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Abstract— In today’s semiconductor industry we see a move 

towards smaller technology feature sizes. These smaller feature 

sizes pose a problem in terms of process controllability, e.g. 

mismatch between identical cells on a single die known as local 

variation. In this paper a library tuning method is proposed 

which makes a smart selection of cells in a standard cell library 

to reduce the design’s sensitivity to local variability. This results 

in a robust IC design with an identifiable behavior towards local 

variations. Experimental results performed on a widely used 

microprocessor design synthesized for a high performance timing 

show that we can achieve a timing spread reduction of 37% at an 

area increase cost of 7%. 

Index Terms—Standard cell library tuning, Local variation, 

Mismatch variation, Intra-die variation, Statistical library, 

Variability tolerant design, Gate delay variation. 

I. INTRODUCTION 

In the semiconductor industry a trend has been going on for 

years to scale down transistor sizes in order to fit more 

transistors on the same die area, an evolution known as 

Moore’s law [1]. The downscaling of devices makes the 

physical manufacturing process of chips more difficult to 

control and therefore the outcome is less predictable. Two 

effects which are introduced during the chip manufacturing 

process are global and local variations. 

Global (or inter-die) variation is the phenomenon where 

two identical standard cells differ in characteristics from chip-

to-chip, wafer-to-wafer or lot-to-lot. The chip-to-chip variation 

is largely due to the placement of the chip on a single wafer. A 

chip which was placed near the edge of the wafer may have a 

slightly different behavior than a chip in the center of a wafer 

[2]. For the wafer-to-wafer and lot-to-lot variation the same 

idea applies. The uncertainty in the manufacturing process of a 

wafer or a slight temperature difference between the production 

of a lot (a batch of wafers) results in global variations. Since 

the effect of the manufacturing process is known, it can be 

modeled and accounted for during the design of an integrated 

circuit (IC). The foundry which produces the physical chips 

provides transistor models for worst-case, typical, cross-corner, 

and best-case behavior. Commonly, to get the highest yield a 

designer will use the worst-case model and adjust the design to 

function properly under these conditions [3]. 

Local (or intra-die) variation is the variation between two 

identical standard cells on the same die. Compared to global 

variations, the cells on a die have a much lower distance to 

each other and are therefore much less susceptible to wafer 

surface in-homogeneity, temperature differences, etc. The 

sources for local variation can be found in e.g. the etching 

process, doping concentration and lithography. For instance, 

small differences in doping concentration make individual 

transistors of cells behave with slight variations in terms of 

timing, transitions but also, for example, power. Cell 

parameters such as orientation, channel length and oxide 

thickness make the cell more or less sensitive towards local 

variations. 

Library tuning is a method by which a smart selection of 

standard cells from a logic library is made to create a subset of 

cells which have more desirable properties. There are examples 

for which library tuning is used to reduce soft errors [4], here 

different subsets are generated and used in synthesis to analyze 

their behavior to soft errors. Library tuning as used in [5] is 

meant to iteratively remove cells from the library to pursue a 

synthesis speed-up. In paper [6], library tuning is used to 

reduce power by only using a small subset of cells in the 

physical design.  

To the extent of the authors’ knowledge there is currently 
no publication on using library tuning to reduce the local 

variation of the data-path of a digital design. In this paper we 

introduce a library tuning method aimed at reducing the local 

variation of a design. Rather than creating a subset based on the 

exclusion of cells, a subset is created by constraining the cell’s 

use to a range of slew and loading capacitance conditions 

where the cell exhibits the lowest timing-spread. This slew-

load range constraining is passed over to the synthesis tool 

such that the choice of cells during synthesis is restricted to the 

allowed slew-load ranges. The result is a design that has 

diminished variability in all paths. 

The remainder of this paper presents background theory, 

details of the proposed approach, and finally, experimental 

synthesis results using a small real-world microcontroller 

design (20K gates). 



II. LIBRARY CHARACTERIZATION 

The behavior of a logic cell depends on its logic function, 

the input slew and the output load which the cell needs to 

drive. Depending on these conditions one can characterize a 

cell which results in look-up tables (LUTs) for e.g. the cell 

delay, cell transition and power dissipation. 

By assigning different input slopes and output loads to a 

cell, a look-up table can be formed from which the synthesis 

tool can interpolate the required timing information. The LUT 

cannot of course contain every possible combination of input 

slew and output load and thus a selection is made. The 

selection for the input slew is based on the possible input 

slopes of a design, ranging from steep to shallow with an 

adequate number of slopes in-between. Cells with low drive 

strengths are not designed to drive a high output load since the 

output slope would be flat. Cells with high drive strength are 

used for bigger loads. Consequently, this also implies that the 

output load range for cells with different drive strengths is 

different. For complex cells the same procedure is used but 

more tables are generated depending on the timing arcs 

(possible paths between inputs and outputs). For example, a 

two input AND gate has two possible timing arcs and thus two 

cell rise, fall, and transition tables.  

The above outlined characterization is done for all cells in a 

standard cell library and results in a library (.lib) file with 

timing information [7]. The library file also contains 

information about the power consumption of the cell for 

different transition stages but these are not discussed in this 

paper. 

III. LOCAL VARIATION METRIC 

Local variations are taken into account during the design of 

an integrated circuit by adding an uncertainty factor to the 

desired clock period. The synthesis process takes the clock 

uncertainty into account to ensure that even the worst-case dies 

will still meet their timing constraints. If one could reduce the 

impact of local variation, one could also reduce the clock 

uncertainty. A lower clock uncertainty means that the desired 

clock period can be decreased resulting in a faster design. A 

reduction of the local variation of a design leads to a more 

robust design. 

To be able to tune the library we need a metric which 

reflects the cell’s sensitivity to local variations. For our 

purposes we are mostly interested in the consequence of local 

variation on the setup timing behavior of a cell, but the 

methods which will be described can also be adjusted to 

measure the influence of local variation on other properties, 

such as transition power. 

The local variation of the cell is modeled by a normal 

probability distribution. The distribution can be constructed by 

simulating the cell’s timing behavior with modified transistor 

models that take into account the variability of the process. 

This is generally done through Monte Carlo simulations. The 

central limit theorem indicates that at least 30 independent 

random samples (N = 30) are needed to have a crude 

approximation of a normal distribution [8]. Monte Carlo 

sampling is used since the runtime and accuracy are dependent 

on the number of runs and not on the number of varying 

parameters. 

Since we know that the approximated probability 

distribution is a normal distribution we can argue that that the 

dispersion of the distribution is a good metric. If a cell has a 

stretched distribution, or in other words a high dispersion, the 

timing behavior of a cell can vary a lot around the mean. The 

lower the dispersion, the closer the extreme values stay to the 

mean and hence the lower the cell proves to be sensitive for 

local variation. In industry, the coefficient of variation is used 

as a measure for gate delay variation [9, 10, 11]. The 

coefficient of variation, or variability, is the ratio between the 

standard deviation and the mean of a probability distribution 

(see eq. (1)). It is a normalized measure for the dispersion of 

the distribution or in other words, it shows how stretched a 

distribution is in relation to the mean. 
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Working with the variability as a metric for the local 

variation of cell timing gives rise to possible selection 

problems. Consider the case depicted Figure 1. The left 

distribution has a mean of 0.5, standard deviation of 0.01 and a 

variability of 0.01 / 0.5 = 0.02. The right distribution has a 

mean of 5, standard deviation of 0.1 and a variability of 0.1 / 5 

= 0.02. We see that both distributions have an identical 

variability but the left distribution is more desirable in terms of 

local variation because of the lower dispersion. This shows that 

the variability is not the desired selection metric for the local 

variation. 

 

 
 

Another possible metric for the dispersion of a distribution 

is the standard deviation. The standard deviation shows the 

amount of dispersion with respect to the mean. A high standard 

deviation indicates that there is a significant spread in the 

samples from the distribution compared to the mean, in other 

words a high dispersion. If we look back at Fig. 1 we see that 

the left distribution has a smaller standard deviation (sigma) 

than the right one and a correct selection can be made based on 

this observation. The mean will be accounted for during the 

synthesis of a design where the synthesis tool tries to reduce 

the timing of a design by choosing low delay mean cells. In the 

remainder of this paper we will use the standard deviation as a 

metric for the local variation. 

 

Fig. 1. Variability comparison where the left and right PDF have an identical 

variability of 0.02 but different std. deviations. 



IV. LIBRARY CELL LOCAL VARIATION 

Without loss of generality, assume that N distinct libraries 

are created from a Monte Carlo sampling that includes the 

effect of local variations. Let us now combine each of the 

libraries into a single statistical equivalent done by looking at 

individual entries of all the cell’s tables. Each entry of a table 

denotes the same aspect of a cell (same slew and load 

conditions) and only differs across the libraries by the added 

effect of local variation. Figure 2 illustrates this process for an 

inverter cell. From this table we only consider the first entry 

which has a certain slew and load condition (marked entry in 

Fig. 2). The entry is extracted from the N libraries and the 

values are put into a temporary table with size N. From this 

table the mean and standard deviation are calculated and stored 

in the same position of the statistical library as where they were 

extracted from in the original table. When each entry and table 

is processed, the described approach results in a library file 

with identical tables as a nominal library but which contains 

local variation statistics instead. 

 

V. MEASURING LOCAL VARIATION OF A DESIGN 

The local variation of a design is a metric to compare 

multiple designs and to verify if tuning of the library is 

effective. To measure the local variation of a whole design one 

needs first to know the local variation of all paths which make 

up the design. In this section we will discuss how to calculate 

the local variation of a design from the cell up. 

During the synthesis process the delay of a cell is extracted 

from the timing library based on cell characteristics, input slew 

and output load. The cell characteristics, such as logic function, 

determine which look-up table the synthesis process will use. 

The input slew and output load of the cell determine which 

values in the LUT will be used to interpolate the delay. The 

input slew and output load of a cell depend on the cell’s 
preceding cells and its fanout, respectively. Because a look-up 

table does not contain all possible slew and load combinations, 

the exact sigma is calculated by using bi-linear interpolation. 

A. Bilinear interpolation 

Bilinear interpolation is a technique to calculate missing 

values between points in a two-dimensional grid [12]. Suppose 

that the sigma we are looking for is X and that we know that 

the corresponding load and slew are L and S, respectively. 

Assume that there are indices values for which Li < L ≤ Li+1 for 

the load, Sj < S ≤ Sj+1 for the slew and the look-up table has 

entries Q11(Li, Sj); Q12(Li, Sj+1); Q21(Li+1, Sj); Q22(Li+1, Sj+1). The 

ratio between the load L and the indices Li and Li+1 is used to 

interpolate the intermediate value P1 and P2 as is shown in eqs. 

(2) and (3).The last step is to do a linear interpolation on P1 and 

P2 with the ratio between Sj and Sj+1 to end up with the value 

for X as is shown in eq. (4). A graphical representation of the 

procedure is shown in Fig. 3. Depending on what information 

is present in the look-up table, X denotes the cell delay, 

transition power, mean or sigma. 
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B. Convolution of probability distributions 

A data-path is constructed out of a number of cells. Each 

cell has with a propagation delay mean and sigma. The path 

distribution timing parameters can be calculated by 

convoluting the timing distributions of the individual cells. We 

follow the calculation procedure described in [11, 13]. The 

average path delay is calculated by taking the summation of 

cell means for the cells comprising the path (eq. (5)).  
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The standard deviation of a path is not as straightforward and 

requires the covariance of cells to be taken into account. 

Equation (6) shows the covariance matrix C where n is the 

number of cells in a path, cij denotes the covariance between 

 

Fig. 2. Process of creating a statistical library. For a gate, a single LUT is 

considered. From the LUT a single entry is loaded into a temporary table 

across the available libraries. The last step is to extract the sigma and mean an 

from the temporary table and put it in the correct entry of the statistical library. 

 

Fig. 3. Bilinear interpolation as seen from a LUT. Where Li and Li+1 are load 

indices. Sj and Sj+1 are slew indices. L and S are the load and slew values 

extracted from the synthesis. Q denotes a value in the LUT. X is the 

interpolated value. 



two cells in the data-path and cii is the covariance of a cell with 

itself. The covariance between cells is determined by eq. (7) 

where ρij is the correlation between two gates and σcellｉ and 

σcellｊ are the standard deviations of the cells under 

consideration. 
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The variance of a path can be formulated as eq. (8) and if we 

assume the correlation between cells to be identical ρij = ρ, the 

equation can be rewritten to eq. (9). The assumption that ρij = ρ, 

is made with the knowledge that cells in a path are not identical 

but their correlation is similar i.e. there are no outliers. 
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Although local process variations are uncorrelated, e.g. 

threshold voltage mismatch of any two transistors, the 

propagation delay along cells exhibits a minor dependence on 

the cell’s input and fanout. Since this dependence is very small, 

we assume that the correlation coefficient is ρ = 0. Equation 

(9) can be simplified to come to the formula to determine the 

standard deviation of a path as follows: 
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An identical approach is used to come to the distribution 

parameters of a total design as shown in eq. (11), where m is 

the number of paths. 
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VI. LIBRARY TUNING 

The library tuning approach taken in this paper is a two 

stage process. In the first stage, a threshold is extracted based 

on a tuning method. The second stage consists of applying the 

threshold to create a suitable subset of robust cells. The usual 

tuning of a library creates a subset of cells by excluding 

complete cells [4, 5, 6]. In this approach, instead of removing a 

cell completely, a restriction on the look-up table is imposed. 

The synthesis tool provides a way to restrict a look-up table on 

an individual cell’s output pin. This means that for each pin of 

a standard cell a minimum and maximum slew and load value 

can be defined which effectively binds the synthesis tool to use 

only a section of the cell’s look-up table. Hence, providing a 

fine grained tuning possibility. 

A. Tuning methods 

The tuning method proposed in this paper consists of two 

parts, one part denotes if the population of cells is considered 

on an individual bases or rather grouped per drive strength. The 

other part determines which threshold extraction is used (load 

slope bound, slew slope bound or a sigma ceiling). 

In the first part we investigate constraining the load and 

slew values of the LUT by looking at an individual cell or a 

subset of drive strengths. Large drive strength cells can be 

created by either putting a number of transistors in parallel, 

basically creating a big transistor which can drive a bigger 

load, or, by using a different cell topology altogether. Note that 

cells which make use of larger transistors have a lower local 

mismatch variation [14]. Figure 4 shows a representation of the 

look-up tables for an inverter cell with different drive strengths. 

The horizontal axes show the load and slew values of the LUT 

and the vertical axis shows the delay’s standard deviation 

(sigma). Note that the coloring is related to the height of the 

sigma where a dark color illustrates a low sigma. The figure 

shows that a low drive strength inverter (e.g. INV_1) has a 

smaller load range when compared to a larger drive strength 

inverter (e.g. INV_32). This is because a low drive strength 

inverter is not designed to drive a big load. Figure 4 also shows 

that the slew range for the different inverter cells is identical 

and furthermore, an inverter with higher drive strength i.e. 

large transistors (e.g. INV_32) has a lower overall sigma (the 

surface stays low). Note as well that the cell’s gradient is lower 

than for a small drive strength inverter, i.e. small transistors 

(e.g. INV_1). These observations lead to an indication that the 

drive strength is a possible clustering parameter but needs 

further probing by looking at a cluster of cells with an equal 

drive strength as is shown in Fig. 5. Figure 5 displays the delay 

sigma for all cells with drive strength six. This specific drive 

strength was chosen to prevent cluttering of the image. For the 

same reason, only a single timing arc of each cell is shown. 

Observe also that not all cells seem to have an identical load 

range or slope (e.g. NR4_6, a four input NOR gate). Instead of 

looking at a subset of cells based on their drive strength, we 

can also look at the entire population of cells. In this case no 

assumption is made on cell parameters and only the actual 

standard deviation is taken into account to restrict the look-up 

table of a cell. This provides a contrasting comparison with the 

drive strength clustering approach. 

For the second part of the tuning method, three different 

constraining parameters are considered, namely: load slope 

bound, slew slope bound and a sigma ceiling. In both slope 

bounding methods we look at the slope gradient to identify 

areas with a steep sigma increase. These areas are not preferred 

since a small increase in either load or slew would result in a 

large sigma increase (i.e. large gradient). Instead, a relatively 

flat surface is preferred. Next, the sigma ceiling restricts the 

use of sigma values above a certain threshold. This prevents 



the situation where a cell has a weak slope but high overall 

sigma and is therefore not restricted by the slope methods. 

In total there are five tuning methods which are 

investigated, namely: Cell strength based slew slope bound, 

Cell strength based load slope bound, Cell based slew slope 

bound, Cell based load slope bound and Cell based sigma 

ceiling. 

 

 

 

B. Threshold extraction 

Depending on the tuning method, a threshold is extracted 

from the statistical library. Note that this is only needed for the 

slew and load slope bound methods since the sigma ceiling is 

used as threshold on its own. 

For the slope methods, a threshold is extracted by creating a 

maximum equivalent LUT for all the cells (and their related 

LUTs) in a cell cluster. The equivalent LUT contains the 

maximum sigma value for each individual table entry for the 

whole cluster. The equivalent LUT is then converted to a slope 

table for both the load and slew direction separately, by 

applying eqs. (12) and (13) where 1 < i ≤ n and 1 < j ≤ m are 

the indexes and Q(i,j) is the table entry at index (i,j). Note that 

because the indexes start at greater than one, the first row or 

column of the slew and load slope tables is filled with zeros. 

 

 

Both slew and load slope tables are converted to binary slew 

and load tables, thresholded by an upper slope limit. This 

means that all table entries which are smaller than the slope 

threshold become a logic one and the remaining a logic zero. 

The contents of both binary load and slew tables are combined 

by taking the logic ‘and’ resulting in a single binary LUT with 

logic ones for all areas which are flat (i.e. have a slope lower 

than the slope threshold). In the flat region of the LUT we 

search for the largest rectangle starting as close as possible to 

the origin of the LUT, see Algorithm 1. The largest rectangle 

denotes the largest area for which the LUT is still flat. From 

this area a threshold is extracted by taking the sigma value 

corresponding to the rectangle coordinate furthest from the 

origin (see marked entry in Fig. 6). This sigma threshold is 

used in the next step to apply the actual slew and load 

restrictions on a cell’s LUT.  
 

Algorithm 1. Largest Rectangle Extraction 
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[x_1, y_1, x_2, y_2] = getLargestRectangle(bin_LUT) 
% Reset coordinates and best area 

x_1 = 0; 

y_1 = 0; 
x_2 = 0; 

y_2 = 0; 

best_area = 0; 
% Loop through all the possible table entries 

for ll_x = 1:N 

  for ll_y = 1:M 
    for ur_x = ll_x:N 

      for ur_y = ll_y:M 

        % If the indices form a rectangle 
        if (ur_x > (ll_x - 1)) && (ur_y > (ll_y - 1)) 

          % Store the area of the rectangle 
          area = (ur_x -(ll_x - 1))* 

                 (ur_y -(ll_y - 1)); 

        else 
          % No rectangle, so no area 

          area = 0; 

        end 
        % Check if the rectangle is bigger and has only logic ones 

        if area > best_area && ... 

           all_true( bin_LUT(ll_y:ur_y ll_x:ur_x) ) 
          % Store the new area and coordinates 

          best_area = area; 
          x_1 = ll_x; 

          y_1 = ll_y; 

          x_2 = ur_x; 
          y_2 = ur_y; 

        end 

      end 
    end 

  end 
end 

 

Fig. 6. Result of the largest rectangle algorithm shown in a binary LUT. The 

marked entry denotes the entry for which the sigma is extracted. 

 

Fig. 5. Surface plot of the LUTs from several cells with drive strength 6. 

 

Fig. 4. Surface plot of the LUTs from several drive strengths of an inverter 

cell. 



C. Look-up table restriction 

The synthesis tool only allows the confinement of a look-up 

table based on output pins. Thus, the worst case situation has to 

be taken into account. Since each output pin has a number of 

different LUTs, i.e. the cell rise and fall related timing arcs, the 

worst-case values for these tables are used. For every output 

pin of a cell, a maximum equivalent look-up table is created by 

taking the maximum value for each entry of the related tables. 

The equivalent table is then converted to a binary look-up table 

based on the extracted threshold. Values in the equivalent table 

which are smaller than the threshold will become a logic one 

whereas values greater than the threshold will translate to a 

logic zero. Applying the largest area rectangle algorithm 

(Algorithm 1) on the binary look-up table results in the 

coordinates of the rectangle which encapsulates the largest area 

for which the sigma values of the cell pin are still acceptable. 

The rectangle coordinates are directly related to the minimum 

and maximum load and slew values which are later used in the 

synthesis. 

VII. TEST DESIGN AND EXPERIMENTAL RESULTS 

As a baseline set, a statistical library of 304 cells was 

generated to test the library tuning approach. A summary of the 

304 cells can be found in Appendix VIII.A. The library is 

based on a CMOS 40nm technology. Further, all cells are 

characterized in the typical corner of the process, using a 1.1V 

supply voltage and temperature of 25°C (TT1P1V25C). The 

statistical library is created by combining 50 library files. A 

graphical representation of the statistical library is provided in 

Fig. 7 which shows the sigma delay surfaces of the look-up 

tables. The horizontal axes represents the load and slew indices 

and the vertical axis denotes the sigma delay in nano seconds 

(ns). 

 
For evaluation purposes, a microcontroller design was used 

with a 32-bit CPU, AHB bus, 32KB SRAM, and a low gate 

count (20k gates). Three different timing constraint areas are 

considered. The first timing constraint is the minimum clock 

period achievable by synthesizing the microprocessor with the 

baseline set. The second one is a relaxed timing, and the last 

one is a low performance constraint, see Table 1. The 

minimum clock period is found by reducing the clock period 

until the synthesis fails to provide a design with positive slack. 

Figure 8 shows a plot with the clock period versus the total cell 

area of the design. The relaxed timing condition can be found 

on the point where the curve is linear which is at 10ns. 

TABLE 1. CLOCK PERIODS FOR DIFFERENT CONSTRAINTS AND LIBRARIES 

 Clock period 
High performance 2.41 ns 

Medium performance 4 ns 

Low performance 10 ns 

Close to maximum check 2.5 ns 

 

 
Table 2 shows the parameters used to tune the library. A 

slope constraint of 1 means that all the gradient values bigger 

than 1 will be excluded from synthesis. This removes those 

parts of the statistical library for which a load or slew increase 

results in a high sigma increase. The remaining slope constraint 

parameters are chosen based on the surface plot of the 

statistical library as shown in Fig. 7. A slope constraint of 0.05 

will remove a majority of high gradient cells by restricting a 

cell’s LUT in the load direction. The next slope constraints will 
restrict the use of larger parts of the look-up tables until the 

0.01 constraint which, as Fig. 7 shows, leaves only shallow 

gradient values available for synthesis. The remaining sigma 

ceiling constraints will gradually remove larger parts of the 

LUTs without making the synthesis unfeasible. 

TABLE 2. CONSTRAINT PARAMETERS USED DURING THRESHOLD EXTRACTION 

 Constraint parameters 

 TT1P1V25C Default 

Load slope bounds 1, 0.05, 0.03, 0.01 1 

Slew slope bounds 1, 0.05, 0.03, 0.01 0.06 

Sigma ceiling 0.04, 0.03, 0.02, 0.01 100 

 

During the cell selection stage, only one parameter is varied 

while the other two stay at the default value e.g. the slew and 

sigma are kept at 0.06 and 100, respectively, while the load 

bound is swept along 1, 0.05, etc. 

 

Fig. 8. Clock period versus area of the microprocessor after running a baseline 

synthesis with the TT1P1V25C library. 

 

Fig. 7. All cell delay sigma look-up tables in the TT1P1V25C library, 

combined in a surface plot.  



 
 

Figure 9 shows a histogram with the cells that are used in 

the baseline synthesis for the high performance and relaxed 

timings. Only cells that were used more than 100 times are 

listed. Interesting to see is that in the synthesis of the processor, 

basic cells such as the NAND, NOR, INV and flip-flops are 

most often used. Also, the more time constraint a synthesis is, 

the more variety of simple cells it tends to use (Fig. 9a is more 

time constraint and uses a larger variety of cells compared to 

the relaxed timing in Fig. 9b), whereas a relaxed timing design 

uses the more dedicated cells such as adders. 

Figure 10 shows the highest sigma reduction for an area 

increase less than 10% compared to the baseline, for different 

timing constraints. Each bar in the figure represents a tuning 

method. The constraining parameter which was used to achieve 

this reduction is shown in Table 3. Worth mentioning is that 

during synthesis a guard band of 300ps was used so the 

effective clock period becomes 2.11ns. We can see from the 

annotations in Fig. 10 that a relaxed timing results in a higher 

design sigma. The synthesis process is not restraint in the 

timing and can thus try to optimize the design in terms of area. 

A reduction in area can be achieved by using small cells and as 

few as possible cells. Both optimizations counteract the sigma 

reduction as will be further explained in this section. From Fig. 

10 it is clear that the sigma ceiling method has a good sigma 

reduction of 37% with an area overhead of 7% for a high 

performance design and a reduction of 32% at the cost of 4% 

area overhead for a low performance design. Figure 10 

furthermore shows that a tradeoff can be made in the sigma 

reduction versus area increase by selecting a different tuning 

method, i.e. the two strength based methods provide decent 

sigma reduction with less area overhead. Especially interesting 

are both cell strength methods with respect to the high 

performance design. Here they provide a sigma reduction of 

31% while having a similar area compared to the baseline 

design. This sigma versus area tradeoff is not only visible 

between the different tuning methods but also for a single 

method by using a different bound, as is illustrated by Fig. 11. 

For illustration purposes, the sigma ceiling method is 

discussed further since it clearly shows the effects of the library 

tuning approach. 

 

 
(a) 

 
(b) 

Fig. 9. Cell use for a baseline synthesis and tuning method (marked in TABLE 3) at a clock period of (a) 2.41ns and (b) 10ns. Only cells which are used more than 

100 times are listed. 



 

TABLE 3. CONSTRAINT PARAMETERS USED TO GET THE SIGMA DECREASE 

 

Clock period (ns) 

Tuning Method 2.41 2.5 4 10 

Cell strength load 0.01 0.05 0.03 0.03 

Cell strength slew 0.01 0.01 0.05 0.03 

Cell load 0.01 0.01 0.03 1.00 

Cell slew 0.05 0.01 0.03 0.01 

Sigma ceiling 0.02 0.02 0.03 0.03 

 

 

A. Impact of library tuning on data-path depth 

The area increase introduced by the library tuning can be 

explained when looking at the path depth. Figure 12 shows the 

path depths of the worst case paths connected to a unique 

endpoint for a clock period of 2.41ns. An overall increase in 

the path depth indicates that more cells are used for the 

restricted design. When a cell with a specific logic function is 

removed, the synthesis process can either use a combination of 

available cells to recreate the logic function, or use a higher 

drive strength of an identical function. 

Inspecting the individually used cells for the sigma ceiling 

constraint in Fig. 9, illustrates an increase in the overall use of 

inverter cells. The most likely cause for the increase of inverter 

use is buffering. An inverter cell can be used by the synthesis 

tool as a buffer to restore signal integrity. Secondly, Fig. 9 

confirms the increase in high drive strength cells. Looking at 

cell NR2B_1 (a 2-input NOR cell with drive strength 1), the 

cell is less used in the restricted design whereas the higher 

drive strengths of the same cell (NR2B_2, NR2B_3, etc) are 

more often included in the design. 

 

 

B. Impact of data-path depth on local variation 

Figure 13 shows the path timing spread plotted against the 

path depth for the baseline and the restricted sigma ceiling 

method at a clock period of 2.41ns. The figure illustrates that 

there is no direct relation between the path depth and the local 

variation of a path but instead, the local variation of a data-path 

is dictated by the used cells and their properties. 

 

 

 

Fig. 13. Sigma versus path depth for the baseline and the sigma ceiling method 

are shown. 

 

Fig. 12. Path depths for the worst case paths connected to a unique endpoint for 

a time constraint design (2.41ns). The depths of both the baseline and the 

sigma ceiling method are shown. Note that although not optimal in terms of 

area, the constrained sigma ceiling clearly illustrates the effect of library 

tuning. 

 

Fig. 11. Relative sigma decrease and area increase between baseline and the 

sigma ceiling procedure, for a clock speed of 2.41ns. The figure shows a clear 

tradeoff between sigma reduction and area increase. 

Fig. 10. Relative sigma decrease and area increase between baseline and tuning 

methods with highest sigma reduction at an area increase less than 10%, for 

different clock periods. The top part is the relative area increase with the real 

area value annotated (in 104 µm2). The bottom part is the relative sigma 

decrease with the real sigma value annotated (in ns).  



In Fig. 14a the mean and three sigma values of a path are 

shown for the baseline synthesis of the 2.41ns design. The 

paths are sorted according to their depth. The vertical axis 

shows the path delay. The graph shows that for the shortest 

paths (less than three cells) the relative sigma is higher than for 

the longest paths (more than 50 cells). However, some short 

(four - five cells) and medium sized paths (between seven and 

40 cells) have a misbehaving relative sigma. This shows that in 

a digital design it is not sufficient to assume timing spread of a 

path to be only dependent on the path length. Furthermore, the 

setup time for final flip flops (a final flip-flop being the last 

element in the data-path which retains the signal for 

synchronization) is not added in Fig. 14a which is noticeable 

by mean values which fluctuate between 2.11ns and 2ns. 

Because of the design being at the high performance timing 

there are a number of medium depth paths (around 18 cells) 

which have a fairly high mean value (Fig. 14a).  

In the ideal case, these paths will not cause a problem but 

with the added local variation (3) these paths will cause a 

timing failure since they get above the 2.11ns clock period. 

Looking at Fig. 14b, which shows the design after applying the 

sigma ceiling method, we see that the overall behavior is more 

homogenous due to a reduced mean and sigma. There are 

however still some paths which can cause the design to fail but 

this is largely due to an increase in the mean. The 3 value for 

these paths is relatively low. Also the figure shows that the 

worst case values are lowered from 2.23ns to 2.19ns. 

C. Validation on process corners 

In these experiments only the typical corner is considered 

and the validity of the approach across other corners is verified 

by looking at the behavior of a set of extracted data-paths, 

simulating them for different corner conditions. The expected 

behavior of a circuit when moving to a different corner (fast, 

typical and slow) obeys an increase in path delay when moving 

towards a slow corner and vice versa moving towards a fast 

corner. If the local variability of the path scales in the same 

manner as the mean, the sigma of a design for other corners 

can be predicted and the library tuning can also be applied on 

those corners. Figure 15a, 15b and 15c show the results of 

running Monte Carlo on a short, medium and long path, 

respectively. 

All paths are extracted from the baseline design at a clock 

period of 2.41ns where the short size path has a depth of three 

cells, the medium size path has 18 cells and the long size path 

has 57 cells. The relative mean and sigma shows that in all 

cases, moving towards a different corner scales the mean and 

sigma by the same factor when compared to the typical case. 

This indicates that the sigma of a design will scale by an 

identical factor and hence the library tuning method will also 

provide the scaled results. 

The total variation of a path is made up out of the global 

and local variation. In this report the focus lies on local 

variation but the attribution of the global variation is also 

looked into. Figure 16a, 16b, and 16c gives the histogram plots 

for short, medium and long size paths, respectively. The paths 

are extracted from a baseline design with a clock period of 

2.41ns. One histogram is a result of running 200 Monte Carlo 

(MC) simulations with global and local variation, the other one 

only includes local variation. The mean and sigma of the local 

MC are shown relative to the global and local MC. The figures 

clearly show that the impact of local variation is more 

pronounced in short paths and decays with the increase of path 

depth. The local variation contributes 65% of the total variation 

of a short path, 37% for a medium path and finally the 

contribution of local variation for a long path of 55 cells is 6%. 

In conclusion, about one third of the paths, connected to a 

unique endpoint, contribute to the total variability of the design 

by a predominant local variation. 

 

 
Equation (10) shows that under the assumption that a path 

contains identical cells in terms of mean and standard 

deviation, the sigma of a deeper path is higher than the sigma 

of a short path. Looking at Fig. 16b and 16c (and Fig. 15b and 

15c), however, shows this is not necessarily the case. Figure 

16b which has a lower path depth, has a higher sigma (and 

mean for that matter) compared to the longer path of Fig. 16c. 

The reason for this lays in the behavior of the synthesis. Both 

 
(a) 

 
(b) 

Fig. 14. Mean + 3 sigma path delay per path depth for (a) baseline synthesis 

and (b) sigma ceiling restriction with a clock period of 2.41ns.  



the medium and long paths have the same timing constraint, 

however the long path (having more cells) reaches the clock 

constraint faster and thus the synthesis tool has to use larger 

drive strength cells in order to meet the timing constraint. On 

the other hand, a medium size path is not likely to overshoot 

the timing constraint and the synthesis tool will optimize the 

path in terms of area. This means that the path contains low 

drive strength cells. As we saw before, high drive strength cells 

tend to have a lower sigma value and hence a long path 

consisting of higher drive strength cells can have a lower sigma 

than a medium sized path. 

Comparing the sigma and mean of the medium and long 

path from the MC simulation and the one of the synthesized 

design and hence the statistical library, shows that the mean 

values are within the expected error of the library. The sigma 

values in the statistical library deviate to an upper-bound of 

two times bigger compared to the values from the simulations. 

This is due to the low number of samples and some inaccuracy 

in retrieving the sigma from a cell. Using more MC samples to 

create the statistical library would reduce this error but this is 

future work. 

VIII. CONCLUSION 

In this paper we have shown that by means of library 

tuning, the sensitivity of a design towards local variation can 

be reduced.  

By using a library tuning method which does not remove 

from the library a complete cell but instead confines the use of 

the cell’s look-up table, the tuning becomes finer grained. By 

utilizing one of the tuning methods in combination with a 

restriction parameter, the library tuning result can be directed 

towards a high sigma reduction of 37% at the cost of 7% area 

increase, depending on the clock speed or a smaller sigma 

reduction of 30% with almost no area increase (2%). Overall, 

the homogeneity of the design towards local variation is 

improved as is the case for the robustness due to a smaller 

sensitivity towards local variation of the design. The path depth 

is not directly correlated to the absolute sigma value of the 

path, but the contribution of local variation to the total process 

variation is larger for shorter paths and decreases the longer a 

path gets. Since around one thirds of paths to unique endpoints 

in the design are short paths, local variation does contribute to 

the total variation of the design. Because the local variability 

scales with the same factor as the mean across multiple PVT 

corners, the library tuning method can also be applied in 

combination with these PVT corners and the expected behavior 

scales with the aforementioned factor. 

Further research is needed to improve the statistical library 

and to see if the local variation reduction which is shown in 

this work, also reduces the local variation of the design after 

place and route and clock tree synthesis (the next steps in IC 

design). The effectiveness of the method on the clock tree in 

particular needs further investigation. 

 
 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 15. Monte Carlo simulation (N=200) for three extracted paths from the 

design at a clock period of 2.41ns. The short path (a) has 3 cells, the medium 

path (b) has 18 cells and the long path (c) has 57 cells. The histograms are 

there for a fast, typical and slow corner, respectively. The sigma and mean 

relative to the typical corner is shown in text. Both the mean and sigma scale 

accordingly when moving to different corners. 



 
 

APPENDIX 

A. Statistical library cells 

Only a subset from the total standard cell library is used to 

create the statistical libraries. The cell name describes the cell 

and some of the characteristics. The naming convention of the 

cells is as follows: “Logic function[Nr input pins]_[Special 
ability_]Drive strength” where the parameters between [square 

brackets] are optional and a P between numbers denotes a 

decimal separator. In summary the statistical libraries have: 

 19 Inverter cells 

 36 Or 

 46 Nand 

 43 Nor 

 29 Xnor 

 34 Adders 

 27 Multiplexers 

 51 Flip-flops 

 12 Latches 

 7 Other cells 
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