
performance and noise influence on the input signal.
Intuitively, from formula (9) it follows that, for very
small β, the ILC design will be more like a true inverse
of the system (like standard ILC), and will thus not
handle system noise very well.
Therefore, for small chosen β we expect a good and
fast convergence of the learned errors but not a good
noise performance (not better than in the case of
standard ILC). For a bigger β, a nice balance between
tracking error performance and noise performance can
be achieved, but the ILC converges slower.

For β = 0.01 the learned errors do not converge.
Error analysis reveals that 840 [Hz] and 1800 [Hz]
frequencies destabilize the system.
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Fig. 9. Servo errors in the y direction, β = 0.01

The low-frequent noise/non-repetitive effects present
in the learned errors (up to 250 [Hz]) is amplified.
The servo error corresponding to the iteration trial
k = 6 has everywhere a bigger amplitude than the
servo errors at the previous iterations, see Figure 3.

For β = 1 a good tracking errors performance is
achieved (Figure 10): the deterministic effects present
in the tracking errors are learned and the low-frequent
noise (up to 250 [Hz]) is not amplified.

For β = 5 still good tracking error performance is
obtained (Figure 11). The convergence of the track-
ing errors is slower and low frequent noise and non-
repetitive effects present in the learned errors are am-
plified.
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Fig. 10. Servo errors in the y direction, β = 1

0.1 0.2 0.3 0.4 0.5 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10−7

time [s]

er
ro

r [
m

]

standard feed−forward
learning, 14th iteration 
learning, 15th iteration 

PSfrag replacements
gridding

Fig. 11. Servo errors in the y direction, β = 5

4. CONCLUSIONS

• Applying standard ILC good tracking error along
the entire scanning pattern is achieved. We have
used a Q-filter in order to increase the robustness
of the ILC against position-dependent dynamics,
high-frequent noise and plant/model mismatch.

• For both ILC methods, higher order models
would better identify relevant modes of the plant.
This does not lead necessarily to the best ILC
performance (optimal system identification from
ILC viewpoint).

• For both ILC techniques, the learned feed-
forward signal depends on the reference sig-
nal and it is sensitive to the setpoint trajectory
changes.

• The convergence behaviour of the lifted ILC
is determined by the choice of the weightings
(the parameter β), which results in a trade-off
between the input effort /noise amplification, and
the tracking errors.

• For the standard ILC, the performance may be
improved considering an adaptive filter in place
of a fixed Q-filter: during the design of the Q-
filter take into account the low/high frequency

dynamics and noise present in the system. in
the design of the Q-filter take into account if
there exists high/low frequency dynamics at a
particular time or noise.
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