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Abstract

Accurate prediction of standard binding free energies describing protein:ligand association
remains a daunting computational endeavor. This challenge is rooted to a large extent in the
considerable changes in conformational, translational and rotational entropies underlying the
binding process that atomistic simulations cannot easily capture. In spite of significant
methodological advances, reflected in a continuously improving agreement with experiment, a
characterization of alternate strategies aimed at measuring binding affinities, notably their
respective advantages and drawbacks, is somewhat lacking. Here, two distinct avenues to
determine the standard binding free energy are compared in the case of a short, proline-rich
peptide associating to the Src homology domain 3 of tyrosine kinase Abl. These avenues – one
relying upon alchemical transformations and the other on potentials of mean force (PMFs) –
invoke a series of geometrical restraints acting on collective variables designed to alleviate
sampling limitations inherent to classical molecular dynamics simulations. The experimental
binding free energy of ΔGbind = −7.99 kcal/mol is well reproduced by the two strategies
developed herein, with ΔGbind = −7.7 for the alchemical route and ΔGbind = −7.8 kcal/mol for the
alternate PMF-based route. In detailing the underpinnings of these numerical strategies devised for
the accurate determination of standard binding free energies, many practical elements of the
proposed rigorous, conceptual framework are clarified, thereby paving way to tackle virtually any
recognition and association phenomenon.

Introduction

Complete understanding of most biological processes of the cell machinery often requires at
its core knowledge of the underlying free-energy change.1 Such is the case, among others, of
reversible protein:ligand association, which has been the object over the past decades of a
plethora of theoretical endeavors aimed at predicting binding affinities within chemical
accuracy.2–21 In the realm of pharmaceutical research, determination of binding free
energies from first principles has been the holy grail of computer-aided drug design. That
being said, modelers are generally more interested in calculating relative quantities, in order
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to rank chemically similar lead candidates according to their affinity towards a given target,
than in estimating absolute binding constants.

The choice of relative over absolute quantities can be easily rationalized by considering that,
from a computational standpoint, determination of relative affinities between two analogous
molecular compounds is appreciably simpler than that of standard binding free
energies.1,22,23 While calculation of relative quantities may appear to agree with experiment,
such agreement could be due to a cancellation of errors; conversely, one cannot know if a
discrepant result arises from the representation of the ligand, the receptor, their solubility, or
something else entirely. The true, ultimate test of force fields and methodologies is the
calculation of absolute binding affinities and absolute solvation free energies. Nonetheless,
relative binding free energies have enjoyed widespread use, for which perturbation
theory24,25 has proven to be a powerful tool, exploiting the malleability of the potential
energy function to transform between thermodynamically distinct, yet related states. On the
other hand, accurate measurement of absolute binding constants constitutes an arduous
theoretical problem and remains a grand computational challenge even for small, rigid
ligands, let alone for large, flexible ones. One particularly difficulty arises due to the
incomplete knowledge of the association pathway — whereas the bound and unbound states
of the ligand are well established, little is usually known about the path that connects them.
As novel computer architectures are emerging, based either on graphics processing units or
on task-dedicated processors, substantially longer atomistic simulations can be performed,
able to capture the full sequence of events that form the association process, from the ligand
lying away from the protein to its stable docking at the binding site of the latter.19 However
informative, these trajectories, by and large, only represent single, isolated events,26 from
which it would be admittedly difficult to infer meaningful thermodynamic quantities.

The lack of relevant topological information on the pathway followed by the ligand towards
the target binding site of the protein rules out in principle geometric reaction-coordinate-
based methods and further rationalizes why for many years thermodynamic perturbation has
remained the unsurpassed and probably only available approach to tackle protein:ligand
association numerically. Here, the ligand is decoupled reversibly from its
environment,1,22,27,28 in the unbound, free state and in the bound state, by scaling the
corresponding non-bonded interactions. The so-called alchemical route, however, raises a
number of conceptual issues, chief amongst which is the thermodynamic micro-reversibility
of the transformation. In particular, as the substrate is progressively decoupled from the
binding-site environment,29 it becomes free to drift away from the latter and, thus,
corresponds to an ill-defined target state of the perturbative calculation and a rather poor
candidate for the reverse, coupling transformation. The resolution of this “wandering ligand”
problem via a receptor-ligand restraint goes back to Hermans for gas phase,30 Roux for bulk
phase,31 Gilson for the so-called double-decoupling method,27 and Boresch for further
application.3 However, there is also a collateral consequence, namely an ambivalent
definition of the standard state and, given the finite nature of simulation lengths, an
unexpected correlation between the standard state and the size of the cell embracing the
protein:ligand complex and its aqueous surroundings.32 As will be subsequently discussed in
detail, the latter weakness of the alchemical approach can be overcome via utilization of a
set of appropriately chosen geometrical restraints,2,7,13 the contributions to the affinity of
which are evaluated in separate computations, some involving free-energy perturbation
(FEP) simulations and some requiring only a numerical integration. Well chosen restraining
potentials can significantly improve the efficiency of sampling and, thus, greatly accelerate
convergence of the simulations.33 The review by Deng and Roux13 provides a more
complete overview of free-energy methods based on restraining potentials.
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The level of intricacy of standard binding free-energy calculations is further increased by
considering that the substrate may undergo conformational changes upon binding to the
protein. From a computational perspective, this shortcoming is manifested in kinetic traps in
conformational space and the unlikelihood of the ligand to isomerize as it is either coupled
or decoupled from its environment. Methodological enhancements of the basic perturbative
approach, including boosting potentials of the slow degrees of freedom16 and Hamiltonian
hopping,16,34 have flourished in an attempt to address the issue of incomplete sampling.

An alternative to the alchemical route consists in measuring the free-energy change along a
surrogate, simplified representation of the reaction coordinate that follows the physical
process of bimolecular association. Although little is known about the true reaction
coordinate, except that it is evidently of high dimensionality — this is particularly true for
ligands buried deep inside the protein — a handful of endeavors have been reported,
whereby the protein:ligand problem is tackled by means of a naïve, one-dimensional
potential of mean force (PMF).15,35–39 While in the hypothetical limit of infinite sampling, a
unidimensional projection should prove appropriate, 40 in general, it is expected to offer
only a partial, incomplete picture of the reversible association process, failing to capture its
collectivity. Of particular concern, a number of crucial degrees of freedom governing the
conformation as well as the orientation of the substrate with respect to the protein are
envisioned to be scarcely sampled at thermodynamic equilibrium.

To circumvent the problem of incomplete sampling, the most comprehensive approaches to
determining binding free energies employ a set of explicitly defined and applied
restraints, 2,7,13 which serve to greatly reduce the conformational entropy available to the
system. Restraints on all, or at least some, of the six spatial degrees of freedom for the
ligand can alleviate this sampling difficulty, while additional ones on, e.g., the conformation
of the ligand, can further enhance convergence, provided that their contribution to the
binding free energy is rigorously accounted for. Although additional free-energy simulations
are typically required to compute such contributions, the computational cost is
immeasurably less than would be required to determine the binding free energy without
them. Examples of studies exemplifying the use of comprehensive approaches include
binding of peptides to SH2 domains,5,13 protein-protein association,41and DNA/DNA
interactions.42

In this paper, we explicitly detail the application of both common approaches, alchemical
and PMF-based, to the same problem, computing the absolute binding free energy of a ten-
residue peptide ligand to the SH3 domain of Abl kinase. The ligand, namely APSYSPPPPP,
also denoted p41, was artificially designed to possess a high affinity for Abl-SH3 (  =
−7.99 kcal/mol).43,44 Three different techniques are compared for the PMF-based approach,
adaptive biasing forces (ABF), traditional umbrella sampling (US), and replica-exchange
umbrella sampling (REMD-US). We carefully compare the different numerical strategies,
identifying places where they are identical and where they differ. All simulations are done
using NAMD 2.9, which supports a number of advanced free-energy techniques, including
FEP,24,45 REMD-US,46–49 and ABF algorithms.50,51 The alternate approaches are found to
yield virtually identical results, in good agreement with the experimental binding free
energy.43 We conclude with an analysis of the benefits and pitfalls of each method.

Methods

Molecular assembly

The molecular assemblies were described by the all-atom CHARMM force field, 52,53 with
the TIP3P water model.54
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In the case of the alchemical transformations, the bound state consisted of the APSYSPPPPP
peptide, denoted p41,43 bound to the SH3 domain of tyrosine kinase Abl (Protein Data Bank
entry 1bbz), solvated by 10403 water molecules (32297 atoms in total), whereas the
unbound state reduced to the peptide binder immersed in a bath of 3057 water molecules
(9334 atoms). The dimensions of the corresponding periodic cells were, respectively, 50 ×
53 × 121 Å3 and 41 × 56 × 40 Å3.

Molecular dynamics simulations

All the simulations reported herein were performed in the isobaric-isothermal ensemble with
the NAMD program,55 maintaining the temperature and the pressure at 300 K and 1 atm,
respectively, using softly damped Langevin dynamics and the Langevin piston.56 Non-
bonded van der Waals interactions were smoothly switched to zero between 10 and 12 Å.
The PME algorithm 57 was utilized to account for long-range electrostatic interactions. The
equations of motion were integrated by means of a multiple-time step algorithm58 with a
time step of 2 and 4 fs for short– and long-range interactions, respectively.

In alchemical transformations, singularities in the van der Waals potential,59,60 prone to
occur when interatomic distances tend towards zero upon particle creation or deletion, were
circumvented by scaling and shifting the Lennard-Jones term of the force field.60

Alchemical transformations

Reversible coupling of p41 to its environment — either the hydrated SH3 domain of Abl, or
the bulk aqueous medium, was performed using free-energy perturbation over a reaction
pathway stratified in 65 windows of uneven width. Each stratum consisted of 300,000 data-
collection steps, i.e., 0.6 ns, preceded by 100,000 equilibration steps, i.e., 0.2 ns — hence, a
total simulation time equal to 52 ns.

For both the bound state and the unbound state, the alchemical transformation was carried
out bidirectionally, i.e., the peptide binder was created and annihilated in separate free-
energy calculations.27,28 The statistical data accrued in the coupling and decoupling
simulations was combined by means of the Bennett acceptance ratio (BAR),61 which
provides a maximum-likelihood estimator of the free-energy change; more recently
developed methods such as multistate BAR may be more efficient, however.62

In all alchemical transformations, p41 was restrained to its native confirmation by means of
a root mean-square deviation (RMSD) collective variable. In addition, for the reversible
coupling of the bound state, positional and orientational restraints were enforced, following
the definitions of Fig. 1. The contribution of the latter geometrical restraints was determined
via thermodynamic-integration simulations, wherein the force constant of the corresponding
harmonic potentials was progressively scaled by means of a general-extent parameter. A
stratification strategy of 12 individual points, at which the gradient of the potential energy
with respect to the collective variable of interest was measured. A total of 400,000 data-
collection steps were generated at each point, i.e., 0.8 ns, after a period of equilibration
representing 100,000 molecular-dynamics steps, i.e., 0.2 ns —yielding a total simulation
time of 12 ns. Scaling of the force constants was performed in bidirectional simulations,
from which the maximum-likelihood estimator of the free energy was inferred.

Potential-of-mean-force calculations

The free-energy change along the collective variables utilized to define the reversible
binding of p41 to SH3 was determined using both the adaptive biasing force method and
umbrella sampling. The first approach connects the derivative of the free energy measured at
discrete value of the model reaction pathway to the average force exerted along the
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latter.50,51 Incorporation of the average force in the equations of motion results in an
apparent erasure of the ruggedness of the free-energy landscape, to the extent that
progression of the system along the collective variable is primarily dictated by its diffusion
properties.

For numerical efficiency, the reaction pathway was stratified into a series intermediate
windows, ranging from two for the polar and Euler angles to nine for the more intricate
separation of the ligand from the protein. Instantaneous values of the force were accrued in
bins of width equal to 1 degree, 0.05 Å and 0.1 Å, for the angular, RMSD and separation
PMFs, respectively. It ought to be underlined that while the ABF algorithm appreciably
improves sampling along the collective variables, it does not necessarily do so in the slow
manifolds orthogonal to it, thus, explaining the disparity in not only the number of utilized
strata, but also the amount of sampling per stratum required to obtain converged gradients,
continuous across the entire reaction pathway.

A stringent, yet undocumented limitation of the ABF algorithm as implemented in
NAMD 51,63 is the inability to incorporate to the free-energy calculation additional
restraints, in particular when the latter are coupled to the model reaction coordinate along
which the instantaneous force is measured. This inability arises because ABF in NAMD
cannot discriminate between thermodynamic forces arising from the potential energy
function and forces due to restraining harmonic potentials; under these premises, the time-
dependent bias cancels the ruggedness of an apparent free-energy landscape that embraces
the restraints. It can, however, be circumvented by coupling the collective variable of
interest to a fictitious particle through a harmonic spring and, thus, forming an extended,
generalized coordinate. As a result, the biasing force now acts on the fictitious particle rather
than on the atoms involved in the model reaction coordinate and the free-energy change
along the latter is recovered by means of a deconvolution of the harmonic-spring
contribution from that of the force field. For the coupling, a stiff spring was used, with force
constants of k = 6 – 15 kcal/mol·deg2 for the angular PMFs, k = 250 – 1000 kcal/mol·Å2 for
the RMSD PMF, and k = 60 – 250 kcal/mol·Å2 for the separation PMF. The fictitious
particle was subject to Langevin dynamics with a damping coefficient of 1 ps−1.

For replica-exchange umbrella sampling (REMD-US) simulations,46,49 37 windows were
used, covering a distance between the centers of p41 and SH3 of 17–43 Å. The windows
were spaced by 0.5 Å in the region from 20–30 Å and 1 Å everywhere else. Harmonic
restraints were used for each window with a force constant k = 2.5 kcal/mol·Å2. Exchanges
between neighboring windows were attempted every 1000 time steps, and were accepted or
rejected according to a Metropolis energy criterion. Each window was run for 0.5 ns, giving
a total time of 18.5 ns. After sorting of the resulting trajectories into the specified windows,
the weighted histogram analysis method (WHAM) was used to reconstruct the PMF,64,65

and the error in the PMF was determined using the method of Zhu and Hummer.66

Results

In each of the alchemical and PMF-based strategies to computing the binding free energy, a
number of restraints on collective variables63 are used. A full, stepwise description of the
two approaches is presented in Eqs. 1–13, with steps that are identical given on the same
line and those distinct to each approach on a separate line. First, the conformational space
available to the ligand itself is limited via restraints on its root mean-square deviation
(RMSD, denoted uc in Eq. 1) compared to a reference structure. The reference structure can
be, e.g., the crystallographic structure or an equilibrated structure of the complex, the former
being used in the alchemical approach and the latter in the PMF approach. Additionally,
restraints defining the orientation of the ligand relative to the protein require three Euler
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angles, denoted Θ, Φ, and Ψ (their collective restraint given by uo in Eqs. 2 and 11), while
those for the position of the ligand require an additional two, denoted ϕ and θ (see ua in Eqs.
3, 12 and Fig. 1). How one defines these angles is not uniquely prescribed, as long as they
effectively restrict all rotational degrees of freedom between the protein and ligand. To
make our point more cogent, two different sets of definitions were used for the two
approaches. After separation via forced extraction (Eq. 5) or alchemical decoupling (Eqs. 6
and 9), both representing the most expensive steps in their respective approaches, the
restraints are successively removed. Boxed equations denote those contributions in the free
state that do not require actual simulations but only numerical integrals.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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(11)

(12)

(13)

Common geometrical restraints

The resulting contribution of each of the restraints common to both approaches, i.e., Eqs. 1–
3, 8, and 10, is given in Table 1. These restraints include those on the RMSD of the ligand in
the bound (subscript: site) and free (subscript: bulk) states as well as those on the orientation
and position of the ligand. For both the bound and the unbound states, the free-energy
change due to the restraint on the RMSD is calculated from simulations. The orientational
and positional restraints are calculated from simulation when the ligand is bound. In order to
account for some deviation in the position of the ligand relative to Abl-SH3, which may
occur naturally during their separation, a very soft (k = 0.03 kcal/mol·deg2) restraint on each
angle is used. Thus, the contribution of these restraints is quite small – typically just a small
fraction of a kcal/mol. Their contribution in the bulk state of the ligand can be calculated
through numerical integration of an analytical expression, due to the isotropy of space.5,67

The sum of the resulting free-energy changes for Θ, Φ, and Ψ is found to be an order of
magnitude larger in the bulk than in the binding site (see Table 1. While the free-energy cost
for removing the positional restraints on θ and ϕ in the bulk is explicitly calculated in the
alchemical formulation (Eq. 7), in the PMF approach their removal is accounted for
indirectly in the integrals in Eq. 5. The complete calculation for each component of the
binding free energy is given in the Supporting Information (SI).

PMF-based approach

In the PMF-based route, the contribution of each restraint to the binding free energy is
determined by relating each ratio of integrals in Eqs. 1–10 to an expectation value in the
given ensemble. This relationship is achieved through use of the PMF of the relevant
coordinate, W (ξ). For example, for the contribution due to the conformational (RMSD)
restraint in the bound state, i.e., Eq. 1, is given by

(14)

where U is the net potential energy bereft of the restraint. Most of the PMFs, in particular
those for the various angular terms, present as simple harmonic-like functions, with a single
minimum around the bound state (see Fig. S1 in SI). Similarly, the RMSD PMF in the
binding site exhibits two close minima, peaking sharply around them. On the contrary, while
the RMSD in the bulk also has two apparent local minima, it is much broader, clearly
illustrating that binding restricts the conformational freedom of the ligand (see Fig. 2A). All
PMFs for the angular and conformational terms were computed using ABF.

Alchemical approach

The alchemical route consists of a reversible double annihilation, 27 wherein the ligand is
decoupled and recoupled in separate simulations to the protein, both in the bound and in the
unbound state. The statistical data accrued from these bidirectional FEP calculations is
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subsequently employed to measure the maximum-likelihood BAR estimator 61 of the
binding free energy (see Methods). To circumvent the “wandering-ligand” problem common
to FEP alchemical decoupling schemes and, hence, to satisfy thermodynamic micro-
reversibility, a translational restraint tethering the substrate to its bound position on Abl-SH3
was introduced. This restraint, denoted ur in Eqs. 4 and 13, is added to the geometric
restraints also used in the PMF approach (see Fig. 1). The contribution of these restraints to
the net binding free energy was evaluated alchemically by nullifying reversibly the force
constant associated to the individual harmonic potentials. Plots of the free energy as a
function of the reaction coordinate λ are provided in Fig. S2 in SI.

Calculation of S* and I* in the PMF-based approach

The only term specific to the PMF approach represents the separation of the ligand from the
binding site and into the bulk along the axis defined by the positional restraints on θ and ϕ
(Eq. 5). This ratio of integrals can be recast in the form of two terms, denoted S* and I*:

(15)

and

(16)

with W (r) being the PMF delineating the separation along an axis in the presence of the
specified restraints and r* a reference point far from the protein (see Woo and Roux5 for a
complete derivation). The term S*, which has units of the square of a distance, effectively
describes the small fraction of surface area on the sphere of radius r* centered on the binding
site that is accessible to the restrained ligand;7,13 again, noting the isotropy for θ and ϕ in the
bulk, S* can be calculated numerically, similar to Eq. 7 in the alchemical approach.

The term I*, which contains the separation PMF, W (r), is by far the largest contribution to
the final binding free energy. While there is no strict equivalent, this term replaces the
alchemical decoupling and re-coupling steps in the FEP approach. Even when using multiple
restraining potentials to reduce the conformational, orientational, and spatial freedom of the
ligand, sampling of, e.g., side-chain rotamers or specific interactions between pairs of
residues can severely hamper convergence of the separation PMF. One solution is to
introduce a second variable covering the slowly evolving degree of freedom and calculate a
two-dimensional PMF, from which the unidimensional separation PMF can be recovered;5

however, this solution can become computationally expensive and is particularly
challenging if the degrees of freedom to target are not obvious. Another innovative approach
is to carry out a random walk in orthogonal space, which does not require identification at
the outset of the intransigent degrees of freedom.68 Alternatively, enhanced sampling
techniques can be used, provided they either do not alter the resulting PMF or that the
unbiased PMF can be recovered. One example is replica-exchange MD umbrella sampling
(REMD-US), in which unique conformations (more precisely, all the coordinates) can be
exchanged between neighboring windows according to a Metropolis energy criterion.49

Thus, conformations reached easily in some windows but comparatively inaccessible in
others can quickly be communicated across all windows. To explore its potential for the
problem of p41 binding to Abl-SH3, REMD-US was employed (see Methods). The PMF,
shown in Fig. 2B displays a deep well in the binding site at r = 20.3 Å of −17.5 kcal/mol.
While this energy is much greater than the final binding free energy, it will be counter-
balanced by contributions from the applied restraints. Convergence of the PMF was fast, as
indicated by its progression over time, shown in Fig. S3A in SI. For comparison, we
determined the PMF with standard umbrella sampling (no exchange between windows) as
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well. The favorable comparison between the two PMFs, given in Fig. S3B in SI, suggests
that advanced methods such as REMD-US are not required to determine the PMF for
separation of p41 from Abl-SH3, although this could not have been known a priori.

The separation PMF W (r) was also determined using a third method, namely ABF with an
extended coordinate as described above (see Methods). Although it ultimately yielded a
similar result to that from REMD-US (see Fig. 2B), convergence was much more difficult to
achieve. Besides requiring a longer production simulation time of nearly 60 ns, some
windows needed to be rerun multiple times to ensure continuity of the gradients across
window boundaries. It was found that individual ABF runs are very sensitive to the initial
conditions, particularly for systems in which the reaction coordinate is strongly coupled to
other slow degrees of freedom, as is the case for p41 binding to SH3. Therefore, if the
gradient for a given window was very incongruous compared to the expected final result,
convergence was exceedingly slow. Restarting the window with different initial conditions
increased the probability of converging within a limited simulation time. The simulation
time of 59 ns should, therefore, be considered only as indicative, since it does not include
the duration of failed attempts.

Because the choice of r*, i.e., the point in space far from the binding site in Eqs. 15 and 16,
is arbitrary, the final binding free energy should be independent of it. Thus, because S*

depends on r*2, I* should vary as 1/r*2, making their product free of r*. The dependence on
r* in I* comes from the factor exp[βW (r*)], which can be directly extracted from the
integral in Eq. 16. For the product S*I* to be independent of r*, the relationship W (r*) =
−kT ln(αr *2), where α is a constant, must hold. This form of W (r) at large values of r
(because r* should be far enough that the protein and the ligand no longer interact) is
equivalent to the known Jacobian correction to the PMF, 69,70 and fits the PMFs in Fig. 2B
reasonably well for values r > 28 Å (correlation coefficient of 0.91 for ABF and 0.87 for
REMD-US). Because the fit is not perfect, however, we computed the product S*I* for
multiple values of r*, finding it to vary by 0.3 kcal/mol at most (see SI). We use the central
value at r* = 35 Å for determination of the binding free energy. The value of I* is also
dependent on the range of integration, which should only encompass the binding site, an ill-
defined region. However, because of the sharp rise in W (r) away from the minimum, the
exponential term in Eq. 16 becomes negligible very quickly. The difference in I* between
integration carried out over the full range of W (r) and that over ±2 Å about the minimum is
only ~ 6.7 × 10−7 Å.

Final calculation of 

The equilibrium binding constant, Keq is given in the two approaches by

(17)

(18)

and the resulting binding free energy is

(19)

where C° = 1/1661 Å3 is the standard concentration.7 With all contributions to the binding
free energy determined and listed in Table 1, ΔGbind can be computed for each method. For

the PMF approach,  = −7.8 kcal/mol if W (r) is calculated with REMD-US (identical
for traditional US) and −7.7 kcal/mol if W (r) is calculated with ABF. Similarly, from the
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alchemical approach,  = −7.7 kcal/mol. Despite the distinct routes to the final answer,
both results are very close to one another and, more importantly, to the experimental binding
free energy,  = −7.99 kcal/mol.43

The striking agreement between computation and experiment may partly reflect some
fortuitous cancellation of errors in the protracted approaches, although the fact that they
independently arrived at the same conclusion provides some cause for confidence.
Nonetheless, statistical uncertainties are present in free-energy calculations like in any
simulation methods.

As discussed in greater detail in the SI, the precision and accuracy of free-energy estimates
are of different nature and sources,71 thereby making their measure somewhat cumbersome
and difficult to interpret. In the case of the alchemical route, differences in the forward and
backward values for the various transformations, which represent an upper bound on the
statistical error estimate, give a net standard deviation of ±1.0 kcal/mol. For the PMF-based
route, error estimates for ABF calculations, i.e., those for all angular and conformational
restraints and the ABF-based separation PMF, are derived from discontinuities in the
gradients at the boundaries between windows. As for the separation PMF determined with
REMD-US the method of Zhu and Hummer66 was utilized to compute the variance of the
PMF (see Fig. S3C). This variance was then tracked through the integration and subsequent
calculations that, when combined with the errors from the restraints, gives an error
associated to the net binding free energy of ±0.9 kcal/mol (see SI for additional details).
While the errors in both the alchemical and PMF-based approaches are apparently large, it
should be noted that they likely correspond to maximal error estimates, prone to
accumulation over the multiple steps in each approach.

Discussion

Here, we have presented two distinct, formal routes to determining the standard binding free
energy of a ligand, the ten-residue oligopeptide p41, associated to the SH3 domain of Abl
kinase. The first route is based on PMF calculations and requires forced extraction of the
ligand from the binding pocket. The second route utilizes alchemical FEP calculations to
decouple the ligand from the system while located in the binding pocket. In order to achieve
convergence on accessible time scales, both routes take advantage of a number of
geometrical restraints, which limit the freedom of the ligand to move or contort during the
critical separation (PMF) or reversible decoupling (alchemical) simulations. These restraints
were chosen specifically to reduce the conformational, orientational and positional entropies
of the substrate, although any set of restraints are in principle allowable as long as their
contribution to the binding free energy is removed in the final calculation. Indeed, for each
route, a different definition of the restrained angles was used, as well as different reference
states for the RMSD calculations. Nonetheless, both routes led to virtually identical results,
namely a standard binding free energy in very close agreement with the experimental value.
The necessity of these extended routes for determining absolute free energies is underscored
by the notable difference from previous Molecular Mechanics/Poisson-Boltzmann Solvent
Area calculations (ΔGbind = −2.6 kcal/mol).72 However, it should be emphasized that only a
relative ranking of different binders to Abl-SH3 was sought in that study, and thus the
significant contributions to the free energy that result in the unbound state were purposefully
neglected.72

At this stage of the study, it is legitimate to examine the merits and the drawbacks of the two
alternative routes for the determination of standard binding affinities — in other words,
should one approach be preferred over the other? It can be asserted from the onset that both
the alchemical and the PMF routes share noteworthy common advantages, namely (i) they
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rely on a sound, rigorous and formal theoretical framework, (ii) they are equally reliable,
and (iii) they correspond to a comparable computational cost, in the limit of the alchemical
transformations being performed unidirectionally. As has been discussed repeatedly71

however, combining forward and backward simulations, employing for instance the BAR
estimator, is recommended to improve the reliability and the efficiency of the free-energy
calculations. The computational burden incurred in performing independent calculations in
both directions can be somewhat reduced using numerical schemes like the double-wide
sampling algorithm61,73 wherein the free-energy changes between λ and λ − Δλ, and
between λ and λ + Δλ are determined concomitantly. An interesting benefit of the
alchemical route lies in the possibility to perform the different steps in parallel, while, in
principle, the PMF route supposes that the free-energy profiles are computed in a sequential
fashion, albeit this does not necessarily need to be so.

Quite unfortunately, the two approaches are also affected by a number of common
drawbacks, which, while not insurmountable, ought to be mentioned here. Specifically, (i)
their complexity necessitates careful bookkeeping, and (ii) they are plagued by convergence
issues, notably for the RMSD terms of the PMF route on account of conformational
degeneracy and for the coupling and decoupling transformations of the alchemical route.
The propensity of the bound ligand, particularly a flexible peptide, to become trapped in
metastable conformations greatly impedes sampling of other states, although advanced
methods such as REMD-US help to alleviate such bottlenecks. Both traditional US and
REMD-US converged relatively quickly in determination of the PMF for separation of the
ligand and protein, whereas ABF proved more difficult, being especially sensitive to initial
conditions in this case.

Arguably the most pronounced weakness of the alchemical route is its inherent limitation to
small ligands, because convergence of the FEP calculation is stringently dictated by the
magnitude of the perturbation. Additionally, due to their large solvation free energies, highly
charged ligands, e.g., phospho-tyrosine peptides, are problematic. In sharp contrast with the
alchemical formulation, the PMF route cannot handle deeply buried substrates, particularly
in crooked internal binding pockets for which a simple, one-dimensional reaction coordinate
would undoubtedly fail to describe the protein:ligand separation with uniform sampling.
However, the PMF-based method could possibly be extended to allow a curvilinear
coordinate system to describe the separation process using, e.g., the string method.74 The
current shortcoming is evidently irrelevant for coupling and decoupling transformations,
which in large measure ignore the topology of the binding site of the protein. On the other
hand, the limitation of the PMF route to interfacial binding also constitutes its strength —
this route is envisioned to be the only viable option to describe protein:protein
association, 41 which, by and large, is interfacial in nature. Additionally, the PMF-based
approach can be used directly with implicit solvent methods, such as generalized Born,75

whereas FEP with implicit solvent would require further considerations.

Free-energy calculations have admittedly reached a level of maturity such that one can now
discriminate between methodological and sampling issues, choosing the method most
appropriate to the problem at hand. However, while the above discussion has revolved
around purely mechanical aspects of the calculations, a potentially significant component of
the overall error on the free-energy estimate still remains intimately related to the choice of
force-field parameters. Here, we have made the implicit, yet not completely justified,
assumption that the CHARMM force field is appropriate for proteins and small peptides,
e.g., binding of p41 to SH3. Even for proteins, though, this force field is under constant
revision, most recently with the 2012 CHARMM36 iteration. 76 With a non-peptide ligand,
it would be evidently more complicated to discriminate between methodological/sampling
and force-field issues and, thus, care must be taken in the choice and validation of the force-
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field parameters. Nonetheless, the robust approaches for determining standard binding free
energies presented here minimize the former issues, allowing one to be relatively assured of
reaching a result within the limits of the chemical accuracy amenable to the potential energy
function utilized.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Definition of a frame of reference utilized to characterize the binding of peptide
APSYSPPPPP (licorice-like representation colored by atom type) to the SH3 domain of the
Abl kinase (secondary-structure representation). For both the protein and the ligand, three
groups of atoms are arbitrarily selected, forming two triplets {P1, P2, P3} and {L1, L2, L},
respectively. The position of APSYSPPPPP with respect to the SH3 domain is defined by
means of the set of spherical coordinates {r; θ ϕ}, where r is the P1-L1 distance, θ is the L1-
P1-P2 angle, and ϕ is the P1-P1-P2-P3 angle. The relative orientation of the substrate is
expressed using the three Euler angles {Θ (P1-L1-L2), Φ (P1-L1-L2-L3), Ψ(P2-P1-L1-
L2)}.
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Figure 2.
Potentials of mean force for (A) RMSD restraints and (B) extraction of the ligand from the
binding site. (A) PMF for RMSD of p41 in the bound state (solid line) and in the unbound
state (dashed line). (B) Separation PMF, W(r), calculated from REMD-US (solid line) and
ABF (dashed line).
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Table 1

Final results for each contribution in Eqs. 1–10 for both the PMF-based and alchemical approaches. Note that
distinct definitions of the reference coordinates were used for defining the angles in each of the PMF and
alchemical routes and, as such, the free energies for each individual stage are not directly comparable. The two
numbers given for (Eq. 5) and the final result for the PMF approach embody the REMD-US and ABF
separation PMFs, respectively. Calculation of the free energies associated to Eqs. 1–4 were carried out
simultaneously in the alchemical route. Additionally, the reported time for each alchemical simulation
encompasses both forward and backward runs to permit use of the BAR estimator, although in principle only
one direction is needed.

Contribution PMF (kcal/mol) PMF (ns) Alch. (kcal/mol) Alch. (ns)

ΔGc
site

(1)
−3.6±0.5 16 −4.2±0.4 –

ΔGΘ
site

 (2)
−0.1±0.2 4 −0.4±0.0 –

ΔGΦ
site

 (2)
−0.1±0.2 4 −0.8±0.0 –

ΔGΨ
site

 (2)
−0.4±0.2 4 −0.5±0.0 –

ΔGθ
site

 (3)
−0.0±0.2 4 −0.3±0.0 –

ΔGϕ
site

 (3)
−0.6±0.2 4 −0.3±0.0 –

ΔGr
site

 (4)
– – −0.4±0.0 24

−(1/β) ln(S*I*C°) (5) −14.5/14.4±0.4 19/59 – –

ΔGdecopule
site

 (6)
– – +35.9±0.7 104

ΔGr
bulk +ΔGa

bulk
 (7)

– – +4.0 –

ΔGo
bulk

 (8)
+5.8 – +6.6 –

ΔGcouple
bulk

 (9)
– – −53.3±0.7 104

ΔGc
bulk

 (10)
+5.8±0.5 60 +6.1±0.4 48

ΔGbind −7.8/7.7±0.9 115/155 −7.7±1.0 280
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