1 IUPAC Technical Report

2 PAC-REP-14-05-02

3	
4	Standard Electrode Potentials Involving Radicals in
5	Aqueous Solution: Inorganic Radicals
6	
7	
8	IUPAC Task Group on Radical Electrode Potentials
9	
10	David A. Armstrong (deceased) (task group member)
11	Department of Chemistry, University of Calgary, Alberta, Canada
12	
13	Robert E. Huie (task group member)
14	formerly of the Physical and Chemical Properties Division, National Institute of Standards and
15	Technology, Gaithersburg, MD 20899, USA
16	
17	Willem H. Koppenol (task group member)
18	Institute of Inorganic Chemistry, Swiss Federal Institute of Technology, CH-8093 Zürich,
19	Switzerland
20	
21	Sergei V. Lymar (task group member)
22	Chemistry Department, Brookhaven National Laboratory, Upton NY 11973, USA
23	
24	Gábor Merényi (task group member)
25	Department of Applied Physical Chemistry, The Royal Institute of Technology, S-10044,
26	Stockholm 70, Sweden
27	
28	Pedatsur Neta (task group member)
29	Physical and Chemical Properties Division, National Institute of Standards and Technology,
30	Gaithersburg, MD 20899, USA
31	
32	Branko Ruscic
33	Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL,
34	60439, USA, and Computation Institute, University of Chicago, Chicago, IL, 60637, USA
35	
36	David M. Stanbury (task group leader)

37	Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA					
38						
39	Steen Steenken (task group member)					
40	Mülheim, Germany					
41						
42	Peter Wardman (task group member)					
43	formerly of the University of Oxford, Gray Cancer Institute, Department of Oncology, Old Roa					
44	Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, U.K.					
45						
46	Abstract: Recommendations are made for standard potentials involving select inorganic					
47	radicals in aqueous solution at 25 °C. These recommendations are based on a critical and					
48	thorough literature review and also by performing derivations from various literature reports.					
49	The recommended data are summarized in tables of standard potentials, Gibbs energies of					
50	formation, radical pK_a 's, and hemicolligation equilibrium constants. In all cases, current best					
51	estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that					
52	provide original literature references, summarize the experimental results, and describe the					
53	decisions and procedures leading to each of the recommendations.					
54						
55	Contents					
56						
57	1. Introduction					
58	2. Definitions and Conventions					
59	3. Methods for Determination of Standard Potentials					
60	4. Criteria for Selection of Recommended Data					
61	5. Uncertainties					
62	6. Network Problems					
63	7. Important Reference Couples					
64	Acknowledgments					
65	References					
66	Tables					
67	Data Sheets 1-117					
68	Supplementary Data Sheets S1-S12					
60						
09						
70						

1. Introduction

73 Radicals, both organic and inorganic, tend to be highly reactive. Nevertheless, they are 74 widely encountered as intermediates in chemical reactions; their individual reactivities are 75 central among the factors that determine the rates and products of the overall reactions in which 76 they are involved. For reactions where the radicals are present in the aqueous phase, electrode 77 potentials involving the radicals are among the most powerful indicators of reactivity. Electrode 78 potentials involving radicals are often more directly related to reactivity than are electrode 79 potentials of non-radicals, because the former more often correlate to specific steps in the 80 reaction mechanisms.

81 The determination of radical electrode potentials has greatly expanded in the last three 82 decades, largely through the application of pulse radiolysis and flash photolysis. These are 83 techniques that are well suited to the generation of transient radicals and the measurement of 84 their reaction equilibria. It is largely through the manipulation of the radical equilibrium 85 constants that the current bounty of radical electrode potentials has been obtained.

86 In 1989 two comprehensive reviews on radical standard potentials appeared. Wardman's 87 review emphasized organic radicals [1], while Stanbury's review considered inorganic radicals 88 exclusively [2]. Both of those reviews are now rather dated. Another valuable compendium is 89 Steenken's 1985 list of electron transfer equilibria involving radicals [3]. A related review 90 emphasizing H-atom bond dissociation "free" (Gibbs) energies has also appeared [4]. The 91 relevant primary literature has expanded greatly and numerous major corrections have been 92 made. Moreover, with the benefit of these prior reviews, we are now in an improved position to 93 appreciate the interconnected complexity of the various measurements. The work of the current 94 IUPAC Task Group differs from those two prior reviews in that it doesn't attempt to make 95 recommendations on all known radical electrode potentials but rather it focuses on a subset that 96 has been judged to be of greater importance, and it makes a greater effort to apply the principles 97 of error propagation in assessing the various potentials. This document presents the results of the 98 IUPAC Task Group as they bear on inorganic radicals. Of necessity, some careful consideration 99 of organic radicals is also included, because in some cases the inorganic radical potentials are 100 derived from measurements of equilibrium constants for reactions with organic radicals. Some of 101 the standard potentials discussed here were presented at the "Medicinal Redox Inorganic 102 Chemistry" conference held at the University of Erlangen-Nürnberg in 2013 [5]. 103

104

2. Definitions and Conventions

We limit the scope to those species, radical or otherwise, having sufficient lifetime to be vibrationally equilibrated with the solvent; this restriction allows the full forces of classical thermodynamics to be employed. We consider radicals to be species either neutral or ionic that bear an unpaired electron, and we exclude transition-metal complexes as a matter of convenience.

Use of the radical "dot" in chemical formulas to indicate radical species is redundant when the exact elemental composition and electronic charge of the species is specified, as is usually the case with the species in the current review. On the other hand, its use can be helpful for those who are not intimately familiar with the chemistry involved. In the present document, an effort has been made to use the dots consistently in the summary Tables, but in the supporting data sheets its use is less consistent. Both practices are in agreement with the current guidelines for inorganic nomenclature [6, 7].

118 By the term "standard electrode potential", E° , we refer to half reactions of the following 119 type:

120

121 122 $Ox + ne^- \rightleftharpoons \text{Red}$ (1)

123 where *n* is an integer often 1, either Ox or Red can be a radical, and E° is taken relative to the normal hydrogen electrode (NHE). On occasion we use here the shorthand expression "standard 124 125 potential" to refer to standard electrode potentials. By convention, these reactions are always 126 written as reductions – the associated potentials were previously known as "standard reduction 127 potentials" - and they can be more complex than the simple example given above. Standard 128 electrode potentials, rigorously speaking, refer to electrode potentials specified under conditions 129 where all species are at unit activity. The standard state for such activities in the present review is 130 usually the ideal 1 M aqueous solution. Species in solution that can also exist as gases, such as 131 O₂, can be referred to the 1 M aqueous standard state or to the 100 kPa (~1 atm) pressure 132 standard state, and in such cases we have taken care to designate the state explicitly. For water 133 the standard state is the pure solvent (at unit activity, not 55.5 M). Standard electrode potentials 134 are related to equilibrium constants (K_{eq}) through the relationship

135

 $E^{\circ} = -(RT/nF)\ln K_{\rm eq} \tag{2}$

137

138 where $K_{eq} = \Pi a_{prod}^{x} / \Pi a_{react}^{y}$, *i.e.*, the product of the equilibrium activities of the products (a_{prod}) 139 divided by the product of the equilibrium activities of the reactants (a_{react}), all raised to the power

140 of their appropriate stoichiometric coefficients x and y. In practice, when one is dealing with

radicals, it is usually easier to determine equilibrium constants than it is to measure equilibriumelectrode potentials directly.

143 It is often necessary to report formal potentials, E° , rather than standard potentials 144 because of a lack of reliable means to estimate the activity coefficients (γ). This is typically the 145 case when the reaction involves ionic species and the measurement is performed at high ionic 146 strength. Formal potentials are defined in the IUPAC Green Book as in eq 3 [8]:

- 147
- 148

$$E_{\rm eq} = E^{\circ \prime} - (RT/nF)\Sigma v_{\rm i} \ln(c_{\rm i}/c^{\circ})$$
(3)

149

Here, c_i represents the concentration of species *i*, c° is a normalizing standard concentration 150 151 (usually 1 M), and v_i is that species stoichiometric coefficient. This definition is analogous to the 152 Nernst equation except that it is expressed in terms of concentrations, and it allows for various species concepts. For example, in the case of S(IV) the species might be SO_3^{2-} , HSO_3^{-} , SO_2 , or 153 the sum of all. This definition also allows for E° values to be defined at specific nonstandard pH 154 155 values. To avoid ambiguity in the species definitions, in the present work we generally write out 156 the relevant half-cell reaction, and for reactions involving the proton we normally refer to pH 0. 157 Formal potentials for the species' under consideration here can often be related to standard 158 potentials through the activity coefficients:

- 159
- 160
- $E^{\circ} = E^{\circ'} + RT/nF\ln(\Pi\gamma_{\text{prod}}^{x}/\Pi\gamma_{\text{react}}^{y})$ (4)
- 161

162 Likewise, it is often useful or necessary to report formal equilibrium quotients (K_f) rather than 163 equilibrium constants. These are related through the expression

- 164
- 165

 $K_{\rm eq} = K_{\rm f} (\Pi \gamma_{\rm prod}^{\rm x} / \Pi \gamma_{\rm react}^{\rm y})$

(5)

166

167 Even further removed from the thermodynamic ideal are "midpoint" potentials, $E_{\rm m}$. These are E_{eq} values obtained when the oxidized and reduced species are at equal concentration. 168 169 They are typically reported when the reaction is likely to be pH dependent and data are available 170 at only a specific pH (often pH 7, E_7). Note that midpoint potentials will be strongly 171 concentration dependent when the stoichiometric coefficients, v_i , are not equal. In principle, 172 midpoint potentials can be derived from standard potentials, but the derivation requires knowledge of the pK_a values involved. For a detailed discussion of these points the reader is 173 174 referred to the introductory material in Wardman's review on the potentials of radicals [1]. 175 Related to midpoint potentials are apparent potentials, E°_{ap} . Apparent potentials are defined at a

176 specific pH, like midpoint potentials, but the activities of the oxidized and reduced species in the

177	Nernst equation do not take the state of protonation into account. Thus, apparent potentials do
178	not necessarily imply any knowledge of the pK_a 's involved.
179	
180	3. Methods for Determination of Standard Potentials
181	
182	A wide variety of methods have been employed to determine standard potentials
183	involving inorganic radicals, as has been reviewed elsewhere [9]. A brief summary is given here.
184	a) Electrochemical Methods.
185	a, i) Potentiostatic methods have been used only in a few special cases, such as in the
186	chemistry of ClO ₂ [•] . The reason for this limitation is that inorganic radicals are usually highly
187	reactive, so it is impossible to establish conditions where the concentrations are stable on the
188	time frame of the measurements.
189	a, ii) Cyclic voltammetry (CV) shortens the time frame of the electrochemical methods,
190	and it has been used successfully in a few cases. However, the lifetimes of most inorganic
191	radicals are too brief even for CV.
192	a, iii) Pulse radiolysis provides an entry into very short time frames, and attempts have
193	been made to apply electrochemical measurements to species generated by pulse radiolysis.
194	Unfortunately, these efforts have not as yet provided reliable measurements or estimates of
195	standard potentials involving inorganic radicals.
196	a, iv) An intriguing technique is to generate photoelectrons in solution by laser
197	irradiation of an electrode and then to use the electrode to probe the electrochemistry of the
198	radicals generated from the photoelectrons. The method, however, remains to be developed as a
199	reliable source of thermodynamic data.
200	b) Equilibrium Constant Measurements. The vast majority of standard electrode
201	potentials summarized in this review have been obtained by Hess' law methods where an
202	equilibrium constant is measured somehow and combined with other thermodynamicchemical
203	data to derive the reported potential. These derivations frequently make use of published values
204	of $\Delta_f G^\circ$, and this review normally makes the assumption that the values published in the NBS
205	tables [10] are of reference quality. The various types of radical equilibrium constants used in
206	these derivations are described below.
207	b , i) Solubilities. The solubilities of ClO ₂ • and NO• have been measured unambiguously
208	because solutions of these radicals are stable. These solubility measurements then afford a
209	method to determine the solution-phase standard potentials from the known gas-phase energetics
210	of these species. The solubility of NO2 [•] has also been measured, but in this case the method is
211	complex and relies on an understanding of the kinetics of dissolution and of disproportionation
212	of NO ₂ •(aq).

213 **b**, **ii**) Homolysis Equilibria. Homolysis at sigma bonds generally yields radicals, and 214 determination of these equilibrium constants can lead rather directly to electrode potentials. In the case of $S_2O_4^{2-}$ it has been possible to measure the homolysis equilibrium constant by direct 215 216 ESR detection of the SO₂^{•-} radicals. Homolysis equilibrium constants have been measured for 217 unstable species such as N₂O₄ by use of transient methods such as flash photolysis and pulse 218 radiolysis to establish the equilibria. A third method is to derive the equilibrium constant from the ratio of the forward and reverse rate constants ($K_{eq} = k_f/k_r$); an example of this method is 219 provided by $S_2O_8^{2-}$, where k_f is determined from the kinetics of its oxidation of various substrates 220 and $k_{\rm r}$ is obtained from transient measurements on the recombination of SO₄. 221

b, iii) Electron-Transfer Equilibria. Equilibrium constants for electron-transfer
reactions are probably the most widely used data for deriving standard potentials involving
radicals. A typical example is the reaction of O₃ with ClO₂⁻:

225 226

 $O_3 + ClO_2^- \rightleftharpoons O_3^{\bullet-} + ClO_2^{\bullet}$ (6)

227

In this case the equilibrium constant was determined from the ratio of $k_{\rm f}$ and $k_{\rm r}$, and it was used to determine the standard one-electron electrode potential of O₃ relative the well-established reference potential of ClO₂•. Equilibrium constants have also been measured for a substantial number of electron transfer reactions where neither of the component half reactions can be considered as having a reliable reference potential; nevertheless, such reactions are valuable in determining standard potentials, although the thermodynamicchemical derivations are necessarily more lengthy.

235 b, iv) Acid/Base Equilibria. Proton-transfer reactions can be crucial in understanding 236 the reactivity of radicals, as is exemplified by superoxide. HO₂ has a pK_a of 4.8. It is 237 thermodynamically unstable with respect to disproportionation. Disproportionation via the reaction of HO₂• with itself or O₂•- is very fast. However, direct disproportionation via reaction 238 239 of $O_2^{\bullet-}$ with itself is undetectably slow, so alkaline solutions of $O_2^{\bullet-}$ are remarkably persistent. 240 Determinations of pK_a 's have been performed for a significant number of radicals, and they have been performed by a large suite of techniques. These pK_a 's have been used in a large number of 241 242 derivations of radical standard potentials, and, because of their intrinsic importance, they are 243 summarized below in Table 3.

b, v) Hemicolligation Equilibria. Reactions in which radicals bind to non-radical
species are defined as hemicolligations. They can occur between a radical and its reduced form
that produce a symmetrical radical adduct or between a radical and some other non-radical to
form a non-symmetrical adduct. Two prominent such reactions are

248

249	$I^{\bullet} + I^{-} \rightleftharpoons I_{2}^{\bullet-} \tag{7}$
250	
251	and
252	
253	$\mathrm{HO}^{\bullet} + \mathrm{Cl}^{-} \rightleftharpoons \mathrm{ClOH}^{\bullet-} \tag{8}$
254	
255	Reactions of this type can have a profound effect on the net reactivity of the radicals, and they
256	are often unavoidable in reactive systems. Equilibrium constants have been measured for a good
257	number of hemicolligation reactions, have been used extensively in deriving radical standard
258	potentials, and are summarized in Table 4.
259	b, vi) Nucleophilic Displacement Equilibria. In these reactions a nucleophile displaces
260	another nucleophile from a radical. A typical example is
261	
262	$I^{-} + (SCN)_{2}^{\bullet-} \rightleftharpoons ISCN^{\bullet-} + SCN^{-} $ (9)
263	
264	Although these reactions can be considered as equivalent to the sum of two hemicolligations,
265	their equilibrium constants often can be more easily measured than those of the component
266	hemicolligations. These displacement equilibria are important in the present review primarily for
267	their use in deriving standard potentials through thermodynamicchemical cycles.
268	c) Methods Involving Estimates. For certain important radicals there is no complete
269	experimental thermodynamicchemical cycle available, and portions of the cycle must be
270	obtained by making reasonable estimates. An important example is the hydrogen atom: although
271	equilibrium constants have been measured for reactions that convert the aqueous hydrogen atom
272	into other species (notably the hydrated electron), none of these reactions connects to a suitable
273	reference redox couple. The best current solution to the problem is to make an estimate of the
274	solvation energy of the hydrogen atom and then combine this estimate with other reliable data to
275	derive the H ⁺ /H [•] electrode potential. There is good reason to believe that the uncertainties
276	introduced in this example are relatively small. In general the current report relies on such
277	thermodynamicchemical estimates only when direct experimental data are unavailable.
278	d) Quantum Calculations. It is becoming increasingly common to use quantum
279	calculations to obtain radical electrode potentials. The methods typically entail a relatively
280	accurate calculation of the energetics of the gas-phase radical and another calculation of the
281	radical solvation energy. It has recently been shown that these computational methods can fail
282	disastrously [11], so the present review makes little use of them.
283	
284	4. Criteria for Selection of Recommended Data

286 The recommended values in the Tables of this report are based on results published in the 287 peer-reviewed scientific literature. The Task Group has reviewed these primary publications to 288 confirm their plausibility, scientific soundness, and adherence to established chemical principles. 289 When there are multiple independent reports on the same results, the individual reports have 290 been compared to determine the degree of agreement among them, and to identify outliers and 291 assess whether there is just cause for rejecting them. Individual reports may be rejected because 292 the experimental method or conditions are insufficiently documented and the method has been 293 shown to be unreliable. Non-rectifiable errors have been identified in the data handling, or the 294 results are not internally consistent. In cases where there are multiple acceptable reports of a 295 given result, the reviewers have assigned a subjective weighting to each report based on an 296 assessment of the care taken in the experiments and the typical accuracy of the method. These 297 filtered results are then averaged, optimized, and their uncertainties assigned as described below. 298

290

299

300

5. Uncertainties

301 In the present review, all recommended data (E° values, pK_a 's, $\Delta_f G^{\circ}$ values) are presented 302 with associated uncertainties in two significant digits, up to 19. These uncertainties are given as 303 $\pm 1\sigma$, and they are intended to indicate the best estimate of the overall uncertainty as arising from 304 all contributions. Typically the least of these contributions are the statistical fluctuations in the 305 direct measurements of a given quantity. Much more important are systematic errors, many of 306 which are difficult to anticipate. Many of the recommended data are derived by combining 307 various thermodynamicchemical quantities, and hence propagation of error must be taken into 308 account. The level of uncertainty in the NBS $\Delta_f G^\circ$ values is frequently underappreciated in the 309 broader chemical community. For some results there are multiple independent reports for the 310 same quantity, for example as with the pK_a of HO[•]; in such situations each individual report is 311 examined for plausibility and technical excellence, outliers are rejected, then remaining reports 312 are averaged, and a subjective assessment of the uncertainty is assigned. The specific rationale 313 for these assignments is provided in the detailed data sheets appended. In the language of 314 metrology, these uncertainty estimates are of Type A (from statistical treatment of repeated 315 measurements) and Type B (estimates from experience), and ISO standards mandate that both 316 types of uncertainties are equally valid and can be freely combined; these concepts are briefly 317 reviewed elsewhere [12]. 318

6. Use of Thermodynamic Networks

321 As is discussed above, a large number of radical equilibrium constants of various types 322 have been measured and combined with the standard potentials of reference couples to derive 323 standard potentials of radicals through Hess' law-type calculations. Some of these equilibria 324 share common radical species and hence lead to thermodynamicchemical networks. These 325 networks can be very useful for determining radical standard potentials. When the networks are 326 linear or branched it is a simple process to combine adjacent equilibrium constants with 327 appropriate reference potentials to derive potentials of interest; in such calculations appropriate 328 attention must be paid to the cumulative effects of error propagation. Occasionally there are 329 loops in the networks, which form closed thermodynamicchemical cycles. These closed 330 thermodynamicchemical cycles afford excellent tests of the data, because the associated Gibbs 331 energy changes must sum to zero. Failure to meet this criterion within reasonable uncertainty 332 limits is a signal that at least some of the data are seriously flawed. When this criterion is met, 333 suitable adjustments of the individual equilibrium constants (within their uncertainties) can be 334 made to achieve exact closure. Assessment and use of these thermodynamicchemical networks 335 can be performed manually, although consistent results are difficult to achieve when the 336 networks are large. Larger networks can be solved in an automated and consistent way through 337 use of appropriate computerized approaches such as ATcT, Active Thermodynamicchemical 338 Tables [13]. In the present review, some of the recommended data are the result of manual 339 assessment while others have been generated by use of ATcT. In its standard format, the ATcT 340 software is optimized for evaluation of gas-phase enthalpies; for the present purposes the ATcT 341 software has been adapted to work with Gibbs energies in solution. The method thus consists of 342 defining the reaction network, converting relevant reference potentials and equilibrium constants 343 to ΔG° values and associated uncertainties, and localizing the thermodynamic chemical network 344 by incorporating auxiliary values of $\Delta_f G^\circ$ (usually from the NBS tables) as network termini; the 345 ATcT output then consists of a set of optimized $\Delta_f G^\circ$ values and uncertainties for the radicals of interest, and these are then combined with reference values of $\Delta_f G^\circ$ to derive the E° values. This 346 347 method has been applied to a subset of the data presented here, as described in Data Sheet 7. 348 349 7. Important Reference Couples 350

There are a few redox couples that have attained particular significance, either because of their centrality as reference couples for determining other standard potentials or because of their general importance in inorganic radical chemistry. Aspects of these redox couples are highlighted here. The $ClO_2^{\bullet}/ClO_2^{-}$ couple ($ClO_2^{\bullet} + e^- \Rightarrow ClO_2^{-}$) is of great importance in this review

because it has been used extensively in establishing equilibria with other radicals and because its

- 357 standard potential is known with unusually high accuracy. These characteristics are largely a
- 358 consequence of the remarkable stability of both ClO_2^{\bullet} and ClO_2^{-} in aqueous solution and the
- 359 facile inter-conversions between them. As a result, it is not difficult to obtain reversible
- 360 electrochemistry with this couple, perform classical equilibrium potentiostatic measurements,
- and extrapolate them to conditions of thermodynamicchemical ideality. The outcome is a reliable
- 362 and genuinely *standard* value for E° .
- 363 The hydroxyl radical is of general importance because it is one of the three radicals 364 intrinsic to water (HO[•], H[•], and e_{aq}^{-}), it is the only one of the three to have its electrode potential 365 determined without extra-thermodynamic assumptions or approximations, and occupies a central 366 position in the largest of the thermodynamicchemical networks in this review. Its potential has 367 been determined by two independent routes. The first of these has its origins in thallium chemistry and rests specifically on the redox potentials of the unstable species Tl²⁺, which are 368 determined relative to the well-established Fe^{3+}/Fe^{2+} reference potential. The second route 369 depends on the p K_a of HO[•], the hemicolligation of O^{•-} with O₂, the electron-transfer equilibrium 370 of $O_3^{\bullet-}$ with ClO_2^{\bullet} , and the use of the $ClO_2^{\bullet}/ClO_2^{-}$ redox couple as a reliable reference. The 371 372 excellent agreement between these two routes provides strong support for the recommended 373 potential of this important species.
- Br₂^{•-} is widely used as an oxidant, and equilibrium constants have been measured for at least 12 of its reactions. Its electrode potential is considered well established because of the good agreement between several independent derivations. Notable among these are a derivation based on the equilibrium constants for 1) its reaction with OH⁻ to form BrOH^{•-} and bromide and 2) the dissociation of BrOH^{•-} to form Br⁻ and HO[•].
- 379 The trinitrogen(•) radical, N₃•, is important generally because it is often used as a mild 380 nonspecific oxidant. It holds special importance in this review because of its frequent use in 381 establishing redox equilibria that can be used to establish electrode potentials that involve 382 radicals. The standard electrode potential of the N₃•/N₃⁻ redox couple has been determined in 383 several ways with good agreement. It has been measured electrochemically (under irreversible 384 conditions), and it has been derived from equilibria with four other reference redox couples $([IrCl_6]^{2-}/[IrCl_6]^{3-}, [Ru(bpy)_3]^{3+}/[Ru(bpy)_3]^{2+}, ClO_2^{\bullet}/ClO_2^{-}, and Br_2^{\bullet-}/2Br^{-}).$ Note that use of 385 386 N_3^{\bullet}/N_3^{-} as a reference potential at very high azide concentrations requires consideration of the 387 association between N₃[•] and N₃⁻ (Data Sheet 86).
- There are also some organic radicals that are important in providing reference potentials for the inorganic radicals recommended here. These include species such as the phenoxyl radical, TEMPO, the tryptophan radical cation, and the promethazine (phenothiazine) radical.
- 391 Evaluations of their electrode potentials are provided in the supplementary data sheets.
- 392

393	Acknowledgments			
394	We thank IUPAC, ETH & ETH Stiftung for financial support of this project. The work at			
395	Argonne National Laboratory was supported by the US Department of Energy, Office of			
396	Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and			
397	Biosciences under Contract No. DE-AC02-06CH11357. This material is partially based upon			
398	work at Brookhaven National Laboratory supported by the U.S. Department of Energy, Office of			
399	Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and			
400	Biosciences under contract DE-AC02-98CH10886.			
401				
402	REFERENCES			
403				
404	1. P. Wardman. J. Phys. Chem. Ref. Data 18, 1637-1755 (1989).			
405	2. D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).			
406	3. Steenken, S. In Landolt-Börnstein, New Series, Vol. 13e, (Fischer, H., ed.), p. 147-293.			
407	Springer-Verlag, New York (1985).			
408	4. J. J. Warren, T. A. Tronic, J. M. Mayer. <i>Chem. Rev.</i> 110 , 6961-7001 (2010).			
409	5. D. A. Armstrong, R. E. Huie, S. Lymar, W. H. Koppenol, G. Merenyi, P. Neta, D. M.			
410	Stanbury, S. Steenken, P. Wardman. Bioinorg. React. Mech. 9, 59-61 (2013).			
411	6. N. G. Connelly, T. Damhus, R. M. Hartshorn, A. T. Hutton. <i>Nomenclature of Inorganic</i>			
412	Chemistry. IUPAC Recommendations 2005, Royal Society of Chemistry, Cambridge (2005).			
413	7. W. H. Koppenol. <i>Pure Appl. Chem.</i> 72 , 437-446 (2000).			
414	8. E. R. Cohen, T. Cvitaš, T. G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, A. Mills,			
415	F. Pavese, M. Quack, J. Stohner, H. L. Strauss, M. Takami, A. J. Thor. Quantities, Units and			
416	Symbols in Physical Chemistry, 3rd edition, RSC Publishing, Cambridge, UK, pp 70-76 (2007).			
417	9. Stanbury, D. M. In <i>General Aspects of the Chemistry of Radicals</i> , (Alfassi, Z. B., ed.), p.			
418	347-384. John Wiley & Sons, New York (1999).			
419	10. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.			
420	Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).			
421	11. G. A. Poskrebyshev, V. Shafirovich, S. V. Lymar. J. Phys. Chem. A 112, 8295-8302			
422	(2008).			
423	12. B. Ruscic. Int. J. Quantum Chem. 114, 1097-1101 (2014).			
424	13. B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszevski, S. J. Bittner, S. G. Nijsure, K.			
425	A. Amin, M. Minkoff, A. F. Wagner. J. Phys. Chem. A. 108, 9979-9997 (2004).			
426				

Half-reaction	Electrode Potential / V	Data Sheet #
Table 1.1: Electron, Hydrogen and Oxygen		
$e^- \rightleftharpoons e^{\bullet-}(aq)$	-2.88 ± 0.02	1.1
$\mathrm{H}^{+} + \mathrm{e}^{-} \rightleftharpoons \mathrm{H}^{\bullet}(aq)$	-2.31 ± 0.03	1.3
$O(^{3}P) + e^{-} \rightleftharpoons O^{\bullet-}$	$+1.6 \pm 0.1$	2
$O(^{3}P) + H^{+} + e^{-} \rightleftharpoons HO^{\bullet}$	$+2.3 \pm 0.1$	2
$O_2(g) + e^- \rightleftharpoons O_2^{\bullet-}$	-0.35 ± 0.02	3
$O_2(aq) + e^- \rightleftharpoons O_2^{\bullet-}$	-0.18 ± 0.02	3
$^{1}\Delta_{g}O_{2}(g) + e^{-} \rightleftharpoons O_{2}^{\bullet-}$	$+0.64 \pm 0.01$	4
$^{1}\Delta_{g}O_{2}(aq) + e^{-} \rightleftharpoons O_{2}^{\bullet-}$	$+0.81 \pm 0.01$	4
$O_2(g) + e^- + H^+ \rightleftharpoons HO_2^{\bullet}$	-0.07 ± 0.02	3
$O_2(aq) + H^+ + e^- \rightleftharpoons HO_2^{\bullet}$	$+0.10 \pm 0.02$	3
$HO_2^{\bullet} + e^- + H^+ \rightleftharpoons H_2O_2$	$+1.46 \pm 0.01$	5
$H_2O_2 + e^- + H^+ \rightleftharpoons HO^{\bullet} + H_2O$	$+0.80 \pm 0.01$	6
$\mathrm{HO}^{\bullet} + \mathrm{e}^{-} + \mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{2}\mathrm{O}$	$+2.730 \pm 0.017$	7
$OH^{\bullet} + e^{-} \rightleftharpoons OH^{-}$	$+1.902 \pm 0.017$	7
$O_3(g) + e^- \rightleftharpoons O_3^{\bullet-}$	$+0.91 \pm 0.02$	23
$O_3(aq) + e^- \rightleftharpoons O_3^{\bullet-}$	$+1.03 \pm 0.02$	23
Table 1.2: Halogens		
Table 1 2a: Chlorine		
$\frac{\Gamma^{(a)}(aa) + e^{-}}{\Gamma^{(aa)}} \approx \frac{\Gamma^{(aa)}(aa)}{\Gamma^{(aa)}(aa)}$	$+2.432 \pm 0.018$	7
$\frac{Cl_2}{Cl_2} = \frac{Cl_2}{Cl_2} + e^- \Rightarrow 2Cl_2$	$+2.126 \pm 0.017$	7
$\frac{\operatorname{Cl}_2(aq) + e^-}{\operatorname{Cl}_2(aq)} \neq e^- \rightleftharpoons \operatorname{Cl}_2(aq)$	$+0.666 \pm 0.017$	7
$ClOH^{\bullet-}(aa) + e^{-} \rightleftharpoons Cl^{-} + OH^{-}(aa)$	$+1.912 \pm 0.018$	7
$ClOH^{\bullet-}(aq) + e^- + H^+(aq) \rightleftharpoons Cl^-(aq) + H_2O(l)$	$+2.740 \pm 0.018$	7
$\frac{\operatorname{HOC}(aq) + \operatorname{e}^{-}}{\operatorname{HOC}(aq)} \stackrel{\text{result}}{\to} \frac{\operatorname{HOC}(aq)}{\operatorname{HOC}(aq)} \stackrel{\text{result}}{\to} \frac{\operatorname{HOC}(aq)}{\operatorname{HOC}(aq)}$	$+0.25 \pm 0.08$	7
$ClO_2^{\bullet}(aq) + e^- \rightleftharpoons ClO_2^-$	$+0.935 \pm 0.003$	24
$ClO_3^{\bullet}(aq) + e^- \rightleftharpoons ClO_3^{-}(aq)$	$+2.38 \pm 0.03$	7
$ClO^{\bullet}(aq) + e^{-} \rightleftharpoons ClO^{-}(aq)$	$+1.39 \pm 0.03$	25
Table 1.2b: Bromine		
$\operatorname{Br}_2^{\bullet-}(aq) + e^- \rightleftharpoons 2\operatorname{Br}^-(aq)$	$+1.63 \pm 0.02$	26
$\operatorname{Br}_2(aq) + e^- \rightleftharpoons \operatorname{Br}_2^{\bullet-}(aq)$	$+0.55 \pm 0.02$	26
$\operatorname{Br}^{\bullet}(aq) + e^{-} \rightleftharpoons \operatorname{Br}^{-}(aq)$	$+1.96 \pm 0.02$	26
$\operatorname{BrO}_2^{\bullet}(aq) + e^- \rightleftharpoons \operatorname{BrO}_2^{-}(aq)$	$+1.290 \pm 0.005$	40
Table 1.2c: Iodine		4.7
$1_2^{\bullet-} + e^- \rightleftharpoons 2I^-$	$+1.05 \pm 0.02$	45
$I^{\bullet} + e^{-} \rightleftharpoons I^{-}$	$+1.35 \pm 0.02$	45

427 Table 1: Inorganic Standard Electrode Potentials

$I_2(aq) + e^- \rightleftharpoons I_2^{\bullet-}$	$+0.19 \pm 0.02$	45
Table 1.3: Chalcogens		
$\mathrm{SO}_4^{\bullet-}(aq) + \mathrm{e}^- \rightleftharpoons \mathrm{SO}_4^{2-}(aq)$	$+2.437 \pm 0.019$	7
$S_2O_8^{2-}(aq) + e^- \rightleftharpoons SO_4^{-}(aq) + SO_4^{2-}(aq)$	$+1.44 \pm 0.08$	7
$SO_3^{\bullet}(aq) + e^- \rightleftharpoons SO_3^{2-}(aq)$	$+0.73 \pm 0.02$	59
$\mathrm{SO}_5^{\bullet-}(aq) + \mathrm{e}^- \rightleftharpoons \mathrm{SO}_5^{2-}$	$+0.81 \pm 0.01$	66
$S_2O_3^{\bullet-}(aq) + e^- \rightleftharpoons S_2O_3^{2-}$	$+1.35 \pm 0.03$	71
$S_4O_6^{\bullet 3-}(aq) + e^- \rightleftharpoons 2S_2O_3^{2-}$	$+1.10 \pm 0.01$	71
$HS^{\bullet}(aq) + H^+ + e^- \rightleftharpoons H_2S(aq)$	$+1.54 \pm 0.03$	77
$S^{\bullet-} + e^- + H^+ \rightleftharpoons HS^-$	$+1.33 \pm 0.03$	77
$S^{\bullet-} + e^- + 2H^+ \rightleftharpoons H_2S(aq)$	$+1.74 \pm 0.03$	77
$HS^{\bullet}(aq) + e^- \rightleftharpoons HS^-$	$+1.13 \pm 0.03$	77
$HS_2^- + e^- \rightleftharpoons HS_2^{\bullet 2-}$	-1.13 ± 0.05	77
$\text{SeO}_3^{\bullet-} + e^- \rightleftharpoons \text{SeO}_3^{2-}$	$+1.68 \pm 0.03$	78
$SeO_3^{\bullet-} + H^+ + e^- \rightleftharpoons HSeO_3^-$	$+2.18 \pm 0.03$	78
$TeO_3^{\bullet-} + e^- \rightleftharpoons TeO_3^{2-}$	$+1.74 \pm 0.03$	79
$TeO_3^{\bullet-} + H^+ + e^- \rightleftharpoons HTeO_3^-$	$+2.31 \pm 0.03$	79
Table 1.4: Group 5		
$NO_3^{\bullet}(aq) + e^- \rightleftharpoons NO_3^{-}(aq)$	$+2.466 \pm 0.019$	7
$N_3^{\bullet}(aq) + e^- \rightleftharpoons N_3^-(aq)$	$+1.33 \pm 0.01$	80
$NO^{\bullet}(aq) + H^{+} + e^{-} \rightleftharpoons HNO(aq)$	-0.15 ± 0.02	22
$HNO(aq) + H^+ + e^- \rightleftharpoons H_2NO^{\bullet}(aq)$	$+0.52 \pm 0.04$	87
$H_2NO^{\bullet} + 2H^+ + e^- \rightleftharpoons NH_3OH^+$	$+1.253 \pm 0.010$	87
$H_2NO^{\bullet} + H^+ + e^- \rightleftharpoons NH_2OH$	$+0.900 \pm 0.010$	87
$NO_2^{\bullet}(aq) + e^- \rightleftharpoons NO_2^-$	$+1.04 \pm 0.02$	88
$PO_3^{\bullet 2^-} + H^+ + e^- \rightleftharpoons HPO_3^{2^-}$	$+1.54 \pm 0.04$	96
$H_2PO_4^{\bullet} + e^- \rightleftharpoons H_2PO_4^-$	$+2.75 \pm 0.01$	97
Table 1.5: Group 4		
$\operatorname{CO}_2(aq) + e^- \rightleftharpoons \operatorname{CO}_2^{\bullet}$	-1.90 ± 0.02	98
$CO_3^{\bullet-}(aq) + e^- \rightleftharpoons CO_3^{2-}$	$+1.57 \pm 0.03$	99
$CO_2^{\bullet-} + H^+ + e^- \rightleftharpoons HCO_2^-$	$+1.52 \pm 0.03$	100
$SCN^{\bullet} + e^{-} \rightleftharpoons SCN^{-}$	$+1.61 \pm 0.02$	101
$(SCN)_2^{\bullet-} + e^- \rightleftharpoons 2SCN^-$	$+1.30 \pm 0.02$	101
Table 1.6: Group 3		
$Tl^{2+} + e^{-} \rightleftharpoons Tl^{+}$	$+2.225 \pm 0.007$	21
$Tl^{3+}(aq) + e^{-} \rightleftharpoons Tl^{2+}(aq)$	$+0.34 \pm 0.08$	7
$\text{TIOH}^+(aq) + e^- + \text{H}^+(aq) \rightleftharpoons \text{TI}^+(aq) + \text{H}_2O(l)$	$+2.507 \pm 0.013$	7

$\text{TIOH}^{2+}(aq) + e^{-} \rightleftharpoons \text{TIOH}^{+}(aq)$	$+0.12 \pm 0.08$	7
$TIOH^{2+}(aq) + e^- + H^+(aq) \rightleftharpoons TI^{2+}(aq) + H_2O(l)$	$+0.40 \pm 0.08$	7
Table 1.7: Zn, Cd, Hg		
$\operatorname{HgCl}_2(aq) + e^- \rightleftharpoons \operatorname{HgCl}(aq) + \operatorname{Cl}^-$	-0.55 ± 0.02	102

431 Table 2. Gibbs Energies of Formation, $\Delta_f G^{\circ}$

Radical	$\Delta_{\rm f} G^{\circ} / {\rm kJ} \; {\rm mol}^{-1}$	Data Sheet #
e ⁻ aq	$+278 \pm 2$	1.1
O•-	$+93.1 \pm 1.7$	2
OH•	$+26.3 \pm 1.6$	7
O2•-	$+33.8 \pm 1.9$	3
$HO_2^{\bullet}(aq)$	$+7 \pm 2$	3
O3•-	$+75 \pm 2$	23
$\mathrm{H}^{\bullet}(aq)$	$+223 \pm 2$	1.1
$Cl^{\bullet}(aq)$	$+103.4 \pm 1.7$	7
$Cl_2^{\bullet-}(aq)$	-57.3 ± 1.6	7
$ClOH^{\bullet-}(aq)$	-104.0 ± 1.7	7
$ClO^{\bullet}(aq)$	$+97 \pm 3$	25
$\text{ClO}_2^{\bullet}(aq)$	$+110 \pm 10$	24
$ClO_3^{\bullet}(aq)$	$+221.6 \pm 3$	7
Br2•-	-51 ± 2	26
Br•	$+85 \pm 2$	26
$\operatorname{BrO}_2^{\bullet}(aq)$	$+152 \pm 4$	40
BrOH•-	-93 ± 2	26
BrSCN•-	$+129 \pm 3$	26
I2•-	-2.1 ± 1.9	45
I•	$+78.8 \pm 2$	45
IOH•-	-82.7 ± 2	45
S•-	$+140 \pm 3$	77
HS•	$+121 \pm 3$	77
HSS ^{•2–}	$+129 \pm 4$	77
$SO_3^{\bullet-}$	-416 ± 2	59
$SO_4^{\bullet-}(aq)$	-509.4 ± 1.8	7
$SO_5^{\bullet-}(aq)$	-506 ± 3	66
$S_2O_3^{\bullet-}$	-392 ± 8	71
$S_4O_6^{\bullet 3-}$	-939 ± 8	71
SeO ₃ •-	-202 ± 3	78
HSeO ₄ • ^{2–}	-358 ± 3	78
TeO ₃ •−	-214 ± 3	79
HTeO4 ^{•2–}	-394 ± 3	79
TeO₄• ^{3−}	-319 ± 3	79
$N_3 \cdot (aq)$	$+476 \pm 8$	80
$NO^{\bullet}(aq)$	$+102.0 \pm 0.2$	90
$H_2NO^{\bullet}(aq)$	$+66 \pm 3$	87
$NO_2^{\bullet}(aq)$	$+62.3 \pm 0.5$	88
$NO_3^{\bullet}(aq)$	$+126.7 \pm 1.8$	7
CO₂ [←]	-205 ± 2	98

CO ₃ ⊷	-373 ± 3	99
SCN•	$+248 \pm 2$	101
(SCN)₂ ^{●−}	$+310 \pm 2$	101
ISCN•-	$+152 \pm 2$	45
Tl^{2+}	$+182.3 \pm 1.2$	7
$T1OH^+$	-27.6 ± 1.3	7

Table 3. Inorganic radical pK_{as} and related hydrolysis

T JU

Reaction	<i>K</i> _a / M	p <i>K</i> a	Data Sheet #
$\mathrm{H}^{\bullet}(aq) \rightleftharpoons \mathrm{e}^{-}(aq) + \mathrm{H}^{+}$	$(2.48 \pm 0.24) \times 10^{-10}$		1.2
$OH^{\bullet}(aq) \rightleftharpoons O^{\bullet-} + H^+$		11.7 ± 0.1	116
$HO_2^{\bullet}(aq) \rightleftharpoons O_2^{\bullet-} + H^+$		4.8 ± 0.1	3
$HO_3^{\bullet}(aq) \rightleftharpoons O_3^{\bullet-} + H^+$	No recommendation		23
$\mathrm{Cl}^{\bullet}(aq) + \mathrm{H}_{2}\mathrm{O}(l) \rightleftharpoons \mathrm{ClOH}^{\bullet-} + \mathrm{H}^{+}$	5×10^{-6} , within a factor of 2		7
$Br^{\bullet}(aq) + H_2O(l) \rightleftharpoons BrOH^{\bullet-} + H^+$		$10.50 \pm$	26
		0.07	
$I^{\bullet}(aq) + H_2O(l) \rightleftharpoons IOH^{\bullet-} + H^+$		13.3 ± 0.5	45
$HS^{\bullet}(aq) \rightleftharpoons S^{\bullet-} + H^+$		3.4 ± 0.7	77
$HS_4O_6^{\bullet 2-} \rightleftharpoons S_4O_6^{\bullet 3-} + H^+$		6.2	71
$NH_2OH^{\bullet^+} \rightleftharpoons NH_2O^{\bullet} + H^+$		<-5	105
$\rm NH_2O^{\bullet} \rightleftharpoons \rm NHO^{\bullet-} + \rm H^+$		12.6 ± 0.3	105
$HPO_3^{\bullet-} \rightleftharpoons PO_3^{\bullet 2-} + H^+$		5.75 ± 0.05	106
$H_2PO_3^{\bullet} \rightleftharpoons HPO_3^{\bullet-} + H^+$	1.1		107
$H_3PO_3^{\bullet+} \rightleftharpoons H_2PO_3^{\bullet} + H^+$	54		107
$H_2PO_4^{\bullet} \rightleftharpoons HPO_4^{\bullet-} + H^+$		5.7 ± 0.4	108
$HPO_4^{\bullet-} \rightleftharpoons PO_4^{\bullet 2-} + H^+$		8.9 ± 0.2	108
$HPO_5^{\bullet-} \rightleftharpoons PO_5^{\bullet 2-} + H^+$		3.4 ± 0.2	109
$As(OH)_4^{\bullet} \rightleftharpoons As(OH)_3O^{\bullet-} + H^+$		7.38 ± 0.06	110
$As(OH)_4^{\bullet} \rightleftharpoons HAsO_3^{\bullet-} + H_2O +$		3.85 ± 0.05	110
H ⁺			
$HAsO_3^{\bullet-} \rightleftharpoons AsO_3^{\bullet2-} + H^+$		7.81 ± 0.04	110
$HCO_2^{\bullet} \rightleftharpoons CO_2^{\bullet-} + H^+$		NR	100
$HCO_3^{\bullet} \rightleftharpoons CO_3^{\bullet-} + H^+$		< 0	99
$SCN^{\bullet} + H_2O \rightleftharpoons HOSCN^{\bullet-} + H^+$		12.5 ± 0.1	111
$Tl^{2+} + H_2O(l) \rightleftharpoons TlOH^+ + H^+$	$(1.7 \pm 0.3) \times 10^{-5}$		7

440 Table 4: Hemicolligation Equilibria

Reaction	K / M^{-1}	Data Sheet #
$O_2(aq) + O^{\bullet-} \rightleftharpoons O_3^{\bullet-}$	$(1.4 \pm 0.1) \times 10^{6}$	23
$\operatorname{Cl}^{\bullet}(aq) + \operatorname{Cl}^{-} \rightleftharpoons \operatorname{Cl}_{2}^{\bullet-}$	$(1.4 \pm 0.2) \times 10^5$	10
$OH^{\bullet}(aq) + Cl^{-} \rightleftharpoons ClOH^{\bullet-}$	0.70 ± 0.13	12
$\operatorname{Br}^{\bullet}(aq) + \operatorname{Br}^{-} \rightleftharpoons \operatorname{Br}_{2}^{\bullet-}$	$(3.9 \pm 1.2) \times 10^5$	33
$OH^{\bullet}(aq) + Br^{-} \rightleftharpoons BrOH^{\bullet-}$	$(3.2) \times 10^2$ within factor of 2	34
$I^{\bullet}(aq) + I^{-} \rightleftharpoons I_{2}^{\bullet-}$	1.35×10^{5}	52
$S^{\bullet-} + SH^- \rightleftharpoons HSS^{\bullet 2-}$	$(9 \pm 2) \times 10^3$	117
$S_2O_3^{\bullet-} + S_2O_3^{2-} \rightleftharpoons S_4O_6^{\bullet 3-}$	$Log K = 4.1 \pm 0.5$	71
$N_3 \cdot (aq) + N_3^- \rightleftharpoons N_6 \cdot -$	0.24 ± 0.08	85
$HAsO_3^{\bullet-} + H_2O \rightleftharpoons As(OH)_3O^{\bullet-}$	$pK = 3.53 \pm 0.11$	110
$SCN^{\bullet}(aq) + SCN^{-} \rightleftharpoons (SCN)_{2}^{\bullet-}$	$(2.0 \pm 0.3) \times 10^5$	101
$S_2O_3^{\bullet-}+SCN^- \rightleftharpoons SCNS_2O_3^{\bullet 2-}$	1.2×10^3 within a factor of 2	75
$Tl(aq) + Tl^+ \rightleftharpoons Tl_2^+$	140 ± 7	112
$Tl^+ + OH^{\bullet}(aq) \rightleftharpoons TlOH^+$	$(5.8 \pm 1.0) \times 10^3$	19
$Tl^{2+} + Cl^{-} \rightleftharpoons TlCl^{+}$	$(6.2 \pm 0.7) \times 10^4$	113
$TlCl^+ + Cl^- \rightleftharpoons TlCl_2$	$(1.9 \pm 0.4) \times 10^3$	114
$\text{TlCl}_2 + \text{Cl}^- \rightleftharpoons \text{TlCl}_3^-$	13 ± 3	115

442

445	Data Sheet 1	
446	1.1 Departion of a - with H-O and NH.+	
447	1.1 Reaction of e aq with H2O and NH4	
448	Chemical equilibrium: $e_{ac}^{-} + H_{2}O \Rightarrow H^{\bullet} + OH^{-}$	$(1 \ 1 \ 1)$
450		(1.1.1)
451	The equilibrium constant for this reaction can be obtained either through the	ne direct study of the
452	reaction, or indirectly through the study of a reaction of the electron with a	protonated species.
453	coupled with the protonation constant for that species.	
454		
455	List of reports:	
456		
457	Forward reaction	
458		
459	Fielden & Hart, 1967 [1].	
460		
461	Solution contains 0.7 mM H ₂	
462		
463	$k_{\rm f} = 890 \text{ s}^{-1}$ $E_{\rm a} = 28 \pm 3 \text{ kJ mol}^{-1} (6.7 \pm 0.7 \text{ kcal mol}^{-1})$	
464		
465		
466	Swallow, 1968 [2].	
467		
468	$k_{\rm f} = (1.2 \pm 0.3) \times 10^3 {\rm s}^{-1}$ (room temperature)	
469		
470	Pulse radiolysis of a solution containing $Ba(HO)_2$ and formate, at pH ~ 11.	Hydrated electron
471	decay monitored by absorption spectrophotometry. Rate constant determin	ed by extrapolation to
472	zero $[HCO_2^-]$, not corrected for the reaction of e^{aq} with H_2O_2 .	
473		
4/4	Schwarz, 1992 [3].	
4/5	Dulas redictoria of IL seturated water and in descripted formate solutions	fallowing the antical
4/0	Pulse radiolysis of H_2 -saturated water and in deaerated formate solutions, I	tonowing the optical
4//	absorption of the hydrated electron.	
470 470	1 Results extrapolated to $[e^-] = 0$ to remove second-order effects. Conditional conditions are associated as the second order effects.	tions: Ha-saturated
480	horate-buffered water nH 8 27.	.10115. 112-Saturatou,
100	oorate ourrered water, pri 6.27.	

481	
482	$k_{\rm f} = 1050 \text{ s}^{-1}$ $E_{\rm a} = 30.7 \text{ kJ mol}^{-1} (7.33 \text{ kcal mol}^{-1})$
483	
484	Values in any solution were reproducible to $\pm 5\%$; between solutions: $\pm 10\%$.
485	
486	2. Results extrapolated to $[e_{aq}] = 0$, to remove second-order effects. Conditions: de-aerated,
487	borate-buffered formate solution, pH 9.16. Corrected for the reaction of e_{aq}^{-} with $C_2O_4^{2-}$, H_2O_2
488	and H ⁺ , and for the reaction of H [•] with HO ⁻ and with HCO ₂ ⁻ .
489	
490	$k_{\rm f} = 1040 \text{ s}^{-1}$ $E_{\rm a} = 31.7 \text{ kJ mol}^{-1} (7.57 \text{ kcal mol}^{-1})$
491	
492	The calculation of the rate constant involves an explicit correction for the reaction of e_{aq} with
493	H ₂ O ₂ . These studies were more reproducible than those above, but no specific error limit was
494	proposed.
495	
496	
497	Reverse reaction
498	
499	Matheson & Rabani, 1965 [4].
500	
501	$k_{\rm r} = (1.8 \pm 0.6) \ge 10^7 \ {\rm M}^{-1} \ {\rm s}^{-1}$
502	
503	Pulse radiolysis and optical absorption on solutions in the pH range 7-14 with up to 10.1 MPa
504	$(100 \text{ atm}) \text{ H}_2$
505	
506	
507	Hickel and Senested, 1985 [5].
508	Formation of chaomhon on from of in U. activities a clustice of from 0.01 MDs to 10.1 MDs (00
510	Formation of absorbance from e_{aq} in H ₂ -saturated solutions from 9.01 MPa to 10.1 MPa (90 – 100 stm); pH 11.7 and 12, $t = (15 - 60)$ %C
510	100 atm), pH 11.7 and 12. $l = (13 - 60)^{12}$ C.
512	Activation parameters: $AH^{\dagger} = 23.8 \pm 2.5 \text{ kJ} \text{ mol}^{-1} (5.7 \pm 0.6 \text{ kcal mol}^{-1})$ and $AS^{\dagger} = -25 \pm 8 \text{ kJ} K^{-1}$
512	Activation parameters. $\Delta H = 25.6 \pm 2.5$ KJ mol $(5.7 \pm 0.0$ Kear mol -25 ± 6 KJ K mol ⁻¹ (-6 + 2 cal K ⁻¹ mol ⁻¹) reported
514	nor (0±2 curix mor) reported.
515	From these $\Lambda G^{\ddagger} = 31.4 \text{ kJ mol}^{-1}$ (7.5 kcal mol}^{-1}) and $k_{r} = 2.0 \times 10^{7} \text{ M}^{-1} \text{ s}^{-1}$ at 298 K. But Figure
516	4 [5] suggests that $k_f = 2.9 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$. Total error estimate: < 20%

517	
518	
519	Buxton <i>et al.</i> , 1988 [6].
520	
521	$k_{\rm r} = 2.2 \times 10^7 {\rm M}^{-1} {\rm s}^{-1}$ (selected value in compilation)
522	
523	
524	Han and Bartels, 1992 [7].
525	
526	Pulse radiolysis of aqueous solutions containing 0.1 mol L ⁻¹ <i>t</i> -BuOH (EPR experiments) or 0.01
527	mol L^{-1} Na ₂ SO ₃ (optical experiments).
528	
529	Both optical and EPR free induction decay (FID) were utilized to follow e ⁻ _{aq} decay after pulse
530	radiolysis. Optical weighted at half of FID results. Na ₂ SO ₃ added to remove O ₂ and H ₂ O ₂ . $T =$
531	(280 - 370) K. These values supplant earlier ones from the same laboratory.
532	
533	$k_{\rm r} = (2.51 \pm 0.44) \times 10^7 {\rm M}^{-1} {\rm s}^{-1}$
534	$A = (1.33 \pm 0.16) \times 10^{14} \text{ M}^{-1} \text{ s}^{-1}; E_a = 38.38 \pm 0.31 \text{ kJ mol}^{-1}$
535	
536	
537	Marin, et al. 2005 [8].
538	
539	Optical spectrophotometry used to follow e ⁻ aq decay after pulse radiolysis of hydrogenated
540	solutions at 25.0 MPa over the temperature range (100 to 300) °C. At 100 °C, the results were in
541	good agreement with the earlier study from the same laboratory [5]. At the higher temperatures,
542	the activation energy decreased to $25.4 \pm 0.8 \text{ kJ mol}^{-1}$.
543	
544	Renault, et al. 2008 [9].
545	
546	A Density Functional, first-principles based molecular dynamics study of the fundamental
547	mechanism of the reaction. The relatively low rate constant for the reaction is explained by the
548	complexity of the mechanism, which involves proton transfers in the coordination sphere to the
549	hydroxide ion and by diffusion of the hydrogen atom within its cavity. No quantitative results are
550	given.
551	
552	

553	Chemical equilibrium: $e_{aq}^- + NH_4^+ \Rightarrow H^{\bullet} + NH_3$	(1.1.2)
554		
555	List of reports:	
556		
557	Schwarz, 1991 [10].	
558		
559	From measurements of the initial absorbance and the absorbance at equilibrium:	
560		
561	$K_{1.1.2} = 2.23$ corrected to zero ionic strength, thus $\Delta_r G^o = -1.99$ kJ mol ⁻¹	
562		
563	$t = (4 - 87) ^{\circ}\mathrm{C}$	
564		
565	$\Delta H^{\circ} = -8.4 \pm 0.8 \text{ kJ mol}^{-1}$; $\Delta S^{\circ} = -21 \pm 2 \text{ J K}^{-1} \text{ mol}^{-1}$ and $\Delta C_{p}^{\circ} = 159 \pm 42 \text{ J K}^{-1}$	mol ⁻¹ where the
566	reported error limits include the standard deviations from the fit and possible syst	ematic errors in
567	the correction required to derive the fraction of electrons in the $H^{\bullet} + e^{-}_{aq}$ pool. The	ese
568	uncertainties indicate a range of $\Delta_r G^o$ from (-0.7 to -3.5) kJ mol ⁻¹ and thus a range	$ge in K_{1.1.2}$ at
569	298 K of 4.2 to 1.3.	
570		
571	$k_{\rm f} = 1.5 \times 10^6 {\rm M}^{-1} {\rm s}^{-1}$ (measured)	
572		
573	$k_{\rm r} = 6.7 \times 10^5 \mathrm{M}^{-1} \mathrm{s}^{-1}$ (calculated from $K_{\rm eq}$)	
574		
575		
576	Chen <i>et al.</i> , 1994 [11].	
577		
578	From a study of the solvent effect on the reactivity of the solvated electron, rate c	onstants were
579	measured over the range $(280 - 370)$ K.	
580		
581	$k_{\rm f} = 1.5 \times 10^6 {\rm M}^{-1}{\rm s}^{-1}$ $E_{\rm a} = 20 {\rm kJ} {\rm mol}^{-1}$ at 298 K	
582		
583	Shiraishi et al., 1994 [12].	
584		
585	Pulse radiolysis of solutions containing ~0.1 mol L^{-1} NH ₄ ⁺ .	
586		
587	$K_{1.1.2} = 2.12$ at 298K (from plot), so: $\Delta_r G^o = -1.86$ kJ mol ⁻¹	
588	$\Delta_{\rm r} G^{\rm o} = -0.47 \pm 0.04 \text{ kcal mol}^{-1} = -1.97 \pm 0.17 \text{ kJ mol}^{-1}$ reported in the pa	per, however.

589 590 A complex analysis due, in part, to an impurity problem, results in a complicated equation that 591 was "examined by a curve-fitting method". t = (25 - 250) °C 592 593 Discussion 594 595 The results of Han and Bartels [7] for the reverse reaction (-1.1.1) and of Schwarz [3] for the 596 forward reaction (1.1.1) are in very good agreement with the earlier published values. In both 597 cases, however, they represent significant improvements to reduce uncertainties and ensure 598 accurate values. Thus, these are the preferred values for these rate constants. 599 600 From the forward and reverse rate constants at 298 K, we obtain the equilibrium constant for the 601 reaction: 602 603 $e^{-}_{aq} + H_2O \Rightarrow H^{\bullet} + OH^{-}$ (1.1.1)604 Thus, $K_{1,1,1} = k_{\rm f}/k_{\rm r} = 1040 \text{ s}^{-1}/2.51 \times 10^7 \text{ L mol}^{-1} \text{ s}^{-1} = (4.1 \pm 0.8) \times 10^{-5} \text{ mol } \text{L}^{-1}$. The estimated 605 uncertainty, 20%, is based on the combined estimated uncertainties of 10% for $k_{\rm f}$ and 17.5% for 606 607 kr. 608 For the indirect determination of this value, the equilibrium constant reported by Schwarz 609 [10] is preferred, $K_{1,1,2} = 2.23$ corrected to zero ionic strength. It is substantiated by the somewhat 610 less certain study of Shiraishi, et al. [12] and by the kinetic result of Chen, et al. [11] on the 611 forward rate constant. An examination of the results and the good agreement with the other 612 measured value, suggest an uncertainty range of no more than ± 0.5 . for reaction 1.1.2 613 614 $K_{112} = 2.2 \pm 0.5$ (1.1.2)615 616 Combination with the ionization constant for aqueous ammonia: 617 $NH_3 + H_2O \Rightarrow NH_4^+ + OH^ K_i = (1.77 \pm 0.03) \times 10^{-5}$ at 298 K [13] 618 619 620 leads to the equilibrium constant for reaction (1.1.1)621 $K_{1,1,1} = K_1 \times K_{1,1,2} = (3.95 \pm 0.53) \times 10^{-5} \text{ mol } \text{L}^{-1}$ 622 623

624 The values derived for $K_{1,1,1}$ are quite close. Thus, we simply average to get $K_{1,1,1} = (4.0 \pm$ 0.5 × 10⁻⁵ mol L⁻¹ as the recommended value and $\Delta_r G(1.1.1) = +(25.1 \pm 0.3)$ kJ mol⁻¹. 625 626 627 The value for the Gibbs energy change associated with this reaction can be converted to the 628 standard potential of the electron by making use of the solubility of the hydrogen atom: 629 $\Delta_r G(1.1.1) = +25.1 \pm 0.3 \text{ kJ mol}^{-1}$ $e_{aq}^{-} + H_2O \Rightarrow H^{\bullet}(aq) + OH^{-}$ 630 631 632 $\Delta_{\text{solv}}G^{\text{o}} = -19.99 \pm 2.22 \text{ kJ mol}^{-1}$ (see Data Sheet $H^{\bullet}(aq) \rightleftharpoons H^{\bullet}(g)$ 633 1.3) 634 635 $\Delta_{\rm r} G^{\rm o} = -203.278 \text{ kJ mol}^{-1} [14]$ $H^{\bullet}(g) \rightleftharpoons \frac{1}{2} H_2(g)$ 636 $\Delta_{\rm r} G^{\rm o} = -79.89 \text{ kJ mol}^{-1} \text{ (from } K_{\rm i} = 1.008 \times 10^{-14} \text{)}$ 637 $H^+ + OH^- \Rightarrow H_2O$ 638 $e_{aq}^- + H^+ \Rightarrow \frac{1}{2} H_2(g)$ $\Delta_r G^o = -278.1 \pm 2.2 \text{ kJ mol}^{-1} E^o = -(2.88 \pm 0.02) \text{ V}$ 639 640 641 Correspondingly, $\Delta_{\rm f}G^{\circ} = 278 \pm 3 \text{ kJ mol}^{-1}$ for $e_{\rm ac}$. 642 $\Delta_{\rm f}G^\circ = 223 \pm 3 \text{ kJ mol}^{-1}$ for H[•](aq). 643 644 645 **1.2** p*K*_a of H[•] 646 **Chemical equilibrium:** $H^{\bullet} \Rightarrow e^{-}_{aq} + H^{+}$ 647 (1.2)648 649 650 List of reports: 651 652 Forward reaction 653 654 Alcorn et al. 2014 [15]. 655 656 Reaction of muonium with water studied from 200 °C to 425 °C as a surrogate for the hydrogen 657 atom. DFT calculations augmented with single-point MP4 energy calculations, were used to model the reaction, particularly the abstraction channel, $H^{\bullet} + H_2O \Rightarrow H_2 + {}^{\bullet}OH$. These were 658

```
659
        combined with higher-level calculations on H_3O^{\bullet}(H_2O)_n clusters. These clusters were found to
660
        be charge-separated species, corresponding to the products of reaction (1.2), separated by some
        number of water molecules. Reaction 1.2, then, can be considered the reaction of H<sup>•</sup> with an
661
        exterior water molecule to form H<sub>3</sub>O<sup>•</sup>, which can either rapidly dissociate back to a hydrogen
662
663
        atom and a water molecule, or ionize to an electron and a hydronium ion. (The work of
        Sobolweski ea al.2002a,b [16a,b] is cited, but see also Uhlig et al. 2011 [17] and Chulkov et al.
664
665
        2009 [18].)
666
        From this analysis, Alcorn et al. concluded that the abstraction reaction only became significant
667
668
        at 190 °C, where it made up 10% of the reaction. Below that, the reaction leading to the solvated
669
        proton and electron becomes more and more dominant.
670
671
672
        Reverse reaction
673
674
        Buxton et al., 1988 [6].
675
676
        Review of the literature.
677
               k_{\rm r} = 2.3 \times 10^{10} \,{\rm M}^{-1} \,{\rm s}^{-1} (selected value)
678
679
680
681
        Elliot et al., 1990 [19].
682
683
        Pulse radiolysis measurement of the decay of the absorption due to the hydrated electron in the
        presence of perchloric acid. The activation energy is about the same as that for diffusion, but the
684
685
        observed rate constant is about five times lower. T = 20 - 200 °C.
686
                k_{\rm r} = 2.3 \times 10^{10} \,{\rm M}^{-1} \,{\rm s}^{-1}
687
               E_{\rm a} = 14.5 \text{ kJ mol}^{-1}
688
689
690
691
        Chen et al., 1994 [11].
692
```

Pulse radiolysis measurement of the decay of the absorption due to the hydrated electron in the presence of $1 - 7 \times 10^{-5}$ mol L⁻¹ perchloric acid. Measurements were made in isobutanol/water solutions that containined 0 - 100% water. $k_{\rm r} = 2.4 \times 10^{10} \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}$ $E_{\rm a} = 12 \text{ kJ mol}^{-1}$ Wu et al., 2002 [20]. Contains a graphical presentation over the temperature range $25^{\circ} - 400^{\circ}$ C of $k_{\rm r}$, the reaction of e_{aq}^{-} with H⁺; the results are in good agreement with those of Shiraishi *et al.* [11]. Relative to e_{aq}^{-} + benzophenone. $k_{\rm r} = 2.3 \times 10^{10} \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}$ Shiraishi et al., 1994 [12]. Value taken from graph. $E_a = 11 \text{ kJ/mol}$ at 298 – 373 K (linear part of curved plot, Fig. 8). The forward rate constant, $k_{\rm f}$, is too small to be measured at 25 °C, according to Shiraishi et *al.* These authors give only *K* derived from the equilibrium $e_{aq}^- + NH_4^+ \Rightarrow H^{\bullet} + NH_3$ below 392 K: $pK_a = 9.59 \pm 0.03$ at 298 K, thus $K_{1,2} = (2.6 \pm 0.2) \times 10^{-10} \text{ mol kg}^{-1}$. Stevenson et al., 1991 [21]. Hovath et al., 1992 [22]. $k_{\rm T} = 1.3$ to 0.6×10^{10} L mol⁻¹ s⁻¹ for $\mu = 0.5$ to 5 mol L⁻¹ These data were obtained from a flash photolysis study; there is good agreement with other works when corrected for ionic strength.

729	Marsalek et al, 2010 [23]; Uhlig et al. 2011 [17]; Uhlig & Jungwirth 2013 [24].	
730		
731	The reverse reaction was subjected to an ab initio – molecular dynamics study in a c	luster of 32
732	water molecules. The results indicate that the reacion involves proton transfer, not el	lectron
733	transfer. The fact that the reaction is significantly slower than diffusion controlled is	ascribed to
734	the energy required for desolvation of the two charge species. No evidence for the in	ntermediate
735	formation of H_3O^{\bullet} was found. It was also determined that when starting the calculation	ion with
736	H ₃ O•, solvent-separated ions were formed with as few as three water molecules.	
737		
/38	Discussion	
739	Equilibrium 1.2 has only been observed above 100 °C [11]. Values at room temperat	tura aan ha
740	epitoinad from Pagation 1.1.1:	ture can be
741		
742	$e^- + H_2 \Omega \implies H^{\bullet} + \Omega H^- \tag{1}$	(11)
744	$c_{aq} + H_2 o \leftarrow H_1 + O H_1$)
745	by $K_{1,2} = K_w/K_{1,1,1}$ with $K_w = 10^{-14} \text{ M}^2$	
746	$G_{1,2}$ M_{W} $M_{1,1,1}$, M_{W} M_{W} M_{W} M_{W}	
747	With $K_{1,1,1} = (4.04 \pm 0.5) \times 10^{-5}$ mol L ⁻¹ , this leads to $K_{1,2} = (2.48 \pm 0.24) \times 10^{-10}$ mol	ol L ⁻¹ and
748	$\Delta_{\rm r} G^{\rm o} = 54.8 \pm 0.3 \text{ kJ mol}^{-1}.$	
749		
750		
751	1.3 Gibbs energy of solvation of H •	
752		
753	List of reports:	
754		
755	Chemical equilibrium: $H^{\bullet}(g) \Rightarrow H^{\bullet}(aq)$ (1)	1.3.1)
756		
757	There are no actual experimental determinations of the Henry's Law constant for the	e hydrogen
758	atom, which would lead to the Gibbs energy of the hydrogen atom in water. This qua	antity has
759	been estimated by comparison with the solubility of other gases - primarily He, due	to the
760	similarity in size, and H ₂ . Parker [25a,b] has expanded upon the first approach by po	ointing out
761	that the Δ_{solv} values for the rare gases are correlated with their Van der Waals radii.	On the other
762	hand, RodunGer and Bartels [26a,b] have argued that H ₂ is a much better surrogate the	for H• due to
763	their similar polarizability values.	
764		

- 765 *Rare gas solubility*
- The first question that arises is what set of Van der Waals radii to use for the rare gases and for
- the hydrogen atom. Zefirov [27] has argued that a consistent set of radii must be taken from a
- single experimental approach, for example crystallography, and not mixed with other
- approaches, like equilibrium and gas-kinetic. Crystallographic values for the rare gases have
- been reviewed recently [28], leading to a set showing a very good linear trend of radii with
- atomic number (a quadratic fit is even better). This same general trend is shown in other data
- sets, but the correlation in this set is much better.
- 773
- For the hydrogen atom, the radii from 15 data sets in the literature were averaged to yield a value
- of (114 ± 6) pm in this recent review [28]. Other, non-crystallographic values not included are
- (100 ± 10) pm from an extrapolation to zero dipole moment in hydrogen halides [29] and 92 pm
- from an analysis of the hyperfine coupling by EPR spectroscopy [30].
- 778
- Taking the rare gas radii from Hu, *et al.* [28] and solubility Gibbs energies from the IUPAC
- Solubility Data Series [31-34], along with a radius value of 114 pm for H[•], we derive $\Delta_{solv}G =$
- 781 (22.18 \pm 0.84) kJ mol⁻¹ for standard states of one bar and one mol L⁻¹, where the error limit is
- the standard error in the intercept, taking 114 pm as the origin. With H[•] radii of 120 pm and 108
- pm, we obtain (21.57 and 22.80) kJ mol⁻¹, respectively. For comparison, if we use a recent
- analysis of Van der Waals radii based on gas-phase structural data, [35] we obtain $\Delta_{solv}G = 21.99$ kJ mol⁻¹.
- 786
- 787 H_2 solubility
- If we assume the solubility of H_2 as a surrogate for that of H^{\bullet} due to the similar polarizability values, the calculation is straightforward. Taking the solubility from the IUPAC Solubility Data
- 790 Series, [36] we obtain $\Delta_{solv}G = (17.74 \pm 0.09)$ kJ mol⁻¹, for standard states of one bar and one
- mol L^{-1} . The error limit is from the reported standard deviation of the solubility fit.
- 792

793 *Difference in rate constants*

- There is an alternate, somewhat more complicated, method for estimating the solubility of H[•](g)
- and thus the Gibbs energy of H•(aq) introduced by Roduner and Bartels [26a,b]. This approach
- compares the rate constant for a reaction in the gas phase with its rate constant in solution. The
- reaction must have the same mechanism in both phases; an electron transfer reaction would be
- ruled out, for example, as the reaction would not take place that way in the gas phase. Also the
- rate constant should not be too close to the diffusion rate constant in either phase. The approach

800 makes use of the well-known thermodynamic formulation of transition-state theory, which gives 801 for the rate constant for a bimolecular reaction

802

803 $k = \mathbf{Q} \cdot T \cdot \exp(-\Delta G^{\#}/\mathbf{R}T)$

804

805 where Q is the ratio of the Boltzman constant to Planck's constant and $\Delta G^{\#}$ is the Gibbs energy 806 of activation, that is the Gibbs energy change in going from the reactants to the transition state. 807 The ratio of the rate constant in the aqueous phase, k(aq), and that in that in the gas phase, k(g), is 808 then simply

809

810 $k(aq)/k(g) = exp([-\Delta_{solv}G(TS) + \Delta_{solv}G(C_6H_6) + \Delta_{solv}G(H^{\bullet})]/RT)$

811

The reaction of the hydrogen atom with benzene appears to be ideally suited for this purpose. In both phases, it has been studied by several groups with reasonable agreement. Taking the solution results of Roduner and Bartels [26a] and the gas results of Nicovich and Ravishankara [37], we obtain an enhancement of a factor of 40.

816

817 Solving the equation for the Gibbs energy of solvation of the hydrogen atom requires knowledge 818 of $\Delta_{solv}G$ for both benzene and the transition state. A recent determination of the Henry's Law 819 constant for benzene, $K_{\rm H} = C_{\rm ad}/C_{\rm g} = 4.44$, [38] is in good agreement with most previous measurements. This leads to $\Delta_{solv}G(C_6H_6) = -3.79$ kJ mol⁻¹. (We use dimensionless units for K_H 820 821 since the units used for the rate constants are the same in both phases and thus cancel.) The 822 addition of a hydrogen atom to benzene would be expected to reduce the solubility. For example, 823 for cyclohexene, $K_{\rm H} = 0.57$ [38]. A cyclohexadiene would probably be a good surrogate for the 824 transition state of the reaction. Unfortunately, there are no reported Henry's Law constants for 825 these, but the value for 1,4-cyclohexadiene (cyclohexa-1,4-diene) can be estimated from its 826 water solubility ((0.0117 mol L^{-1} [39]) and vapor pressure (0.089 atm [40]) to be 3.20. Thus, we estimate $\Delta_{solv}G(1,4-C) = \Delta_{solv}G(TS) = -2.88 \text{ kJ mol}^{-1}$. With the above equation, the Gibbs energy 827 828 of H[•](aq) is calculated to be $\Delta_{solv}G(H^{\bullet}) = 10.06 \text{ kJ mol}^{-1}$, if the standard states are the same in 829 both phases. Converting to the normal standard-state convention, one bar and one M^{-1} , this becomes $\Delta_{solv}G(H^{\bullet}) = 17.99 \text{ kJ mol}^{-1}$. 830

831

832 The uncertainty in the Gibbs energy value will arise from both the uncertainty in the enrichment

factor and the uncertainty in the Gibbs energy of the transition state. An uncertainty factor of

 $\pm 1.7 \text{ kJ mol}^{-1}$ would represent a doubling or halving the enhancement factor. This uncertainty

range is chosen because values for the gas phase rate constant for the reaction of the hydrogen

836 atom with benzene range from half to twice the value used here [41] and some question has been

- 837 raised about the possibility that the reaction is not at the high-pressure limit [42]. A more recent
- 838 laser photolysis study, however, supports the rate constant chosen here [43]. The value is
- 839 solution also is uncertain, having been reported as 50% lower than the value used here [44]. An
- 840 enhancement factor in this range is supported by studies on other reactions. From data taken
- 841 from databases [41,44], we find ratios of 43 (benzonitrile), 22 (naphthalene), 36 (toluene), 15
- 842 (chlorobenzene), 28 (nitrobenzene), 9.5 (aniline), and 27 (methoxybenzene). (None of these
- 843 molecules have been studied as thoroughly as benzene in either phase.) The uncertainty in the Gibbs energy of the transition state is at least 1 kJ mol⁻¹, the difference between the values for
- 845 benzene and cyclohexa-1,4-diene. Thus, we estimate:
- 846

847 $\Delta_{solv}G(H^{\bullet}) = +18.0 \pm 2.7 \text{ kJ mol}^{-1}.$

848

849 *Computational*

- 850 There has been a theoretical determination of the Helmholtz and Gibbs solvation energies of the
- 851 hydrogen atom employing path integral Monte Carlo methods that also should be considered.
- 852 [45] The procedure involved determining the equilibrium solvation in a cubic simulation cell of
- one solute and 108 water molecules. For the Gibbs energy, the value $\Delta_{solv}G = (21.44 \pm 1.46) \text{ kJ}$ 853
- 854 mol⁻¹ was obtained.
- 855

856 Discussion

- 857
- There are four values of the Gibbs energy of solvation to chose among: $\Delta_{solv}G = (17.77 \pm 0.09)$ 858 kJ mol⁻¹, from the solubility of H₂; $\Delta_{solv}G = (18.0 \pm 2.7)$ kJ mol⁻¹ from the reaction of H[•] with 859
- C₆H₆; $\Delta_{solv}G = (21.44 \pm 1.46)$ kJ mol⁻¹ from a theoretical calculation; and $\Delta_{solv}G = (22.21 \pm 0.84)$
- 860
- 861 kJ mol⁻¹ from the solubility of the rare gases.
- 862

863 The use of H₂ as a surrogate for H[•] is supported by the observation that the Gibbs energy of

- 864 solvation of a non-polar solute in water is proportional to its polarizability. Indeed, both the 865
- entropies and the enthalpies of solvation of the rare gases, along with H₂ and N₂ are smoothly 866 related to this parameter [46]. On the other hand, whereas O₂ is less polarizable than N₂, it is
- 867 twice as soluble [47]. This was due to the difference in solvation enthalpy and was ascribed to
- 868 the energy required for cavity formation, with the observation from theoretical analysis that the
- 869 interaction between N₂ and water was about twice that of O₂. It should be pointed out that the
- 870 difference in polarizability between N₂ and O₂ is only about 20%, while that between H[•] and He
- 871 is a factor of three [46].

873 The use of the Van der Waals radii of H[•] and the rare gases to derive a value for the solubility of 874 H[•] is based on the observation that the Gibbs energies of solvation of the rare gases are 875 correlated with the radii. The value obtained in this way is supported by the one theoretical 876 calculation addressing this matter. In addition, there have been a number of theoretical studies 877 which also may provide some insight into the solubility, even though they mostly deal with the 878 diffusion of H[•]. The diffusion coefficient of H[•] is surprisingly high [48], close to that of the 879 proton, H^+ , which has a mechanism for diffusion unavailable to the uncharged atom [49]. He 880 diffuses similarly rapidly, with H₂ and Ne a bit slower. The behavior of H[•] has been addressed in 881 molecular dynamics studies [49-52]. Pure water is characterized by hydrophobic cavities that are 882 spontaneously created and destroyed. These cavities have the right size to host a small solute 883 such as H[•]. The rapid diffusion arises from an exchange of water molecules, structural diffusion, 884 which is unlike the behavior of small hydrated cations which will travel with their hydration 885 shell attached [50]. Of particular interest is that H[•] does not seem to exhibit any particular 886 interactions with the solvent shell, except some repulsion. The hydrogen atom also participates in 887 some intercavity hopping, essentially tunneling, which also explains the even greater diffusion 888 coefficient of muonium [52].

889

890 The Gibbs energies of solution derived from the solubility of H_2 and from the rare gases

probably represent two extreme cases: one in which the solubility depends primarily on

interactions with the solvent, and one in which the size of the solute is the primary parameter.

893 The correct picture is probably somewhere in between. Thus, we have averaged these two values

and obtain (19.99 \pm 2.22) kJ mol⁻¹ where the uncertainty represents the range of the two values.

895 Of great importance is that this value is very close to that derived from the enhancement of the

rate constant for the addition to benzene in solution over that in the gas phase.

897

898 This value can be converted to the standard potential of H^{\bullet} by making use of the known enthalpy 899 of dissociation of H_2 in the gas phase and the defined Gibbs energy of the normal hydrogen 900 electrode, as follows:

9	0	1

 $H^{+}(aq) + e^{-} \Rightarrow \frac{1}{2} H_{2}(g)$ $\Delta_{r}G^{o} = 0$ $\frac{1}{2} H_{2}(g) \Rightarrow H^{\bullet}(g)$ $\Delta_{r}G^{o} = +203.278 \text{ kJ mol}^{-1} [14]$ $H^{\bullet}(g) \Rightarrow H^{\bullet}(aq)$ $\Delta_{solv}G^{o} = +19.99 \text{ kJ mol}^{-1}$ 905 $H^{+}(aq) + e^{-} \Rightarrow H^{\bullet}(aq)$ $\Delta_{r}G^{o} = +223.27 \text{ kJ mol}^{-1}, E^{o} = -2.31 \text{ V}$

907		
908	The C	Gibbs energy for the dissociation of H ₂ decreases as the temperature is raised; the Gibbs
909	energ	y of solution of $H^{\bullet}(g)$ increases. As a result, at least for $(0 - 70)$ °C, the standard potential
910	for H	(aq) is independent of temperature, based on this derivation.
911		
912	The ra	ange that arises from the two competing models for the Gibbs energy of solvation, ± 2.2 kJ
913	mol ⁻¹	, probably best represents the uncertainty in the standard potential or the Gibbs energy of
914	the hy	drogen atom. Thus, the recommended values are as follows:
915	-	
916	Reco	mmended values:
917		
918	$\Delta_{\rm solv}G$	$G = +20 \pm 2 \text{ kJ mol}^{-1}$
919	$E^{o} = -$	$-2.31 \pm 0.03 \text{ V}$
920	$K_{\rm h} = 0$	$0.313 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ MPa}^{-1} (3.1 \times 10^{-4} \text{ mol } \text{L}^{-1} \text{ atm}^{-1})$ with a range of $(0.131 - 0.778) \times 10^{-1}$
921	⁴ mol	L^{-1} MPa ⁻¹ {(1.3 - 7.7) × 10 ⁻⁴ mol L ⁻¹ atm ⁻¹ }.
922		
923		
924	Nomenclature	
925		
926	The recommended name of H• is hydrogen or, to avoid confusion, mono-hydrogen. There is no	
927	recom	nmended name for e_{aq}^{-} . HClO ₄ , hydroxidotrioxidochlorine; perchloric acid is accepted.
928		
929	Refer	ences
930	1	E. M. Eisldon, E. I. Hart, Turner, Ernerden, Soc. (2, 2075, 2082 (10(7))
931	1. 2	E. M. Fleiden, E. J. Hart. <i>Trans. Faraday Soc.</i> 63 , 2975-2982 (1967).
932	2. 2	A. J. Swallow. Photochem. Photobiol. 1, 683-694 (1968).
933	Э. 1	H. A. Schwarz, J. Phys. Chem. 96, 8937-8941 (1992).
934	4. 5	M. S. Matheson, J. Rabani. J. Phys. Chem. 09, 1524-1555 (1905).
933	5. 6	B. Hicker, J. Sellested. J. Phys. Chem. 89, 5271-5274 (1985).
930	0.	G. V. Buxton, C. L. Greenstock, W. P. Heiman, A. B. Koss. J. Phys. Chem. Rej. Data 17,
937	515-8 7	(1988). B Hen D M Bartela <i>L Bhug Cham</i> 96 (1902)
930	/. 0	 F. Hall, D. M. Baltels. J. Phys. Chem. 90, 4899-4900 (1992). T. W. Marin, C. D. Jonah, D. M. Partels, J. Phys. Chem. 4 100, 1842 1848 (2005).
939	0. 0	1. W. Malli, C. D. Johan, D. M. Baltels, J. Phys. Chem. A 109, 1845-1848 (2003). L. D. Donault, D. Wuilloumian, S. Dommorot, L. Dhug, Chem. A 112, 7027, 7024 (2008).
940 0/1	9. 10	J. F. Kenaun, K. Vunneumen, S. Fommeret, J. Phys. Chem. A 112, 7027-7034 (2008).
941 042	10.	 n. A. Schwarz, J. Phys. Chem. 35, 0097-0701 (1991). B. Chen, V. Avatinah, C. D. Example. Care. J. Chem. 72, 1082 (1004).
942	11.	K. Chen, T. Avounsn, G. K. Freeman. Can. J. Chem. 12, 1083-1093 (1994).

- 943 12. H. Shiraishi, G. R. Sunaryo, K. Ishigure. J. Phys. Chem. 98, 5164-5173 (1994).
- 944 13. A. J. Read. J. Solution. Chem. 11, 649-664 (1982).
- 945 14. M. W. Chase, J. Phys. Chem. Ref. Data, Monograph 9 (1998).
- 946 15. C. D. Alcorn, J. C. Brodovitch, P. W. Percival, M. Smith, K. Ghandi, K. Chem. Phys.
- 947 **435**, 29-39 (2014).
- 948 16a. A. I. Sobolewski, W. Domcek, J. Phys. Chem. A 106, 4158-4167 (2002).
- 949 16b. A. I. Sobolewski, W. Domcek, Phys. Chem. Chem. Phys. 4, 4-10 (2002).
- 950 17. F. Uhlig, O. Marsalek, P. Jungwirth, Phys. Chem. Chem. Phys. 13, 14003-14009 (2011).
- 951 18. S. K. Chulkov, N. F. Stepanov, N. F.Y. V. Novakovskaya, *Russ. J. Phys. Chem.* 83, 798952 808 (2009).
- 953 19. A. J. Elliot, D. R. McCracken, G. V. Buxton, N. D. Wood. J. Chem. Soc., Faraday Trans.
 954 86, 1539-1547 (1990).
- 955 20. G. Wu, Y. Katsumura, M. Lin, T. Morioka, Y. Muroya. Phys. Chem. Chem. Phys. 4,
- 956 3980-3988 (2002).
- 857 21. K. L. Stevenson, R. M. Berger, M. M. Grush, J. C. Stayanoff. J. Photochem. Photobiol.
 858 A:Chem. 60, 215-227 (1991).
- 959 22. A. Horváth, O. Horváth, K. L. Stevenson. J. Photochem. Photobiol. A:Chem. 68, 155-163
 960 (1992).
- 961 23. O. Marsalek, T. Frigato, J. VandeVondele, S. E. Bradforth, B. Schmidt, C. Schütte, P.
- 962 Jungwirth, J. Phys. Chem. B 114, 915-920 (2010).
- 963 24. F. Uhlig, P. Jungwirth, Z. Phys. Chem. 2013, 9-11 (2013).
- 964 25a. V. D. Parker. J. Am. Chem. Soc. 114, 7458-7462 (1992).
- 965 25b. V. D. Parker. Acta Chem. Scand. 46, 692-694 (1992).
- 966 26a. E. Roduner, D. M. Bartels. Ber. Bunsenges. physik. Chem. 96, 1037-1042 (1992);
- 967 26b E. Roduner, Rad. Phys. Chem. 72, 201-201 (2005).
- 968 27. Y. V. Zefirov Rus. J. Inorg. Chem. 2001, 46, 646-650.
- 969 28. S. Z. Hu, Z. H. Zhou, Z. X. Xie, B. E. Robertson Z. Kristallogr. 2014; 229: 517–523.
- 970 29. P. K. Mandal, E. Arunan J. Chem. Phys. 2001, 114, 3880-3882.
- 971 30. K. Nuzhdin, D. M. Bartels J. Chem. Phys. 2013, 138, 124503.
- 972 31. R. Battino. In Helium and Neon Gas Solubilities, (H. L. Clever, ed.), IUPAC. Solubility
- 973 Data Series, Vol. 1, p. 1-5. Pergamon Press, Oxford (1979).
- 974 32. R. Battino. In Helium and Neon Gas Solubilities, (H. L. Clever, ed.), IUPAC. Solubility
- 975 Data Series. Vol. 1, p. 124-126. Pergamon, Oxford (1979).
- 976 33. R. Battino. In Argon, (H. L. Clever, ed.), IUPAC. Solubility Data Series, Vol. 4, p. 1-3.
- 977 Pergamon Press, Oxford (1980).

- 978 34. R. Battino. In Kypton, Xenon and Radon Gas Solubilities, (H. L. Clever, ed.), IUPAC.
- 979 Solubility Data Series, Vol. 2, p. 1-3. Pergamon Press, Oxford (1979).
- 980 35. J. Vogt, S. Alvarez Inorg. Chem. 2014, 53, 9260-9266.
- 981 36. R. Battino and E. Wilhelm. In *Hydrogen and Deuterium*, (C. L. Young, ed.), IUPAC.
- 982 Solubility Data Series, Vol. 5/6, p. 1-3. Pergamon Press, Oxford (1981).
- 983 37. J. M. Nicovich, A. R. Ravishankara. J. Phys. Chem. 88, 2534-2541 (1984).
- 984 38. A. M. Bakierowska, J. Trzeszczynski. *Fluid Phase Eq.* **213**, 139-146 (2003).
- 985 39. A. Maczynski, D. G. Shaw. J. Phys. Chem. Ref. Data 34, 657-708 (2005).
- 986 40. T. M. Letcher, F. Marsicano. J. Chem. Thermodynamicdyn. 6, 509-514 (1974).
- 987 41. NIST Chemical Kinetics Database, Standard Reference Database 17, Version 7.0,
- 988 Release 1.4.3 <u>http://kinetics.nist.gov/kinetics/index.jsp</u>. 2009. National Institute of Standards
- and Technology.
- 990 42. A. M. Mebel, M. C. Lin, T. Yu, K. Morokuma. J. Phys. Chem. A 101, 3189-3196 (1997).
- 43. Y. Gao, N. J. DeYonker, E. C. Garret III, A. K. Wilson, T. R. Cundari, P. Marshall. J.
- 992 Phys. Chem. A 113, 6955-6963 (2009).
- 993 44. NDRL/NIST Solution kinetics database on the web. NIST standard reference database
- 40. A compilation of kinetics data on solution-phase reactions.
- 995 <u>http://kinetics.nist.gov/solution/</u>. <u>http://kinetics.nist.gov/solution/</u>. 2002. National Institute of
 996 Standards and Technology.
- 997 45. H. Gai, B. C. Garrett, J. Phys. Chem. 98, 9642-9648 (1994).
- 998 46. E. Roduner, *Rad. Phys. Chem.* **72**, 201-206 (2005).
- 999 47. R. Battino, P. Seybold. J. Chem. Eng. Data 56, 5036-5044 (2011).
- 1000 48. V. A. Benderskii, A. G. Krivenko Russ. J. Electrochem. 32 663-669 (1996).
- 1001 49. A. Pomogaeva, D. M. Chipman J. Phys. Chem. B 117, 16530-16541 (2013).
- 1002 50. B. Kirchner, J. Stubbs, D. Marx Phys. Rev. Lett. 89, 215901 (2002)
- 1003 51. J. P. Renault, R. Vuilleumier, S. Pommeret J. Phys. Chem. A 112, 7027-7034 (2008).
- 1004 52. T. E. Markland, S. Habershon, D. E. Manolopoulos J. Chem. Phys. 128, 194506 (2008).
- 1005

1006 **1.4 Hydration Gibbs energies for the electron and the proton**

1007

1008The electrode potential of the electron is connected to well-known gas-phase dissociation and1009photoionization values through the hydration Gibbs energies of the electron and the proton.

- 1010
- 1011 $\frac{1}{2}$ H₂(g) \Rightarrow H•(g) $\Delta_r G^\circ = +203.278$ kJ mol⁻¹ [1]1012H•(g) \Rightarrow e⁻(g) + H⁺(g) $\Delta_r G^\circ = +1310.075$ kJ mol⁻¹ [2]1013H⁺(g) \Rightarrow H⁺(aq) $\Delta_r G^\circ = X$
 - 35

4 5	$e^{-}(g) \rightleftharpoons e^{-}(aq) \qquad \Delta_{r}G^{\circ} = Y$
6	
7	$e^{-}(aq) + H^{+}(aq) \Rightarrow \frac{1}{2} H_2(g)$ $\Delta_r G^{\circ} = -278.1 \text{ kJ mol}^{-1} E^{\circ} = -2.88 \text{ V}$
	(from section 1.1. of Data Sheet 1)
	·
	From these equations, $X + Y = -1235.2 \text{ kJ mol}^{-1}$ for a standard state of 1 bar in the gas phase
	and I mol L^{-1} in solution. High-level solvent-induced electronic structure calculations by Zhan
	& Dixon have resulted in values of $X = -109/.9$ kJ mol ⁻¹ [3] and $Y = -140.6$ kJ mol ⁻¹ [4] which
	yields $X + Y = -1238.5$ kJ mol ⁻⁷ , in excellent agreement. Note that X and Y refer to reactions
	that violate charge conservation in the individual phases and, hence, the X and Y values are
	absolute Tather than conventional thermodynamicchemical quantities.
	Unfortunately, even though there has been a great deal of interest in the value of the hydration
	energy of the proton its value is still contentious [5-17] Bryantsey <i>et al</i> [18] argue that the
	Zhan & Dixon [3] calculation for the proton should have included concentration corrections for
	the water clusters. This would lower their value by about -5.4 kJ mol^{-1} . It is not clear what
	iMPact this correction would have on the electron hydration energy.
	The value for the proton hydration Gibbs energy obtained from an analysis of cluster-ion
	solvation data is $\Delta_r G^\circ = -1104.5$ kJ mol ⁻¹ [19]. This value has been widly accepted. A more
	recient cluster correlation method has led to a "best" value of $\Delta_r G^\circ = -1102.1 \text{ kJ mol}^{-1}$, even
	closer to the theoretical value [20]. This more recient cluster correlation value for the proton
	hydration Gibbs energy [20] leads to a value for the hydration Gibbs energy of the electron of
	$\Delta_r G^\circ = -136.4 \text{ kJ mol}^{-1}$. This is about 4.2 kJ mol ⁻¹ higher than the theoretical value, without
	including any concentration corrections for clusters. That correction, applied only to the
	calculation for the proton, suggests an agreement to within 1.2 kJ mol ⁻¹ .
	Thus, the sum of the electron and proton hydration Gibbs energies, X + Y, that results from
	theoretical and experimental studies is very close to the sum derived from the hydration Gibbs
	energies recommended here. This clearly supports the electrode potential for the hydrated
	electron recommended here, $E^{o} = -2.88$ V.
	References
- 1049 1. M. W. Chase, J. Phys. Chem. Ref. Data, Monograph 9 (1998).
- 1050 2. J. E. Bartmess. J. Phys. Chem. 98, 6420-6424, (1994).
- 1051 3. C. G. Zhan, D. A. Dixon. J. Phys. Chem. A. 105, 11534-11540, (2001).
- 1052 4. C. G. Zhan, D. A. Dixon. J. Phys. Chem. B 107, 4403-4417, (2003).
- 1053 5. J. Llano, L. A. Eriksson. J. Chem. Phys. 117, 10193, (2002).
- 1054 6. T. R. Tuttle, S. Malaxos, J. V. Coe. J. Phys. Chem. A. 106, 925-932, (2002).
- 1055 7. M. W. Palascak, G. C. Shields. J. Phys. Chem. A. 108, 3692-3694, (2004).
- 1056 8. D. M. Camaioni, C. A. Schwerdtfeger. J. Phys. Chem. A. 109, 10795-10797, (2005).
- 1057 9. J. Llano, L. A. Eriksson. J. Chem. Phys. 122, 087104, (2005).
- 1058 10. A. L. Rockwood. J. Chem. Phys. 122, 087103, (2005).
- 1059 11. C. P. Kelly, C. J. Cramer, D. G. Truhlar. J. Phys. Chem. B 110, 16066-16081, (2006).
- 1060 12. C. A. Kelly, C. J. Cramer, D. G. Truhlar. J. Phys. Chem. B 111, 408-422, (2007).
- 1061 13. W. A. Donald, R. D. Leib, J. T. O'Brien, M. F. Bush, E. R. Williams. J. Am. Chem. Soc.
 1062 130, 3371-3381, (2008).
- 1063 14. W. R. Fawcett. *Langmuir* **24**, 9868-9875, (2008).
- 1064 15. W. A. Donald, R. D. Leib, J. T. O'Brien, E. R. Williams. *Chemistry A European* 1065 *Journal* 15, 5926-5934, (2009).
- 1066 16. A. A. Isse, A. Gennaro. J. Phys. Chem. B 114, 7894-7899, (2010).
- 1067 17. M. M. Reif, P. H. Hünenberger. J. Chem. Phys. 134, 144104, (2011).
- 1068 18. V. S. Bryantsev, M. S. Diallo, W. A. Goddard. J. Phys. Chem. B 112, 9709-9719,
 1069 (2008).
- 1070 19. M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J.
 1071 V. Coe, T. R. Tuttle. *J. Phys. Chem. A.* 102, 7787-7794, (1998).
- 1072 20. W. A. Donald, E. R. Williams. J. Phys. Chem. B 114, 13189-13200, (2010).

- 1074
- 1075

1076	Data Sheet 2
1077	
1078	<i>E</i> °(O/O•–)
1079	
1080	List of reports:
1081	
1082	No direct determinations of this standard potential have been made.
1083	
1084	Henglein, 1980 [1].
1085	Henglein used $\Delta_f G^{\circ}(O^{\bullet-}) = +103 \text{ kJ mol}^{-1}$, an estimated $\Delta_s G^{\circ}(O)$ of $+10 \text{ kJ mol}^{-1}$, and $\Delta_f G^{\circ}(O)g$
1086	= +232 kJ mol ⁻¹ [2] and arrived at $E^{\circ}(O/O^{\bullet-})$ = +1.4 V.
1087	
1088	Stanbury, 1989 [3].
1089	Use of more recent values, $\Delta_f G^{\circ}(O^{\bullet-}) = +94 \text{ kJ mol}^{-1}$ and $\Delta_s G^{\circ}(O) = +19 \text{ kJ mol}^{-1}$ yielded
1090	$E^{\circ}(O/O^{\bullet-}) = +1.63 \text{ V}.$
1091	
1092	Discussion
1093	
1094	A Gibbs energy of formation of 251 kJ mol ⁻¹ has been estimated for $O(^{3}P)$ in water[3]. The
1095	standard potentials $E^{\circ}(O/O^{\bullet-})$ and $E^{\circ}(O, H^+/HO^{\bullet})$ are calculated from this value and $\Delta_f G^{\circ}(O^{\bullet-}) =$
1096	+(93.1 ± 1.7 kJ) mol ⁻¹ , which follows from $\Delta_f G^{\circ}(HO^{\bullet}) = +(26.3 \pm 1.7) \text{ kJ mol}^{-1}$ (Data Sheet 7),
1097	and a p K_a of (11.7±0.1) [4-12] (see Data Sheet 116 for a discussion of this p K_a).
1098	
1099	Recommended values:
1100	
1101	$E^{\circ}(O/O^{\bullet-}) = +(1.6 \pm 0.1) V$
1102	$E^{\circ}(O, H^+/HO^{\bullet}) = +(2.3 \pm 0.1) V$. The errors are conservative estimates.
1103	
1104	Nomenclature
1105	
1106	The recommended name of O is oxygen or, to avoid confusion, mono-oxygen, of $O^{\bullet-}$ oxide($\bullet 1-$)
1107	or oxidanidyl, that of HO \bullet is hydridooxygen(\bullet) or oxidanyl, while hydroxyl is allowed.
1108	Defense and
1109	Kelerences
1110	1 A Handlein Padiat Dhug Cham 15 151 157 (1080)
1111	1. A. Hengieni. Kaanan. Enys. Chem. 13, 131-137 (1960).

1112	2.	J. P. Hoare. In Standard Potentials in Aqueous Solution, (A. J. Bard, R. Parsons and J.
1113		Jordan, eds.), p. 49-66. Marcel Dekker, Inc., New York (1985).
1114	3.	D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).
1115	4.	J. Rabani, M. S. Matheson. J. Am. Chem. Soc. 86, 3175-3176 (1964).
1116	5.	J. Rabani, M. S. Matheson. J. Phys. Chem. 70, 761-769 (1966).
1117	6.	J. L. Weeks, J. Rabani. J. Phys. Chem. 70, 2100-2106 (1966).
1118	7.	J. H. Baxendale, M. D. Ward, P. Wardman. Trans. Faraday Soc. 67, 2532-2537 (1971).
1119	8.	F. Barat, L. Gilles, B. Hickel, B. Lesigne. J. Phys. Chem. 76, 302-307 (1972).
1120	9.	G. V. Buxton, N. D. Wood, S. Dyster. J. Chem. Soc. , Faraday Trans. 1 84, 1113-1121
1121		(1988).
1122	10.	A. J. Elliot, D. R. McCracken. Radiat. Phys. Chem. 33, 69-74 (1989).
1123	11.	B. Hickel, H. Corfitzen, K. Sehested. J. Phys. Chem. 100, 17186-17190 (1996).
1124	12.	G. A. Poskrebyshev, P. Neta, R. E. Huie. J. Phys. Chem. A 106, 11488-11491 (2002).
1125		
1126		
1127		

1128	Data Sheet 3
1129	
1130	$E^{\circ}(O_2/O_2^{\bullet-})$
1131	
1132	List of reports:
1133	
1134	Chemical equilibrium: $DQ + O_2^{\bullet-} \Rightarrow O_2 + DQ^{\bullet-}$ (3.1)
1135	DQ is duroquinone, 2,3,5,6-tetramethylbenzo-1,4-quinone.
1136	IUPAC PIN: 2,3,5,6-tetramethylcyclohexa-2,5-diene-1,4-dione
1137	
1138	Wood, 1974 [1].
1139	Review, value based on $E^{\circ}(DQ/DQ^{\bullet-}) = -0.25 \text{ V}$, calculated, and $K(3.1) = 2.3 \times 10^{-2} [2]$.
1140	$E^{\circ}(O_2/O_2^{\bullet-}) = -0.15 \text{ V or } -0.32 \text{ V} (pO_2 = 0.100 \text{ MPa})$
1141	
1142	Meisel and Czapski, 1975 [3].
1143	Based on $E^{\circ}(DQ/DQ^{\bullet-}) = -0.235$ V, calculated, and $K(3.1) = 4.6 \times 10^{-2}$, determined. Conditions:
1144	pH 7, $\mu = 25 \text{ mM} (5 \text{ mM phosphate and } 10 \text{ mM formate})$ or 15 mM (5 mM phosphate with 10
1145	mM 2-propanol as HO [•] scavenger), ambient temperature.
1146	$E^{\circ}(O_2/O_2^{\bullet-}) = -0.16 \text{ V or } -0.33 \text{ V} (pO_2 = 0.100 \text{ MPa})$
1147	
1148	Wardman, 1991 [4].
1149	Based on $E^{\circ}(DQ/DQ^{\bullet-}) = -264 \pm 5 \text{ mV}$, determined against a revised value for $E^{\circ}(MV^{2+}/MV^{\bullet+})$,
1150	-0.450 V, and the average of the two $K(3.1)$'s given above. MV ²⁺ is the 1,1'-dimethyl-4,4'-
1151	bipyridinium(2+) cation (paraquat). Conditions: pH 7.7, $\mu = 0.12$ M, $T = 296$ K.
1152	$E^{\circ}(O_2/O_2^{\bullet-}) = -(0.179 \pm 0.011) \text{ or } -(0.350 \pm 0.011) \text{ V} (pO_2 = 0.100 \text{ MPa})$
1153	
1154	
1155	Chemical equilibrium: $DMBQ + O_2^{\bullet-} \Rightarrow O_2 + DMBQ^{\bullet-}$ (3.2)
1156	DMBQ is 2,5-dimethylbenzo-1,4-quinone.
1157	IUPAC PIN: 2,5-dimethylcyclohexa-2,5-diene-1,4-dione
1158	
1159	Ilan, Meisel and Czapski, 1974 [5].
1160	$K(3.2) = 54$, determined at $\mu \approx 105$ mM, T not stated. $E^{\circ}(DMBQ/DMBQ^{\bullet-})$ is calculated from
1161	the energetics of the comproportionation reaction, $E^{\circ}(DMBQ/DMBQ^{2-})$ and the dissociation
1162	constants of DMBQH ₂ , DMBQH ⁻ and DMBQH [•] , but not explicitly stated. The authors conclude
1163	that $E^{\circ}(O_2/O_2^{\bullet-}) = -0.33 \text{ V} (pO_2 = 0.100 \text{ MPa}).$

1164 1165 Ilan, Czapski and Meisel, 1976 [6]. 1166 Based on $E^{\circ}(DMBQ/DMBQ^{-}) = -67 \text{ mV}$, calculated as described above, and K(3.2) values of 1167 56 and 53, based on equilibrium measurements, and K(3.2) = 37 based on the ratio of the forward 1168 and backward rate constants of Reaction 3.2. The latter value is considered less reliable by the authors. The error in $E^{\circ}(DMBQ/DMBQ^{\bullet-})$ is not given; we estimate 10 mV. 1169 1170 $E^{\circ}(O_2/O_2^{\bullet-}) = -(0.169 \pm 0.011)$ or $-(0.340 \pm 0.011)$ V (pO₂ = 0.100 MPa). The authors list -0.33 1171 V for $E^{\circ}(O_2/O_2^{\bullet-})$. 1172 1173 *Chemical equilibrium:* $MQ + O_2^{\bullet-} \Rightarrow O_2 + MQ^{\bullet-}$ 1174 (3.3)MO is menadione, 2-methylnaphtho-1,4-quinone 1175 IUPAC PIN: 2-methylcyclohexa-2,5-diene-1,4-dione 1176 1177 1178 Meisel and Czapski, 1975 [3]. 1179 Based on $E^{\circ}(MQ/MQ^{\bullet-}) = -0.203 \text{ V}$, determined against DQ, and K(3.3) = 0.16, determined. 1180 Conditions, see above. $E^{\circ}(O_2/O_2^{\bullet-}) = -0.16 \text{ V or } -0.33 \text{ V} (pO_2 = 0.100 \text{ MPa})$ 1181 1182 1183 1184 Chemical equilibrium: $IDS + O_2^{\bullet-} \Rightarrow O_2 + IDS^{\bullet-}$ (3.4)1185 IDS is indigodisulfonate, (E)-2,2'-bis(2,3-dihydro-3-oxoindolylidene)-5,5'-disulfonate IUPAC PIN: (E)-3,3'-dioxo-1,1',3,3'-tetrahydro-2,2'-bi(indolylidene)-5,5'-disulfonate 1186 1187 1188 Meisel and Czapski, 1975 [3]. Based on $E^{\circ}(IDS/IDS^{\bullet-}) = -0.247 \text{ V} [7]$, and $K(3.4) = 2.9 \times 10^{-2}$, determined. Conditions, see 1189 1190 above. 1191 $E^{\circ}(O_2/O_2^{\bullet-}) = -0.16 \text{ V or } -0.33 \text{ V } (pO_2 = 0.100 \text{ MPa}).$ 1192 1193 Chemical equilibrium: $BQ + O_2^{\bullet-} \Rightarrow O_2 + BQ^{\bullet-}$ 1194 (3.5)1195 BQ is benzo-1,4-quinone 1196 IUPAC PIN: cyclohexa-2,5-diene-1,4-dione 1197 1198 Sawada et al., 1975 [8].

Based on $E^{\circ}(BQ/BQ^{\bullet-}) = +0.10 \text{ V}.[9]$, k(forward) $9.8 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ [10] and k(backward) = $4.5 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ 1199 10^4 M⁻¹ s⁻¹, determined indirectly. Conditions: pH 5.0, 0.05 M acetate buffer, $\mu = 0.05$ M, and 1200 pH 7, 0.05 M phosphate buffer, $\mu = 0.13$ M, T = 298 K. 1201 1202 $E^{\circ}(O_2/O_2^{\bullet-}) = +0.10-0.257 = -0.16 \text{ V or } -0.33 \text{ V} (pO_2 = 0.100 \text{ MPa})$ 1203 1204 *Chemical equilibrium:* iron(III)cytochrome $c + O_2^{\bullet-} \Rightarrow \text{iron}(II)$ cytochrome $c + O_2$ 1205 (3.6)1206 1207 Sawada et al., 1975 [8]. Based on $E^{\circ}(\text{iron(III)-/iron(II)-cytochrome } c) = +0.255 \text{ V}, k(\text{forward}) = 2.5 \times 10^4 \text{ M}^{-1} \text{ s}^{-1} \text{ and}$ 1208 k(backward) = 0.03 M⁻¹ s⁻¹, estimated. Conditions: pH 7.0, (25 ± 2) °C, 0.05 M phosphate, μ = 1209 1210 0.13 M, T = 298 K. $E^{\circ}(O_2/O_2^{\bullet-}) = +0.255 - 0.35 = -0.095$ V or -0.27 V ($pO_2 = 0.100$ MPa). 1211 1212 1213 1214 Chemical equilibrium: 1215 $[Ru(NH_3)_{5}]$ isonicotinamide]³⁺ + $O_2^{\bullet-} \Rightarrow O_2 + [Ru(NH_3)_{5}]$ isonicotinamide]²⁺ 1216 (3.7)1217 Isonicotinamide (isn) is pyridine-4-carboxamide. 1218 1219 Stanbury *et al.*, 1980 [11], [12]. Based on $E^{\circ}([Ru(NH_3)_5isn]^{3+}/[Ru(NH_3)_5isn]^{2+}) = +0.387 \text{ V}, k(\text{forward}) = (2.2 \pm 0.2) \times 10^8 \text{ M}^{-1}$ 1220 s^{-1} and k(backward) = 1.08 × 10^{-1} M^{-1} s^{-1}, determined. Conditions: pH 4.5, T = (296 ± 2) K, 0.1 1221 1222 M NaHCO₂. $\mu = 0.1$ M. $E^{\circ}(O_2/O_2^{\bullet-}) = +0.387 - 0.551 = -0.164 \text{ V}, \text{ or } -0.335 \text{ V} (pO_2 = 0.100 \text{ MPa}).$ 1223 1224 1225 *Chemical equilibrium*: $TBQ + O_2^{\bullet-} \Rightarrow TBQ^{\bullet-} + O_2$ 1226 (3.8)1227 TBQ is 2-tert-butyl-1,4-benzosemiquinone 1228 IUPAC PIN: 2-tert-butyl-4-hydroxyphenoxyl or 3-tert-butyl-4-hydroxyphenoxyl 1229 1230 Dohrmann and Bergmann, 1995 [13]. Based on $E^{\circ}(\text{TBQ/TBQ}^{\bullet-}) = -(0.032 \pm 0.006) \text{ V}$, $k(\text{forward}) = (1.1 \pm 0.2) \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ and 1231 k(backward) = (1.6 ± 0.5) × 10⁶ M⁻¹ s⁻¹ (log K = 1.85 ± 0.1), determined by pulse radiolysis. 1232 Conditions: 22 °C and $\mu = 0.1$ M 1233 1234 $E^{\circ}(O_2/O_2^{\bullet-}) = -(0.140 \pm 0.012)$ V, or $-(0.31 \pm 0.01)$ V ($pO_2 = 0.100$ MPa).

1236 Discussion

1237

1238 Due to the high content of organic solvents, the concentration of dioxygen in the studies of Patel 1239 and Willson [2] is likely to be much higher than the 1.25 mM they assumed. Based on the 1240 literature [14] the concentration may have been twice as high. Indeed, we determined 2.01 mM 1241 O₂ in 6 M 2-propanol (Latal, Kissner, Koppenol, 2002, unpublished). This leads to a larger 1242 equilibrium constant, and the value determined by Meisel and Czapski[3] should be used. When 1243 combined with the revised value for the DQ/DQ^{•-} electrode potential from Wardman [4], one 1244 arrives at $-264 + 79 = -185 \text{ mV} (-357 \text{ mV}, pO_2 = 0.100 \text{ MPa}).$ 1245 The revised value of the electrode potential of DQ/DQ^{•-}, 29 mV more negative than that 1246 used by Meisel and Czapski [3], has consequences for the determination based on menadione. 1247 eq. 3.3. The corrected value for $E^{\circ}(O_2/O_2^{\bullet-})$ is -0.356 V (pO₂ = 0.100 MPa). A value of 0.078 V for $E^{\circ}(BQ/BQ^{\bullet-})$ has been recommended by Wardman [15]. Applied 1248 1249 to the determination based on eq. 3.5 by Sawada *et al.* [8] one arrives at $E^{\circ}(O_2/O_2^{\bullet-}) =$ +0.078-0.257 = -0.179 V or -0.350 V ($pO_2 = 0.100$ MPa). 1250 1251 $E^{\circ}(DMBQ/DMBQ^{\bullet-})$, -0.067 V at $\mu = 0.1$ M [6], can be corrected for ionic strength (DMS) and yields -0.080 V, with an estimated error of 0.02 V. Equilibrium 3.2 is not ionic 1252 1253 strength dependent, even when the difference in radii of the reactants and products are taken into 1254 account. Thus, at $\mu = 0$, $E^{\circ}(O_2/O_2^{\bullet-}) = -(0.35 \pm 0.02)$ V. 1255 The value obtained by Sawada et al. [8] from eq. 3.6 can also be corrected. The rate constant k(forward) is $(5.6 \pm 0.5) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ [16] under conditions similar to those of Sawada 1256 et al. [8] (except in 0.15 M formate). Combined with their k(backward) of 0.03 M⁻¹ s⁻¹, and an 1257 1258 electrode potential of 0.26 ± 0.01 V [17,18], one arrives at -0.17 V, or -0.34 V ($pO_2 = 0.100$ 1259 MPa). Given the unknown quality of the cytochrome c used, more weight is given to the values 1260 obtained with the quinones. 1261 The determination of the electrode potential of the couple TBO/TBO⁻⁻ has been evaluated (Data Sheet S-1), which led to a correction and increased uncertainties: 1262 $E^{\circ}(\text{TBQ/TBQ}^{\bullet-}) = -(0.014 \pm 0.016) \text{ V}$. Based on this value $E^{\circ}(O_2/O_2^{\bullet-}) = -(0.122 \pm 0.016) \text{ V}$, or 1263 $-(0.29 \pm 0.02)$ V (pO₂ = 0.100 MPa). Given the increased uncertainties, this value is of limited 1264 1265 use and is not used in the recommendation. 1266 Overall, the large majority of the values cited above are in reasonable agreement. 1267 Because of the various weaknesses noted above in several of the reports, we place greatest 1268 confidence in the results derived from the DMBQ and BQ reactions. These two reports yield 1269 identical values for E° . The uncertainty in the DMBQ result is suggested to be ± 20 mV, while

1270 none is specified for the BQ.

1272 **Recommended values:**

- 1273
- 1274 $E^{\circ}(O_2/O_2^{\bullet-})$ is $-(0.18 \pm 0.02)$ V, or $-(0.35 \pm 0.02)$ V ($pO_2 = 0.100$ MPa).
- 1275 $\Delta_{\rm f} G^{\circ}({\rm O_2}^{\bullet-}) = +(8.1 \pm 0.5) \text{ kcal mol}^{-1}, \text{ or } +(33.8 \pm 1.9) \text{ kJ mol}^{-1}.$
- 1276 Given a pK_a of (4.8 ± 0.1) for HO₂• [19], $E^{\circ}(O_2, H^+/HO_2^{\bullet})$ is $+(0.10 \pm 0.02)$ V, or $-(0.07 \pm 0.02)$
- 1277 V ($pO_2 = 0.100$ MPa).
- 1278 $\Delta_{\rm f} G^{\circ}({\rm HO}_2^{\bullet}) = +(1.7 \pm 0.5) \text{ kcal mol}^{-1}, \text{ or } +(7 \pm 2) \text{ kJ mol}^{-1}$
- 1279
- 1280 List of auxiliary thermodynamic data:
- 1281

1282 Baxendale *et al.* [20] derived a value of +8.2 kcal mol⁻¹, or +34.3 kJ mol⁻¹, for $\Delta_f G^{\circ}(O_2^{\bullet-})$ via the

1283 Gibbs energy of formation of HO_2^{\bullet} in the gas phase, +34.7 kJ mol⁻¹, an estimate for the Gibbs

1284 energy of solvation of -28.5 kJ mol⁻¹ (identical to that of hydrogen peroxide) and a p K_a of 4.88.

1285 The resulting Gibbs energy of formation is in very good agreement with the recommended value.

- 1286 Chevalet *et al.* [21] reported a value of -0.27 V for $E^{\circ}(O_2/O_2^{\bullet-})$, determined by 1287 electrochemistry. This value has been corrected to -0.29 V [22]. A very similar value, -0.284 V, 1288 was obtained by Divišek and Kastening [22]. There are two fundamental problems with the 1289 electrochemical determination of $E^{\circ}(O_2/O_2^{\bullet-})$. On a metal surface, catalysis of the dismutation of 1290 superoxide proceeds vigorously, and when surfactants are used to suppress this catalysis, one 1291 may not achieve an equilibrium. For that reason we prefer the data obtained by pulse radiolysis.
- 1292 Zhuravleva and Berdnikov [23] calculated a electrode potential of –0.33 V from the 1293 equilibrium between iron(II) and hydrogen peroxide.

1294 The electrode potential of 0.15 V reported by Rao and Hayon[10] is in error, as discussed 1295 by Wood [1] and Ilan *et al.* [6].

- 1296 Petlicki and Van de Ven [24] have argued that the electrode potential of the $O_2/O_2^{\bullet-}$ couple is -0.14 V, instead of -0.33 V. They drew attention to the fact that there is a discrepancy 1297 1298 between the electrode potential of the O_2/H_2O_2 couple derived from the NBS compilation [25] 1299 and that determined experimentally. They argue that this discrepancy proves that there is an 1300 equilibrium between superoxide on one side and dioxygen and hydrogen peroxide on the other 1301 side, which requires a substantial increase in the electrode potential of the $O_2/O_2^{\bullet-}$ couple. Given 1302 the many consistent determinations of $E^{\circ}(O_2/O_2^{\bullet-})$ we dismiss the value reported by these 1303 authors.
- 1304

1305 Nomenclature

1307	The sy	A stematic name of $O_2^{\bullet-}$ is dioxide($\bullet 1-$) or dioxidanidyl, of HO ₂ \bullet hydrogen dioxide or
1308	dioxid	anyl, and of O ₂ , dioxygen or dioxidanediyl. The venerable name superoxide is allowed.
1309		
1310		
1311	Refer	ences
1312		
1313	1.	P. M. Wood. FEBS Lett. 44, 22-24 (1974).
1314	2.	K. B. Patel, R. L. Willson. J. Chem. Soc. Faraday Trans. 169, 814-825 (1973).
1315	3.	D. Meisel, G. Czapski. J. Phys. Chem. 79, 1503-1509 (1975).
1316	4.	P. Wardman. Free Radical Res. Commun. 14, 57-67 (1991).
1317	5.	Y. A. Ilan, D. Meisel, G. Czapski. Isr. J. Chem. 12, 891-895 (1974).
1318	6.	Y. A. Ilan, G. Czapski, D. Meisel. Biochim. Biophys. Acta 430, 209-225 (1976).
1319	7.	P. W. Preisler, E. S. Hill, R. G. Loeffel, P. A. Shaffer. J. Am. Chem. Soc. 81, 1991(1959).
1320	8.	Y. Sawada, T. Iyanagi, I. Yamazaki. Biochemistry 14, 3761-3764 (1975).
1321	9.	I. Yamazaki, T. Ohnishi. Biochim. Biophys. Acta 112, 469-481 (1966).
1322	10.	P. S. Rao, E. Hayon. Biochem. Biophys. Res. Commun. 51, 468-473 (1973).
1323	11.	D. M. Stanbury, O. Haas, H. Taube. Inorg. Chem. 19, 518-524 (1980).
1324	12.	D. M. Stanbury, W. A. Mulac, J. C. Sullivan, H. Taube. Inorg. Chem. 19, 3735-3740
1325		(1980).
1326	13.	J. K. Dohrmann, B. Bergmann. J. Phys. Chem. 99, 1218-1227 (1995).
1327	14.	J. Tokunaka. J. Chem. Eng. Data 20, 41-46 (1975).
1328	15.	P. Wardman. J. Phys. Chem. Ref. Data 18, 1637-1755 (1989).
1329	16.	W. H. Koppenol, K. J. H. van Buuren, J. Butler, R. Braams. Biochim. Biophys. Acta 449,
1330		157-168 (1976).
1331	17.	P. Bertrand, O. Mbarki, M. Asso, L. Blanchard, F. Guerlesquin, M. Tegoni. Biochemistry
1332		34 , 11071-11079 (1995).
1333	18.	Hock, G. J. M.Sc. Thesis, University of Wisconsin-Milwaukee. 1998.
1334	19.	B. H. J. Bielski, D. E. Cabelli, R. L. Arudi, A. B. Ross. J. Phys. Chem. Ref. Data 14,
1335		1041-1100 (1985).
1336	20.	J. H. Baxendale, M. D. Ward, P. Wardman. Trans. Faraday Soc. 67, 2532-2537 (1971).
1337	21.	J. Chevalet, F. Rouelle, L. Gierst, J. P. Lambert. J. Electroanal. Chem. 39, 201-216
1338		(1972).
1339	22.	J. Divisek, B. Kastening. J. Electroanal. Chem. 65, 603-621 (1975).
1340	23.	V. M. Berdnikov, O. S. Zhuravleva. Russ. J. Phys. Chem. 46, 1521-1523 (1972).
1341	24.	J. Petlicki, T. G. M. van de Ven. J. Chem. Soc. , Faraday Trans. 94, 2763-2767 (1998).

1342	25. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
1343	Churney, R. L. Nuttal. J. Phys. Chem. Ref. Data 11 (Suppl. 2), 37-38 (1982).
1344	
1345	

1346	Data Sheet 4
1347	
1348	$E^{\circ}(^{1}\Delta_{g}O_{2}/O_{2}^{\bullet-})$
1349	
1350	List of reports:
1351	
1352	No direct determinations of this standard potential have been made.
1353	
1354	Koppenol, 1976 [1].
1355	A value of 0.65 V is calculated for $E^{\circ}(^{1}\Delta_{g}O_{2}/O_{2}^{\bullet-})$ relative to a $p^{1}\Delta_{g}O_{2} = 0.100$ MPa. It is based
1356	on $E^{\circ}(O_2/O_2^{\bullet-}) = -0.33$ V, a difference in energy of 22.6 kcal between ${}^{3}\Sigma_{g}^{-}O_2$ and ${}^{1}\Delta_{g}O_2$, and a
1357	Gibbs energy of solution of singlet dioxygen identical to that of triplet dioxygen.
1358	$E^{\circ}({}^{1}\Delta_{g}O_{2}/O_{2}^{\bullet-})$ is +0.82 V, or +0.65 V ($p^{1}\Delta_{g}O_{2} = 0.100$ MPa). $\Delta_{f}G^{\circ}({}^{1}\Delta_{g}O_{2}) = +111$ kJ mol ⁻¹ or
1359	+26.5 kcal mol ⁻¹ .
1360	
1361	Stanbury, 1989 [2].
1362	A Gibbs energy of formation of +112 kJ mol ⁻¹ for 1 $m^{-1}\Delta_{g}O_{2}$ is derived from a quantum-
1363	chemically derived Gibbs energy of formation of ${}^{1}\Delta_{g}O_{2}$ in the gas phase and a Gibbs energy of
1364	solution of singlet dioxygen identical to that of triplet dioxygen.
1365	$E^{\circ}({}^{1}\Delta_{g}O_{2}/O_{2}^{\bullet-})$ is +0.83 V, or +0.66 V ($p^{1}\Delta_{g}O_{2} = 0.100$ MPa). $\Delta_{f}G^{\circ}({}^{1}\Delta_{g}O_{2}) = +112$ kJ mol ⁻¹ or
1366	+26.8 kcal mol ⁻¹ .
1367	
1368	Discussion
1369	
1370	A reliable standard potential can be calculated from the recommended $\Delta_f G^{\circ}(O_2^{\bullet-}) = +(33.8 \pm$
1371	0.8) kJ mol ⁻¹ (Data Sheet 3) and $\Delta_{\rm f} G^{\circ}({}^{1}\Delta_{\rm g} O_2) = +112$ kJ mol ⁻¹ or +26.8 kcal mol ⁻¹ .
1372	
13/3	Recommended values:
1374	$E^{0}(1 \wedge O_{1}(0)) = \frac{1}{2} + (0.81 \pm 0.01) V_{1} = \frac{1}{2} + (0.64 \pm 0.01) V_{1}(1 \wedge O_{1}) = 0.100 \text{ MB}_{2}$
1373	$E (\Delta_g O_2/O_2)$ is $\pm (0.81 \pm 0.01)$ v, or $\pm (0.04 \pm 0.01)$ v ($p \Delta_g O_2 = 0.100$ MPa).
13/0	$\Delta_{\rm f} G^{-} (\Delta_{\rm g} O_2) - + (112 \pm 1) \text{KJ mol}^{-1}$.
1377	Nomenclature
1379	
1380	The systematic name of $O_2^{\bullet-}$ is dioxide($\bullet 1-$) or dioxidanidyl. of HO ₂ \bullet hydrogen dioxide or
1381	dioxidanyl, and of O ₂ , dioxygen or dioxidanediyl. The venerable name superoxide is allowed.

1382	
1383	References
1384	
1385	1. W. H. Koppenol. Nature 262, 420-421 (1976).
1386	2. D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).
1387	
1388	
1389	

1390	Data Sheet 5
1391	
1392	<i>E</i> °(HO ₂ •, H ⁺ /H ₂ O ₂)
1393	
1394	List of reports:
1395	
1396	No direct determinations of this standard potential have been made.
1397	
1398	Discussion
1399	
1400	A value can be calculated from the Gibbs energy of formation of hydrogen dioxide (HO ₂ •), +(7 \pm
1401	2) kJ mol ⁻¹ (see Data Sheet 3), and that of hydrogen peroxide. The Gibbs energies of formation
1402	of hydrogen peroxide are summarized in Table 1. The present recommendation from the
1403	National Institute of Standards and Technology [1], is the value obtained by Kern [2], -134.1 kJ
1404	mol ⁻¹ , which dates from 1963; a value also found in the compilation by Hoare in <i>Standard</i>
1405	Potentials in Aqueous Solution [3]. The standard potentials derived from this value are
1406	$E^{\circ}(HO_2^{\bullet}/H_2O_2) = +1.461 \text{ V}, E^{\circ}(O_2/H_2O_2) = 0.695 \text{ V} (pO_2 = 0.100 \text{ MPa}) \text{ and } E^{\circ}(H_2O_2/H_2O) = 0.695 \text{ V} (pO_2 = 0.100 \text{ MPa})$
1407	1.763 V.
1408	There appears to be a distinct difference between the thermodynamic estimates and the
1409	electrochemical determinations, the latter yielding more negative values than the former, see
1410	Table 1. Given the perceived uncertainties of the electrochemical determinations, it was decided
1411	to stay with the existing recommendation.
1412 1413	

Table 1 Gibbs energies of formation of H₂O₂

Authors	Year	Value / (kJ mol ⁻¹)	Remarks
Lewis and Randall [4]	1914	-129.6	sum of 9 Gibbs energies involving barium oxide and peroxide ^a
Lewis and Randall [5]	1923	-131.7	sum of 8 Gibbs energies involving barium oxide and peroxide ^a
Berl [6]	1943	-138.3	electrochemistry, C O ₂ , HO ₂ ⁻ , HO ⁻ calomel. $E^{\circ}(O_2/HO_2^-)=$ -0.0416 V
Yablokova and Bagotskii [7]	1952	-137.7	electrochemistry, Hg O ₂ , HO ₂ ⁻ , HO ⁻ HgO $E^{\circ}(O_2/HO_2^{-})=$ -0.045 V
Kern [2]	1954	-134.1	electrochemistry, Hg O ₂ , HO ₂ ⁻ , HO ⁻ calomel. E° (O ₂ /H ₂ O ₂)= +0.695 V. Expts. pH 6-14
Schumb et al. [8]	1955	-133.7	calculated from $\Delta_f G^\circ$ of H ₂ O ₂ (l) and H ₂ O ₂ (g) and dissolution in H ₂ O
Yeager et al. [9]	1964	-137.0	electrochemistry, C O ₂ , HO ₂ ⁻ , HO ⁻ HgO Hg. $E^{\circ}(O_2/HO_2^{-})=$ -0.048 V. pO ₂ -range
Tikhomirova et al. [10]	1965	-137.0	electrochemistry, Pt O ₂ , H ₂ O ₂ , H ⁺ H ₂ Pt. E° (O ₂ /H ₂ O ₂)= +0.71 V
Rotinyan [11]	1969	-141.0	electrochemistry, C O ₂ , H ₂ O ₂ , H ⁺ SO ₄ ^{2–} Hg ₂ SO ₄ , Hg. $E^{\circ}(O_2/H_2O_2) = +0.73 \text{ V}$

a^aLewis and Randall calculated the Gibbs energies involved in the dissolution of barium oxide and its oxidation by dioxygen to barium peroxide. When added to the formation of water from dihydrogen and dioxygen, the formation of hydrogen peroxide results. The slight difference between the calculations from 1914 and 1923 results from a better approximation of the activity coefficients
 involved for the result of the modern and the calculation of the activity coefficients

1419 involved; furthermodynamicre, one reaction was eliminated.

Recommended value:

- $E^{\circ}(\text{HO}_2^{\bullet}, \text{H}^+/\text{H}_2\text{O}_2) = (1.46 \pm 0.02) \text{ V}.$
- 1425 Nomenclature
- 1427 The systematic name of HO₂• is hydrogen dioxide or dioxidanyl, of H₂O₂ dihydrogen dioxide or

1428 dioxidane, and of O₂, dioxygen or dioxidanediyl. The name hydrogen peroxide is allowed.

- **References**

1432	1.	D. D	. Wagman,	W.	H. Evans	, V.	B	Parker,	R. I	H. Schumm	, I	. Halow,	, S.	М.	Bailey	, K. L.
------	----	------	-----------	----	----------	------	---	---------	------	-----------	-----	----------	------	----	--------	---------

- 1433 Churney, R. L. Nuttal. J. Phys. Chem. Ref. Data 11 (Suppl. 2), 37-38 (1982).
- 1434 2. D. M. H. Kern. J. Am. Chem. Soc. 76, 4208-4214 (1954).

- 1435 3. J. P. Hoare. In Standard Potentials in Aqueous Solution, (A. J. Bard, R. Parsons and J. 1436 Jordan, eds.), p. 49-66. Marcel Dekker, Inc., New York (1985). 1437 4. G. M. Lewis, M. Randall. J. Am. Chem. Soc. 10, 1969-1993 (1914). 5. G. N. Lewis, M. Randall. Thermodynamics and the Free Energy of Chemical Substances, 1438 1439 p. 487-496. McGraw-Hill Book Company, Inc., New York. (1923). 6. W. G. Berl. Trans. Electrochem. Soc. 83, 253-271 (1943). 1440 7. I. E. Yablokova, V. S. Bagotskii. Dokl. Akad. Nauk. 85, 599-602 (1952). 1441 1442 8. Schumb, W. C., Satterfield, C. N., and Wentworth, R. L. Hydrogen Peroxide. (164). 1443 1955. New York, Reinhold. ACS Monograph Series. 1444 9. E. Yeager, P. Krouse, K. V. Rao. *Electrochim. Acta* 9, 1057-1070 (1964). 1445 10. V. I. Tikhomirova, V. I. Luk'yanycheva, V. S. Bagotskii. *Élektrokhimya* 1, 645-650 1446 (Engl. transl. pp. 568-572) (1965). 11. A. L. Rotinyan, A. I. Anurova, N. B. Dobrozrakova. *Élektrokhimya* 5, 1352-1354 (Engl. 1447 transl. pp. 1282-1284) (1969). 1448 1449 1450
- 1451

1452	Data Sheet 6	
1453		
1454	$E^{\circ}(\mathrm{HO}^{\bullet},\mathrm{H}^{+}/\mathrm{H}_{2}\mathrm{O})$	
1455		
1456	Discussion	
1457		
1458	The calculation of $E^{\circ}(HO^{\bullet}, H^+/H_2O)$ is based on evaluations presented	in Data Sheets 19-21.
1459	Chemical equilibria	
1460	$HO^{\bullet} + Tl^+ \rightleftharpoons TlOH^+$	(19.1)
1461	$TlOH^+ + H^+ \Rightarrow Tl^{2+} + H_2O$	(-20.1)
1462	$Tl^{2+} + e^- \Rightarrow Tl^+$	(21.9)
1463		
1464	Use of the K_{eq} for the Equilibrium 19.1, $K_{eq} = (5.8 \pm 1.0) \times 10^3 \text{ M}^{-1}$ at	25 °C , the K_a of Tl^{2+} from
1465	reaction 20.1, $(1.7 \pm 0.3) \times 10^{-5}$ M, $E^{\circ} = +(2.221 \pm 0.003)$ V for Tl ^{2+/T}	1^+ (Equilibrium 21.9), and
1466	the NBS value [1] of $\Delta_{\rm f} G^{\circ}$ for H ₂ O(<i>l</i>) (= -237.129 ± 0.08 kJ mol ⁻¹) lea	ids to $\Delta_{\rm f} G^{\circ} = +(25.9 \pm 0.5)$
1467	kJ mol ⁻¹ for HO [•] . Use of the NBS value [1] of $\Delta_f G^\circ$ for OH ⁻ (<i>aq</i>) (= -1	$57.244 \pm 0.08 \text{ kJ mol}^{-1}$)
1468	leads to $E^{\circ} = +(1.898 \pm 0.005)$ V for the HO [•] /HO ⁻ redox couple.	
1469		
1470		
1471	Chemical equilibria	
1472	$O_3(aq) + ClO_2^- \Rightarrow O_3^{\bullet-} + ClO_2^{\bullet}(aq)$	(2.07)
1473	$O_3^{\bullet-} \rightleftharpoons O_2(aq) + O^{\bullet-}$	(-6.02)
1474	$O^{\bullet-} + H^+ \rightleftharpoons HO^{\bullet}$	(-4.02)
1475		
1476	Kläning, Sehested and Holcman, 1985 [2].	
1477	The calculation of the standard potential involves $K(2.07) = (22 \pm 6)$	at low ionic strength (from
1478	determinations of the forward and backward rate constants at 22°C), K	$X(-6.02) = 1.1 \times 10^{-6} \text{ M}$
1479	(from published forward and backward rate constants [3,4]), the ionization	ation constant of HO [•] , 11.9
1480	[5], and a new determination of $E^{\circ}(\text{ClO}_2^{\bullet}/\text{ClO}_2^{-}) = +(0.934 \pm 0.002)$ V	⁷ . No explicit error in E° is
1481	given. Note: the authors refer to $E^{\circ}(HO^{\bullet}, H^{+}/H_{2}O)$ incorrectly as an ox	idation potential.
1482	These workers reported the following results: $E^{\circ}(HO^{\bullet}, H^{+}/H_{2}O) = +2.2$	74 V. $E^{\circ}(HO^{\bullet}/HO^{-}) =$
1483	+1.91 V. $\Delta_{\rm f} G^{\circ}({\rm HO}^{\bullet}) = +(26.8 \pm 1.0) \rm kJ mol^{-1}$.	
1484		
1485	Recommended values:	
1486		
1487	$E^{\circ}(\text{HO}^{\bullet}, \text{H}^+/\text{H}_2\text{O}) = +(2.72 \pm 0.01 \text{ V}.$	

1488	$E^{\circ}(\text{HO}^{\bullet}, \text{HO}^{-}) = +1.89 \pm 0.01) \text{ V}.$
1489	$E^{\circ}(\text{H}_{2}\text{O}_{2}, \text{H}^{+}/\text{HO}^{\bullet}, \text{H}_{2}\text{O}) = +(0.80 \pm 0.01) \text{ V}$ (based on the NIST Gibbs energy of -134.1 kJ mol ⁻¹
1490	for hydrogen peroxide).
1491	$\Delta_{\rm f} G^{\circ}({\rm HO}^{\bullet}) = +26 \pm 1 \text{ kJ mol}^{-1}$, and $\Delta_{\rm f} G^{\circ}({\rm O}^{\bullet-}) = +(92 \pm 3) \text{ kJ mol}^{-1}$.
1492	
1493	List of auxiliary thermodynamic data
1494	
1495	Gibbs energies of formation of +(6.2 and +22.3) kcal mol (+25.9 and +93.3 kJ mol ⁻¹) were
1496	derived for HO• and O•-, respectively, from the gas phase Gibbs energy of formation of HO•,
1497	+34.7 kJ mol ⁻¹ (+8.3 kcal mol ⁻¹), an assumed Gibbs solvation energy of +(8.8 kJ mol ⁻¹) (-2.1
1498	kcal mol ⁻¹) for HO• and a p K_a of 11.8 [6].
1499	
1500	An estimate of $E^{\circ}(HO^{\bullet}/HO^{-}) = +1.77 \text{ V}$, and a brief discussion of earlier standard potentials are
1501	found in Koppenol and Liebman [7].
1502	
1503	Nomenclature
1504	The systematic name of HO [•] is hydridooxygen(•) or oxidanyl, of O ^{•–} oxide(•–) or oxidanidyl,
1505	and of H ₂ O oxidane. The venerable names hydroxyl and water are allowed.
1506	
1507	References
1508	
1509	1. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
1510	Churney, R. L. Nuttal. J. Phys. Chem. Ref. Data 11 (Suppl. 2), 37-38 (1982).
1511	2. U. K. Kläning, K. Sehested, J. Holcman. J. Phys. Chem. 89, 760-763 (1985).
1512	3. B. L. Gall, L. M. Dorfman. J. Am. Chem. Soc. 91, 2199-2204 (1969).
1513	4. Farhataziz, A. B. Ross. Selected Specific Rates of Reactions of Transients from Water in
1514	Aqueous Solution. III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical ions.
1515	NSRDS-NBS 59, National Bureau of Standards, Washington D.C. (1977).
1516	5. J. Rabani, M. S. Matheson. J. Am. Chem. Soc. 86, 3175-3176 (1964).
1517	6. J. H. Baxendale, M. D. Ward, P. Wardman. Trans. Faraday Soc. 67, 2532-2537 (1971).
1518 1519	7. W. H. Koppenol, J. Liebman. J. Phys. Chem. 88, 99-101 (1984).

1521 **Data Sheet 7**

- 1522 An optimization of a subset of the radical equilibria was performed using the Active
- 1523 Thermodynamicchemical Tables approach (see main document, section 6). It is based on the
- 1524 following evaluated data.
- 1525

1526 **Table 7.1**. Input equilibrium data for optimization

rxn	reaction	equilibrium	uncertainty	Data
#		constant		Sheet #
8.1	$HO^{\bullet} + Cl^{-} + H^{+} \rightleftharpoons Cl^{\bullet} + H_2O$	$9 \times 10^4 \text{ M}^{-2}$	within a factor of 2	8
9.1	$Cl_2^{\bullet-} + H_2O \Rightarrow HO^{\bullet} + H^+ + 2Cl^-$	$6.1 \times 10^{-11} \text{ M}^3$	± 10%	9
10.	$Cl^{\bullet} + Cl^{-} \rightleftharpoons Cl_{2}^{\bullet-}$	$1.4 \times 10^5 \text{ M}^{-1}$	± 15%	10
1				
11.	$Cl^{\bullet} + H_2O \Rightarrow HOCl^{\bullet-} + H^+$	$5 \times 10^{-6} \mathrm{M}$	within a factor of 2	11
1				
12.	$HO^{\bullet} + Cl^{-} \Rightarrow HOCl^{\bullet-}$	0.70 M ⁻¹	± 0.13	12
1				
13.	$SO_4^{\bullet-} + Cl^- \Rightarrow SO_4^{2-} + Cl^{\bullet}(aq)$			13
1		1.2	± 17%	
14.	$SO_4^{\bullet-} + NO_3^- \Rightarrow SO_4^{2-} + NO_3^{\bullet-}$			14
1		0.3	± 36%	
15.	$SO_4^{\bullet-} + HNO_3 \Rightarrow HSO_4^- + NO_3^{\bullet-}$			15
1		5×10^{2}	± 40%	
16.	$NO_3^{\bullet} + Cl^- \Rightarrow NO_3^- + Cl^{\bullet}$			16
1		3.3	± 7%	
17.	$NO_3^{\bullet} + ClO_3^{-} \Rightarrow NO_3^{-} + ClO_3^{\bullet}$			17
1		3 × 10	± 67%	
18.	$SO_4^{\bullet-} + H_2O \Rightarrow HSO_4^- + HO^{\bullet}$			18
1		$1.4 \times 10^{-3} \text{ M}$	±29%	
19.	$HO^{\bullet}(aq) + Tl^{+}(aq) \Rightarrow TlOH^{+}(aq)$			19
1		$5.8 imes 10^3 \text{ M}^{-1}$	± 15%	
20.	$Tl^{2+}(aq) + H_2O(l) \Rightarrow TlOH^+(aq) +$			20
1	$\mathrm{H}^{+}(aq)$	$1.7 \times 10^{-5} \text{ M}$	± 15%	
21.	$Tl^{2+}(aq) + 1/2H_2(g) \Rightarrow Tl^+(aq) +$			21
1	$H^+(aq)$	2.225 V	$\pm 0.007 \text{ V}$	

$HNO_3(aq) = NO_3^-(aq) + H^+(aq)$	20 M	± 20%	15
------------------------------------	------	-------	----

- 1527
- 1528 The above equilibrium constants were supplemented with the standard data in Table 7.2, all of
- 1529 which come from the NIST tables except for NO_3^- ; the value for NO_3^- in the NBS tables is
- 1530 incorrect, and the correct value is the value given for dissociated HNO₃, as explained in Data
- 1531 Sheet 103. Data Sheet 103 also includes an evaluation of the NO₃• radical that is independent of
- 1532 the Active Thermodynamicchemical Tables optimization.
- 1533
- 1534 Nomenclature (venerable names in italics): Cl^{\bullet} , chlorine atom; $Cl_2^{\bullet-}$, dichloride($\bullet 1-$); ClO_3^{\bullet} ,
- 1535 trioxidochlorine(•); HO[•], *hydroxyl*, oxidanyl or hydridooxygen(•); HOCl^{•-},
- 1536 hydroxidochlorate($\bullet 1-$); NO₃[•], trioxidonitrogen(\bullet); SO₄^{•-}, tetraoxidosulfate($\bullet 1-$); TlOH⁺,
- 1537 hydroxidothallium(•1+)
- 1538

1539 Table 7.2. Input standard Gibbs energies for optimization

species	$\Delta_{\rm f}G^{\circ}$ / kJ mol ⁻¹	uncertainty/ kJ mol ⁻¹
$\mathrm{H}^{+}(aq)$	0	
$H_2O(l)$	-237.13	± 0.080
Cl ⁻ (<i>aq</i>)	-131.23	± 0.080
$SO_4^{2-}(aq)$	-744.53	± 0.80
$NO_3^{-}(aq)$	-111.25	± 0.80
$HSO_4^{-}(aq)$	-755.91	± 0.80
$ClO_3^{-}(aq)$	-7.95	± 0.80
$\mathrm{Tl}^+(aq)$	-32.40	± 0.80

1540 /

1541 The result of the optimization is

1542

1543 **Table 7.3.** Optimized Gibbs energies

species	$\Delta_{\rm f} G^{\circ} { m kJ} { m mol}^{-1}$	Uncertainty / kJ mol ⁻¹
$HO^{\bullet}(aq)$	+26.3	± 1.6
$Cl^{\bullet}(aq)$	+103.4	± 1.7
$Cl_2^{\bullet-}(aq)$	-57.3	± 1.6
HOCl•-(<i>aq</i>)	-104	± 1.7
SO_4 -(<i>aq</i>)	-509.4	± 1.8
$NO_3^{\bullet}(aq)$	+126.7	± 1.8
$ClO_3^{\bullet}(aq)$	+222	± 3

$Tl(OH)^+(aq)$	-27.6	± 1.3
$Tl^{2+}(aq)$	+182.3	± 1.2
$HNO_3(aq)$	-104.1	± 0.9

1545 Standard potentials can be derived from these optimized $\Delta_f G^\circ$ data by combining them with the

1546 standard Gibbs energies of formation given above plus the following additional standard Gibbs

1547 energies of formation:

1548

 $\Delta_{\rm f} G^{\circ} / \, \rm kJ \; mol^{-1}$ Uncertainty / kJ mol⁻¹ species $Cl_2(aq)$ +6.9 ± 0.8 HOCl(aq) -80 ± 8 $(S_2O_8)^{2-}(aq)$ -1115 ± 8 $Tl^{3+}(aq)$ +215 ± 8 $TlOH^{2+}(aq)$ -16 ± 8

1550 **Table 7.4.** Auxiliary Gibbs energies

1551 *a* Data at 25 °C and from NBS.

1552

1553 **Table 7.5.** Derived standard potentials

Reaction	E° / V vs	Uncertainty / V
	NHE	
$HO^{\bullet}(aq) + e^{-} \Rightarrow HO^{-}(aq)$	+1.902	± 0.017
$\mathrm{HO}^{\bullet}(aq) + \mathrm{e}^{-} + \mathrm{H}^{+}(aq) \rightleftharpoons \mathrm{H}_{2}\mathrm{O}(l)$	+2.730	± 0.017
$\operatorname{Cl}^{\bullet}(aq) + e^{-} \rightleftharpoons \operatorname{Cl}^{-}(aq)$	+2.432	± 0.018
$\operatorname{Cl}_2^{\bullet-}(aq) + e^- \Rightarrow 2\operatorname{Cl}^-(aq)$	+2.126	± 0.017
$\operatorname{Cl}_2(aq) + e^- \rightleftharpoons \operatorname{Cl}_2^{\bullet}(aq)$	+0.666	± 0.017
$\text{ClOH}^{\bullet-}(aq) + e^- \Rightarrow \text{Cl}^{-}(aq) + \text{HOH}(aq)$	+1.912	± 0.018
$\operatorname{HOCl}^{\bullet-}(aq) + e^- + \operatorname{H}^+(aq) \rightleftharpoons \operatorname{Cl}^-(aq) + \operatorname{H}_2\operatorname{O}(l)$	+2.740	± 0.018
$HOCl(aq) + e^- \Rightarrow HOCl^{\bullet-}(aq)$	+0.25	± 0.08
$SO_4^{\bullet-}(aq) + e^- \Rightarrow SO_4^{2-}(aq)$	+2.437	± 0.019
$S_2O_8^{2-}(aq) + e^- \Rightarrow SO_4^{\bullet-}(aq) + SO_4^{2-}(aq)$	+1.44	± 0.08
$NO_3^{\bullet}(aq) + e^- \Rightarrow NO_3^{-}(aq)$	+2.466	± 0.019
$\text{ClO}_3^{\bullet}(aq) + e^- \Rightarrow \text{ClO}_3^{-}(aq)$	+2.38	± 0.03
$\mathrm{Tl}^{3+}(aq) + \mathrm{e}^{-} = \mathrm{Tl}^{2+}(aq)$	+0.34	± 0.08
$\mathrm{Tl}^{2+}(aq) + \mathrm{e}^{-} \rightleftharpoons \mathrm{Tl}^{+}(aq)$	+2.225	± 0.012
$\text{TIOH}^+(aq) + e^- + \text{H}^+(aq) \Rightarrow \text{TI}^+(aq) + \text{H}_2\text{O}(l)$	+2.507	± 0.013
$\text{TIOH}^{2+}(aq) + e^{-} \Rightarrow \text{TIOH}^{+}(aq)$	+0.12	± 0.08
$\mathrm{TlOH}^{2+}(aq) + \mathrm{e}^{-} + \mathrm{H}^{+}(aq) \ \Rightarrow \ \mathrm{Tl}^{2+}(aq) + \mathrm{H}_{2}\mathrm{O}(l)$	+0.40	± 0.08

1554

1556	Data Sheet 8
1557	
1558	Chemical equilibrium: $HO^{\bullet} + Cl^{-} + H^{+} \Rightarrow Cl^{\bullet} + H_2O$ (8.1)
1559	
1560	List of reports:
1561	
1562	$K_{\text{eq}} = (2.0 \pm 1.0) \times 10^5 \text{ M}^{-2}, \mu = 0.01 \text{ M} [1].$ Result obtained from UV/vis data on the equilibrium
1563	attained during pulse-radiolysis. The reported value includes the concentration of water; the
1564	value given here has been corrected to reflect water having unit activity.
1565	
1566 1567 1568 1569 1570	$K_{eq} = 9.1 \times 10^4 \text{ M}^{-2}$, no specified uncertainty but probably correct within a factor of 2, $\mu = 0.01 \text{ M}$ [2]. The basis for this result is unclear from the published paper, but a letter from Kläning to Stanbury (21 Feb 1990) states that the result was obtained by recalulation from the optical/pulse-radiolysis data of Jayson <i>et al.</i> [1] with a correction for the optical density due to chlorine atoms.
1571	
1572	Discussion
1573	
1574	McElroy [3] has argued that the decay of chlorine atoms is more complex than indicated by the
1575	models of Jayson <i>et al.</i> [1] and Kläning <i>et al.</i> [2], and he has specifically introduced the
15/6	equilibrium hydration of chlorine atoms: $CI^{\circ}(aq) + H_2O(l) \approx HOCIH^{\circ}[3]$. However, Buxton <i>et</i>
1570	al. have argued persuasively that McElroy's suggestion is unsupported by data [4].
1570	We account the equilibrium constant of Vläning at al [2] with the understanding that it has not
1579	been checked directly, and that it is likely to be dependent on jonic strength
1581	been enceked uncerty, and that it is nikely to be dependent on tome strength.
1582	Recommended value
1583	Recommended value.
1584	$K = 9.1 \times 10^4 \text{ M}^{-2}$ within a factor of two at $\mu = 0.01 \text{ M}$
1585	R_{eq} y.1 × 10 M whill a factor of two at μ 0.01 M.
1586	List of auxiliary thermodynamic data: none
1587	List of during themoughance during home
1588	References
1589	
1590	1. G. G. Javson, B. J. Parsons, A. J. Swallow. J. Chem. Soc., Faradav Trans. 169. 1597-
1591	1607 (1973).

- 1592 2. U. K. Kläning, T. Wolff. Ber. Bunsenges. Phys. Chem. 89, 243-245 (1985).
- 1593 3. W. J. McElroy. J. Phys. Chem. 94, 2435-2441 (1990).
- 4. G. V. Buxton, M. Bydder, G. A. Salmon, J. E. Williams. *Phys. Chem. Chem. Phys.* 2, 237-245 (2000).
- 1596
- 1597

Data Sheet 9 1598 1599 Chemical equilibrium: $Cl_2^{\bullet-} + H_2O \Rightarrow HO^{\bullet} + H^+ + 2Cl^-$ 1600 (9.1)1601 1602 List of reports: 1603 $K_{eq} = 3.6 \times 10^{-8} \text{ M}^3$, no specified uncertainty, μ unspecified, but apparently less than 0.1 M [1]. 1604 Data obtained from flash photolysis with conductivity detection. Result obtained from ratio of 1605 1606 forward and reverse rate constants (k(19) and k(19') in Table 2, p. 865) given in the paper. 1607 $K_{eq} = (7.7 \pm 0.8) \times 10^{-11} \text{ M}^3$, $\mu \sim 0.01 \text{ M}$. Result obtained from ratio of forward and reverse rate 1608 constants, which were obtained from flash photolysis with optical detection [2]. The forward rate 1609 constant used is k_{-4}^{I}/K_{5} given on the bottom left of p. 1321 (also in Table 4), and the reverse rate 1610 1611 constant is k_4K_3 from Table 2 (note that the dimensions in the paper are incorrect). 1612 1613 Discussion 1614 1615 Given the gross discrepancy between the two reports, careful evaluation is required. Note 1616 that the forward and reverse rate constants given in the two papers have different dimensions and apparently pertain to systems having different rate-limiting steps. The first report, by Wagner et 1617 al. [1], gives a forward first-order rate constant k(19) of 7.2×10^3 s⁻¹ for the direct reaction of 1618 Cl₂^{•-} with water. The second report, by Yu and Barker [2], gives a forward rate constant of 1.4 M 1619 s^{-1} , the dimensions reflecting an inverse dependence on [Cl⁻] and thus implying a mechanism 1620 1621 proceeding via dissociation of Cl₂^{•-} followed by hydrolysis of Cl atoms. Yu and Barker claim that their data set an upper limit of (100 s^{-1}) for the direct reaction of $Cl_2^{\bullet-}$ with water. They cite 1622 several prior reports in support of their slow rate constant. They also cite good literature support 1623 1624 for their measured value for the forward rate constant. In view of the great difficulty in 1625 measuring the very slow rate constant for the direct reaction of Cl₂^{•-} with water and the apparently incorrect value obtained by Wagner et al. [1], we recommend the result of Yu and 1626 1627 Barker [2]. 1628 Yu and Barker [2] note that their rate constant k_4 can be corrected to zero ionic strength by applying a factor of 1/0.8. As the other components of K_{eq} (K_5 , K_3 , and k_{-4}^{I}) are expected to be 1629 independent of ionic strength, we can correct K_{eq} to 6.1×10^{-11} M³ at zero ionic strength. 1630 1631 1632 **Recommended value:** 1633

1634		$K_{\rm eq} = (6.1 \pm 0.7) \times 10^{-11} {\rm M}^3, \mu = 0 {\rm M}.$
1635		
1636	List of	f auxiliary thermodynamic data: none.
1637		
1638	Refer	ences
1639		
1640	1.	I. Wagner, J. Karthauser, H. Strehlow. Ber. Bunsen-Ges. Phys. Chem. 90, 861-867
1641	(1986)).
1642	2.	XY. Yu, J. R. Barker. J. Phys. Chem. A 107, 1313-1324 (2003).
1643		
1644		

1645	Data Sheet 10
1646	
1647	Chemical equilibrium: $Cl^{\bullet}(aq) + Cl^{-} \Rightarrow Cl_{2}^{\bullet-}$ (10.1)
1648	
1649	List of reports:
1650	
1651	$K_{\rm eq} = (1.9 \pm 0.5) \times 10^5 \mathrm{M}^{-1}, \mu = 0.01 \mathrm{M}$ [1]. Result obtained from UV/vis data of equilibrium
1652	observed during pulse-radiolysis.
1653	
1654	$K_{\rm eq} = 1.77 \times 10^1 \mathrm{M}^{-1}$, $\mu = 0.1 \mathrm{M}$ [2]. Obtained by UV/vis evaluation of equilibrium obtained by
1655	flash photolysis.
1656	
1657	$K_{\rm eq} = (4.7 \pm 0.4) \times 10^3 \mathrm{M}^{-1}, \mu = ? \mathrm{M}$ [3]. Data obtained by pulse radiolysis.
1658	
1659	$K_{\rm eq} = (1.4 \pm 0.1) \times 10^5 \mathrm{M}^{-1}$, μ unspecified, but is rather low [4]. Result obtained from UV/vis
1660	data on the forward and reverse rate constants determined by pulse-radiolysis.
1661	
1662	$K_{\rm eq} = (1.4 \pm 0.2) \times 10^5 \mathrm{M}^{-1}$, μ unspecified, but presumed to be unimportant [5]. Result obtained
1663	from the ratio of forward and reverse rate constants, the forward one being a literature value and
1664	the reverse being measured by Yu et al. [5].
1665	
1666	Discussion
1667	
1668	The low value of Wu et al. [2] is discounted because of internal inconsistency of the data, as
1669	pointed out by Wagner et al. [6] The low value of Adams et al. [3] is discounted because of an
1670	incorrect approximation, as pointed out by Buxton et al. [4]. Deviations of the values of Buxton
1671	et al. [4] and Yu et al. [5] from the result of Jayson et al. are attributed to neglect of the
1672	absorption due to chlorine atoms by Jayson et al. [1]. Thus, we recommend the averaged results
1673	of Buxton <i>et al.</i> [4] and Yu <i>et al.</i> [5].
1674	
1675	Recommended value:
1676	
1677	$K_{\rm eq} = (1.4 \pm 0.2) \times 10^5 \mathrm{M}^{-1}$, μ unspecified and presumed to be unimportant.
1678	
1679	List of auxiliary thermodynamic data: none
1680	

1681	References		
1682			
1683	1.	G. G. Jayson, B. J. Parsons, A. J. Swallow. J. Chem. Soc., Faraday Trans. 169, 1597-	
1684	1607 (1973).	
1685	2.	D. Wu, D. Wong, B. Di Bartolo. J. Photochem. 14, 303-310 (1980).	
1686	3.	D. J. Adams, S. Barlow, G. V. Buxton, T. M. Malone, G. A. Salmon. J. Chem. Soc.,	
1687	Farad	ay Trans. 91 , 3303-3305 (1995).	
1688	4.	G. V. Buxton, M. Bydder, G. A. Salmon. J. Chem. Soc., Faraday Trans. 94, 653-657	
1689	(1998)		
1690	5.	XY. Yu, J. R. Barker. J. Phys. Chem. A 107, 1313-1324 (2003).	
1691	6.	I. Wagner, J. Karthauser, H. Strehlow. Ber. Bunsen-Ges. Phys. Chem. 90, 861-867	
1692	(1986)		
1693			
1694			

1695	Data Sheet 11
1696	
1697	Chemical equilibrium: $Cl^{\bullet}(aq) + H_2O \Rightarrow HOCl^{\bullet-} + H^+$ (11.1)
1698	
1699	List of reports:
1700	
1701	$K_{eq} = 3.4 \times 10^{-6}$ M, within a factor of 2 [1]. Actually, Jayson <i>et al.</i> did not really measure this
1702	equilibrium constant but rather derived it from their measured equilibrium constants for reactions
1703	8.1 and 12.1 (electron transfer from Cl ⁻ to HO [•] , and addition of HO [•] to Cl ⁻). Moreover, the value
1704	they calculate takes the concentration of water into account; the value given here has been
1705	corrected to reflect water having unit activity.
1706	
1707	$pK_a = 5.1$ [2]. The basis for this result is unclear from the published paper, but a letter from
1708	Kläning to Stanbury (21 Feb 1990) states that the result was obtained by recalculation from the
1709	optical/pulse-radiolysis data of Jayson et al. [1] with a correction for the optical density due to
1710	chlorine atoms. Thus, the actual equilibria measured directly are reactions 8.1 and 12.1.
1711	
1712	$K_{\rm a} = 5 \times 10^{-6}$ M, ionic strength unspecified but quite low, uncertainty unspecified [3]. Forward
1713	rate constant obtained from flash photolysis of aqueous chloroacetone. Reverse rate constant
1714	taken as the usual value for protonation reactions; Buxton (private communication) cites the
1715	reaction of $H^+ + O_2^{\bullet-}$ [4] and a host of similar rate constants tabulated in Table 12.1 of Caldin's
1716	book [5].
1717	
1718	$K_{eq} = (6.3 \pm 1.6) \times 10^{-6}$ M, extrapolated to zero ionic strength [6]. Result obtained by flash
1719	photolysis. It is obtained from a ratio of measured rate constants and is directly dependent on the
1720	value of the equilibrium constant for reaction 12.1; they actually obtained the equilibrium
1721	constant for reaction 9.1.
1722	
1723	Discussion
1724	
1725	As all of the literature reports, except from Buxton et al. [3], actually present results
1726	derived from other equilibrium constants, we make no recommendation based on these.
1727	The report from Buxton et al. [3] is based on an assumed diffusion-controlled reverse rate
1728	constant, and thus is not highly accurate; we assign an uncertainty of a factor of 2. As the
1729	forward rate constant was obtained at quite low ionic strength and the reverse rate constant was

1730	appro	priate for zero ionic strength, the derived equilibrium constant reasonably approximates the	
1731	value at zero ionic strength.		
1732			
1733	Reco	mmended value:	
1734			
1735	$K_{\rm a} = 5$	5×10^{-6} M ± factor of 2, at low ionic strength.	
1736			
1737	List o	f auxiliary thermodynamic data: none	
1738			
1739	References		
1740			
1741	1.	G. G. Jayson, B. J. Parsons, A. J. Swallow. J. Chem. Soc., Faraday Trans. 169, 1597-	
1742	1607	(1973).	
1743	2.	U. K. Kläning, T. Wolff. Ber. Bunsenges. Phys. Chem. 89, 243-245 (1985).	
1744	3.	G. V. Buxton, M. Bydder, G. A. Salmon, J. E. Williams. Phys. Chem. Chem. Phys. 2,	
1745	237-245 (2000).		
1746	4.	Y. Ilan, J. Rabani. Int. J. Radiat. Phys. Chem. 8, 609-611 (1976).	
1747	5.	E. F. Caldin. Fast Reactions in Solution, John Wiley & Sons Inc., New York 263 (1964).	
1748	6.	XY. Yu, J. R. Barker. J. Phys. Chem. A 107, 1313-1324 (2003).	
1749			

1751	Data Sheet 12
1752	
1753	Chemical equilibrium: $HO^{\bullet} + Cl^{-} \Rightarrow HOCl^{\bullet-}$ (12.1)
1754	
1755	List of reports:
1756	
1757	$K_{\rm eq} = 0.70 \pm 0.13 {\rm M}^{-1}$, $\mu = 1.0 {\rm M}$ [1]. Result obtained from optical data on the equilibrium
1758	position in pulse radiolysis experiments.
1759	
1760	Discussion
1761	
1762	The experiments appear to have been done quite well, and there are no conflicting data. Thus, we
1763	accept the result. It is to be expected that the equilibrium constant is not substantially affected by
1764	ionic strength.
1765	
1766	Recommended value:
1767	
1768	$K_{\rm eq} = 0.70 \pm 0.13 \ {\rm M}^{-1}$
1769	
1770	List of auxiliary thermodynamic data: none
1771	
1772	References
1773	
1774	1. G. G. Jayson, B. J. Parsons, A. J. Swallow. J. Chem. Soc., Faraday Trans. 169, 1597-
1775	1607 (1973).
1776	
1777	

1778	Data Sheet 13		
1779			
1780	Chemical equilibrium: $SO_4^{\bullet-} + Cl^- \Rightarrow SO_4^{2-} + Cl^{\bullet}(aq)$ (13.1)		
1781			
1782	List of reports:		
1783			
1784	$K_{eq} = 1.9$ at $\mu = 0.1$ M. No uncertainty specified. Result obtained from ratio of forward and		
1785	reverse rate constants [1].		
1786			
1787	$K_{\rm eq} = 2.9 \pm 0.2$ at $\mu = 0.3$ M, and $K_{\rm eq} = 1.2$ at $\mu = 0$ M. Results obtained from ratio of forward		
1788	and reverse rate constants, with extrapolation of the ionic-strength dependent data to get the		
1789	result at $\mu = 0$ [2].		
1790			
1791	Discussion		
1792			
1793	The good agreement between the two determinations of this equilibrium constant gives		
1794	confidence in its value. We recommend the more recent result of Buxton et al. [2], because of its		
1795	experimental extrapolation to $\mu = 0$ M.		
1796			
1797	Recommended value:		
1798			
1799	$K_{\rm eq} = 1.2 \pm 0.2$ at $\mu = 0$ M		
1800			
1801	List of auxiliary thermodynamic data: none		
1802			
1803	References		
1804			
1805	1. R. E. Huie, C. L. Clifton, P. Neta. Radiat. Phys. Chem. 38, 477-481 (1991).		
1806	2. G. V. Buxton, M. Bydder, G. A. Salmon. Phys. Chem. Chem. Phys. 1, 269-273 (1999).		
1807			
1808			

1809	Dat	a Sheet 14		
1810				
1811	Cher	nical equilibrium: $SO_4^{\bullet-} + NO_3^- \Rightarrow SO_4^{2-} + NO_3^{\bullet}(aq)$ (14.1)		
1812				
1813	List	of reports:		
1814				
1815	K _{eq} =	$= (0.5 \pm 0.1)$ at ionic strength of 0.1 M to 0.2 M was determined directly from the		
1816	equil	librium absorbance measurements by Løgager et al. [1]. They employed the same correction		
1817	as Ex	xner <i>et al.</i> [2] to extrapolate to zero ionic strength, which resulted in $K_{eq} = 0.28$ at $\mu = 0$ M.		
1818				
1819 1820	Disc	ussion		
1821	The	determination of K_{eq} from the equilibrium absorbance relies upon the knowledge of spectra		
1822	of the radicals. Although significant, the uncertainties in molar absorptivity are unlikely to bring			
1823	the errors in K_{eq} outside the stated uncertainty for this value. For the extrapolated K_{eq} , Løgager <i>et</i>			
1824	al. [1] have not indicated the error margins. However, error margins of no more than 30% appear			
1825	reasonable in this type of extrapolations.			
1826				
1827	Reco	ommended value:		
1828				
1829	$K_{\rm eq} = (0.28 \pm 0.1)$, at $\mu = 0$ M.			
1830				
1831	List	of auxiliary thermodynamic data: none		
1832				
1833	Refe	erences		
1834				
1835	1.	T. Løgager, K. Sehested, J. Holcman. Radiat. Phys. Chem. 41, 539-543 (1993).		
1836	2.	M. Exner, H. Herrmann, R. Zellner. Ber. Bunsen-Ges. Phys. Chem. 96, 470-477 (1992).		
1837				
1838				

1839	Data Sheet 15			
1840				
1841	Chemical equilibrium: $SO_4^{\bullet-} + HNO_3 \rightleftharpoons HSO_4^{-} + NO_3^{\bullet}(aq)$ (15.1)			
1842				
1843	List of reports:			
1844	Løgager <i>et al.</i> [1] measured the ratio $[SO_4^{\bullet-}]/[NO_3^{\bullet}]$ as a function of $[HSO_4^{-}]/([NO_3^{-} + [HNO_3]))$	I		
1845	at three different H ₂ SO ₄ concentrations, namely (0.5, 1.0, and 2.0) M. By taking K_a (HNO ₃) = 20			
1846	M, reportedly from the work of Hood and Reilly [2], they calculated the apparent K_{eq} to be 492,			
1847	462, and 440 at (0.5, 1.0, and 2.0) M H^+ , respectively.			
1848				
1849 1850	Discussion			
1851	The K_a of HNO ₃ is somewhat uncertain. The work of Hood and Reilly [2] actually does not			
1852	report $K_a(HNO_3) = 20$ M; instead it reports two K_a values of 27.5 and 25 obtained with slightly			
1853	different assumptions, both values are dimensionless and expressed through activities.			
1854	Recalculation of the data from Løgager <i>et al.</i> [1] with the former number gives $K_{eq} = 670, 630$,			
1855	and 590 at (0.5, 1.0, and 2.0) M [H ⁺], respectively. However, the K_a value of 20 has indeed been			
1856	reported by Redlich et al. [3]. With such an uncertainty in K _a (HNO ₃), the equilibrium constant of			
1857	reaction 15.1 is probably not better known than within $\pm 2 \times 10^2$. Combining $K_a(\text{HNO}_3) = 20$			
1858	with $pK_a(HSO_4^-) = 1.99$ and $(K_{eq})_{14.1} = 0.28$, one obtains $(K_{eq})_{15.1} = 5.5 \times 10^2$, which is about the			
1859	average of all the values above.			
1860				
1861	Recommended value:			
1862				
1863	$K_{\rm eq} = (5 \pm 2) \times 10^2$			
1864				
1865	List of auxiliary thermodynamic data: none			
1866				
1867	References			
1868				
1869	1. T. Løgager, K. Sehested, J. Holcman. Radiat. Phys. Chem. 41, 539-543 (1993).			
1870	2. G. C. Hood, C. A. Reilly. J. Chem. Phys. 32, 127-130 (1960).			
1871	3. O. Redlich, R. W. Duerst, A. Merbach. J. Chem. Phys. 49, 2986-2994 (1968).			
1872				
1873				

1874	Data Sheet 16
1875	
1876	Chemical equilibrium: $NO_3^{\bullet}(aq) + Cl^- \Rightarrow NO_3^- + Cl^{\bullet}(aq)$ (16.1)
1877	
1878	List of reports:
1879	
1880	$K_{eq} = (3.3 \pm 0.2)$ at $\mu = 0$ M, calculated from the ratio of the rate constants; $k_f = (3.40 \pm 0.11) \times$
1881	$10^8 \text{ M}^{-1} \text{ s}^{-1}$ was obtained by Buxton <i>et al.</i> from pulse radiolysis, and $k_r = (1.02 \pm 0.04) \times 10^8 \text{ M}^{-1}$
1882	s ⁻¹ from flash photolysis experiments with chloroacetone, both rate constants extrapolated to
1883	zero ionic strength [1]. The reported uncertainty in K_{eq} is conservative, as ± 0.17 for K_{eq} follows
1884	from the propagation of uncertainties in $k_{\rm f}$ and $k_{\rm r}$.
1885	
1886	$K_{eq} = (3.5 \pm 0.5)$ at $\mu = 0.1$ -1 M, obtained from the ratio of the rate constants. Only $k_f = (3.5 \pm 0.5)$
1887	0.5) \times 10 ⁸ M ⁻¹ s ⁻¹ was measured; the value is obtained by fitting pulse radiolysis kinetic data to a
1888	complex mechanism [2]. The literature value [1] used for k_r was rounded up to $1 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$;
1889	without the round-up, $K_{eq} = (3.43 \pm 0.51)$.
1890	
1891	Discussion
1892	
1893	Only one measurement of k_r has been reported [1]. However, this measurement is
1894	straightforward (obtained from linear dependence of Cl [•] decay upon [NO ₃ ⁻] in chloride-free
1895	solution) and appears to be reliable. In contrast, several earlier $k_{\rm f}$ evaluations that have been
1896	reported $(1 \times 10^8 [3], 8.8 \times 10^6 [4], 7.1 \times 10^7 [5], and 9.1 \times 10^6 \text{ M}^{-1} \text{ s}^{-1} [6]) are most likely in$
1897	error. The probable reasons for errors in the first two of these measurements have been discussed
1898	[1]. The last two values are not accompanied by sufficient details to assess their reliability.
1899	Nearly perfect agreement between k_f in the two most recent reports [1, 2] and the explanations
1900	for the complex kinetic concentration dependencies (upon [NO ₃ ⁻] and [Cl ⁻]) provide good
1901	confidence in the results. We select the data of Buxton et al. [1] because of the smaller error,
1902	simultaneous determination of both $k_{\rm f}$ and $k_{\rm r}$, transparent data analysis, and careful extrapolation
1903	to zero ionic strengths.
1904	
1905	Recommended value:
1906	
1907	$K_{\rm eq} = (3.3 \pm 0.2)$ at $\mu = 0$ M.
1908	
1909	List of auxiliary thermodynamic data: none

1911 **References**

- 1912
- 1913 1. G. V. Buxton, G. A. Salmon, J. Wang. Phys. Chem. Chem. Phys. 1, 3589-3593 (1999).
- 1914 2. G. A. Poskrebyshev, R. E. Huie, P. Neta. J. Phys. Chem. A 107, 1964-1970 (2003).
- 1915 3. K.-J. Kim, W. H. Hamill. J. Phys. Chem. 80, 2320-2325 (1976).
- 1916 4. M. Exner, H. Herrmann, R. Zellner. Ber. Bunsen-Ges. Phys. Chem. 96, 470-477 (1992).
- 1917 5. P. Neta, R. E. Huie. J. Phys. Chem. 90, 4644-4648 (1986).
- 1918 6. Z. Zuo, Y. Katsumura, K. Ueda, K. Ishigure. J. Chem. Soc., Faraday Trans. 93, 1885-
- 1919 1891 (1997).
- 1920
- 1921
1922 **Data Sheet 17**

1923

1924 Chemical equilibrium: $NO_3^{\bullet}(aq) + ClO_3^{-} \Rightarrow NO_3^{-} + ClO_3^{\bullet}(aq)$ (17.1)

1925

1926 List of reports:

1927

1928 $K_{eq} = (42 \pm 6)$ at $\mu = (1-1.4)$ M (1 M HNO₃ + 0.02-0.4 M NaClO₃), obtained from the 1929 measurements of absorption at equilibrium as a function of $[ClO_3^-]/[NO_3^-]$ by Katsumura and 1930 co-workers [1]. The NO₃• radical has been generated by flash photolysis of cerium nitrate. The 1931 forward and reversed rate constants are reported as $k_f = (9.0 \pm 1.2) \times 10^3$ M⁻¹ s⁻¹ and $k_r = (8.3 \pm 1.0) \times 10^2$ M⁻¹ s⁻¹, which corresponds to $K_{eq} = 11 \pm 2$ from the ratio of the rate constants. The 1933 medium effects (high ionic strength) have not been considered.

1934

1935 **Discussion**

1936

1937 The authors are of the opinion that the value of K_{eq} obtained from the equilibrium position is

more reliable than that obtained from the rate constants. However, this may not be the case

- because the equilibration is slow (milliseconds) and there is likely to be a significant net loss of
- radicals during that time. Such a possibility is of particular concern because of the occurrence of
- an unexplained first-order decay of NO_3^{\bullet} in the absence of added ClO_3^{-} that is observed on this
- 1942 timescale [1, 2], and because of the fast second-order self-recombination ($2k \approx 9 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$)
- 1943 observed for ClO_3^{\bullet} [1]. The latter should be very significant with the large concentration of
- 1944 radicals (*ca.* 15 μ M) present. Furthermore, the dose dependence of K_{eq} obtained from the
- 1945 equilibrium position was not investigated. The net loss of radicals would tend to increase the
- 1946 apparent K_{eq} value, such that $K_{eq} = 42$ is probably close to an upper limit.
- 1947 The determination of K_{eq} from the ratio of the rate constants is also somewhat worrisome,
- because the first-order decay of NO₃• was ignored and because of the possibility that the reverse
- reaction is actually not with NO₃⁻, but with undissociated HNO₃ present at (20-30) mM in 1 M
- 1950 nitric acid. By analogy with the oxidation of HNO_3/NO_3^- by $SO_4^{\bullet-}$ [3], the oxidation of HNO_3
- 1951 could occur much more rapidly than that of NO₃⁻. Although this possibility has not been
- considered, it is not unlikely that the observed equilibration (by both methods) was applied toreaction 17.2, instead of 17.1.
- 1954 $NO_3^{\bullet}(aq) + ClO_3^{-} + H^+ \Rightarrow HNO_3 + ClO_3^{\bullet}(aq)$ (17.2) 1955 With $pK_a(HNO_3) = -1.3$, one obtains $K_{eq} = K_a(HNO_3) \times K_{eq}^{\circ} \approx 20K_{eq}^{\circ}$.
- 1956
- 1957 **Recommended value**:

1958		
1959	$K_{\rm eq} = 1$	0-50, in 1 M HNO ₃ (can be approx. 20 times larger, if the reverse reaction is with HNO ₃)
1960		
1961	List of	auxiliary thermodynamic data: none
1962		
1963	Refere	ences
1964		
1965	1.	Z. Zuo, Y. Katsumura, K. Ueda, K. Ishigure. J. Chem. Soc., Faraday Trans. 93, 533-536
1966	(1997)	
1967	2.	P. H. Wine, R. L. Mauldin, R. P. Thorn. J. Phys. Chem. 92, 1156-1162 (1988).
1968	3.	T. Løgager, K. Sehested, J. Holcman. Radiat. Phys. Chem. 41, 539-543 (1993).
1969		
1970		

1971 Data Sheet 18

1972

1973 Chemical equilibrium: $SO_4^{\bullet-} + H_2O \Rightarrow HSO_4^- + HO^{\bullet}(aq)$ (18.1)

- 1974
- 1975 List of reports:
- 1976

1977 No *K* has been reported,, but Wine and co-workers [1] report measurements of both forward, (3.6 1978 ± 0.9) × 10² s⁻¹, and reverse, (3.5 ± 0.5) × 10⁵ M⁻¹ s⁻¹, rate constants, from which $K_{eq} = (1.0 \pm 0.3) \times 10^{-3}$ M is calculated.

- 1980
- 1981 **Discussion**1982

1983 Four laboratories have determined the rate constant of the forward reaction, $k_{\rm f}$, with good 1984 internal consistency. In all cases, very similar rate constants were obtained by producing the 1985 $SO_4^{\bullet-}$ radical from $S_2O_8^{2-}$ and by measuring the disappearance of the characteristic absorption of SO_4^- around 450 nm. The reported values are as follows: $(360 \pm 90) \text{ s}^{-1}$ [1], $(500 \pm 60) \text{ s}^{-1}$ [2], 1986 (660 ± 40) s⁻¹ [3], and (440 ± 50) s⁻¹ [4]. Bao and Barker have found that simulations with the 1987 1988 last value together with the rate constant for self-recombination of SO₄•- reproduce very well the 1989 experimental traces at low ionic strength [4]. They also report low impurity contents. A much 1990 higher value for $k_{\rm f}$, namely $(9.4 \pm 3.7) \times 10^3 \, {\rm s}^{-1}$, is reported by Ivanov *et al.* [5]. However, as the 1991 primary aim of the authors was not the determination of this value, they did not take special 1992 precautions to avoid impurities. In fact, they attribute their high $k_{\rm f}$ value to impurities and to the 1993 high ionic strengths of about 1 M employed. Excluding this value, the average of $k_{\rm f}$ comes out as $(4.9 \pm 1.3) \times 10^2$ s⁻¹ and this number is selected. 1994

1995 Three direct determinations for the reverse reaction rate constant, k_r , are known: 6.9×10^5 1996 [6], $(3.5 \pm 0.5) \times 10^5$ [1], and 4.7×10^5 M⁻¹ s⁻¹ [7]. The agreement is satisfactory. The first and 1997 last values are obtained by pulse radiolysis under conditions where radical-radical reactions may 1998 play a role. In addition, the last determination has been made in concentrated H₂SO₄, where the 1999 reaction HO[•] + H₂SO₄ dominated the HO[•] decay. The second value, obtained by Tang *et al.* [1] 2000 using flash photolysis of H₂O₂ to generate HO[•], appears to be more accurate and is selected, 2001 because of the special care taken to minimize radical-radical and other interfering reactions. 2002

- 2003 **Recommended value:**
- 2004

2005	$K_{\rm eq} = (1.4 \pm 0.4) \times 10^{-3}$ M, from the selected $k_{\rm f} = (4.9 \pm 1.3) \times 10^2$ s ⁻¹ and $k_{\rm r} = (3.5 \pm 0.5) \times 10^5$
2006	$M^{-1} s^{-1}$
2007	
2008	List of auxiliary thermodynamic data: none
2009	
2010	References
2011	
2012	1. Y. Tang, R. P. Thorn, R. L. Maudlin, P. H. Wine. J. Photochem. Photobiol., A 44, 243-
2013	258 (1988).
2014	2. W. J. McElroy, S. J. Waygood. J. Chem. Soc., Faraday Trans. 86, 2557-2564 (1990).
2015	3. H. Herrmann, A. Reese, R. Zellner. J. Mol. Struct. 348 , 183-186 (1995).
2016	4. ZC. Bao, J. R. Barker. J. Phys. Chem. 100, 9780-9787 (1996).
2017	5. K. L. Ivanov, E. M. Glebov, V. F. Plyusin, Y. V. Ivanov, V. P. Grivin, N. M. Bazhin. J.
2018	Photochem. Photobiol. A 133, 99-104 (2000).
2019	6. E. Heckel, A. Henglein, G. Beck. Ber. Bunsen-Ges. Phys. Chem. 70, 149-154 (1966).
2020	7. PY. Jiang, Y. Katsumura, R. Nagaishi, M. Domae, K. Ishikawa, K. Ishigure, Y.
2021	Yoshida. J. Chem. Soc., Faraday Trans. 88, 1653-1658 (1992).
2022	
0000	

2024	Data Sheet 19
2025	
2026	Chemical equilibrium: $HO^{\bullet}(aq) + Tl^{+}(aq) \Rightarrow TlOH^{+}(aq)$ (19.1)
2027	
2028	List of reports:
2029	
2030	$K_{\rm eq} = (5.8 \pm 1.0) \times 10^3 \mathrm{M}^{-1}$ at 25 °C and $\mu = 0.01 \mathrm{M}$; $K_{\rm eq} = (3.4 \pm 0.5) \times 10^3 \mathrm{M}^{-1}$ at 25 °C and $\mu =$
2031	1.00 M (LiClO ₄) [1]. Data obtained by pulse radiolysis with optical detection. Result obtained
2032	from the ratio of the forward and reverse rate constants and also from the position of the
2033	equilibrium. Data analysis required the simultaneous determination of the pK_a of Tl^{2+} (reaction
2034	20.1).
2035	
2036	Discussion
2037	
2038	These sole determinations of the equilibrium constant appear to be reliable and accurate.
2039	It is not expected to be significantly dependent on ionic strength, and this expectation is
2040	supported by the data of Schwarz and Dodson at $\mu = 1.0$ and 0.01 M [1].
2041	Indiscriminate use of this equilibrium constant with the pK_a of Tl^{2+} can lead to a flawed
2042	value for $E^{\circ}(HO^{\bullet}/HO^{-})$ if it is assumed that the p K_a of Tl^{2+} is independent of ionic strength. To
2043	avoid this problem we follow Schwarz <i>et al.</i> and use $E^{\circ} = +(2.217 \pm 0.003)$ V for the Tl ²⁺ /Tl ⁺
2044	couple in 1 M ionic strength (see data sheet for reaction 21.1), combine it with the $K_a = (1.2 \pm$
2045	0.2) × 10 ⁻⁵ M of Tl ²⁺ in the same medium (reaction 20.1) and the above K_{eq} in the same medium
2046	to derive $E^{\circ} = +(2.718 \pm 0.006)$ V at $\mu = 1.00$ M for HO [•] $(aq) + H^+(aq) + e^- \Rightarrow H_2O(l)$. With the
2047	approximation that HO [•] (aq) and H ₂ O(l) have activity coefficients of unity while H ⁺ (aq) has an
2048	activity coefficient of 0.85, we then derive $E^{\circ} = +(2.722 \pm 0.006)$ V for HO•(<i>aq</i>) + H ⁺ (<i>aq</i>) + e ⁻
2049	\Rightarrow H ₂ O(<i>l</i>). Use of the NBS value for $\Delta_f G^{\circ}(H_2O(l))$ then yields $\Delta_f G^{\circ} = +(25.5 \pm 0.6) \text{ kJ mol}^{-1}$ for
2050	HO•(<i>aq</i>). Use of the NBS value [2] of $\Delta_{\rm f}G^{\circ}$ for OH ⁻ (<i>aq</i>) (= -157.244 ± 0.08 kJ mol ⁻¹) leads to E°
2051	= +(1.894 \pm 0.006) V for the OH/OH ⁻ redox couple. We view the approximations and
2052	uncertainties introduced by this method to be superior to those involved in methods that use
2053	$E^{\circ}(\mathrm{Tl}^{2+/+})$ and equilibrium constants extrapolated to zero ionic strength.
2054	

Recommended values:

 $\text{HO}^{\bullet}(aq) + \text{TI}^{+}(aq) \Rightarrow \text{TIOH}^{+}(aq) \quad K_{\text{eq}} = (5.8 \pm 1.0) \times 10^{3} \text{ M}^{-1}$ 2058 $\text{HO}^{\bullet}(aq) + \text{TI}^{+}(aq) \Rightarrow \text{TIOH}^{+}(aq) \quad K_{\text{eq}} = (3.4 \pm 0.5) \times 10^{3} \text{ M}^{-1} \text{ at } \mu = 1.00 \text{ M}$

2059	$\mathrm{HO}^{\bullet}(aq) + \mathrm{H}^{+}(aq) + \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}\mathrm{O}(l)$	$E^{\circ} = +(2.718 \pm 0.006)$ V at $\mu = 1.00$ M	
2060	$\mathrm{HO}^{\bullet}(aq) + \mathrm{H}^{+}(aq) + \mathrm{e}^{-} \Rightarrow \mathrm{H}_{2}\mathrm{O}(l)$	$E^{\circ} = +(2.722 \pm 0.006) \text{ V}$	
2061	$HO^{\bullet}(aq) + e^{-} \Rightarrow HO^{-}(aq)$	$E^{\circ} = +(1.894 \pm 0.006) \text{ V}$	
2062	$HO^{\bullet}(aq)$	$\Delta_{\rm f} G^{\circ} = +(25.5 \pm 0.6) \rm kJ mol^{-1}$	
2063			
2064	List of auxiliary thermodynamic	data : $\Delta_{\rm f} G^{\circ}$ for HO ⁻ (<i>aq</i>) and H ₂ O(<i>l</i>), $K_{\rm eq}$ for reactions 20.1	
2065	and 21.1.		
2066			
2067	References		
2068			
2069	1. H. A. Schwarz, R. W. Dods	on. J. Phys. Chem. 88, 3643-3647 (1984).	
2070	2. D. D. Wagman, W. H. Evan	s, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.	
2071	Churney, R. L. Nuttall. J. Phys. Che	em. Ref. Data 11, Suppl. No. 2 (1982).	
2072			
2073			

2074	Data Sheet 20
2075	Chemical equilibrium: $Tl^{2+}(aq) + H_2O(l) \Rightarrow TlOH^+(aq) + H^+(aq)$ (20.1)
2076	
2077	List of reports:
2078	
2079	$pK_a = (4.7 \pm 0.2)$ at 21 °C, indeterminate ionic strength [1]. The result was obtained from pulse
2080	radiolysis, using both conductivity and optical detection.
2081	
2082	$pK_a = 4.65$ probably at room temperature, unspecified ionic strength [2]. Result obtained from
2083	pulse radiolysis with conductivity detection.
2084	
2085	$K_{\rm a} = (1.7 \pm 0.3) \times 10^{-5}$ M at $\mu = 0.01$ M (p $K_{\rm a} = 4.70$) at 25 °C; $K_{\rm a} = (1.2 \pm 0.2) \times 10^{-5}$ M at $\mu =$
2086	1.00 M (p K_a = 4.93) at 25 °C [3]. Data obtained from pulse radiolysis with optical detection.
2087	Results obtained from both the ratio of forward and reverse rate constants and also from the
2088	equilibrium change in optical density. Both of the methods relied on analyses that adjusted the
2089	observed data by functions of the equilibrium constant for $TI^+ + HO^{\bullet} \rightleftharpoons TIOH^+$ (reaction 19.1).
2090	
2091	Discussion
2092	
2093	The two earlier determinations neglected the effects of reaction 19.1 and thus the result of
2094	Schwarz and Dodson [3] is to be preferred. By comparison with the ionic strength dependence of
2095	the p K_a of Ni ²⁺ , the reaction is expected to be significantly affected by ionic strength [4].
2096	In combination with the p K_a at 0.01 M, use of the NIST value [5] of $\Delta_f G^\circ$ for H ₂ O and the
2097	$\Delta_{\rm f}G^{\circ}$ value (= 183.1 ± 0.7 kJ mol ⁻¹ from Longhi's Tl ⁺ data [6]) for Tl ²⁺ that we have
2098	recommended in the evaluation of reaction 21.1 (reaction of Tl^{2+} with Fe^{n+}) leads to $\Delta_{\text{f}}G^{\circ} = -$
2099	(26.8 ± 0.8) kJ mol ⁻¹ for TlOH ⁺ (aq) at $\mu = 0.01$ M; this result is somewhat incorrect because it
2100	combines an ionic-strength dependent formal pK_a with an ideal Gibbs energy for TI^{2+} . Use of the
2101	NBS value of $\Delta_f G^\circ$ for TlOH ²⁺ (<i>aq</i>) leads to $E^\circ = +0.113 \pm 0.008$ V for the TlOH ²⁺ /TlOH ⁺
2102	couple. Use of the NBS value of $\Delta_f G^\circ$ for TIOH(<i>aq</i>) leads to $E^\circ = +(1.690 \pm 0.008)$ V for the
2103	TIOH ⁺ /TIOH couple.
2104	
2105	Recommended values:
2106	
2107	$Tl^{2+}(aq) + H_2O(l) \Rightarrow TlOH^+(aq) + H^+(aq)$ $K_a = (1.7 \pm 0.3) \times 10^{-5} \text{ M at } \mu = 0.01 \text{ M}$
2108	$Tl^{2+}(aq) + H_2O(l) \Rightarrow TlOH^+(aq) + H^+(aq)$ $K_a = (1.2 \pm 0.2) \times 10^{-5} \text{ M at } \mu = 1.00 \text{ M}$
2109	TIOH ⁺ (<i>aq</i>) $\Delta_{\rm f}G^{\circ} = -26.8 \pm 0.8 \text{ kJ mol}^{-1} \text{ at } \mu = 0.01 \text{ M}$

2110	TlOI	$\mathrm{H}^{2^+}(aq) + \mathrm{e}^- \rightleftharpoons \mathrm{TlOH}^+(aq)$	$E^{\circ} = 0.113 \pm 0.008 \text{ V}$
2111	TlOI	$H^+(aq) + e^- \Rightarrow TlOH(aq)$	$E^{\circ} = 1.690 \pm 0.008 \text{ V}$
2112			
2113	List	of auxiliary thermodynamic data: NI	3S $\Delta_{\rm f} G^{\circ}$ for H ₂ O(<i>l</i>), TIOH ²⁺ (<i>aq</i>), and TIOH(<i>aq</i>); $\Delta_{\rm f} G^{\circ}$
2114	for T	$\Gamma l^{2+}(aq)$ (reaction 21.1).	
2115			
2116	Refe	erences	
2117			
2118	1.	P. O'Neill, D. Schulte-Frohlinde.	J. Chem. Soc., Chem. Commun. 387-388 (1975).
2119	2.	M. Bonifacic, KD. Asmus. J. C.	nem. Soc., Dalton Trans. 2074-2076 (1976).
2120	3.	H. A. Schwarz, R. W. Dodson. J.	Phys. Chem. 88, 3643-3647 (1984).
2121	4.	D. D. Perrin. J. Chem. Soc. 3644-	3648 (1964).
2122	5.	D. D. Wagman, W. H. Evans, V.	B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
2123	Chu	rney, R. L. Nuttall. J. Phys. Chem. R.	ef. Data 11, Suppl. No. 2 (1982).
2124	6.	P. Longhi, T. Mussini, S. Rondin	ni, B. Sala. J. Chem. Thermodynamicdynam. 11, 73-81
2125	(197	79).	
2126			

2127 Data Sheet 21 $E^{\circ}(Tl^{2+}/Tl^{+})$ 2128 2129 Chemical equilibrium: $Tl^{3+} + Fe^{2+} \Rightarrow Tl^{2+} + Fe^{3+}$ 2130 (21.1)2131 2132 List of reports: 2133 As all determinations of this equilibrium constant are based on the kinetics of the reaction 2134 of Fe²⁺ with Tl³⁺, we present the mechanism of that reaction in order to define the rate constants 2135 involved. According to Ashurst and Higginson [1], the mechanism is 2136 2137 $Tl^{3+} + Fe^{2+} \Rightarrow Tl^{2+} + Fe^{3+}$ 2138 k_1, k_{-1}, K_{eq} (21.1) $Tl^{2+} + Fe^{2+} \rightarrow Tl^+ + Fe^{3+}$ ka 2139 (21.2)2140 2141 As written, the reactions pertain to unhydrolyzed aqua ions. Ashurst and Higginson report that 2142 the apparent second-order forward rate constant is sensitive to [H⁺], and the overall rate law has two terms: one indicating a transition state having the composition $Fe^{2+}/Tl^{3+}/HO^{-}$ and the other 2143 being $Fe^{2+}/Tl^{3+}/2HO^{-}$. Thus, the use of forward and reverse rate constants obtained at different 2144 values of pH introduces a degree of error, as does the use of rate constants at different ionic 2145 strengths (see Discussion below). We will thus refer to the reported equilibrium constants as 2146 "apparent" K_{app} . 2147 2148 $K_{app} = 4.2 \times 10^{-8}$ at undefined ionic strength and pH was reported by Falcinella *et al.*, 2149 who obtained it from the ratio of the forward and reverse rate constants [2]. Flash photolysis was 2150 used to generate Tl^{2+} and observe the reverse reaction, for which a rate constant $k_{-1} = (1.1 \pm 1.1)$ 2151 $(0.15) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ at $\mu = 0.30 \text{ M}$ and $[\text{H}^+] = 0.25 \text{ M}$ was obtained. The forward rate constant k_1 2152 was from the kinetic study by Ashurst and Higginson on the overall Tl^{3+} reaction with Fe²⁺ [1]. 2153 Falcinella *et al.* selected from Ashurst and Higginson a value for k_1 of 4.60×10^{-2} M⁻¹ s⁻¹ at $\mu =$ 2154 $3.0 \text{ M} \text{ and } [\text{H}^+] = 0.40 \text{ M}.$ 2155 2156 $K_{app} = (4.1 \pm 0.6) \times 10^{-8}$ in 1 M HClO₄ [3]. Schwarz *et al.* used pulse radiolysis to 2157 determine a rate constant $k_2 = (6.7 \pm 0.7) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$. The work of Ashurst and Higginson on 2158 the overall reaction of Tl³⁺ with Fe²⁺ was repeated, but in 1.1 M HClO₄; under these conditions, 2159 the values $k_1 = (1.39 \pm 0.02) \times 10^{-2} \text{ M}^{-1} \text{ s}^{-1}$ and $k_{-1}/k_2 = (0.051 \pm 0.005)$ were obtained from the 2160 Fe³⁺ inhibition of the kinetics. These measurements led to a value $k_{-1} = (3.4 \pm 0.5) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$. 2161

where we have inferred the indicated uncertainty from their data; hence, $K_{app} = k_{-1}/k_1 = (4.1 \pm 0.2163 \ 6) \times 10^{-8}$.

2164

 $K_{\text{app}} = 1.8 \times 10^{-7}$ at mixed ionic strength [4]. Falcinella *et al.* used flash photolysis to 2165 measure the rate constant of $(2.6 \pm 0.1) \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$ for k_2 at $\mu = 0.30 \text{ M}$, $[\text{H}^+] = 0.25 \text{ M}$. Then 2166 the pH-dependent data of Ashurst and Higginson were extrapolated to obtain $k_{-1}/k_2 = 0.10$ at 2167 0.25 M [H⁺]. These two pieces of data yielded $k_{-1} = 2.6 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ at $\mu = 0.30 \text{ M}$ and [H⁺] = 2168 0.25 M. Combination of this k_{-1} with Ashurst and Higginson's value for k_1 (at $\mu = 3.0$ M and 2169 2170 $[H^+] = 0.40 \text{ M}$) then yielded the indicated equilibrium constant; obviously, this equilibrium 2171 constant is based on two rate constants obtained under conditions of different ionic strength and 2172 $[H^+]$. Despite the four-fold discrepancy between k_{-1} determined in this way and that determined 2173 directly by Falcinella et al. [2], the two values were deemed "in reasonable agreement". 2174 $K_{app} = 8 \times 10^{-8}$ in 1 M HClO₄ was obtained by Dodson from the ratio of the forward and 2175 reverse rate constants [5], the forward rate constant being the one determined by Schwarz *et al.* 2176 2177 [3], and the reverse being obtained from the study of Fe(II)-induced radioactive label exchange 2178 between Tl(III) and *Tl(I). 2179 $K_{\rm eq} = 4.4 \times 10^{-8}$ at $\mu = 1.5$ and 3 M was derived by Nord through reanalysis of prior 2180 results in the literature [6]. Nord intended this value for equilibrium between purely agua ions, 2181 hence K_{eq} notation. The reanalysis showed that in the actual reaction mechanism an important 2182 reaction pathway involves the hydrolyzed species, *i.e.*, the reaction 2183 2184 $TIOH^{2+} + Fe^{2+} \Rightarrow TI^{2+} + FeOH^{2+}$ 2185 (21.3)2186 The equilibrium constant for this reaction was derived to be 6.4×10^{-10} at $\mu = 1.5$, that is much 2187 2188 smaller than for reaction 1. We note that: (i) Nord's interpretation of the acid dependence differs from that of Ashurst and Higginson and (ii) Nord's treatment entailed the use of literature values 2189 for the pK_a of Fe³⁺ and Tl³⁺ as well as difficult assumptions concerning their change with ionic 2190 2191 strength in the 1.5 M to 3 M region. 2192 2193 Discussion 2194

All experimental evaluations of the equilibrium constant have three features in common. These evaluations: (1) are based on forward and reverse rate constants; (2) have been performed under conditions of partial Tl^{3+} and Fe^{3+} hydrolysis to $TlOH^{2+}$ and $FeOH^{2+}$; (3) pertain to solutions with very high ionic strengths in excess of 1 M. The first and the second features imply
that the estimated equilibrium constants are, in fact, the apparent parameters based on analytical
concentrations of the reactants and products

- 2201
- 2202
- 2203

$$K_{\text{app}} = [\text{Tl}(\text{II})][\text{Fe}(\text{III})]/[\text{Tl}(\text{III})][\text{Fe}(\text{II})]$$
(21.4)

2204 Only when forward and reverse rate constants are both measured in the same medium, will K_{app} 2205 be equal to their ratio, as both rate constants are strongly medium-dependent. The K_{app} value is 2206 related to the thermodynamic equilibrium constant, K_{eq}^{0} , through activity coefficients (γ) and 2207 fractions (F) of unhydrolyzed trivalent ions

- 2208
- 2209 2210
- $K_{\rm eq}^{0} = K_{\rm app} \times [F({\rm Fe}^{3+})/F({\rm Tl}^{3+})] \times [\gamma({\rm Tl}^{2+})\gamma({\rm Fe}^{3+})/\gamma({\rm Tl}^{3+})\gamma({\rm Fe}^{2+})]$ (21.5)
- Hydrolysis of divalent ions is negligible under all reported conditions. The fractions F are also 2211 medium-dependent; for example, $F(Tl^{3+}) = [H^+]/(K_a(Tl^{3+}) + [H^+])$, where $K_a(Tl^{3+})$ is the Tl^{3+} 2212 hydrolysis constant under prevailing medium conditions $K_a(Tl^{3+}) = K_a^0 \chi(Tl^{3+}) / \chi(TlOH^{2+}) \chi(H^+)$. 2213 The very high ionic strengths used in all studies makes rigorous derivation of K_{eq}^{0} for reaction 1 2214 under standard conditions unfeasible, because the activity coefficients at these ionic strengths are 2215 2216 dependent upon specific ion interactions and are unavailable for all the ions involved. A useful estimate can, however, be made assuming that the activity coefficients ratio 2217 $\gamma(Tl^{2+})\gamma(Fe^{3+})/\gamma(Tl^{3+})\gamma(Fe^{2+})$ is close to unity; implicit in this assumption is the similarity between 2218 Fe and Tl cations with respect to their interactions with anions. Then $K_{eq}^{0} = K_{app} F(Fe^{3+})/F(Tl^{3+})$. 2219 2220 The only experimental study in which both forward and reverse rate constant have been 2221 measured in the same medium (1 M HClO₄) is that by Schwarz et al. [3]. The hydrolysis constants are available at $\mu = 3.0$ M, $K_a(Fe^{3+}) \approx 0.001$ and $K_a(Tl^{3+}) \approx 0.073$ M. Assuming no 2222 significant change when the ionic strength is changed to $\mu = 1.0$ M, we compute $F(\text{Fe}^{3+}) \approx 0.999$ 2223 and $F(Tl^{3+}) \approx 0.932$ under the conditions of Schwarz *et al.* and using their $K_{app} = 4.1 \times 10^{-8}$, we 2224 calculate $K_{eq}^{0} \approx 4.4 \times 10^{-8}$, which is identical to the value derived by Nord through a somewhat 2225 different and more involved procedure. An uncertainty of $\pm 1.0 \times 10^{-8}$ for K_{eq}^{0} appears 2226 2227 reasonable under the assumptions made.
- Although Dodson's induced-exchange study [5] was done in 1 M HClO₄, as had been the earlier work from the same group, it yielded an about 2 times larger K_{app} . However, this result depended upon both the detailed knowledge of mechanism for the exchange and the value of the quantum yield for photo induced exchange that was reported by Stranks and Yandell [7]. In the light of a subsequent work by Schwarz and Dodson [8], both the mechanism and the quantum yield require a revision. Specifically, it is now understood that the HO[•] radical is generated from

- 2234 Tl(II), which sets up a chain reaction of radiolabel exchange [9]. This effect renders the
- 2235 exchange quantum yield by Stranks and Yandell [7] highly uncertain. This uncertainty
- 2236 propagates into Dodson's study [5], making the reported value of K_{app} much more uncertain than 2237 that in the previous study of Schwarz *et al.* [3] in the same medium.
- By means of $K_{app} = (4.1 \pm 0.6) \times 10^{-8}$ in 1 M HClO₄ and the standard potential of +0.738 ± 0.001 V for the Fe(III)/Fe(II) couple in the same medium [10], Schwarz *et al.* derived a value of +0.301 ± 0.003 V for the formal potential of Tl(III)/Tl(II) couple in 1 M HClO₄ [3]. Schwarz *et al.* then used the formal Tl(III)/Tl(I) potential (+1.259 ± 0.001 V) in the same medium from Stonehill [11] and from Sherrill and Hass [12] to derive $E^{\circ} = +(2.217 \pm 0.003)$ V for the Tl²⁺/Tl⁺ potential in 1 M HClO₄.
- 2244 By using $K_{eq}^{0} = (4.4 \pm 1.0) \times 10^{-8}$ and the accurate $E^{\circ}(Fe^{3+}/Fe^{2+}) = +0.770 \pm 0.002$ V 2245 [13], we obtain $E^{\circ}(Tl^{3+}/Tl^{2+}) = +0.335 \pm 0.006$ V.

The two-electron potential $E^{\circ}(Tl^{3+}/Tl^{+}) = +(1.280 \pm 0.002)$ V has been reported by 2246 2247 Biedermann [14]; this is actually the formal potential in 3 M NaClO₄. Stonehill used 2248 extrapolations to zero ionic strength and reported that the true standard potential is +1.280 V; we 2249 infer an uncertainty of ± 0.003 V from his data [11]. Apparently, the formal potential and standard potential are fortuitously identical. With this potential and $E^{\circ}(Tl^{3+}/Tl^{2+})$ as selected 2250 above we calculate $E^{\circ}(Tl^{2+}/Tl^{+}) = +2.225 \pm 0.007$ V. The NIST tables [15] give $-(32.40 \pm 0.4)$ kJ 2251 mol⁻¹ for $\Delta_f G^\circ$ of Tl⁺ that lead to $\Delta_f G^\circ$ (Tl²⁺) = (182.3 ± 0.8) kJ mol⁻¹. This value is 6.6 kJ mol⁻¹ 2252 higher than $\Delta_f G^{\circ}(Tl^{2+})$ given by Schwarz *et al.* [3] mainly because these authors used older $\Delta_f G^{\circ}$ 2253 values for Tl³⁺, Fe³⁺, and Fe²⁺ taken from Latimer [16] to arrive at $\Delta_f G^{\circ}(Tl^{2+})$ from their $K_{app} =$ 2254 4.1×10^{-8} . Longhi *et al.* claim that the NBS value for $\Delta_f G^\circ$ of Tl⁺ is significantly in error and 2255 should be corrected to $-(31.56 \pm 0.03)$ kJ mol⁻¹ [17]. Use of the result of Longhi *et al.* in 2256 combination with our recommended value for $E^{\circ}(Tl^{2+}/Tl^{+})$ (2.225 ± 0.007 V) leads to $\Delta_{\rm f}G^{\circ}(Tl^{+})$ 2257 = +(183.1 \pm 0.7) kJ mol⁻¹; we are unsure whether to recommend this revised Gibbs energy 2258 because it depends on non-NIST data [15] and it is unclear to what extent other NIST data [15] 2259 2260 are dependent on the $\Delta_{\rm f} G^{\circ}$ of Tl⁺.

2261

2262 **Recommended values**:

2264	$Tl(III) + Fe(II) \Rightarrow Tl(II) + Fe(III)$	$K_{\text{app}} = (4.1 \pm 0.6) \times 10^{-8} (1 \text{ M HClO}_4)$	(21.6)
2265	$Tl^{3+} + Fe^{2+} \Rightarrow Tl^{2+} + Fe^{3+}$	$K_{\rm eq}^{\circ} = (4.4 \pm 1.0) \times 10^{-8}$	(21.7)
2266	$Tl^{3+} + e^- \rightleftharpoons Tl^{2+}$	$E^{\circ} = +0.335 \pm 0.006 \text{ V}$	(21.8)
2267	$Tl^{2+} + e^- \rightleftharpoons Tl^+$	$E^{\circ} = +2.225 \pm 0.007 \text{ V}$	(21.9)
2268	$Tl(III) + e^{-} \Rightarrow Tl^{2+}$	$E^{\circ} = +0.301 \pm 0.003$ V at $\mu = 1.00$ M (HC	2104)(21.10)
2269	$Tl^{2+} + e^{-} \rightleftharpoons Tl^{+}$	$E^{\circ} = +2.217 \pm 0.003$ V at $\mu = 1.00$ M (HC	ClO ₄)(21.11)

2270		$\mathrm{Tl}^{2+}(aq)$	$\Delta_{\rm f} G^{\circ} = +182.3 \pm 0.8 \text{ kJ/mol} ({\rm NIST})$	(21.12)	
2271		$\mathrm{Tl}^{2+}(aq)$	$\Delta_{\rm f}G^{\circ} = +183.1 \pm 0.7 \text{ kJ/mol}$ (Longhi)	(21.13)	
2272					
2273	List o	List of auxiliary thermodynamic data: K_a of Fe ³⁺ (~ 0.001 M at μ = 3.0 M) and Tl ³⁺ (~ 0.073 M			
2274	at µ =	= 3.0 M); $E^{\circ}(Fe^{3+}/Fe^{2+}) = +(0.770 \pm$	0.002) V; $E^{\circ}(Tl^{3+}/Tl^{+}) = +(1.280 \pm 0.002)$ V	$V; \Delta_{\rm f} G^{\circ}({\rm Tl}^+)$	
2275	=-(3	2.40 ± 0.4) kJ mol ⁻¹ .			
2276					
2277	Refe	rences			
2278					
2279	1.	K. G. Ashurst, W. C. E. Higginso	on. J. Chem. Soc. 3044-3049 (1953).		
2280	2.	B. Falcinella, P. D. Felgate, G. S.	Laurence. J. Chem. Soc., Dalton Trans. 136	57-1373	
2281	(1974	4).			
2282	3.	H. A. Schwarz, D. Comstock, J. I	K. Yandell, R. W. Dodson. J. Phys. Chem. 7	8, 488-493	
2283	(1974	4).			
2284	4.	B. Falcinella, P. D. Felgate, G. S.	Laurence. J. Chem. Soc., Dalton Trans. 1-9	(1975).	
2285	5.	R. W. Dodson. J. Radioanal. Che	em. 30, 245-261 (1976).		
2286	6.	G. Nord. Inorg. Chem. 16, 201-20	02 (1977).		
2287	7.	D. R. Stranks, J. K. Yandell. J. P.	hys. Chem. 73, 840-849 (1969).		
2288	8.	H. A. Schwarz, R. W. Dodson. J.	Phys. Chem. 80, 2543-2548 (1976).		
2289	9.	H. A. Schwarz, personal commun	nication to Lymar, S. V and Stanbury, D. M.	(2003).	
2290	10.	L. B. Magnusson, J. R. Huizenga	. J. Am. Chem. Soc. 75 , 2242-2246 (1953).		
2291	11.	H. I. Stonehill. Trans. Faraday S	oc. 39, 72-79 (1943).		
2292	12.	M. S. Sherrill, A. J. Haas. J. Am.	Chem. Soc. 58, 952-959 (1936).		
2293	13.	D. O. Whittemore, D. Langmuir.	J. Chem. Eng. Data 17, 288-290 (1972).		
2294	14.	G. Biedermann. Arkiv Kemi 5, 44	.1-455 (1953).		
2295	15.	D. D. Wagman, W. H. Evans, V.	B. Parker, R. H. Schumm, I. Halow, S. M. E	Bailey, K. L.	
2296	Chur	ney, R. L. Nuttall. J. Phys. Chem. R	ef. Data 11, Suppl. No. 2 (1982).		
2297	16.	W. M. Latimer. Oxidation Potent	tials, Prentice-Hall, Englewood Cliffs, New	Jersey	
2298	(1952	2).			
2299	17.	P. Longhi, T. Mussini, S. Rondin	ini, B. Sala. J. Chem. Thermodynamicdynan	<i>ı</i> . 11, 73-81	
2300	(1979)).			
2301					

2303	Data Sheet 22
2304	HNO and NO•
2305	
2306	Chemical equilibrium: $HNO(g) = HNO(aq)$ (22.1)
2307	
2308	List of reports:
2309	
2310	$\Delta_h G^\circ = -14 \text{ kJ mol}^{-1}$, obtained from equating hydration Gibbs energy of HNO to that of HOCl
2311	[1].
2312	
2313	$\Delta_{\rm h}G^{\circ} = -5.0$ kJ mol ⁻¹ , obtained from equating hydration Gibbs energy of HNO to that of HCN
2314	[2].
2315	
2316	Discussion
2317	
2318	Here we consider the HNO tautomer in its singlet ground state with the H atom attached to
2319	the N atom. Although the NOH tautomer with the H atom bound to the O atom, whose ground
2320	state is triplet, does exist, at least in the gas phase [3], this species is not evaluated here.
2321	The enthalpy of HNO formation in the gas phase has been reviewed and the value of +107.1
2322	kJ mol ⁻¹ has been recommended [4]. The uncertainty in the statistical sense was not given, but
2323	the "conservative" error limits were +(2.5 and -0.4) kJ mol ⁻¹ . Taking these limits into account,
2324	we will use $\Delta_f H^{\circ}(HNO)_g = +(107.8 \pm 1.6) \text{ kJ mol}^{-1}$ for the purposes of this evaluation. From this
2325	value and the tabulated entropy $S^{\circ}(\text{HNO})_{g} = 220.72 \text{ J K}^{-1} \text{ mol}^{-1} [5]$, we calculate $\Delta_{f} G^{\circ}(\text{HNO})_{g} =$
2326	$+120.6 \pm 1.6 \text{ kJ mol}^{-1}$.
2327	Due to substantial instability of HNO toward recombination $HNO + HNO = N_2O + H_2O$ [6-
2328	8], its hydration energetics could not yet be evaluated experimentally, so that both reported
2329	values are analogy-based estimates. While Stanbury suggested HOCl as a proxy for HNO [1],
2330	Shafirovich and Lymar preferred HCN [2]. The latter appears to be a somewhat better choice
2331	because, unlike HOCl, both HNO and HCN do not contain an OH group that participates in three
2332	hydrogen bonds with water and thereby dominates the enthalpy of hydration [9, 10]. From this
2333	perspective, the unhydrolyzed formaldehyde, H ₂ CO, or acetaldehyde, CH ₃ CHO, appear to be as
2334	good of a model for HNO hydration as does HCN. From the overall hydration Gibbs energies
2335	that pertain to the equilibrium mixtures of hydrolyzed and unhydrolyzed forms of aldehydes in
2336	water $\Delta_h G^{\circ}$ (formaldehyde) = -20.5 and $\Delta_h G^{\circ}$ (acetaldehyde) = -6.69 kJ mol ⁻¹ [11], and the
2337	aldehyde hydrolysis RCHO + $H_2O = RCH(OH)_2$ equilibrium constants $K_{hyd}(H_2CO) = 1270$ [12]
2338	and $K_{\text{hvd}}(\text{CH}_3\text{CHO}) = 1.4$ [13] at 25 °C, we obtain $\Delta_{\text{h}}G^{\circ} = -2.8$ kJ mol ⁻¹ for H ₂ CO and $\Delta_{\text{h}}G^{\circ} = -2.8$

4.5 kJ mol⁻¹ for CH₃CHO. From the NBS Tables [14] $\Delta_f G^{\circ}$ (HCN)_g = 124.7 kJ mol⁻¹ and 2339 $\Delta_{\rm f}G^{\circ}({\rm HCN})_{\rm ag} = 119.7 \text{ kJ mol}^{-1}$, it follows that $\Delta_{\rm h}G^{\circ}({\rm HCN}) = -5.0 \text{ kJ mol}^{-1}$. 2340 We thus adopt the average of hydration Gibbs energies for HCN, H₂CO and CH₃CHO; that 2341 is, $-(4.1 \pm 1.2)$ kJ mol⁻¹ at 25 °C as the best estimate for $\Delta_h G^{\circ}$ (HNO). With this value and using 2342 $\Delta_{\rm f}G^{\circ}({\rm HNO})_{\rm g} = +(120.6 \pm 1.6) \text{ kJ mol}^{-1}$ derived above, we calculate $\Delta_{\rm f}G^{\circ}({\rm HNO})_{\rm aq} = (116.5 \pm 2.0)$ 2343 2344 kJ mol⁻¹. 2345 2346 **Recommended values:** 2347 2348 $\Delta_{\rm h}G^{\circ}({\rm HNO}) = -(4.1 \pm 1.2) \text{ kJ mol}^{-1}.$ $\Delta_{\rm f}G^{\circ} = (116 \pm 2) \text{ kJ mol}^{-1} \text{ for HNO}(aq).$ 2349 2350 2351 2352 Electrode reaction: NO• + H⁺ + $e^- \Rightarrow$ HNO (22.2)2353 2354 List of reports: 2355 2356 $E^{\circ}(NO^{\bullet}, H^{+}/HNO) = -0.14 \text{ V}$, obtained from an analogy-based estimate of the Gibbs energy of 2357 hydration of HNO [2]. 2358 2359 Discussion 2360 2361 Here we consider the NO[•] reduction to nitroxyl (HNO) in its singlet ground state with the H 2362 atom attached to the N atom. 2363 At present, no redox equilibria involving HNO have been experimentally investigated. This 2364 potential can only be evaluated from the Gibbs energies of aqueous NO[•] and HNO which are: $\Delta_{\rm f} G^{\circ}({\rm NO}^{\bullet})_{\rm ag} = +(102.0 \pm 0.2) \text{ kJ mol}^{-1}$ (see Data Sheet 90) and $\Delta_{\rm f} G^{\circ}({\rm HNO})_{\rm ag} = (116.5 \pm 2.0) \text{ kJ}$ 2365 mol⁻¹ (see above). Using these values, we obtain $E^{\circ}(NO^{\bullet}, H^{+}/HNO) = -(0.145 \pm 0.021) V$. 2366 2367 2368 2369 **Recommended value**: 2370 2371 $E^{\circ}(\text{NO}^{\bullet}, \text{H}^+/\text{HNO}) = -(0.15 \pm 0.02) \text{ V}.$ 2372 2373 Nomenclature: NO[•], oxidonitrogen(•), oxoazanyl or nitrogen monoxide, nitric oxide is outdated. 2374 HNO, hydridooxidonitrogen, or azanone, nitrosyl hydride is outdated.

2375			
2376	References		
2377			
2378	1.	D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).	
2379	2.	V. Shafirovich, S. V. Lymar. Proc. Nat. Acad. Sci. USA 99, 7340-7345 (2002).	
2380	3.	H. B. Ellis, G. B. Ellison. J. Chem. Phys. 78, 6541-6558 (1983).	
2381	4.	W. R. Anderson. Comb. Flame 117, 394-403 (1999).	
2382	5.	M. W. Chase. NIST-JANAF Thermodynamicchemical Tables, 4th ed, American Institute	
2383	of Physics, Woodbury, NY (1998).		
2384	6.	D. A. Bazylinski, T. C. Hollocher. Inorg. Chem. 24, 4285-4288 (1985).	
2385	7.	F. T. Bonner, M. N. Hughes. Comments Inorg. Chem. 7, 215-234 (1988).	
2386	8.	Bonner, F. T., Stedman, G. In Methods in Nitric Oxide Research, (Feelisch, M., Stamler,	
2387	J. S., e	ds.), p. 3-27. John Wiley and Sons, New York (1996).	
2388	9.	G. A. Poskrebyshev, V. Shafirovich, S. V. Lymar. J. Am. Chem. Soc. 126, 891-899	
2389	(2004)		
2390	10.	H. A. Schwarz, R. W. Dodson. J. Phys. Chem. 88, 3643-3647 (1984).	
2391	11.	H. A. Schwarz, R. W. Dodson. J. Phys. Chem. 93, 409-414 (1989).	
2392	12.	J. G. M. Winkelman, O. K. Voorwinde, M. Ottens, A. A. C. M. Beenackers, L. P. B. M.	
2393	Jansse	n. Chem. Eng. Sci. 57, 4067-4076 (2002).	
2394	13.	Bell, R. P. In Advances in Physical Organic Chemistry, (Gold, V., ed.), p. Vol. 4, 1-29.	
2395	Acade	mic Press, London (1966).	
2396	14.	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.	
2397	Churne	ey, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).	

2400 Data Sheet 23 2401 Ozone/Ozonide 2402 Chemical equilibrium: $O_2(aq) + O^{\bullet-} \Rightarrow O_3^{\bullet-}$ 2403 (23.1)2404 2405 Gzapski (1971) [1] Review, $k_1 = (3.0 \pm 0.5) \times 10^9 \text{ M}^{-1}\text{s}^{-1}$ [2], $k_{-1} = (5.0 \pm 0.5)10^3 \text{ s}^{-1}$, $K = (0.6 \pm 0.1) \times 10^6 \text{ M}^{-1}$. 2406 2407 2408 Elliot and McCracken (1989) [3] 2409 2410 Determination of K as a function of temperature from forward and backward rate constants, interpolated for 25°C. $K = (1.4 \pm 0.1) \times 10^{6} \text{ M}^{-1}$. 2411 2412 2413 2414 Chemical equilibrium: $O_3(aq) + ClO_2^- \Rightarrow O_3^{\bullet-} + ClO_2^{\bullet}(aq)$ (23.2)2415 2416 Kläning, Sehested and Holcman (1985) [4] 2417 The calculation of the standard potential involves (i) $K(23.2) = (22 \pm 6)$, determined at low ionic strength and at (22 ± 1) °C from the forward and backward rate constants of $(4 \pm 1) \times 10^6$ 2418 $M^{-1}s^{-1}$ and $(1.8 \pm 0.2) \times 10^5 M^{-1}s^{-1}$, respectively, (ii) a new determination of $E^{\circ}(ClO_2^{\bullet}/ClO_2^{-}) =$ 2419 $+(0.934 \pm 0.002)$ V at 25 °C, and (iii) is based on $\Delta_{\rm f}G^{\circ}(O_3)$ ag = +174.9 kJ mol⁻¹. 2420 2421 $E^{\circ}(O_{3ad}/O_3^{\bullet-}) = +(1.01 \pm 0.02) \text{ V}. \Delta_{\text{f}}G^{\circ}(O_3^{\bullet-}) = +77.1 \text{ kJ mol}^{-1}$ 2422 2423 2424 Discussion 2425 2426 The first estimate of $E^{\circ}(O_{3ao}/O_{3}^{\bullet-})$ [5] was based on the rate constants given in Ref. 1 and the following Gibbs energies: $\Delta_f G^{\circ}(O_2)aq = +3.8 \text{ kcal mol}^{-1} (+15.9 \text{ kJ mol}^{-1}), \Delta_f G^{\circ}(O^{\bullet-}) = +22.4 \text{ kcal}$ 2427 mol⁻¹ (+93.7 kJ mol⁻¹), and $\Delta_t G^{\circ}(O_3)$ ag = +41.6 kcal mol⁻¹ (+174.1 kJ mol⁻¹), and resulted in a 2428 2429 value of +1.00 V, and a standard Gibbs energy of formation of $O_3^{\bullet-}$ of +18.5 kcal mol⁻¹ (+77.4 2430 kJ/mol). 2431 $\Delta_{\rm f} G^{\circ}({\rm O}_3)$ g is +163.2 kJ/mol⁻¹ [6], and Henry's constant of O₃ is 1.03 × 10⁻² M/0.100 MPa [7], 2432 from which a $\Delta_s G^\circ$ of +11.3 kJ mol⁻¹ follows; $\Delta_f G^\circ(O_3)$ ag is therefore +174.5 kJ mol⁻¹. Given a 2433 Gibbs energy change of -35.1 kJ mol⁻¹ for Reaction 23.1, see above [3] and a $\Delta_f G^{\circ}(O^{\bullet-})$ of +93.1 2434 1.7 kJ mol⁻¹ (see Data sheet 2), $E^{\circ}(O_3/O_3^{\bullet-}) = +(1.036 \pm 0.020)$ V and $\Delta_f G^{\circ}(O_3^{\bullet-}) = +74.6$ kJ mol⁻ 2435

2436	¹ . The	e error is determined mainly by that of $\Delta_f G^{\circ}(O^{\bullet-})$. This result is in good agreement with that	
2437	of Kl	äning <i>et al.</i> ⁴ , which has an estimated error in $E^{\circ}(O_{3aq}/O_3^{\bullet-})$ of 0.02 V.	
2438			
2439	The p K_a of HO ₃ • is not known with certainty, and an accurate determination may be precluded		
2440	by ra	pid dissociation into HO• and O ₂ . Values of 6.15 [8] and 8.2 [9] are found in the literature,	
2441	while	e a value of -2 is expected on the basis of a rule that relates the p K_a to the ratio of O- to H-	
2442	atom	s (p $K_a = 19 - 7[O]/[H]$) [1]. Computational studies also support a p K_a near -2 [10]. No	
2443	recon	nmendation can be made.	
2444			
2445	Reco	mmended values:	
2446			
2447	<i>K</i> (23	$(1.1) = (1.4 \pm 0.1) \times 10^6 \mathrm{M}^{-1}.$	
2448	$\Delta_{ m f}G^{\circ}$	$(O_3^{\bullet-}) = +(75 \pm 2) \text{ kJ/mol}^{-1}.$	
2449	E°(O	$_{3}/O_{3}^{\bullet-}$) = +(1.03 ± 0.02) V, or +(0.91 ± 0.02) V (pO_{2} = 0.100 MPa).	
2450			
2451	Nom	enclature	
2452			
2453	The systematic name of O_3 is trioxygen or trioxidanediyl, of $O_3^{\bullet-}$ trioxide($\bullet 1-$) or trioxidanidyl,		
2454	and of HO ₃ • hydrogen trioxide or trioxidanyl. The trivial name ozone is allowed.		
2455			
2456	Refe	rences	
2457			
2458	1.	G. Czapski, Ann. Rev. Phys. Chem. 22, 171-208 (1971).	
2459	2.	B. L. Gall, L. M. Dorfman, J. Am. Chem. Soc. 91, 2199-2204 (1969).	
2460	3.	A. J. Elliot, D. R. McCracken, Rad. Phys. Chem. 33, 69-74 (1989).	
2461	4.	U. K. Kläning, K. Sehested, J. Holcman, J. Phys. Chem. 89, 760-763 (1985).	
2462	5.	W. H. Koppenol, FEBS Lett. 140, 169-172 (1982).	
2463	6.	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.	
2464	Chur	ney, R. L. Nuttall, J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).	
2465	7.	Sander, R., In NIST Chemistry WebBook, NIST Standard Reference Database Number	
2466	69, (Lindstrom, P. J., Mallard, W. G., eds.), p. National Institute of Standards and Technology,		
2467	Gaithersburg, MD 20899 (2003).		
2468	8.	R. E. Bühler, J. Staehelin, J. Hoigné, J. Phys. Chem. 88, 2560-2564 (1984).	
2469	9.	J. Staehelin, R. E. Bühler, J. Hoigné, J. Phys. Chem. 88, 5999-6004 (1984).	
2470	10.	S. Naumov, C. von Sonntag, J. Phys. Org. Chem. 24, 600-602 (2011).	
2471			

2472	Data Sheet 24
2473	
2474	Reaction: $\operatorname{ClO}_2^{\bullet}(aq) + e^- \Rightarrow \operatorname{ClO}_2^{-}(aq)$ (24.1)
2475	
2476	List of reports:
2477	
2478	$E^{\circ} = +(0.936 \pm 0.003)$ V vs NHE at 298 K [1]. Determined by potentiometry vs SCE.
2479	Measurements were performed as a function of temperature and ionic strength. Analysis of the
2480	data in terms of Debye-Hückel theory led to a standard potential (at $\mu = 0$).
2481	
2482	$E^{\circ} = +(0.934 \pm 0.002)$ V vs NHE at 298 K [2]. Determined by potentiometry vs SCE.
2483	Measurements were performed as a function of temperature. Analysis of the data in terms of
2484	Debye-Hückel theory led to a standard potential (at $\mu = 0$).
2485	
2486	Discussion
2487	
2488	The agreement between the two detailed reports of E° cited above is excellent. A more
2489	recent detailed kinetic study of the electrode process [3] confirms the fundamental
2490	electrochemical reversibility assumed in these two studies. We recommend the average of the
2491	two results for E° .
2492	As noted in <i>Standard Potentials</i> [4], by Kläning <i>et al.</i> [2], and discussed by Stanbury [5],
2493	the measured E° values differ (by ~130 mV) from that (+1.067 V) calculated from the values of
2494	$\Delta_{\rm f}G^{\circ}$ given in the NIST tables [6]: $\Delta_{\rm f}G^{\circ} = +120.1 \text{ kJ mol}^{-1}$ for ClO ₂ (<i>aq</i>) and $\Delta_{\rm f}G^{\circ} = +17.2 \text{ kJ}$
2495	mol^{-1} for $ClO_2(aq)$. It has been opined that the measured E° values are less reliable than the
2496	value calculated from the NBS $\Delta_f G^\circ$ values [7]; however, independent support for the
2497	potentiometric results comes from spectrophotometric determinations of the equilibrium constant
2498	for the reaction $[Fe(phen)_3]^{2^+} + ClO_2^{\bullet} \Rightarrow [Fe(phen)_3]^{3^+} + ClO_2^{-}[8].$
2499	One approach to resolving this discrepancy is to recalculate $\Delta_f G^\circ$ for ClO ₂ •(<i>aq</i>) from the
2500	well-established solubility of ClO_2^{\bullet} and $\Delta_f G^{\circ}$ for $\text{ClO}_2^{\bullet}(g)$. This is essentially the method that
2501	was used to obtain the NBS value for $\Delta_f G^\circ$ for $\text{ClO}_2^{\bullet}(aq)$ [7]. The NIST Chemistry WebBook
2502	(March 2003 release) recommends a Henry's law constant (derived from direct solubility
2503	measurements) of 1.0 mol kg ⁻¹ bar ⁻¹ for ClO ₂ •, which corresponds to $\Delta G^{\circ} = 0.0$ kJ mol ⁻¹ for
2504	dissolution of ClO ₂ •. This solubility parameter is consistent with the 0.4 kJ mol ⁻¹ difference
2505	between the NBS data for $\text{ClO}_2(g)$ ($\Delta_f G^\circ = +120.5 \text{ kJ mol}^{-1}$) and $\text{ClO}_2^{\bullet}(aq)$ ($\Delta_f G^\circ = +120.1 \text{ kJ}$
2506	mol^{-1}), which implies that the Henry's law constant used in the NIST evaluation [6] is in
2507	agreement with more recent evaluations. The NIST value for $\Delta_f G^\circ$ of $ClO_2^{\bullet}(g)$ is based on $\Delta_f H^\circ$

= +102.5 kJ mol⁻¹ for ClO₂•(g), and several lines of evidence were cited in support of this 2508 enthalpy value [7]. On the other hand, the NIST-JANAF tables (prepared in 1992) cite a value of 2509 $+115 \pm 8 \text{ kJ mol}^{-1}$ for $\Delta_f G^\circ$ of ClO₂•(g), which is based on a value of $\Delta_f H^\circ(298 \text{ K})$ of $+99.7 \pm 8$ 2510 kJ mol⁻¹ [9]. Gurvich *et al.* cite $\Delta_{\rm f} H^{\circ}(298 \text{ K}) = +105 \pm 6 \text{ kJ mol}^{-1}$ for ClO₂•(g) [10]. More 2511 2512 recently, the IUPAC Atmospheric Chemistry group has recommended a value of $\Delta_{\rm f} H^{\circ}(298 \text{ K}) =$ $+95.6 \pm 1.3$ kJ mol⁻¹ [11], based on reports of $+96.7 \pm 4$ by Flesch *et al.* and $+94.6 \pm 1.3$ kJ mol⁻¹ 2513 by Nickolaisen *et al.* for this quantity [12, 13]. The latest NASA evaluation recommends a value 2514 of $+94.6 \pm 1.2$ kJ mol⁻¹ based on the kinetic result of Nickolaisen *et al.*, apparently electing to 2515 regard the result of Flesch *et al.* as merely supporting that of Nickolaisen *et al.* [14]. Most 2516 recently Xu and Lin report a value of +(100.8 ± 0.6) kJ mol⁻¹ for $\Delta_{\rm f} H^{\circ}$ (at 0 K) as calculated 2517 from the dissociation energy of ClO₂•[15]; correction (assuming the same correction as reported 2518 in the NIST-JANAF Tables) to 298 K gives $\Delta_{\rm f} H^{\circ} \sim +(98.8 \pm 0.6)$ kJ mol⁻¹. It is clear that a wide 2519 range of values has been reported for $\Delta_{\rm f} H^{\circ}(298 \text{ K})$ of ClO₂•(g), but the result of Nickolaisen et 2520 2521 al. seems to be quite robust. If this result is accepted, then the NIST-JANAF recommendation is corrected to $\Delta_{\rm f}G^{\circ} = +(109.9 \pm 1.2) \text{ kJ mol}^{-1}$ for ClO₂•(g). The NIST-recommended Henry's-law 2522 constant then leads to $\Delta_f G^\circ = +(109.9 \pm 1.2) \text{ kJ mol}^{-1}$ for $\text{ClO}_2^{\bullet}(aq)$. Combination of this value 2523 with the NBS value for $\text{ClO}_2(aq)$ ($\Delta_t G^\circ = +17.2 \text{ kJ mol}^{-1}$) leads to $E^\circ = +(0.961 \pm 0.013)$ V for 2524 the $ClO_2^{\bullet}(aq)/ClO_2^{-}(aq)$ standard potential. The agreement of this corrected derived result with 2525 the experimental standard potential is much improved. On the other hand, there is no published 2526 discussion of the reliability of the more recent determinations of $\Delta_{\rm f} H^{\circ}$ for ClO₂•(g) vis-a-vis the 2527 2528 older determinations mentioned by Gurvich et al., so we view the uncertainty selected in the 2529 NASA evaluation to be overly optimistic. For example, early direct calorimetric measurements 2530 of the decomposition of $ClO_2^{\bullet}(g)$ appear to have been ignored. We thus favor a larger uncertainty, perhaps as much as $\pm 10 \text{ kJ mol}^{-1}$. Within this uncertainty there is no need to 2531 question the NBS value of $\Delta_f G^\circ$ for $\text{ClO}_2(aq)$. 2532

Schmitz reviewed the thermodynamic chemistry of the aqueous $ClO_2^{\bullet}/ClO_2^{-}$ system in 1979 [16]. He concluded that the value of $\Delta_f G^{\circ}$ for $ClO_2^{\bullet}(aq)$ is essentially as given by NBS but that the corresponding value for $ClO_2^{-}(aq)$ differs quite substantially from the NBS value. His results were obtained by deciding on the value for $ClO_2^{\bullet}(aq)$ and then using the measured E° for the $ClO_2^{\bullet}(aq)/ClO_2^{-}(aq)$ couple to derive $\Delta_f G^{\circ}$ for $ClO_2^{-}(aq)$. In view of the unsettled status of $\Delta_f G^{\circ}$ for $ClO_2^{\bullet}(aq)$ as described above, Schmitz's conclusions should not be considered definitive. On the other hand, there is much in his discussion that merits attention.

At present we differ from the NIST tables [6] in recommending a value of $\Delta_f G^\circ = +110 \pm 10 \text{ kJ mol}^{-1}$ for ClO₂•(*aq*); we consider that the potentiometric determination of E° for the ClO₂/ClO₂⁻ couple is substantially more reliable than the individual values for $\Delta_f G^\circ$. This recommendation for $\Delta_f G^\circ$ of ClO₂•(*aq*) makes the NBS value $\Delta_f G^\circ$ of ClO₂⁻(*aq*) reasonably

2544 consistent with our recommended value for E° for $ClO_2^{\bullet}(aq)/ClO_2^{-}(aq)$. It leads to inconsistency 2545 between the measured Henry's law constant for ClO_2^{\bullet} and the NBS value for $\Delta_f G^{\circ}$ of $ClO_2^{\bullet}(g)$, 2546 but that is probably the only such issue raised by this alteration to the NIST data [6]. 2547 2548 **Recommended values:** 2549 2550 $E^{\circ}(\text{ClO}_2^{\bullet}(aq)/\text{ClO}_2^{-}) = +(0.935 \pm 0.003) \text{ V}$ $\Delta_{\rm f} G^{\circ}({\rm ClO}_2^{\bullet} aq) = +(110 \pm 10) \, {\rm kJ \ mol}^{-1}$ 2551 2552 2553 Nomenclature: ClO_2^{\bullet} , dioxidochlorine(\bullet), or chlorinedioxide; ClO_2^{-} , dioxidochlorate(1) or 2554 chlorite. 2555 2556 References 2557 2558 1. N. V. Troitskaya, K. P. Mishchenko, I. E. Flis. Russ. J. Phys. Chem. 33, 77-79 (1959). U. K. Kläning, K. Sehested, J. Holcman. J. Phys. Chem. 89, 760-763 (1985). 2559 2. 2560 N. Sinkaset, A. M. Nishimura, J. A. Pihl, W. C. Trogler. J. Phys. Chem. A 103, 10461-3. 2561 10469 (1999). 2562 4. A. J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution, Marcel Dekker, Inc., New York 834 (1985). 2563 5. 2564 D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989). 2565 6. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. 2566 Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982). 2567 D. G. Archer, personal communication to D. M. Stanbury on the origin of NBS data on 7. 2568 $Tl(III), ClO_2, ClO_2^-$ (2003). 2569 8. L. A. Lednicky, D. M. Stanbury. J. Am. Chem. Soc. 105, 3098-3101 (1983). M. W. Chase. NIST-JANAF Thermodynamicchemical Tables, 4th ed, American Institute 2570 9. 2571 of Physics, Woodbury, NY (1998). 2572 10. L. V. Gurvich, I. V. Veyts, C. B. Alcock. Thermodynamic Properties of Individual 2573 Substances, Hemisphere Publishing Corp., New York (1989). 2574 R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi, J. Troe. J. 11. 2575 *Phys. Chem. Ref. Data* **29**, 167-266 (2000). 2576 12. R. Flesch, E. Rühl, K. Hottmann, H. Baumgärtel. J. Phys. Chem. 97, 837-844 (1993). 2577 13. S. L. Nickolaisen, R. R. Friedl, S. P. Sander. J. Phys. Chem. 98, 155-169 (1994). 2578 14. S. P. Sander, B. J. Finlayson-Pitts, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. 2579 J. Kurylo, M. J. Molina, G. K. Moortgat, V. L. Orkin, A. R. Ravishankara. Chemical Kinetics

- 2580 and Photochemical Data for Use in Atmospheric Studies, Evaluation Number 14, Jet Propulsion
- 2581 Laboratory, Pasadena, CA (2002).
- 2582 15. Z. F. Xu, M. C. Lin. J. Chem. Phys. 119, 8897-8904 (2003).
- 2583 16. G. Schmitz. J. Chim. Phys. 76, 209-211 (1979).

2586	Data Sheet 25
2587	
2588	Summary of the ClO• System
2589	
2590	Data relating to ClO• are presently limited to one reaction [1]:
2591	
2592	$CO_3^{\bullet-} + ClO^- \rightleftharpoons CO_3^{2-} + ClO^{\bullet}. $ (25.1)
2593	
2594	The equilibrium constant for this reaction, $(9.5 \pm 3.0) \times 10^2$ was determined at $\mu = 3.0$ M, pH=
2595	12.2, at 22.2 °C. Because of the high ionic strength and charge asymmetry of the reaction, it is
2596	difficult to make a safe extrapolation to zero ionic strength. Given a recommended value for
2597	$E^{\circ}(CO_3^{\bullet}/CO_3^{2-})$ of $+(1.57 \pm 0.03)$ V at 0.5 M to 3 M ionic strength (Data Sheet 99), we derive
2598	$E^{\circ} = +(1.39 \pm 0.03)$ V for ClO [•] /ClO ⁻ . Although the CO ₃ ^{•-} /CO ₃ ²⁻ formal potential should be
2599	strongly dependent on ionic strength, the ClO•/ClO- formal potential should be considerably less
2600	dependent.
2601	A value for $\Delta_f G^{\circ}(ClO^{\bullet})$ can be derived from E° and $\Delta_f G^{\circ}(ClO^{-})$. The NIST value for this
2602	latter quantity is $-(36.8 \pm 8)$ kJ mol ⁻¹ [2]. This seems like an unreasonably large uncertainty.
2603	NIST also gives $\Delta_f G^\circ = +(6.94 \pm 0.8) \text{ kJ mol}^{-1}$ for $\text{Cl}_2(aq)$. The equilibrium constant for Cl_2
2604	hydrolysis (Cl ₂ (<i>aq</i>) + H ₂ O(<i>l</i>) = HOCl(<i>aq</i>) + Cl ⁻ + H ⁺) is well defined as $(5.1 \pm 0.1) \times 10^{-4} \text{ M}^2$ at
2605	25 °C and μ = 0.0 M [3]. HOCl has a p <i>K</i> _a = (7.53 ± 0.02) at μ = 0.0 M and 25 °C [4]. These data,
2606	along with NIST data for H ₂ O and Cl ⁻ lead to $\Delta_f G^\circ = -(37.16 \pm 0.8)$ kJ mol ⁻¹ for ClO ⁻ (<i>aq</i>),
2607	which is in excellent agreement with the NIST value. We thus derive $\Delta_f G^\circ = +(97 \pm 3) \text{ kJ mol}^{-1}$
2608	for $ClO^{\bullet}(aq)$.
2609	
2610	Recommended values:
2611	
2612	$E^{\circ} = +(1.39 \pm 0.03)$ V at $\mu = 3$ M.
2613	$\Delta_{\rm f}G^\circ = +(97 \pm 3) \text{ kJ mol}^{-1} \text{ for ClO}^{\bullet}(aq)$
2614	
2615	References
2616	
2617	 K. E. Hule, C. L. CHITON, P. Neta. <i>Kaalat. Phys. Chem.</i> 38, 477-481 (1991). D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
2619	Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
2620	3. T. X. Wang, D. W. Margerum. <i>Inorg. Chem.</i> 33 , 1050-1055 (1994).
2621	4. A. E. Martell, R. M. Smith, R. J. Motekaitis. <i>NIST Critically Selected Stability Constants</i>

2622 of Metal Complexes Database, 7.0, U.S. Department of Commerce, Gaithersburg, MD (2003).

2623 **Data Sheet 26**

2624 Summary of the Br•/Br2•-/BrOH⁻ System

2625

2626 Tabulated below are the presently recommended equilibrium constants involving this related

2627 group of bromine radicals. The values are as given in the individual evaluations, keyed by

2628 reaction number. Uncertainties are expressed as $\pm 1 \sigma$; in many cases the value of σ is merely a

- subjective guess.
- 2630

rxn #	Reaction	K _{eq}	dim.	uncertainty	μ / M	Data
						Sheet
						#
27.1	$2Br^{-} + Mn^{3+} \Rightarrow Br_2^{\bullet-} + Mn^{2+}$	1.0×10^{-1}	M^{-1}	\pm factor of 2	2	27
28.1	$\operatorname{Br}_2^{\bullet^-} + \operatorname{ClO}_2^{\bullet} \rightleftharpoons \operatorname{Br}_2 + \operatorname{ClO}_2^{-}$	7.4×10^{5}		\pm factor of 2	low	28
29.1	$Br_2^{\bullet-} + N_3^- \Rightarrow N_3^{\bullet} + 2Br^-$	5.5×10^{4}	М	\pm factor of 2	0	29
30.1	$Br_2^{\bullet-} + CO_3^{2-} \Rightarrow 2Br^- + CO_3^{\bullet-}$	3.2	М	$\pm 22\%$	3	30
31.1	$Br^{\bullet}(aq) + H_2O \Rightarrow BrOH^{\bullet^-} + H^+$	none				31
32.1	$BrOH^{\bullet^-} \Rightarrow Br^{\bullet}(aq) + HO^-$	3.2×10^{-4}	М	± 15%	low	32
33.1	$Br^{\bullet}(aq) + Br^{-} \Rightarrow Br_2^{\bullet}$	3.9×10^{5}	M^{-1}	$\pm 30\%$	low	33
34.1	$HO^{\bullet} + Br^{-} \Rightarrow BrOH^{\bullet-}$	3.2×10^{2}	M^{-1}	\pm factor of 2	low	34
35.1	$BrOH^{\bullet^-} + Br^- \Rightarrow Br_2^{\bullet^-} + HO^-$	7×10^{1}		$\pm 43\%$	low	35
36.1	$BrSCN^{\bullet^-} + Br^- \Rightarrow Br_2^{\bullet^-} + SCN^-$	1×10^{-3}		\pm factor of 3	low	36
37.1	$BrSCN^{\bullet-} + SCN^- \Rightarrow (SCN)_2^{\bullet-} + Br^-$	1.1×10^{2}		± 50%	low	37
38.1	$Br_2^{\bullet^-} + DMS \implies DMS - Br^{\bullet} + Br^-$	1.1×10^{4}		\pm factor of 2	low	38
39.2	$DMS-Br^{\bullet} + DMS \implies (DMS)_2^+ + Br^-$	1.6		\pm factor of 2	low	39
DMS =	dimethylsulfide.					

2631 2632

Reactions 32.1, 33.1, and 35.1 form a closed thermodynamicchemical cycle, which requires the following:

2635

K(32.1) = K(35.1)/K(33.1). We obtain $3.2 \times 10^{-4} \approx 1.8 \times 10^{-4}$ which is quite satisfactory.

2636

2637 Derived Br2•-/2Br⁻Standard Potentials:

2638

2639 Reaction 27.1 leads directly to E° for $Br_2^{\bullet-} + e^- = 2Br^-$ at $\mu = 2$ M through 2640 combination with E° for Mn^{3+}/Mn^{2+} . We use the value of $+(1.535 \pm 0.003)$ V given by 2641 Rosseinsky and Hill for E° of Mn^{3+}/Mn^{2+} at 3.31 M ionic strength [1]. Thus we obtain: 2642 2643 $E^{\circ} = +1.594 \pm 0.018$ V for $Br_2^{\bullet-} + e^- = 2Br^-$ at $\mu = 2$ M.

Reaction 28.1 leads directly to E° for $Br_2 + e^- \Rightarrow Br_2^{\bullet-}$ through use of $E^{\circ}(ClO_2^{\bullet}/ClO_2^{-})$. For $E^{\circ}(\text{ClO}_2^{\circ}/\text{ClO}_2^{-})$ we use $+(0.935 \pm 0.003)$ V as evaluated in Data Sheet 24. This leads to E° $= +0.588 \pm 0.017$ for Br₂ + e⁻ = Br₂^{•-}. Use of $E^{\circ} = 1.0874$ V for $E^{\circ}(Br_2(aq)/2Br^{-})$ [2] leads to $E^{\circ} = +(1.587 \pm 0.017) \text{ V for } \text{Br}_2^{\bullet-} + e^- \Rightarrow 2\text{Br}^-.$ Reaction 29.1 in combination with a value of $+(1.33 \pm 0.010)$ V for $E^{\circ}(N_3^{\circ}/N_3^{-})$ (Data sheet 80) yields $E^{\circ} = +(1.610 \pm 0.020) \text{ V for } \text{Br}_2^{\bullet-} + \text{e}^- \Rightarrow 2\text{Br}^-.$ Reaction 35.1 combined with reaction 34.1 leads to $\ln K = (10.12 \pm 0.78)$ for HO[•] + 2Br⁻ \Rightarrow Br₂^{•-} + HO⁻. Use of $E^{\circ} = (1.902 \pm 0.017)$ V for HO[•]/HO⁻ (Data sheet 7) leads to $E^{\circ} = +(1.645 \pm 0.021) \text{ V for } \text{Br}_2^{\bullet-} + e^- \Rightarrow 2\text{Br}^-.$ The agreement among the above derivations of E° is not very satisfactory, spanning a range of 50 mV. The result based on reaction 28.1 is particularly suspect: it is based on a kinetic analysis of the ClO₂•/ Br₂•- system that involves a complex mechanism; Toth and Fabian used a simulation that required simultaneous optimization of several rate constants. Thus, we exclude the result from reaction 28.1 from the final estimate. The Taube result (reaction 27.1) can also be excluded because of the mechanistic complexities and the high ionic strength employed. This leaves the results from reactions 29.1 and 35.1, which agree within their uncertainties; they yield an average of $E^{\circ} = +1.624$ V. An uncertainty of ± 0.020 V is inferred from the uncertainties in each the two component results and the difference between them. **Recommended value:** $E^{\circ}(\text{Br}_2^{\bullet-}/2\text{Br}) = +(1.627 \pm 0.020) \text{ V}.$ Other derived quantities From the recommended $E^{\circ}(\text{Br}_2^{\bullet-}/2\text{Br})$ and the $E^{\circ}(\text{Br}_2/2\text{Br})$ cited above we derive $E^{\circ} = +(0.55 \pm 0.02) \text{ V for } \text{Br}_2 + e^- \Rightarrow \text{Br}_2^{\bullet-}.$

2680	From the recommended $E^{\circ}(Br_2^{\bullet}/2Br)$ and K_{eq} for reaction 33.1 we derive
2681	$E^{\circ} = +(1.96 \pm 0.02) \text{ V for } \text{Br}^{\bullet} + e^{-} \Rightarrow \text{Br}^{-}.$
2682	
2683	From the recommended $E^{\circ}(\text{Br}_2^{\bullet}/2\text{Br})$ and the NIST value [3] for $\Delta_f G^{\circ}$ of Br ⁻ (-103.96
2684	kJ mol ⁻¹) we derive
2685	$\Delta_{\rm f} G^{\circ} = -(51 \pm 2) \text{ kJ mol}^{-1} \text{ for } {\rm Br}_2^{\bullet-}.$
2686	
2687	From the recommended $E^{\circ}(Br^{\bullet}/Br^{-})$ and the NIST value for $\Delta_{f}G^{\circ}$ of Br^{-} we derive
2688	$\Delta_{\rm f}G^{\circ} = (85 \pm 2) \text{ kJ mol}^{-1} \text{ for Br}^{\bullet}.$
2689	
2690	From K_{eq} for reaction 32.1, the derived $\Delta_f G^{\circ}(Br^{\bullet})$, and the NIST value [3] of $\Delta_f G^{\circ}$ for
2691	HO ⁻ (-157.244 kJ mol ⁻¹) we obtain $\Delta_f G^\circ = -(92.5 \pm 2)$ kJ mol ⁻¹ for BrOH ^{•-} . From reaction 34.1,
2692	NIST value for $\Delta_f G^\circ$ of Br ⁻ , and the Task Group recommendation for $\Delta_f G^\circ$ (HO•) (= +26.3 ± 1.6
2693	kJ mol ⁻¹) we obtain $\Delta_f G^\circ = -(92.0 \pm 1.8)$ kJ mol ⁻¹ for BrOH ^{•-} . From K_{eq} for reaction 35.1, the
2694	value for $\Delta_f G^{\circ}(Br_2^{\bullet-})$ derived above, and the NIST values of $\Delta_f G^{\circ}$ for Br ⁻ and HO ⁻ we obtain
2695	$\Delta_{\rm f}G^{\circ} = -(93.8 \pm 2.2) \text{ kJ mol}^{-1}$ for BrOH ^{•-} . These three derivations are in excellent agreement and
2696	yield an average value of $-(93 \pm 2)$ kJ mol ⁻¹ for $\Delta_f G^\circ$ of BrOH ^{•-} .
2697	
2698	From K_{eq} for reaction 36.1, the derived value for $\Delta_f G^{\circ}(Br_2^{\bullet-})$ and NIST values for
2699	$\Delta_{\rm f} G^{\circ}({\rm Br}^{-})$ and $\Delta_{\rm f} G^{\circ}({\rm SCN}^{-}) (= +92.71 \text{ kJ mol}^{-1})$ we obtain
2700	$\Delta_{\rm f}G^\circ = +(129 \pm 3) \text{ kJ mol}^{-1} \text{ for BrSCN}^{\bullet-}.$
2701	
2702	From K_{eq} for reaction 32.1 and a value of 1×10^{-14} M ² for K_{w} we derive $pK_{a} = (10.50 \pm$
2703	0.07) for Br [•] (reaction 31.1).
2704	
2705	From $\Delta_f G^{\circ}(Br^{\bullet}, aq)$ as derived above and the NIST value for $\Delta_f G^{\circ}$ for $Br^{\bullet}(g)$ (= +82.396
2706	kJ mol ⁻¹) we derive $\Delta G_{hyd} = +(2.3 \pm 2) \text{ kJ mol}^{-1}$ for Br•.
2707	
2708	Nomenclature: Br•, bromine(•); Br-, bromide; Br ₂ , dibromine; Br ₂ •-, dibromide (•1-); BrOH•-,
2709	hydroxidobromate(•1-); BrSCN ^{•-} , cyanidobromidosulfate(•1-)
2710	
2711	References
2712	
2713	1. D. R. Rosseinsky, R. J. Hill. J. Chem. Soc., Faraday Trans. 1 1140-1144 (1974).
2714	2. A. J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution, Marcel
2715	Dekker, Inc., New York 834 (1985).

- 2716 3. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
- 2717 Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
- 2718
- 2719

2720	Data Sheet 27
2721	
2722	Chemical equilibrium: $2Br^{-} + Mn^{3+} \Rightarrow Br_2^{\bullet-} + Mn^{2+}$ (27.1)
2723	
2724	List of reports:
2725	
2726	$K_{\rm eq} = 1/(16 \text{ M}) (= 6.3 \times 10^{-2} \text{ M}^{-1})$ at 25.2 °C and $\mu = (2 - 2.15) \text{ M} [1]$. Obtained from the
2727	kinetics of Mn(III) catalysis of the reaction of bromine with oxalic acid.
2728	$K_{\rm eq} = 4 \times 10^{-2} \mathrm{M}^{-1}$ at 25 °C at a various ionic strengths [2], derived from flash photolysis
2729	determination of the reverse rate constant and a conventional kinetic determination of the
2730	forward rate constant.
2731	
2732	Discussion
2733	
2734	Taube's early (1948) determination [1] of this radical equilibrium constant is remarkably
2735	prescient. His data yield a value of 0.27 (time in minutes) for $2k_5/K_d^2$, where these parameters
2736	refer to the reactions
2737	
2738	$2Br_2^{\bullet-} \rightleftharpoons Br^- + Br_3^- \qquad \qquad$
2739	$Br_2^{\bullet-} + Mn^{2+} + H_2C_2O_4 \Rightarrow 2Br^- + 2H^+ + [Mn(C_2O_4)]^+ K_d$
2740	
2741	His value for K_{eq} was derived from this result by use of an assumed rate constant for the self-
2742	reaction of Br ₂ ^{•-} ($2k_5 = 8.3 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$) and the measured equilibrium constant for association
2743	of oxalic acid with Mn ³⁺ :
2744	
2745	$Mn^{3+} + H_2C_2O_4 \implies [Mn(C_2O_4)]^+ + 2H^+ \qquad K_a = (1.0 \pm 0.3) \times 10^5 M$
2746	
2747	Taube's assumption for the value of $2k_5$ seems somewhat high; although there are no direct
2748	determinations of $2k_5$ at such high ionic strengths, it is reported that $2k_5$ is $(4.8 \pm 0.6) \times 10^9 \text{ M}^{-1}$
2749	s ⁻¹ at 1 M ionic strength [3]. With $2k_5$ taken as $(4.8 \pm 0.6) \times 10^9$ M ⁻¹ s ⁻¹ we obtain $K_d = (1.0 \pm 0.6) \times 10^{-1}$ M ⁻¹ s ⁻¹ we obtain $K_d = (1.0 \pm 0.6) \times 10^{-1}$ M ⁻¹ s ⁻¹ we obtain $K_d = (1.0 \pm 0.6) \times 10^{-1}$ s ⁻¹ we obtain K_d
2750	0.3) × 10 ⁶ M ² , which is quite close to the value reported by Taube; presumably he made a
2751	computational or typographical error that has been largely compensated for by our 20-fold
2752	adjustment to $2k_5$. This leads to a corrected value of (0.10 ± 0.3) M ⁻¹ for K_{eq} at $\mu = 2$ M.
2753	Laurence and Thornton [2] based their equilibrium constant on the following reaction
2754	mechanism:
2755	$Mn^{3+} + Br^- \Rightarrow MnBr^{2+}$ K_{22}

2756	$MnBr^{2+} + Br^{-} \Rightarrow Mn^{2+} + Br_{2}^{\bullet-} \qquad k_{23}, k_{-23}$
2757	
2758	They used flash photolysis of solutions that contained Mn ²⁺ and Br ₃ ⁻ to generate Br ₂ ^{•-} and
2759	measure $k_{-23} (= 9.0 \times 10^6 \text{ M}^{-1} \text{ s}^{-1} [2]$. These flash photolysis experiments were performed at 25
2760	°C and ionic strength ranging from 0.21 M to 0.25 M. They then used Wells and Mays' data for
2761	the value of $K_{22}k_{23}$ (= 3.6 × 10 ⁵ M ⁻² s ⁻¹) at 4 M ionic strength [4]. Combining these two values
2762	led to $K_{\rm eq} = 4 \times 10^{-2} {\rm M}^{-1}$.
2763	Given the high ionic strength dependence expected for the rate constants in Laurence and
2764	Thornton's determination [2], the result can only be approximate. We thus prefer Taube's
2765	determination [1]. Given the agreement between the two reports and the overall complexity of
2766	the determinations we assume an uncertainty in K_{eq} of a factor of 2.
2767	
2768	Recommended value:
2769	
2770	$K_{\rm eq} = 1.0 \times 10^{-1} {\rm M}^{-1}$ at 25.2 °C and $\mu = (2 - 2.15) {\rm M}$ within a factor of two.
2771	
2772	List of auxiliary thermodynamic data: none.
2773	
2774	Nomenclature: see Data Sheet 26.
2775	
2776	References
2777	
2778	1. H. Taube. J. Am. Chem. Soc. 70, 3928-3935 (1948).
2779	2. G. S. Laurence, A. T. Thornton. J. Chem. Soc., Dalton Trans. 1637-1644 (1973).
2780	3. M. D'Angelantonio, M. Venturi, Q. G. Milazzani. Radiat. Phys. Chem. 32, 319-324
2781	(1988).
2782	4. C. F. Wells, D. Mays. J. Chem. Soc. A 577-583 (1968).
2783	
2784	

- 2785 **Data Sheet 28**
- 2786
- 2787 2788

2789 List of reports:

Chemical equilibrium: $ClO_2^{\bullet} + Br_2^{\bullet-} \Rightarrow ClO_2^{-} + Br_2$

2790

 $K_{ea} = (2.7 \pm 1.4) \times 10^6$. This value has not been published, but it can be calculated from 2791 published values for the forward and reverse rate constants. A value of $(3.56 \pm 0.06) \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ 2792 2793 ¹ at $\mu = 1.0$ M (and presumably at room temperature) for $k_{\rm f}$ was reported by Tóth *et al.* from a flash photolysis study [1]. Experiments at $\mu = 0.10$ and 0.05 M show the rate constant to be 2794 essentially independent of ionic strength. Tóth and Fábián reported $k_r = (1.3 \pm 0.2) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$ 2795 2796 at 25.0 °C and $\mu = 1.0$ M; this result was obtained from stopped-flow experiments, with the rate 2797 constants being evaluated by numerical fitting of a complex model [2]. The value obtained for k_r 2798 varied over a factor of ~3 depending on the details of the model, and the indicated uncertainty is 2799 merely a statistical result for one of the models. Thus, we assign a larger uncertainty of a factor 2800 of 2 in K_{eq} .

(28.1)

- 2801
- 2802 **Discussion**
- 2803

The value of K_{eq} presented above is the only experimental result available. It seems to be fairly reliable, although there is a large uncertainty because of the complex mechanism used to derive it. Some degree of skepticism in the value of k_r arises from a recent report on the reaction of HOBr with Cl(III) [3]. This new paper gives a significantly revised value for the rate constant of the reaction of HOBr + HClO₂, which also figured in the mechanism of the reaction that led to the value for k_r . This paper provides no information as to how this new information affects the fits from which k_r is derived.

As described in Tóth's Ph.D. dissertation [4], the revised data on the HOBr/Cl(III) reaction lead to an adjustment in the value for k_r to $(4.84 \pm 0.02) \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$. This latest adjustment leads to a substantial change in K_{eq} , the new value being 7.4×10^5 . According to a personal communication from Fábián, a more formal publication of this adjustment is not anticipated unless further data should become available.

The value of K_{eq} should not be very sensitive to ionic strength. The value of k_f should be only weakly temperature dependent, and thus the value of K_{eq} should be appropriate for 25 °C. Given the above, we make a wild guess that the uncertainty in the derived equilibrium constant is a factor of two.

2821	Reco	ommended value:	
2822			
2823	$K_{\rm eq}$ =	= 7.4×10^5 within a factor of 2.	
2824			
2825	List of auxiliary thermodynamic data: none		
2826			
2827	Nomenclature: See Data Sheet 26. ClO_2^{\bullet} , dioxidochlorine(\bullet).		
2828			
2829	References		
2830			
2831	1.	Z. Tóth, I. Fábián, A. Bakac. Inorg. React. Mech. 3, 147-152 (2001).	
2832	2.	Z. Tóth, I. Fabian. Inorg. Chem. 39, 4608-4614 (2000).	
2833	3.	Z. Tóth, I. Fábián. Inorg. Chem. 43, 2717-2723 (2004).	
2834	4.	Z. Tóth. (Ph. D. dissertation: The reactions of chlorine(III) with bromine and	
2835	hypo	obromous acid: kinetics and mechanism); University of Debrecen: Debrecen, Hungary, 2003.	
2836			

2838	Data Sheet 29
2839	
2840	Chemical equilibrium: $Br_2^{\bullet-} + N_3^- \Rightarrow N_3^{\bullet} + 2Br^-$ (29.1)
2841	
2842	List of reports:
2843	
2844	$K_{eq} = 5.5 \times 10^4$ M, presumably at room temperature, with $\mu = 2$ or 3 M [1]. Results were
2845	obtained by pulse radiolysis of Br^{-}/N_{3}^{-} mixtures, and by measuring k_{obs} for the above reaction; a
2846	plot of $k_{obs}/[Br]^2$ vs $[N_3]/[Br]^2$ yields k_f and k_r from the slope and intercept, and K_{eq} from the
2847	ratio of $k_{\rm f}/k_{\rm r}$. A "similar" equilibrium constant was obtained from the equilibrium concentration
2848	of Br ₂ ^{•–} determined at 360 nm.
2849	
2850	Discussion
2851	
2852	While we have no reason to doubt the quality of this work, the very high ionic strength of
2853	the solutions makes the result of limited value in determining the equilibrium constant at $\mu = 0$.
2854	The reaction is electrostatically balanced, in that there are two product anions and two reactant
2855	anions, so the equilibrium constant should not vary too much with ionic strength. We tentatively
2856	assign an uncertainty of a factor of 2.
2857	
2858	Recommended value:
2859	
2860	$K_{eq}^{0} = 5.5 \times 10^{4}$ M within a factor of 2.
2861	
2862	List of auxiliary thermodynamic data: none
2863	
2864	Nomenclature: See Data Sheet 26. N_3^{\bullet} , trinitrogen(2N–N)(\bullet)
2865	
2866	References
2867	
2868	1. Z. B. Alfassi, A. Harriman, R. E. Huie, S. Mosseri, P. Neta. J. Phys. Chem. 91, 2120-
2869	2122 (1987).
2870	
2871	

2872 Data Sheet 30 Trioxidocarbonate(•1–)/trioxidocarbonate(2–) 2873 2874 2875 List of reported equilibrium constants: 2876 Chemical equilibrium $Br_2^{\bullet-} + CO_3^{2-} \Rightarrow 2Br^- + CO_3^{\bullet-}$ 2877 (30.1)2878 2879 Huie *et al.* [1]. 2880 2881 $K = 3.2 \pm 0.7$ (I = 3 M, pH 12.0), $\Delta E = (0.030 \pm 0.006)$ V. 2882 Based on reaction 30.1 and $E^{\circ}(Br_2^{\bullet-}/Br^{-}) = +1.625 \text{ V} [2]$, (see Data Sheet 26) $E^{\circ}(CO_3^{\bullet-}/CO_3^{2-}) =$ 2883 2884 $+(1.59 \pm 0.02)$ V. 2885 2886 $CO_3^{\bullet-} + 2SCN^- \Rightarrow CO_3^{2-} + (SCN)_2^{\bullet-}$ 2887 Chemical equilibrium (30.2)2888 2889 Lymar et al., 2000 [3]. 2890 $K = (1.5 \pm 0.3) \times 10^4 \text{ M}^{-1}$ and $(2.1 \pm 0.2) \times 10^4 \text{ M}^{-1}$ at 0.5 M and 1.5 M ionic strength, 2891 respectively. Based on these equilibrium constants $E^{\circ}(CO_3^{\circ-}/CO_3^{2-})$ is 0.25 V higher than 2892 $E^{\circ}((SCN)_2^{\bullet-}/2SCN^{-})$. The authors have noted that this difference can be somewhat smaller at 2893 low ionic strength, as the electrolyte would tend to stabilize CO_3^{2-} the most. Given $E^{\circ}((SCN)_2^{--}$ 2894 $(2SCN^{-}) = 1.30 \text{ V}$ (see Data Sheet 101), $E^{\circ}(CO_{3}^{\bullet-}/CO_{3}^{2-}) = +1.55 \text{ V}$. 2895 2896 Chemical equilibrium $CO_3^{\bullet-} + ClO^- \Rightarrow CO_3^{2-} + ClO^{\bullet}$ 2897 (30.3)2898 2899 Huie *et al.* [1]. 2900 $K = (9.5 \pm 3.0) \times 10^2$ ($\mu = 3.0$ M, pH 12.2, 22.2 °C), $\Delta E = (0.176 \pm 0.010)$ V. 2901 2902 2903 Discussion 2904 2905 The equilibrium constant for reaction 30.1 is the average of (3.3 ± 0.3) , derived from the 2906 absorbance at 360 nm (Br₂^{•–}) at equilibrium and of 3.1 ± 0.5 from the rate constants for the decay 2907 of Br2^{•-} to its equilibrium value. The error in the preliminary assessment of the Br2^{•-/2Br-}

2908	electrode potential determines that in $E^{\circ}(CO_3^{\bullet-}/CO_3^{2-})$. The difference of 0.04 V between two
2909	careful measurements may be due to medium effects.
2910	
2911	The standard electrode potential of the ClO•/ClO- couple is not known precisely enough to
2912	determine $E^{\circ}(CO_3^{\bullet-}/CO_3^{2-})$; in fact the value of +1.59 V is used to estimate $E^{\circ}(ClO^{\bullet}/ClO^{-})$ [1].
2913	
2914	
2915	Recommended values:
2916	
2917	$E^{\circ}(CO_3^{\bullet-}/CO_3^{2-}) = +(1.57 \pm 0.03) V$
2918	$\Delta_{\rm f} G^{\circ}({\rm CO}_3^{\bullet-}) = -(89.1 \pm 0.8) \text{ kcal/mol, or } -(373 \pm 3) \text{ kJ mol}^{-1};$
2919	
2920	List of auxiliary thermodynamic data
2921	
2922	Based on a review of earlier literature, Stanbury proposed a value of 1.5 V [2]. In an <i>ab initio</i>
2923	study, Armstrong <i>et al.</i> [4] suggest a value of $+(1.23 \pm 0.15)$ V. While not as accurate as the two
2924	experimentally derived values, this result is impressive for an <i>ab initio</i> calculation.
2925	
2926	
2927	Chemical equilibrium $HCO_3^{\bullet} \Rightarrow H^+ + CO_3^{\bullet-}$ (30.4)
2928	
2929	Czapski <i>et al.</i> [5].
2930	
2931	A p K_a smaller than 0 has been determined [5], as expected for a HOXO ₂ acid.
2932	
2933	Recommended value:
2934	
2935	Except that pK_a is negative, no numerical recommendation can be made.
2936	
2937	Auxiliary thermodynamic data: Earlier pK_a estimates of 9.6 and 7.0 – 8.2 are discussed by
2938	Czapski et al. [5]. A recent value of 9.5 [6] was shown to be in error [3]. The result of an ab
2939	<i>initio</i> calculation [4], -4.1, also does not support the $pK_a \ge 7$ values.
2940	
2941	References
2942	
2943	1. R. E. Huie, C. L. Clifton, P. Neta. Radiat. Phys. Chem. 38, 477-481 (1991).

- 2944 2. D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).
- 2945 3. S. V. Lymar, H. A. Schwarz, G. Czapski. Rad. Phys. Chem. 59, 387-392 (2000).
- 2946 4. D. A. Armstrong, W. L. Waltz, A. Rauk. Can. J. Chem. 84, 1614-1619 (2006).
- 2947 5. G. Czapski, S. V. Lymar, H. A. Schwarz. J. Phys. Chem. A 103, 3447-3450 (1999).
- 2948 6. Z. Zuo, Z. Cai, Y. Katsumura, N. Chitose, Y. Muroya. Radiat. Phys. Chem. 55, 15-23
- 2949 (1999).
- 2950
- 2951

2952	Data Sheet 31		
2953			
2954	Chemical equilibrium: $Br^{\bullet}(aq) + H_2O \Rightarrow BrOH^{\bullet^-} + H^+$ (31.1)		
2955			
2956	List of reports:		
2957			
2958	$K_{\rm eq} = 3.09 \times 10^{-11}$ M. We derive this result from the forward rate constant ($k_{\rm f} = 1.36 \text{ s}^{-1}$)		
2959	reported by Kläning and Wolff and the reverse rate constant ($k_r = (4.4 \pm 0.8) \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$)		
2960	reported by Zehavi and Rabani [1, 2].		
2961			
2962	Discussion		
2963			
2964	Note that Kläning and Wolff erroneously cite Mamou <i>et al.</i> for k_r . [3]. The Kläning and		
2965	Wolff paper is really just a poster abstract and is too concise to state what was really measured.		
2966	However, it appears that the method used was laser flash photolysis, which means that the value		
2967	for $k_{\rm f}$ is too small to have been measured in this way. In fact, it was calculated from a		
2968	thermodynamic cycle; the actual measurement by Kläning and Wolff must have been for the		
2969	corresponding reaction in alkaline media: $Br^{\bullet} + HO^{-} \Rightarrow BrOH^{\bullet-}$.		
2970			
2971	Recommended value:		
2972			
2973	None. We can derive a value from the corresponding alkaline equilibrium, but there is no direct		
2974	measurement.		
2975			
2976	List of auxiliary thermodynamic data: none.		
2977			
2978	References		
2979			
2980	1. U. K. Kläning, T. Wolff. Ber. Bunsenges. Phys. Chem. 89, 243-245 (1985).		
2981	2. D. Zehavi, J. Rabani. J. Phys. Chem. 76, 312-319 (1972).		
2982	3. A. Mamou, J. Rabani, D. Behar. J. Phys. Chem. 81, 1447-1448 (1977).		
2983			
2984			
2985	Data Sheet 32		
------	--	--	
2986			
2987	Chemical equilibrium: $BrOH^{\bullet-} \Rightarrow Br^{\bullet}(aq) + HO^{-}$	(32.1)	
2988			
2989	List of reports:		
2990			
2991	$K_{\rm eq} = 3.2 \times 10^{-4}$ M. This value calculated from $k_{\rm f}$	$k_{\rm r} \cdot k_{\rm f} = (4.2 \pm 0.6) \times 10^6 {\rm s}^{-1} {\rm was}$	
2992	reported by Zehavi and Rabani from pulse radiolysis me	asurements.at 25 ± 2 °C [1]. Zehavi and	
2993	Rabani obtained $k_{\rm f}$ by combining various measured quar	tities as described below. The value for	
2994	$k_{\rm r} (k_{\rm r} = 1.3 \times 10^{10} {\rm M}^{-1} {\rm s}^{-1})$ was measured by Kläning and	l Wolff with flash photolysis of HOBr	
2995	[2]. Due to the preliminary nature of Kläning and Wolff	s report [2], the actual conditions of the	
2996	experiment are unknown, but we can assume they were	at room temperature and at pH 12. Note	
2997	that Kläning and Wolff [2] eroneously cited Mamou et a	al. [3] for the value of $k_{\rm f}$.	
2998			
2999	Discussion		
3000			
3001	Zehavi and Rabani's [1] determination of $k_{\rm f}$ is co	mplex and is described here in outline.	
3002	They assumed that the mechanism includes the steps		
3003	$Br^- + HO^{\bullet} \Rightarrow Br^{\bullet} + HO^- \qquad k_1$		
3004	$Br^- + HO^{\bullet} \Rightarrow BrOH^{\bullet-}$ k_2, k_3	<u>z</u> _2	
3005	$BrOH^{\bullet-} \Rightarrow Br^{\bullet} + HO^{-}$ k_3, h	z_3	
3006	$\mathrm{RH}_2 + \mathrm{HO}^{\bullet} \rightleftharpoons \mathrm{RH}^{\bullet} + \mathrm{H}_2\mathrm{O} \qquad \qquad k_5 \ \mathrm{(}$	$RH_2 = ethanol or methanol)$	
3007	$Br^{\bullet} + Br^{-} \Rightarrow Br_{2}^{\bullet-} \qquad \qquad K_{4}$		
3008	Note that k_1 is a pseudo-second-order rate constant that	varies at high [Br]. Thus, the yield of	
3009	Br ₂ ^{•-} depends on the alcohol concentration. By determin	ing the Br ₂ ^{•-} yield as a function of	
3010	alcohol they obtained $k_3/k_{-2} = (0.127 \pm 0.007)$ at neutral	pH. In acidic ethanolic media, similar	
3011	competition experiments yielded $k_5/k_2 = (0.172 \pm 0.013)$. Use of the literature value for k_5 (= 1.83	
3012	× 10 ⁹ M ⁻¹ s ⁻¹) then gave $k_2 = 1.06 \times 10^{10}$ M ⁻¹ s ⁻¹ . In a se	ries of experiments they measured k_1 at	
3013	various bromide concentrations up to 2 M, they plotted a	a graph of $((k_2)(k_3/k_{-2}) - k_1)/[Br]$ vs. k_1 ,	
3014	and obtained a value of $k_2/k_{-2} = 3.2 \times 10^2 \text{ M}^{-1}$ from the sl	ope. A value of $3.3 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ was	
3015	derived for k_{-2} from the values for k_2 and k_2/k_{-2} . Finally,	combining the values for k_{-2} and k_3/k_{-2}	
3016	led to $k_3 = 4.2 \times 10^6 \text{ s}^{-1}$, which is k_{f} .		
3017	We thus see that the value for $k_{\rm f}$ was obtained from	om data at various ionic strengths, some	
3018	as high as 2 M. On the other hand, the value for $k_{\rm r}$ was d	etermined at low ionic strength.	
3019	However, neither rate constant should be particularly ser	nsitive to ionic strength, so the derived	
3020	equilibrium constant can be reasonably described as an i	deal one.	

3021	We estimate the uncertainty as $\pm 15\%$ by combining the published uncertainty in $k_{\rm f}$ and				
3022	our estimated uncertainty for $k_{\rm r}$.				
3023	A strongly conflicting value for K_{eq} of 2×10^{-5} was calculated by Mamou <i>et al.</i> [3] from				
3024	prior literature data of Behar [4]. Mamou et al. [3] then performed experiments that				
3025	demonstrated an error in the results of Behar [4].				
3026					
3027	Recommended value:				
3028					
3029	$K_{\rm eq} = (3.2 \pm 0.5) \times 10^{-4} \mathrm{M}$				
3030					
3031	List of auxiliary thermodynamic data: none.				
3032					
3033	Nomenclature: See Data Sheet 26				
3034					
3035	References				
3036					
3037	1. D. Zehavi, J. Rabani. J. Phys. Chem. 76, 312-319 (1972).				
3038	2. U. K. Kläning, T. Wolff. Ber. Bunsenges. Phys. Chem. 89, 243-245 (1985).				
3039	3. A. Mamou, J. Rabani, D. Behar. J. Phys. Chem. 81, 1447-1448 (1977).				
3040	4. D. Behar. J. Phys. Chem. 76, 1815-1818 (1972).				
3041					
3042					

3043	Data Sheet 33
3044	
3045	Chemical equilibrium: $Br^{\bullet}(aq) + Br^{-} \Rightarrow Br_{2}^{\bullet-}$ (33.1)
3046	
3047	List of reports:
3048	
3049	$K_{\rm eq} = 3.3 \times 10^3 {\rm M}^{-1}$, presumably at room temperature at ionic strength ranging from quite
3050	low to 0.1 M [1]. Obtained from flash photolysis of Br ⁻ solutions by fitting the pseudo-second-
3051	order rate constant for decay of Br ₂ ^{•–} .
3052	$K_{\rm eq} = (1.7 \pm 0.7) \times 10^4 \text{M}^{-1}$ at 25 °C and various ionic strengths [2], from the kinetics of
3053	formation of $Br_2^{\bullet-}$ as a function of $[Br]$ in the flash photolysis of solutions of Br_2 in 0.12 M
3054	$HClO_4$ and of 1.4 mM C_6H_5Br .
3055	$K_{eq} = (1.1 \pm 0.3) \times 10^5 \text{ M}^{-1}$, at (24 ± 2) °C and low ionic strength [3]. Result obtained by
3056	pulse radiolysis determination of the equilibrium absorbance of Br2 ^{•-} as a function of [Br ⁻].
3057	$K_{eq} = 3.1 \times 10^3 \text{ M}^{-1}$, at 288 K and low ionic strength [4]. Result obtained by a flash
3058	photolysis of Br^- with conductivity detection. They obtained the rate of dissociation of $Br_2^{\bullet-}$ by
3059	fitting the kinetic traces with a complex mechanism. We calculate the equilibrium constant here
3060	from the ratio of the forward and reverse rate constants given in the paper.
3061	$K_{eq} = 2.2 \times 10^5 \text{ M}^{-1}$, presumably at room temperature and low ionic strength [5].
3062	Obtained by pulse radiolysis of N-bromosuccinimide [IUPAC PIN: 1-bromopyrrolidine-2,5-
3063	dione], from the ratio of $k_{\rm f}$ and $k_{\rm r}$ for formation of Br ₂ ^{•–} .
3064	$K_{eq} = 6 \times 10^5 \text{ M}^{-1}$ at 25 °C and $\mu \sim 0.1 \text{ M}$ [6]. Obtained from by pulse radiolysis of Br ⁻
3065	solutions, measuring the equilibrium Br2 ^{•-} concentration. Also obtained from steady-state
3066	gamma radiolysis of Br ⁻ /oxalic acid solutions, by measuring the CO ₂ yield. The equilibrium
3067	constant inferred here was obtained by interpolation of a graph of K_{eq} vs T.
3068	$K_{eq} = 6 \times 10^5 \text{ M}^{-1}$ at room temperature [7]. Pulse radiolysis of 1,2-dibromoethane was
3069	used to generate $Br_2^{\bullet-}$ through the direct reaction of $e^{-}(aq)$ with $C_2Br_2H_4$; the decay of $Br_2^{\bullet-}$ in
3070	the presence of 1-2 M propan-2-ol yielded $k_r = 1.9 \times 10^4 \text{ s}^{-1}$. A value for k_f of $1.2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$
3071	was then used to determine K_{eq} from k_{f}/k_{r} .
3072	$K_{eq} = (3.9 \pm 1.2) \times 10^5 \text{ M}^{-1}$ at 298 K and low ionic strength [8]. Flash photolysis of
3073	aqueous 1,2-dibromoethane in Br ⁻ solutions was used to generate Br• atoms. The equilibrium
3074	constant was obtained from the ratio of $k_{\rm f}$ to $k_{\rm r}$, the two rate constants being obtained from the
3075	kinetics of formation of $Br_2^{\bullet-}$ as a function of $[Br^-]$.
3076	
3077	Discussion
3078	

- A wide range of values has been reported for K_{eq} . In the earlier studies the results seemed to cluster with low values for the flash-photolysis experiments and high values for the pulse radiolysis experiments. However, the latest flash photolysis result is in the range of the pulse radiolysis results, which leads us to believe that the early low results of Wong *et al.* [1] and Treinin *et al.* [2] may be disregarded.
- 3084 Wagner and Strehlow [4] have pointed out that the result of Wong *et al.* [1] is probably 3085 the consequence of neglecting reactions of the solvated electron [4]. On the other hand, the result 3086 from Wagner and Strehlow [4] is rather similar to that of Wong *et al.* [1] and is also likely 3087 incorrect. The lower temperature in this study is unlikely to be the source of the discrepancy, in 3088 view of the temperature dependence reported by Kosanic [6]. In a personal communication from 3089 John Barker to Stanbury (Jan. 2005) is was suggested that the results reported by Wagner and 3090 Strehlow [4] might be incorrect because Runga Kutta integration was used to fit the data, while a 3091 more robust integrator should have been used. He also mentions the greater complexity of the 3092 Wagner and Strehlow mechanism, which is a consequence of the solvated electrons generated by bromide photolysis. Also, the high radical concentrations generated (*ca.* $10^{-6} - 10^{-4}$ M) mean 3093 3094 that second-order processes will affect the results more strongly.
- 3095 Kosanic's result is notable in providing the temperature dependence of K_{eq} , from which 3096 ΔH° for the reaction was derived.
- The most recent result, from Barker's group, appears to be the most carefully conducted and analyzed, and accordingly we select it for recommendation. Their stated uncertainty comes close to encoMPasing the other reports.
- 3100

3101 **Recommended value**:

- 3102
- 3103 $K_{eq} = (3.9 \pm 1.2) \times 10^5 \text{ M}^{-1}$
- 3104
- 3105 List of auxiliary thermodynamic data: none.
- 3106
- 3107 Nomenclature: see Data Sheet 26.
- 3108
- 3109 **References**
- 3110
- 3111 1. D. Wong, B. Di Bartolo. J. Photochem. 4, 249-268 (1975).
- 3112 2. A. Treinin, E. Hayon. J. Am. Chem. Soc. 97, 1716-1721 (1975).
- 3113 3. A. Mamou, J. Rabani, D. Behar. J. Phys. Chem. 81, 1447-1448 (1977).
- 3114 4. I. Wagner, H. Strehlow. Ber. Bunsenges. Phys. Chem. 91, 1317-1321 (1987).

- 3115 5. J. Lind, X. Sen, T. E. Eriksen, G. Merényi, L. Eberson. J. Am. Chem. Soc. 113, 4629-
- 3116 4633 (1991).
- 3117 6. M. M. Kosanic. J. Serb. Chem. Soc. 58, 55-62 (1993).
- 3118 7. G. Merényi, J. Lind. J. Am. Chem. Soc. 116, 7872-7876 (1994).
- 3119 8. Y. Liu, A. S. Pimentel, Y. Antoku, B. J. Giles, J. R. Barker. J. Phys. Chem. A 106,
- 3120 11075-11082 (2002).
- 3121
- 3122

3123	Data Sheet 34
3124	
3125	Chemical equilibrium: $HO^{\bullet} + Br^{-} \Rightarrow BrOH^{\bullet^{-}}$ (34.1)
3126	
3127	List of reports:
3128	
3129	$K_{eq} = 320 \text{ M}^{-1}$ at $(25 \pm 2) \text{ °C}$ and a range of ionic strengths up to 2 M [1]. Obtained by
3130	pulse radiolysis with a combination of competition yields and kinetics as described in the
3131	evaluation of reaction 5.02 (BrOH ^{•–} \Rightarrow Br [•] (aq) + OH [–]).
3132	$K_{\rm eq} = (2.9 \pm 1.4) \times 10^3 \text{ M}^{-1}$ and 2300 M ⁻¹ presumably at room temperature and low ionic
3133	strength [2]. Obtained by pulse radiolysis of Br^- solutions from the absorbance of $Br_2^{\bullet-}$ as a
3134	function of [Br] and [HO].
3135	
3136	Discussion
3137	
3138	Given the major disagreement between the first two determinations of K_{eq} , Mamou <i>et al.</i>
3139	measured two related equilibrium constants to calculate a value for K_{eq} [3]; their results supports
3140	the original result of Zehavi et al.
3141	The magnitude of K_{eq} is not expected to depend significantly on ionic strength. Although
3142	$K_{\rm eq}$ was measured by Zehavi and Rabani in solutions having a wide range of ionic strengths, this
3143	should not be a serious consideration.
3144	Given the complex procedure used by Zehavi and Rabani to obtain K_{eq} we suggest an
3145	uncertainty of a factor of two.
3146	
3147	Recommended value:
3148	
3149	$\text{Log } K_{\text{eq}} = (2.5 \pm 0.3).$
3150	
3151	List of auxiliary thermodynamic data: none.
3152	
3153	Nomenclature: See Data Sheet 26.
3154	
3155	References
3156	
3157	1. D. Zehavi, J. Rabani. J. Phys. Chem. 76, 312-319 (1972).
3158	2. D. Behar. J. Phys. Chem. 76, 1815-1818 (1972).

3159	3.	A. Mamou, J. Rabani, D. Behar. J. Phys. Chem. 81, 1447-1448 (197	7).
------	----	--	-----

3162	Data Sheet 35
3163	
3164	Chemical equilibrium: $BrOH^{\bullet-} + Br^- \Rightarrow Br_2^{\bullet-} + OH^-$ (35.1)
3165	
3166	List of reports:
3167	
3168	$K_{eq} = (3.7 \pm 1.5)$ and 4.35, presumably at room temperature and low ionic strength [1].
3169	Obtained by pulse radiolysis of Br^{-} solutions from the equilibrium absorbance of $Br_{2}^{\bullet-}$ as a
3170	function of [Br ⁻] and [HO ⁻].
3171	$K_{eq} = (70 \pm 30)$, at (24 ± 2) °C and low ionic strength [2]. Obtained by pulse radiolysis of
3172	Br ⁻ solutions from the equilibrium absorbance arising from $Br_2^{\bullet-}$ and $BrOH^{\bullet-}$.
3173	
3174	Discussion
3175	
3176	The wide discrepancy between the two determinations of K_{eq} is attributed by Mamou <i>et</i>
3177	al. [2] to neglect of the absorbance of BrOH ^{•-} in the original study of Behar [1]. Thus, we
3178	recommend the result of Mamou et al. [2].
3179	
3180	Recommended value:
3181	
3182	$K_{\rm eq} = (0.7 \pm 0.3) \times 10^2$
3183	
3184	List of auxiliary thermodynamic data: none.
3185	
3186	Nomenclature: See Data Sheet 26.
3187	
3188	References
3189	
3190	1. D. Behar. J. Phys. Chem. 76, 1815-1818 (1972).
3191	2. A. Mamou, J. Rabani, D. Behar. J. Phys. Chem. 81, 1447-1448 (1977).
3192	
3193	

3194	Data Sheet 36
3195	
3196	Chemical equilibrium: $BrSCN^{\bullet-} + Br^- \Rightarrow Br_2^{\bullet-} + SCN^-$ (36.1)
3197	
3198	List of reports:
3199	
3200	$K_{\rm eq} = 1 \times 10^{-3}$, presumably at room temperature with ionic strength ranging from low up
3201	to 2 M [1]. Obtained by pulse radiolysis with optical detection, measuring the position of
3202	equilibrium.
3203	
3204	Discussion
3205	
3206	The experiments appear to be well performed, and we see no reason to object to the
3207	results. The authors do not specify any range of uncertainty, but we suggest a factor of three,
3208	given the nature of the data.
3209	
3210	Recommended value:
3211	
3212	$K_{\rm eq} = 1 \times 10^{-3}$ within the range of 03 to 3.
3213	
3214	List of auxiliary thermodynamic data: none.
3215	
3216	Nomenclature: See Data Sheet 26.
3217	
3218	References
3219	
3220	1. M. Schöneshöfer, A. Henglein. Ber. Bunsen-Ges. Phys. Chem. 73, 289-293 (1969).
3221	
3222	

3223	Data Sheet 37
3224	
3225	Chemical equilibrium: $BrSCN^{\bullet-} + SCN^{-} \Rightarrow (SCN)_{2}^{\bullet-} + Br^{-}$ (37.1)
3226	
3227	List of reports:
3228	
3229	$K_{\rm eq} = 1.1 \times 10^2$, presumably at room temperature with ionic strength ranging from low up
3230	to 2 M [1]. Obtained by pulse radiolysis with optical detection, measuring the position of
3231	equilibrium.
3232	
3233	Discussion
3234	
3235	The experiments appear to be well performed, and we see no reason to object to the
3236	results. The authors do not specify any range of uncertainty, but we suggest \pm 50%, given the
3237	nature of the data.
3238	
3239	Recommended value:
3240	
3241	$K_{\rm eq} = (1.1 \pm 0.6) \times 10^2.$
3242	
3243	List of auxiliary thermodynamic data: none.
3244	
3245	Nomenclature: See Data Sheet 26. $(SCN)_2^{\bullet-}$, bis(nitridosulfidocarbonate) $(S \neg S)(\bullet 1 -)$.
3246	
3247	References
3248	
3249	1. M. Schöneshöfer, A. Henglein. Ber. Bunsen-Ges. Phys. Chem. 73, 289-293 (1969).
3250	
3251	

3252 Data Sheet 38 3253 Subject: Bromidodimethylsulfur(•) (Dimethyl sulfide radical cation-bromide complex) 3254 Couple type: R_2S -Br/ R_2S , Br⁻, (R = -CH₃). 3255 Solvent: Water 3256 3257 **Method:** Calculation in reference [1] from pulse radiolysis data in reference [2] and $E^{\circ}(Br_2^{\bullet-}$ 3258 $/2Br^{-}$): 3259 Equilibria: (i) $R_2S + Br_2^{\bullet-} \Rightarrow R_2S^{\bullet\bullet}Br + Br^-;$ (38.1)3260 $K = 1.1 \times 10^4$. Error limit in *K* stated $\leq 2 \times$. 3261 (*ii*) $Br_2^{\bullet-} + e^- \Rightarrow 2Br^-$; $E^{\rm o} = +(1.63 \pm 0.02) \, {\rm V}$ (38.2)(*ii*) - (*i*) $R_2S \cdot Br + e^- \Rightarrow R_2S + Br^-; \qquad E^\circ = +(1.39 \pm 0.03) V$ 3262 (38.3)3263 3264 **Reference:** $E^{\circ}(Br_2^{\bullet-}/2Br^{-})$. **Temperature:** (293 \pm 2) K. **Ionic strength effects estimated:** No. 3265 3266 Corrected equilibrium constant given: No. 3267 **Reference standard potential assumed:** $E^{\circ} = +(1.63 \pm 0.03)$ V 3268 3269 Discussion 3270 3271 No correction needed for ionic strength. Equilibrium (i) has charge symmetry and therefore the 3272 Debye-Hückel corrections will cancel. (ii) is a standard potential. 3273 Recalculation under the assumption of a 100% error limit in K gives: (1.39 ± 0.03) V vs NHE. 3274 3275 **Recommended value**: 3276 3277 $E^{\circ}(R_2S-Br/R_2S,Br^{-}), (R = -CH_3) = +(1.39 \pm 0.03) \text{ V vs NHE}.$ 3278 3279 Nomenclature: See Data Sheet 26. 3280 3281 References 3282 3283 Armstrong, D. A. In S-Centered Radicals, (Alfassi, Z. B., ed.), p. 27-61. John Wiley & 1. 3284 Sons, New York (1999). 3285 M. Bonifacic, K.-D. Asmus. J. Chem. Soc., Perkin Trans. II 758-762 (1980). 2. 3286 3287

Data Sheet 39 3288 3289 Subject: Bromidodimethylsulfur(•) (Dimethyl sulfide dimer radical cation). 3290 Couple type: $R_2S \cdot R_2S' / 2R_2S$, (R = -CH₃) 3291 Solvent: Water 3292 3293 Method 1: Pulse radiolysis 3294 *Measurements by displacement and electron transfer equilibria in reference* [1]: *Equilibrium: (i)* $R_2S + Br_2^{\bullet-} \Rightarrow R_2S^{\bullet\bullet}Br + Br^-$; 3295 (39.1) $K = 1.1 \times 10^4$ 3296 (*ii*) $R_2S \bullet Br + R_2S \Rightarrow R_2S \bullet R_2S^+ + Br^-;$ 3297 (39.2)3298 K = 1.64Error limit in $Ks \leq$ factor of 2. 3299 3300 *Calculated in reference* [2] : (i) + (ii) $2R_2S + Br_2^{\bullet-} \Rightarrow R_2S^{\bullet\bullet} R_2S^+ + 2Br^-;$ 3301 (39.3) $K = 1.8 \times 10^4$ 3302 3303 **Reference:** $Br_2^{\bullet-} + e^- \Rightarrow 2Br^-$; 3304 Other solutes: Bromide salt. 3305 Gas: N₂O **Buffer:** Not stated in [1]. 3306 **pH** = Not stated. Temperature: 293 ± 2 K. Ionic strength: ?? M 3307 Uncorrected equilibrium constant from concentrations: 1.8×10^4 3308 Ionic strength effects estimated: No. 3309 **Observed equilibrium constant/measurement corresponds to** $\Delta E = (0.249 \pm 0.03)$ V **Reference standard potential assumed:** $E^{o} = +1.62$ V 3310 3311 Standard potential of couple indicated in reference [2]: +1.37 V vs NHE 3312 3313 Method 2: Pulse radiolysis Solvent: Water 3314 *Measurements by electron transfer equilibria in reference* [2] : Equilibrium: $R_2S^{\bullet\bullet} R_2S^{\bullet+} + N_3^- \Rightarrow 2R_2S + N_3^{\bullet}$; 3315 (39.4) $K = 16.4 \text{ mol dm}^{-3}$. 3316 3317 **Reference:** $N_3 \cdot + e^- \Rightarrow N_3^-$; Other solutes: Azide salt. 3318 3319 Gas: N₂O **Buffer:** Not stated. 3320 **pH** = Not stated **Temperature:** ~295 K. **Ionic strength:** 0.1 ??M 3321 Ionic strength effects estimated: No. 3322 **Observed equilibrium constant/measurement corresponds to** $\Delta E = (0.071 \pm 0.03)$ V **Reference standard potential assumed:** $E^{\circ} = +(1.33 \pm 0.03)$ V 3323

3324	Standard potential of couple indicated in reference [2]: +1.40 V vs NHE				
3325					
3326	Discussion				
3327					
3328	There are sufficient experimental details available to evaluate the data.				
3329	Calculation from method 1: (1.37 V \pm 0.04) (Error in Ks taken as $\pm 100\%$).				
3330 3331	Calculation from method 2: (1.40 V \pm 0.02) (Error in <i>K</i> s taken as \pm 50%; probably generous as $K_{(Kin)} = 12.5$). Method 2 is more direct and therefore weighted more heavily.				
3332	Correction desirable for ionic strength effects: The magnitude of the errors should be checked				
3333	for both methods, but exact corrections are probably impractical due to lack of data.				
3334					
3335	Recommended value:				
3336					
3337	$E^{\circ}(R_2S^{\bullet\bullet} R_2S^+/2R_2S), (R = -CH_3) = +1.39 \text{ V} \pm 0.03 \text{ V}$				
3338					
3339	Nomenclature: See Data Sheet 26.				
3340					
3341	References				
3342					
3343	1. M. Bonifacic, KD. Asmus. J. Chem. Soc., Perkin Trans. II 758-762 (1980).				
3344	2. G. Merényi, J. Lind, L. Engman. J. Phys. Chem. 100, 8875-8881 (1996).				
3345					
3346					

3347 Data Sheet 40

3348 Summary of the BrO₂• System

3349

3350 Tabulated below are the presently recommended equilibrium constants involving the BrO₂•

- radical. Uncertainties are expressed as $\pm 1 \sigma$; in many cases the value of σ is merely a subjective guess.
- 3353

reaction	K _{eq}	dim.	uncertainty	μ, Μ	Data Sheet #
$ClO_2^{\bullet} + BrO_2^{-} \Rightarrow ClO_2^{-} + BrO_2^{\bullet}$	$1.0 imes 10^{-6}$		$0.1 imes 10^{-6}$	0	41
$HBrO_2 + BrO_3^- + H^+ \rightleftharpoons 2BrO_2^{\bullet} +$	1×10^{-6}	M^{-1}	(0.5-2) ×	0	42
H ₂ O			10 ⁻⁶		
$Br_2O_4 \Rightarrow 2BrO_2^{\bullet}$	$5.3 imes 10^{-5}$	Μ	1.1×10^{-5}	0.01	43
$Ce(III) + BrO_2^{\bullet}(aq) + H^+ \Rightarrow Ce(IV)$	7	M^{-1}	2	1	44
+ HBrO ₂ (aq)					

3354

From reaction 41.1 (see below) and our recommended E° for ClO₂• we derive $E^{\circ} = +(1.290 \pm$ 3355 0.005) V for BrO₂•/BrO₂⁻. From reaction 42.1 and other data we derive $E^{\circ} = +(1.260 \pm 0.024)$ V 3356 3357 for the $BrO_2^{\bullet}/BrO_2^{-}$ couple These two completely independent determinations of E° agree within 3358 their uncertainties. Overall, we recommend the value derived from reaction 41.1 because of its 3359 smaller uncertainty and because the result from reaction 42.1 was derived with a large 3360 extrapolation from data at high (1.0 M) ionic strength. This result leads to $\Delta_f G^\circ = +(152 \pm 4) \text{ kJ}$ 3361 mol^{-1} for BrO₂•(*aq*). Formal potentials at $\mu = 1$ M are derived from reaction 44.1 and are in good agreement with that derived from reaction 41.1. 3362

- 3363
- **3364 Recommended values:**
- 3365

 $BrO_2^{\bullet}(aq) + e^- \Rightarrow BrO_2^{-}(aq)$ $E^{\circ} = +(1.290 \pm 0.005) V$ $BrO_2^{\bullet}(aq) + H^+ + e^- \Rightarrow HBrO_2$ $E^{\circ \prime} = +(1.49 \pm 0.01) V \text{ at } 20 \text{ °C in } 1 \text{ M H}_2\text{SO}_4$ $BrO_2^{\bullet}(aq) + e^- \Rightarrow BrO_2^{-}$ $E^{\circ \prime} = +(1.29 \pm 0.01) V \text{ at } 20 \text{ °C in } 1 \text{ M H}_2\text{SO}_4$ $\Delta_f G^{\circ}(BrO_2^{\bullet}(aq)) = +(152 \pm 4) \text{ kJ mol}^{-1}$ 3370

3371 Nomenclature: BrO₂•, dioxidobromine(•), BrO₂⁻, dioxidobromate(1–)

3373	Data Sheet 41
3374	
3375	Chemical equilibrium: $ClO_2^{\bullet} + BrO_2^{-} \Rightarrow ClO_2^{-} + BrO_2^{\bullet}$ (41.1)
3376	
3377	List of reports:
3378	
3379	$K_{eq} = 1.0 \times 10^{-6}$ [1]. Result obtained from the ratio of the forward and reverse rate
3380	constants. The forward rate constant was obtained from a stopped-flow study of the reaction of
3381	ClO_2^{\bullet} with BrO_2^{-} at 25.0 °C and $\mu = 1.0$ M [1]. The reverse rate constant was obtained by pulse
3382	radiolysis, presumably at room temperature at an unspecified ionic strength [2].
3383	
3384 3385	Discussion
3386	As the reverse rate constant is expected to be independent of ionic strength, the
3387	calculation of K_{eq} is not seriously compromised. K_{eq} should also be independent of ionic strength.
3388	The reverse rate constant is rather large $(3.6 \times 10^7 \text{ M}^{-1} \text{ s}^{-1})$ and hence should not be very
3389	temperature dependent. A 6% uncertainty was assigned to the forward rate constant. We suggest
3390	a 10% uncertainty for the reverse rate constant. Thus, the uncertainty in K_{eq} is about 10%.
3391	Given our recommended value of $E^{\circ} = +(0.935 \pm 0.003)$ V for ClO ₂ •/ClO ₂ ⁻ , we thus
3392	derive $E^{\circ} = +(1.290 \pm 0.005)$ V for the couple BrO ₂ •/BrO ₂ ⁻ . Prior estimates of this quantity are
3393	considered to be much less reliable.
3394	Although not given in the NIST tables [3], the value for $\Delta_f G^\circ$ (= +27.2 kJ mol ⁻¹) for
3395	BrO_2^- given by Lee and Lister seems widely accepted [4, 5]. We suggest that the uncertainty in
3396	Lee and Lister's result is ± 4 kJ. Thus we derive $\Delta_f G^\circ = +(152 \pm 4)$ kJ mol ⁻¹ for BrO ₂ .
3397	
3398	Recommended values:
3399	
3400	$K_{\text{eq}} = (1.0 \pm 0.1) \times 10^{-6}$ at 25 °C and $\mu = 0.0$ M.
3401	$E^{\circ}(BrO_2^{\bullet}/BrO_2^{-}) = +(1.290 \pm 0.005) V$
3402	$\Delta_{\rm f} G^{\circ}({\rm BrO_2}^{\bullet}) = +(152 \pm 4) \rm kJ mol^{-1}$
3403	
3404	Nomenclature: see Data Sheet 40.
3405	
3406	List of auxiliary thermodynamic data: none.
3407	

References 3408 3409 3410 L. Wang, J. S. Nicoson, K. E. H. Hartz, J. S. Francisco, D. W. Margerum. Inorg. Chem. 1. 3411 **41,** 108-113 (2002). R. E. Huie, P. Neta. J. Phys. Chem. 90, 1193-1198 (1986). 3412 2. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. 3413 3. Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982). 3414 C. L. Lee, M. W. Lister. Can. J. Chem. 49, 2822-2826 (1971). 3415 4. 3416 5. D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989). 3417 3418 3419

3420	Data Sheet 42					
3421						
3422	Chemical equilibrium: $HBrO_2 + BrO_3^- + H^+ \Rightarrow 2BrO_2^{\bullet} + H_2O$ (42.1)					
3423						
3424	List of reports:					
3425	1) $K_{\text{eq}} = 5 \times 10^{-4} \text{ M}^{-1} [1]$. We calculate this from	the forward and reverse rate const	ants			
3426	selected by Field et al. (1972). The forward rate was a	assumed to be twice the rate of isot	topic			
3427	exchange between Br_2 and BrO_3^- as reported by Betts	and MacKenzie (1951) [2], and th	ie rate			
3428	constant was calculated by assuming a mechanism with	ith rate-limiting exchange between	HBrO ₂			
3429	and BrO ₃ ⁻ ; the concentration of HBrO ₂ used in this ca	alculation was based on a pK_a for H	IBrO ₂			
3430	that is now known to be in error [3]. The reverse rate	constant was from the pulse radiol	ysis			
3431	study of Buxton and Dainton [4].					
3432						
3433	2) $K_{eq} = 1 \times 10^{-6} \text{ M}^{-1}$, in 1 M H ₂ SO ₄ at 20.0 °C [5]. Calculated by Field and Förster	ling [5]			
3434	from the data of Försterling et al. (1980), originally the	nought to refer to the dimerization				
3435	equilibrium of BrO_2^{\bullet} [6]. The experimental data were	the equilibrium absorbances due to	o BrO₂•			
3436	in acidic mixtures of HBrO ₂ and BrO ₃ ⁻ .					
3437						
3438	3) $K_{eq} = 0.9 \times 10^{-6} \text{ M}^{-1}$, in 1 M H ₂ SO ₄ at 20.0 °C	[5]. Obtained from the kinetics of	decay of			
3439	BrO ₂ • in an acidic HBrO ₂ /BrO ₃ ⁻ mixture; the calculat	ion is directly dependent on the va	lue for			
3440	the k of HBrO ₂ disproportionation, which was reported	ed by other workers.				
3441						
3442	4) $K_{eq} = 8.0 \times 10^{-7} \text{ M}^{-1}$ [7]. We calculate this equ	uilibrium constant from the forward	1 and			
3443	reverse rate constants of the two component reactions	s as summarized by Gao and Förste	rling [7]:			
3444	$HBrO_2 + BrO_3^- + H^+ \rightleftharpoons Br_2O_4 + H_2O$	$k_{5'}, k_{-5'}, K_{5'}$	(42.2)			
3445	$Br_2O_4 \Rightarrow 2BrO_2^{\bullet}$	k5", k_5", K5"	(42.3)			
3446	We use here the authors' rate constant numbering scheme. Gao and Försterling [7] measured the					
3447	value for k_{5} , and used values for the other three rate constants as recommended by Field and					
3448	Försterling (1986) [5]. These authors obtained their values for $k_{5^{\circ}}$ and $k_{-5^{\circ}}$ from the pulse					
3449	radiolysis results of Buxton and Dainton (1968) [4]. They obtained the value for k_{-5} by					
3450	combining their values for K_{eq} , $k_{5^{\circ}}$, $k_{-5^{\circ}}$ and $k_{5^{\circ}}$. Their value for $k_{5^{\circ}}$ was obtained from the kinetics					
3451	of the oxidation of Ce(III) with BrO_3^- and from an as	sumed value for k_4 (HBrO ₂				
3452	disproportionation). We conclude that this procedure	leads to circularity in the argument	t, since			
3453	there is no independent determination of $k_{-5'}$.					
3454						

 $K_{\text{eq}} = 2.2 \times 10^{-6} \text{ M}^{-1}$. We calculate this result from the value for $2k_{-5'}/K_{5''}$ (= $4.3 \times 10^7 \text{ M}^{-1}$ 3455 5) ¹ s⁻¹ at room temperature and $\mu = 0.01$ M) reported by Buxton and Dainton [4] and the value for 3456 $k_{5^{\circ}}$ (= 48 M⁻² s⁻¹ in 1 M H₂SO₄ at 20.0 °C) measured by Gao and Försterling [7]. 3457 3458 3459 Discussion 3460 3461 We exclude determinations #1 and #4 for the reasons mentioned above. The remaining 3462 three determinations of K_{eq} (#2, 3, and 5) are based on fundamentally different methods and yield essentially the same result. However, as many of the experiments were conducted in 1 M H₂SO₄ 3463 and at 20 °C, it is difficult to specify an accurate value for K_{eq} at 25 °C and $\mu = 0$ M. We 3464 tentatively recommend a value of $K_{eq} = 1 \times 10^{-6} \text{ M}^{-1}$ with an uncertainty of a factor of 2 at 25 °C 3465 and $\mu = 0$ M. 3466 NIST values [8] are lacking for $\Delta_f G^\circ$ for BrO₂•, HBrO₂ and BrO₂⁻, while the 3467 corresponding values are $-(237.13 \pm 0.08)$ for H₂O and $+(18.6 \pm 0.8)$ kJ mol⁻¹ for BrO₃⁻⁻[8]. 3468 3469 From the title reaction we derive 3470 $2\Delta_{\rm f}G^{\circ}({\rm BrO_2}^{\bullet}) - \Delta_{\rm f}G^{\circ}({\rm HBrO_2}) = -RT\ln K_{\rm eq} - \Delta_{\rm f}G^{\circ}({\rm H_2O}) + \Delta_{\rm f}G^{\circ}({\rm BrO_3}^{-})$ and with our recommended value for K_{eq} we obtain 3471 $2\Delta_{\rm f}G^{\circ}({\rm BrO}_2^{\bullet}) - \Delta_{\rm f}G^{\circ}({\rm HBrO}_2) = (290.0 \pm 2.3) \text{ kJ mol}^{-1}$ 3472 The value for $\Delta_f G^{\circ}$ (= +27.2 kJ mol⁻¹) for BrO₂⁻ given by Lee and Lister [9] seems widely 3473 accepted, and we suggest that the uncertainty is $\pm 4 \text{ kJ}$ [9, 10]. The K_a of HBrO₂ is now believed 3474 to be $(3.7 \pm 0.9) \times 10^{-4}$ M at 25.0 °C and $\mu = 0.06$ M [3], and thus we derive $\Delta_f G^{\circ}(\text{HBrO}_2) =$ 3475 +(6.8 ± 4) kJ mol⁻¹. We then derive from the above that $\Delta_f G^{\circ}(BrO_2^{\bullet}) = +(148 \pm 2)$ kJ mol⁻¹, 3476 3477 $E^{\circ}(BrO_{2}^{\bullet}, H^{+}/HBrO_{2}) = +(1.468 \pm 0.024) V$, and $E^{\circ}(BrO_{2}^{\bullet}/BrO_{2}^{-}) = +(1.260 \pm 0.024) V$. 3478 3479 **Recommended values**: 3480 $K_{\text{eq}} = 1 \times 10^{-6} \text{ M}^{-1}$ with an uncertainty of a factor of 2 at 25 °C and $\mu = 0 \text{ M}$ 3481 $\Delta_{\rm f} G^{\circ}({\rm BrO_2}^{\bullet}) = +(148 \pm 2) \text{ kJ mol}^{-1}$ 3482 $BrO_2^{\bullet} + H^+ + e^- \Rightarrow HBrO_2 \quad E^{\circ} = +(1.47 \pm 0.02) V$ 3483 3484 $BrO_2^{\bullet} + e^- \Rightarrow BrO_2^ E^{\circ} = +(1.26 \pm 0.02) V$ 3485 Nomenclature: see Data sheet 40; HBrO₂, hydroxidooxidobromine; BrO₃⁻, trioxidobromate(1–); 3486 3487 Br₂O₄, tetraoxidodibromine. 3488 3489 List of auxiliary thermodynamic data: none. 3490

3491	References		
3492			
3493	1.	R. J. Field, E. Körös, R. M. Noyes. J. Am. Chem. Soc. 94, 8649-8664 (1972).	
3494	2.	R. H. Betts, A. N. MacKenzie. Can. J. Chem. 29, 655-665 (1951).	
3495	3.	R. B. Faria, I. R. Epstein, K. Kustin. J. Phys. Chem. 98, 1363-1367 (1994).	
3496	4.	G. V. Buxton, F. S. Dainton. Proc. Roy. Soc. A (London) 304, 427-439 (1968).	
3497	5.	R. J. Field, HD. Försterling. J. Phys. Chem. 90, 5400-5407 (1986).	
3498	6.	HD. Försterling, H. J. Lamberz, H. Schreiber. Z. Naturforsch. 35a, 1354-1360 (1980).	
3499	7.	Y. Gao, HD. Försterling. J. Phys. Chem. 99, 8638-8644 (1995).	
3500	8.	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.	
3501	Chur	ney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).	
3502	9.	C. L. Lee, M. W. Lister. Can. J. Chem. 49, 2822-2826 (1971).	
3503	10.	D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).	
3504			
3505			

3506	Data Sheet 43
3507	
3508	Chemical equilibrium: $Br_2O_4 \approx 2BrO_2^{\bullet}$ (43.1)
3509	
3510	List of reports:
3511	$1/K_{eq} = (18.8 \pm 4.0) \text{ M}^{-1}$ at room temperature and $\mu = 0.01 \text{ M}$ [1]. Buxton and Dainton
3512	obtained this result by pulse radiolysis of BrO ₃ ⁻ , measuring the optical absorbance at
3513	equilibrium. This result was later shown to be inconsistent with the reported optical traces [2].
3514	$K_{eq} = 1.5 \times 10^{-6}$ M at 20 °C and $\mu = 2$ M [2]. From the equilibrium absorbance of BrO ₂ •
3515	in BrO_2^{-}/BrO_3^{-} mixtures. It was later shown that this result was mistakenly attributed to reaction
3516	43.1 instead of reaction 42.1 [3].
3517	$K_{\rm eq} = 5.3 \times 10^{-5}$ M at room temperature and $\mu = 0.01$ M [4]. Obtained from the data of
3518	Buxton and Dainton by correcting for a computational error. This result was qualitatively
3519	confirmed in unpublished experiments Försterling et al. that were cited by Field and Försterling
3520	[3]; the experiments utilized flash photolysis in 1 M H_2SO_4 .
3521	
3522 3523	Discussion
3524	From this remarkable set of experiments and subsequent corrections we recommend the
3525	value of 5.3×10^{-5} M for K_{eq} at room temperature and $\mu = 0.01$ M. We also recommend the 21%
3526	uncertainty reported in the original work of Buxton and Dainton.
3527	
3528	Recommended values:
3529	
3530	$K_{\rm eq} = (5.3 \pm 1.1) \times 10^{-5}$ M at room temperature and $\mu = 0.01$ M
3531	
3532	Nomenclature: see Data sheet 42.
3533	
3534	List of auxiliary thermodynamic data: none.
3535	
3536	References
3537	
3538	1. G. V. Buxton, F. S. Dainton. Proc. Roy. Soc. A (London) 304 , 427-439 (1968).
3539	2. HD. Försterling, H. J. Lamberz, H. Schreiber. Z. Naturforsch. 35a , 1354-1360 (1980).
3540	3. R. J. Field, HD. Försterling. J. Phys. Chem. 90, 5400-5407 (1986).
3541	4. L. Kuhnert, HJ. Krug, L. Pohlmann. J. Phys. Chem. 89, 2022-2026 (1985).

3542 **Data Sheet 44**

3543	
3544	Chemical equilibrium: $Ce(III) + BrO_2^{\bullet}(aq) + H^+ \Rightarrow Ce(IV) + HBrO_2(aq)$ (44.1)
3545	
3546	List of reports:
3547	
3548	$K_{eq} = 1.5 \text{ M}^{-1}$ at $\mu \sim 1 \text{ M}$ and $\sim 25 \text{ °C}$. Calculated here from the ratio of the forward and
3549	reverse rate constants as summarized by Field and Försterling [1]. The forward reaction was
3550	investigated by Försterling et al. at 20 °C in 1 M H ₂ SO ₄ by conventional spectrophotometry [2];
3551	they obtained a rate constant of $(1.0 \pm 0.05) \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$. Note that the rate constant was
3552	reported as a second order one: the pH dependence was not investigated. Field and Forsterling
3553	subsequently converted the rate constant to third-order dimensions on the assumption of a first-
3554	order dependence on [H ⁺], and they corrected for the effects of the reversibility of the reaction to
3555	obtain a forward rate constant of $8 \times 10^4 \text{ M}^{-2} \text{ s}^{-1}$ [1]. The reverse reaction was studied by
3556	Sullivan and Thompson at 25 °C with 0.3 M NaClO ₄ and 0.3 M H_2SO_4 by stopped-flow
3557	spectrophotometry; they obtained a reverse rate constant of $5.5 \times 10^4 \text{ M}^{-1} \text{ s}^{-1}$ [3]. However, they
3558	[3] were unable to obtain meaningful kinetic results at higher acidities because the reaction did
3559	not proceed.

3560

3561 **Discussion**

3562

3563 Försterling and Varga [4] reinvestigated the reverse reaction, using a special reactor design that allowed meaningful data to be acquired at acidities higher than those attained by 3564 3565 Sullivan and Thompson [3]. Försterling and Varga [4] noted a strong dependence of the rate 3566 constant on ionic strength, which was attributed to the medium dependence of the distribution between the various Ce(IV)/SO₄²⁻ species. At 20 °C and 1 M H₂SO₄ they obtained a reverse rate 3567 constant of 1.2×10^4 M⁻² s⁻¹. If we combine this rate constant with the forward rate constant 3568 recommended by Field and Försterling [1] ($8 \times 10^4 \text{ M}^{-2} \text{ s}^{-1}$), we obtain an equilibrium constant 3569 of 6.7 for reaction 44.1 at 20 °C in 1 M H₂SO₄. Given the strong medium effects and other 3570 3571 complications we suggest an uncertainty of \pm 30% for this result.

Field and Försterling interpreted the Ce(III)/BrO₂• reaction by use of $E^{\circ} = 1.44$ V for Ce(IV)/Ce(III), but they did not cite a source for this potential [1]. A formal potential of 1.44 V in 1 M H₂SO₄ is recommended in *Standard Potentials in Aqueous Solution* [5]. We assume an uncertainty of ± 10 mV in this formal potential. This leads to $E^{\circ} = (1.49 \pm 0.01)$ V for the couple (BrO₂•(*aq*), H⁺)/HBrO₂. 3577 The pK_a of HBrO₂ is (3.43 ± 0.05) at 25 °C and $\mu = 0.06$ M [6]. No doubt this pK_a depends significantly on ionic strength, but procedures to extrapolate to $\mu = 1$ M are unreliable. 3578 3579 However, by working in analogy with the pK_a of HClO₂, we suggest that the pK_a of HBrO₂ is (3.16 ± 0.10) at $\mu = 1.0$ M. This leads to $E^{\circ} = (1.30 \pm 0.01)$ V for BrO₂•/BrO₂-. 3580 3581 3582 **Recommended values**: 3583 $K_{\text{eq}} = (7 \pm 2)$ at 20 °C in 1 M H₂SO₄. 3584 3585 $BrO_2^{\bullet}(aq) + H^+ + e^- \Rightarrow HBrO_2$ $E^{\circ} = +(1.49 \pm 0.01)$ V at 20 °C in 1 M H₂SO₄ $BrO_2^{\bullet}(aq) + e^- \Rightarrow BrO_2^-$ 3586 $E^{\circ} = +(1.30 \pm 0.01)$ V at 20 °C in 1 M H₂SO₄ 3587 List of auxiliary thermodynamic data: E° for Ce(IV)/Ce(III), pK_a for HBrO₂. 3588 3589 3590 Nomenclature: see Data Sheet 43. 3591 3592 References 3593 3594 1. R. J. Field, H.-D. Försterling. J. Phys. Chem. 90, 5400-5407 (1986). H. D. Försterling, H. J. Lamberz, H. Schreiber. Z. Naturforsch. 40a, 368-372 (1985). 3595 2. 3596 3. J. C. Sullivan, R. C. Thompson. Inorg. Chem. 18, 2375-2379 (1979). 3597 H.-D. Försterling, M. Varga. J. Phys. Chem. 97, 7932-7938 (1993). 4. 3598 A. J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution, Marcel 5. 3599 Dekker, Inc., New York 834 (1985). 3600 6. R. B. Faria, I. R. Epstein, K. Kustin. J. Phys. Chem. 98, 1363-1367 (1994). 3601 3602

3603 Data Sheet 45

3604 Summary of the I/I₂^{•-} System

3605

3606 Tabulated below are the presently recommended equilibrium constants involving this related

3607 group of iodine radicals. Uncertainties are expressed as $\pm 1 \sigma$; in many cases the value of σ is

3608 merely a subjective guess.

3609

						Data Sheet
rxn #	reaction	Keq	dim.	uncertainty	μ / M	#
46.1	$2I^{-} + [Os(bpy)_{3}]^{3+} \rightleftharpoons$ $I_{2}^{\bullet-} + [Os(bpy)_{3}]^{2+}$	3 × 10 ⁻⁴	M^{-1}	$\pm 1 \times 10^{-4}$	0.1	46
47.1	$I_2(aq) + HO_2^{\bullet} \Rightarrow I_2^{\bullet-} + H^+ +$	30	М	±15	1.0	47
	$O_2(aq)$					
48.1	$I_2^{\bullet-} + DMTD^{2-} \Rightarrow DMTD^{\bullet-} + 2I^-$	2.0×10^3	М	$\pm 0.5 imes 10^3$	0.2	48
49.1	$NO_2^{\bullet} + I^- \Rightarrow NO_2^- + I^{\bullet}(aq)$	none				49
50.1	$I_2^{\bullet-} + PZH^+ \Rightarrow PZH^{2+} + 2I^-$	90	М	45-180	~0.1	50
51.1	$I^{\bullet}(aq) + H_2O \Rightarrow IOH^{\bullet-} + H^+$	5×10^{-14}	М	$(1.5 - 15) \times 10^{-14}$	0.1	51
52.1	$I^{\bullet}(aq) + I^{-} \rightleftharpoons I_{2}^{\bullet-}$	1.35 × 10 ⁵	M^{-1}	$\pm 0.11 \times 10^{5}$	Low	52
53.1	$HO_{\bullet} + I_{-} \rightleftharpoons IOH_{\bullet-}$	1.2×10^{4}	M^{-1}	$(0.6-2.4) \times 10^{-4}$	10	53
54.1	$IOH^{\bullet-} + I^- \Rightarrow I_2^{\bullet-} + HO^-$	$2.5 imes 10^4$		$\pm 1.2 \times 10^4$	1.0	54
55.1	$ISCN^{\bullet-} + SCN^{-} \Rightarrow (SCN)_2^{\bullet-} + I^{-}$	2.5 × 10 ⁻ 3		$\pm 0.4 \times 10^{-3}$	0.3 -1	55
56.1	$ISCN^{\bullet-} + I^- \Rightarrow I_2^{\bullet-} + SCN^-$	55		± 19	0.035	56
57.1	$(CH_3)_2S + I_2^{\bullet-} \rightleftharpoons (CH_3)_2S \therefore I + I^-$	2×10^{-1}		$(1 - 4) \times 10^{-1}$		57
58.1	$(CH_{3}CH_{2})_{2}S + I_{2}^{\bullet-} \rightleftharpoons$ $(CH_{3}CH_{2})_{2}S \therefore I + I^{-}$	4.5 × 10 ⁻		$(2-9) \times 10^{-1}$		58

3610

3611 In reaction 48.1, DMTD is 2,5-dimercaptothiadiazole [IUPAC PIN: 1,3,4-thiadiazole-2,5-

3612 dithiol]. In reaction 50.1, PZH is promethazine (a phenothiazine); IUPAC PIN: N,N-dimethyl-1-

3613 (10*H*-phenazin-10-yl)propan-2-amine.

3615	Internal consistency test.
3616	A closed thermodynamicchemical cycle is formed from reactions 54.1, 51.1, and 52.1.
3617	Thus we expect to find that $K(54.1) = K(52.1)K_w/K(51.1)$. The above values give:
3618	$2.5 \times 10^4 = (1.35 \times 10^5 \text{M}^{-1})(1 \times 10^{-14} \text{M}^2)/(10^{-13.3} \text{M}) = 2.7 \times 10^4$, in rather good agreement!
3619	
3620	Derived E° for $I_2^{\bullet-} + e^- \Rightarrow 2I^-$:
3621	Reaction 46.1 leads directly to E° for $I_2^{\bullet-} + e^- = 2I^-$. Nord <i>et al.</i> report that $E^{\circ} = +(0.857 \pm 10^{\circ})^{\circ}$
3622	0.004) V for Os(III)/Os(II) in 0.10 M NaCl, which thus gives $E^{\circ} = +(1.063 \pm 0.011)$ V for I ₂ .
3623	/2I ⁻ [1].
3624	Reaction 47.1 leads directly to E° for $I_2(aq) + e^- \Rightarrow I_2^{\bullet-}$. Schwarz and Bielski used $E^{\circ} =$
3625	-0.33 V for O ₂ /O ₂ ^{•-} , the NIST(68) value for $\Delta_f G^{\circ}(O_2(aq)) = +16.4$ kJ (which is unchanged in the
3626	current NIST tabulation [2]), and $pK_a = 4.8$ to derive $E^\circ = +0.21$ V for $I_2(aq)/I_2^{\bullet-}$ [3]. We now
3627	recommend $E^{\circ} = -(0.35 \pm 0.01)$ V for O ₂ (g)/O ₂ •-, which leads to $E^{\circ} = +(0.19 \pm 0.015)$ V for
3628	$I_2(aq)/I_2^{\bullet-}$. Use of the NIST values for $\Delta_f G^{\circ}(I_2(aq)) = +16.40 \text{ kJ}$ and $\Delta_f G^{\circ}(I^-) = -51.57 \text{ kJ}$ yields
3629	$E^{\circ} = +(1.05 \pm 0.02)$ V for $I_2^{\bullet-}/2I^-$.
3630	Reaction 48.1 leads to no recommendations because the DMTD ^{•-} /DMTD ²⁻ potential is
3631	presently not known independently.
3632	Reaction 49.1 leads to no recommendation because no equilibrium constant is
3633	recommended.
3634	Reaction 50.1 can be used to derive $E^{\circ}(I_2^{\bullet-}/2I^{-})$ from E° for PZH ²⁺ /PZH ⁺ . Wardman
3635	recommends a value of +0.865 V for the latter [4], which leads to $E^{\circ} = (0.981 \pm 0.021)$ V for I ₂ ^{•-}
3636	/2I ⁻ . More recently, Madej and Wardman recommended $E^{\circ} = +0.935$ V for PZH [5], which
3637	adjusts the derived $I_2^{\bullet-}/2I^-$ potential to +1.05 V.
3638	The addition of reactions 53.1 and 54.1 gives $HO^{\bullet} + 2I^{-} \Rightarrow I_2^{\bullet-} + HO^{-}$, for which the
3639	recommended equilibrium constants give $K = 3 \times 10^8 \mathrm{M}^{-1}$ within a factor of 2.5. If we use the
3640	optimized potential (Data Sheet 7) for HO [•] /HO ⁻ ($E^\circ = +1.902 \pm 0.017$ V), we derive $E^\circ = +1.40$
3641	V for $I_2^{\bullet}/2I^-$, which is absurd in the context of the above results. We suggest that reaction 53.1 is
3642	far from correct, since the other reactions are part of the consistency cycle presented above.
3643	Equilibrium constant 53.1, taken from the ratio of the forward and reverse rate constants, makes
3644	use of a very low fitted reverse rate constant of $2 \times 10^6 \text{s}^{-1}$, and a much lower value is required in
3645	order to obtain a reasonable E° . We suspect that this is the likely cause of the error.
3646	By combining reactions 55.1 and 56.1 we obtain $I_2^{\bullet-} + 2SCN^- \Rightarrow (SCN)_2^{\bullet-} + 2I^-$, for
3647	which the equilibrium constant is calculated as $4.55 \times 10^{-5} \pm 50\%$. The presently recommended
3648	$E^{\circ}((\text{SCN})_2^{\bullet-}/2\text{SCN}^{-})$ (Data Sheet 101) is +(1.30 ± 0.02) V, which leads to $E^{\circ} = +(1.043 \pm 0.026)$
3649	V for $I_2^{-/2I^-}$.
3650	The two thioether reactions (57.1 and 58.1) given above do not lead to a derived $E^{\circ}(I_2^{\bullet-}$

 $(2I^{-})$ because there is no independent information regarding the product, iododimethylsulfur(•),

As reported by Stanbury *et al.* and summarized by Nord, a large group of one-electron oxidations of iodide have measured rate constants for the step $M_{ox} + I^- \Rightarrow M_{red} + I^{\bullet}$ [6, 7]. It was argued that the reverse process, in general, is diffusion controlled, with $k_r = 1.2 \times 10^{10} \text{ M}^{-1} \text{ s}^{-1}$, which thus led to an assignment of $E^{\circ} = +(1.33 \pm 0.03) \text{ V}$ for I^{\bullet}/I^- . By combination with the above recommended value for reaction 52.1 we derive $E^{\circ} = +(1.03 \pm 0.03) \text{ V}$ for $I_2^{\bullet-}/2I^-$.

3657

3658 Summary and Evaluation of Derived *E*°(I₂•-/2I-)

With the exclusion of the result derived from reaction 53.1, the five completely independent derived results given above are in agreement that $E^{\circ}(I_2^{\bullet-}/2I^{-})$ is within the range of +1.03 to 1.06 V, and the individual results are completely in agreement within their uncertainties. We thus recommend an average value of +(1.05 ± 0.02) V for $E^{\circ}(I_2^{\bullet-}/2I^{-})$. The other derived quantities given below are derived from this value with use of NIST thermodynamicchemical data [2] for the stable species and the recommended equilibrium constants given above.

3665

3666 **Recommended values:**

3667

3668	$I_2^{\bullet-} + e^- \Rightarrow 2I^-$	$E^{\circ} = +(1.05 \pm 0.02) \text{ V}$
3669	$I^{\bullet} + e^{-} \rightleftharpoons I^{-}$	$E^{\circ} = +(1.35 \pm 0.02) \text{ V}$
3670	$I_2(aq) + e^- \Rightarrow I_2^{\bullet-}$	$E^\circ = +(0.19 \pm 0.02) \text{ V}$
3671	I2•-	$\Delta_{\rm f} G^{\circ} = -(2.1 \pm 1.9) \rm kJ$
3672	I•(<i>aq</i>)	$\Delta_{\rm f}G^\circ = +(79 \pm 2) \rm kJ$
3673	IOH•-	$\Delta_{\rm f}G^{\circ} = -(83 \pm 2) \rm kJ$
3674	ISCN•-	$\Delta_{\rm f}G^{\circ} = +(152 \pm 2) \rm kJ$

3675

3676 Nomenclature: I•, iodine(•); I⁻, iodide; I₂, diiodine; I₂•⁻, diiodide(•1–); IOH•⁻,

- 3677 hydroxidoiodate($\bullet 1-$); ISCN $\bullet-$, (iodosulfato)nitridocarbonate($\bullet 1-$); (CH₃)S: I,
- iododimethylsulfur(•).
- 3679
- 3680 **References**
- 3681

- 3683 (1982).
- 2. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
- 3685 Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
- 3686 3. H. A. Schwarz, B. H. Bielski. J. Phys. Chem. 90, 1445-1448 (1986).

^{3682 1.} G. Nord, B. Pedersen, E. Floryan-Løvborg, P. Pagsberg. *Inorg. Chem.* **21**, 2327-2330

- 3687 4. P. Wardman. J. Phys. Chem. Ref. Data 18, 1637-1755 (1989).
- 3688 5. E. Madej, P. Wardman. Rad. Phys. Chem. 75, 990-1000 (2006).
- 3689 6. G. Nord. Comments Inorg. Chem. 13, 221-239 (1992).
- 3690 7. D. M. Stanbury, W. K. Wilmarth, S. Khalaf, H. N. Po, J. E. Byrd. Inorg. Chem. 19, 2715-
- 3691 2722 (1980).
- 3692

3693	Data Sheet 46
3694	
3695	Chemical equilibrium: $2I^- + [Os(bpy)_3]^{3+} \Rightarrow I_2^{\bullet-} + [Os(bpy)_3]^{2+}$ (46.1)
3696	
3697	List of reports:
3698	
3699	$K_{\text{eq}} = (3.1 \pm 0.9) \times 10^{-4} \text{ M}^{-1}$, at 22 °C and $\mu = 0.1 \text{ M}$ [1]. We calculate this result from the
3700	ratio of the forward and reverse rate constants reported by Nord et al. The forward rate constant
3701	was obtained by stopped-flow kinetics, while the reverse was obtained by pulse radiolysis.
3702	
3703	Discussion
3704	
3705	This work appears to be reliable and is accepted as given.
3706	
3707	Recommended value:
3708	
3709	$K_{\rm eq} = (3.1 \pm 0.9) \times 10^{-4} \mathrm{M}^{-1}$, at 22 °C and $\mu = 0.1 \mathrm{M}$.
3710	
3711	List of auxiliary thermodynamic data: none.
3712	
3713	Nomenclature: see Data Sheet 45
3714	
3715	References
3716	
3717	1. G. Nord, B. Pedersen, E. Floryan-Løvborg, P. Pagsberg. <i>Inorg. Chem.</i> 21 , 2327-2330
3718	(1982).
3719	
3720	

3721	Data Sheet 47
3722	
3723	Chemical equilibrium: $I_2(aq) + HO_2 \implies I_2^{\bullet-} + H^+ + O_2(aq)$ (47.1)
3724	
3725	List of reports:
3726	
3727	$K_{eq} = (30 \pm 15)$ M at 25 °C and $\mu = 1.0$ M (LiClO ₄) [1]. From pulse radiolysis of I ⁻ /I ₂ /O ₂
3728	solutions, measuring the equilibrium yield of $I_2^{\bullet-}$.
3729	
3730	Discussion
3731	
3732	As this is the sole report on this reaction, and it appears to have been conducted
3733	competently, we recommend the reported result. Note, however, that the result should depend
3734	significantly on ionic strength.
3735	
3736	Recommended value:
3737	
3738	$K_{\rm eq} = (30 \pm 15)$ M at 25 °C and $\mu = 1.0$ M
3739	
3740	List of auxiliary thermodynamic data: none.
3741	
3742	Nomenclature: see Data Sheet 45.
3743	
3744	References
3745	
3746	1. H. A. Schwarz, B. H. Bielski. J. Phys. Chem. 90, 1445-1448 (1986).
3747	
3748	

3749	Data Sheet 48
3750	
3751	Chemical equilibrium: $I_2^{\bullet-} + DMTD^{2-} \Rightarrow DMTD^{\bullet-} + 2I^-$ (48.1)
3752	$DMTD^{2-}$ is the dianion of 2.5-dimercaptothiadiazole.
3753	DMTD IUPAC PIN: 1,3,4-thiadiazole-2,5-dithiol.
3754	
3755	List of reports:
3756	
3757	$K_{eq} = 2 \times 10^3$ M, at room temperature (presumably) and $\mu = 0.2$ M [1]. Kishore <i>et al.</i>
3758	obtained this result with pulse radiolysis, determining the equilibrium constant from the kinetics
3759	of approach to equilibrium.
3760	
3761	Discussion
3762	
3763	No uncertainty was specified in the original publication, but we suggest is should be \pm
3764	25%.
3765	
3766	Recommended value:
3767	
3768	$K_{\rm eq} = (2.0 \pm 0.5) \times 10^3 {\rm M}$ at $\mu = 0.2 {\rm M}$.
3769	
3770	List of auxiliary thermodynamic data: none.
3771	
3772	Nomenclature: See Data Sheet 45.
3773	
3774	References
3775	
3776	1. K. Kishore, G. R. Dey, P. N. Moorthy. J. Phys. Chem. 99, 13476-13479 (1995).
3777	
3778	

3779 Data Sheet 49 3780 Chemical equilibrium: $NO_2^{\bullet}(aq) + I^- \Rightarrow NO_2^- + I^{\bullet}(aq)$ 3781 (49.1)3782 3783 List of reports: 3784 $k_{\rm f} = 1.1 \times 10^5 \,{\rm M}^{-1} \,{\rm s}^{-1}$ was mentioned by Willson and co-workers, stating that it was determined 3785 by pulse radiolysis [1]. This number does not contradict the upper limit $k_{\rm f} < 1 \times 10^7 \,{\rm M}^{-1}\,{\rm s}^{-1}$ 3786 obtained earlier by Barkatt and Ottolenghi who also used pulse radiolysis [2]. 3787 3788 $k_{\rm r} = 8.8 \times 10^9 \,{\rm M}^{-1} {\rm s}^{-1}$ was obtained using flash photolysis to generate the I atom; competition 3789 with the I[•] + I⁻ reaction was measured [2]. An upper limit $K_{eq} < 1.1 \times 10^{-3}$ was suggested. 3790 3791 3792 Discussion 3793 $K_{\rm eq} = 1.3 \times 10^{-5}$ can be derived from the reported $k_{\rm f} = 1.1 \times 10^5$ M⁻¹ s⁻¹ and $k_{\rm r} = 8.8 \times 10^9$ M⁻¹ s⁻¹ 3794 ¹. The reverse rate constant appears to be fairly reliable, as it is based on $k = 9.8 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ for 3795 3796 the competing $I^{\bullet} + I^{-}$ reaction and this value agrees within some 20% with most of the other 3797 measurements that have been tabulated [3]. In contrast, the reliability of the forward rate constant 3798 is impossible to judge. Indeed, Willson and co-workers [1] refer to their own work, which has 3799 never been published, so no experimental details are available. However, the accurate 3800 measurement of such a low k_f by pulse radiolysis appears to be extremely challenging (if at all 3801 possible) experimentally due to the approximately equal rate constants of HO[•] with NO₂⁻ and I⁻ 3802 (requiring $[NO_2^-] \gg [I^-]$ for selective formation of NO_2^{\bullet}) and the self-recombination of NO_2^{\bullet} at 3803 low [I⁻]. At the same time, the very rapid reverse reaction requires $[NO_2^-] \ll [I^-]$ to help quickly remove the I atom via the $I^{\bullet} + I^{-}$ reaction. 3804 In the absence of any experimental evidence for $k_{\rm f}$, it is prudent to refrain from evaluating $K_{\rm eq}$. 3805 3806 3807 **Recommended value**: 3808 3809 None 3810 3811 List of auxiliary thermodynamic data: none 3812 3813 Nomenclature: see Data Sheet 45; NO_2^{\bullet} , nitrogen dioxide or dioxidonitrogen(\bullet) 3814

3815 References 3816 3817 1. L. G. Forni, V. O. Mora-Arellano, J. E. Packer, R. L. Willson. J. Chem. Soc., Perkin 3818 Trans. II 1-6 (1986). 3819 2. A. Barkatt, M. Ottolenghi. Mol. Photochem. 6, 253-261 (1974). 3820 3. P. Neta, R. E. Huie, A. B. Ross. J. Phys. Chem. Ref. Data 17, 1027-1284 (1988). 3821

3823	Data Sheet 50
3824	
3825	Chemical equilibrium: $I_2^{\bullet-} + PZH^+ \Rightarrow PZH^{\bullet 2+} + 2I^-$ (50.1)
3826	PZH = promethazine (a phenothiazine)
3827	IUPAC PIN: N,N-dimethyl-1-(10H-phenazin-10-yl)propan-2-amine
3828	
3829	List of reports:
3830	
3831	$K_{eq} = (90 \pm 5)$ M, at room temperature and variable ionic strength [1]. Bahnemann <i>et al.</i>
3832	obtained this result with pulse radiolysis, and the reported result is the average of the kinetic
3833	result (k_f/k_r) and the equilibrium result.
3834	
3835	Discussion
3836	
3837	As this equilibrium constant is expected to be sensitive to ionic strength and the ionic
3838	strength was not held constant in these studies, the reported uncertainty is an underestimate. We
3839	suggest a more reasonable estimate of the uncertainty is a factor of 2.
3840	
3841	Recommended value:
3842	
3843	$K_{\rm eq} = (45 - 180) {\rm M}.$
3844	
3845	List of auxiliary thermodynamic data: none.
3846	
3847	Nomenclature: see Data Sheet 45.
3848	
3849	References
3850	
3851	1. D. Bahnemann, KD. Asmus, R. L. Willson. J. Chem. Soc., Perkin Trans. II 1669-1673
3852	(1983).
3853	
3854	

3855	Data Sheet 51
3856	
3857	Chemical equilibrium: $I^{\bullet}(aq) + H_2O \Rightarrow IOH^{\bullet-} + H^+$ (51.1)
3858	
3859	List of reports:
3860	
3861	$pK_a = (11.7 \pm 1)$, at 296 K and 10 M ionic strength [1]. Büchler and Bühler used pulse
3862	radiolysis of iodide in strongly alkaline solutions, and fitted the kinetics of $I_2^{\bullet-}$ growth and decay
3863	to a complex mechanism to obtain the equilibrium constant.
3864	
3865	$pK_a = 13.3$, no specified uncertainty, at (22 ± 2) °C and $\mu = 10^{-4}$ to 0.1 M [2]. Mulazzani
3866	and Buxton used pulse radiolysis of iodide at pH 10 and 13, monitored the kinetics at 380 nm,
3867	and fit the complex kinetics to a complex mechanism to derive forward and reverse rate
3868	constants for the addition of HO ⁻ to I [•] . This equilibrium constant was then converted to a pK_a by
3869	use of an unspecified value for $K_{\rm w}$.
3870	
3871	Discussion
3872	
3873	The two reports differ quite substantially with regard to the value of pK_a . Both reports
3874	used essentially the same method and obtained rather similar results. The main difference
3875	between the two seems to be the absorption coefficients of HOI ^{$\bullet-$} and I ₂ ^{$\bullet-$} used in the fitting.
3876	Mullazani and Buxton argue that Büchler and Bühler erred in resolving the two spectra by
3877	neglecting the absorbance of HOI ^{•-} at 360 nm. This seems to be a reasonable argument, and thus
3878	we accept the result of Mullazani and Buxton. Given the apparent sensitivity of the derived
3879	parameters to the model specifications, we infer that the derived pK_a has an uncertainty of at
3880	least 0.2 units. Further adding to the uncertainty are unknowns relating to the conversion
3881	between [HO ⁻] and pH and ionic strength effects. Overall, an uncertainty of ± 0.5 pK _a units
3882	seems appropriate.
3883	
3884	Recommended value:
3885	
3886	$pK_a = (13.3 \pm 0.5)$ at 22 °C and $\mu = 0.1$ M.
3887	
3888	List of auxiliary thermodynamic data: none.
3889	
3890	Nomenclature: see Data Sheet 45

3891	Refe	References		
3892				
3893	1.	H. Büchler, R. E. Bühler. Chem. Phys. 16, 9-18 (1976).		
3894	2.	Q. G. Mulazzani, G. V. Buxton. Chem. Phys. Lett. 421, 261-265 (2006).		
3895				
3896				

3897	Data Sheet 52
3898	
3899	Chemical equilibrium: $I^{\bullet}(aq) + \Gamma \implies I_2^{\bullet-}$ (52.1)
3900	
3901	List of reports:
3902	
3903	$K_{eq} > 1.2 \times 10^4 \text{ M}^{-1}$. From flash photolysis of iodide solutions. A very early report
3904	(1957) from Grossweiner and Matheson [1].
3905	$K_{eq} = 1.3 \times 10^5 \text{ M}^{-1}$ at 22 °C at pH 7 in phosphate buffer of unspecified ionic strength [2].
3906	Baxendale et al. used pulse radiolysis of iodide solutions, monitoring the kinetics of decay.
3907	$K_{eq} = 1.13 \times 10^5 \text{ M}^{-1}$ at 22 °C at pH 7 in phosphate buffer of unspecified ionic strength
3908	[2, 3]. Baxendale et al. used pulse radiolysis of iodide solutions, with spectrophotometric
3909	detection of the position of equilibrium.
3910	$K_{eq} = 8.4 \times 10^4 \text{ M}^{-1}$ under unspecified conditions [4]. Thomas used pulse radiolysis of
3911	iodide solutions.
3912	$K_{eq} = 1.4 \times 10^4 \text{ M}^{-1}$ at unspecified temperature and low ionic strength [5]. Fournier de
3913	Violet et al used flash photolysis of iodine solutions, monitoring the yield of I_2^{-} . No mention
3914	was made regarding the pH of the solutions or any measures to remove O ₂ .
3915	$K_{eq} = 1.2 \times 10^4 \text{ M}^{-1}$ at unspecified temperature and low ionic strength [6]. Fournier de
3916	Violet et al used flash photolysis of HgI_2/I^- solutions, monitoring the kinetics of formation of $I_2^{\bullet-}$
3917	. No mention was made regarding the pH of the solutions or any measures to remove O_2 .
3918	$K_{eq} = (1.1 \pm 0.2) \times 10^4 \text{ M}^{-1}$ at (20 ± 2) °C and low ionic strength [7]. Barkatt and
3919	Ottolenghi used flash photolysis of I_3^- solutions, monitoring the yield of $I_2^{\bullet-}$ and also the kinetics
3920	of its formation. No mention was made regarding the pH of the solutions or any measures to
3921	remove O ₂ .
3922	$K_{eq} = (3 \pm 2) \times 10^3 \text{ M}^{-1}$ at 25 °C and low ionic strength [8]. Treinin and Hayon used flash
3923	photolysis of I_3^- solutions, monitoring the yield of $I_2^{\bullet-}$ and also the kinetics of its formation.
3924	$K_{eq} = 5.0 \times 10^4 \text{ M}^{-1}$ at 22 °C and low ionic strength [9]. Elliot and Sopchyshyn used pulse
3925	radiolysis of I ^{$-$} solutions, monitoring the yield of I ₂ ^{•-} .
3926	$K_{eq} = 1.1 \times 10^5 \text{ M}^{-1} (\pm 15\%)$ at 25 °C and low ionic strength [10]. Schwarz and Bielski
3927	used pulse radiolysis of I ⁻ solutions, monitoring the yield of $I_2^{\bullet-}$.
3928	$K_{eq} = 1.28 \times 10^5 \text{ M}^{-1}$ at 25 °C and low ionic strength [11]. Elliot interpolated this result
3929	from the temperature-dependent data of Schwarz and Bielski [10].
3930	$K_{eq} = 1.0 \times 10^5 \text{ M}^{-1}$ at 25 °C and low ionic strength [12]. Merény and Lind used pulse
3931	radiolysis of ICH ₂ CH ₂ I, measuring the rate of dissociation of $I_2^{\bullet-}$ produced, and obtained the
3932	equilibrium constant from the ratio of the formation and dissociation rate constants.

3933 $K_{eq} = (1.35 \pm 0.10) \times 10^5 \text{ M}^{-1} \text{ at } 21 \text{ °C} \text{ and low ionic strength [13]. Barker's group used$ 3934 flash photolysis of I⁻, measuring the rate of formation of I₂^{•-} to obtain the forward and reverse3935 rate constants, from the ratio of which the equilibrium constant is derived.

3936

Discussion

3938

The reported equilibrium constants range from 3×10^3 M to 1.35×10^5 M⁻¹, and in none of the reports is an explanation provided for disagreement with prior results. It was noted in 1989 that the flash-photolysis results clustered around the lower value while the pulse radiolysis results clustered around the higher value [14]; recently, however, the careful flash-photolysis study from Barker's group supports the highest value.

3944 Another conceivable explanation for the diversity of reported values for K_{eq} is the failure to remove O₂ or control pH. O₂ could interfere in studies where the solvated electron was 3945 involved, or possibly through direct reaction with I₂•-, high pH could lead to the formation of 3946 IOH⁻ from I[•] and HOI from I₂, and low pH could lead to formation of HI^{•-} through reaction of H 3947 3948 atoms with I⁻ [15]. This would exclude the results from Thomas [4], from Barkatt and Ottolenghi 3949 [7], and from Fornier de Violet [5, 6]. These exclusions would lead to values of K_{eq} clustering at 3950 the high end of the range, with the notable outlier from Treinin and Hayon [8]. Note, however, 3951 that Treinin and Hayon specifically state that O₂ had no effect and that I₂ is insignificantly 3952 hydrolyzed at pH 6 [8]. Treinin and Hayon found that the I₂^{•-} dissociation rate constant was the 3953 same at (25 and 75) °C, which seems guite unlikely. Apparently, the results of Treinin and Hayon are flawed, although for unknown reasons. Thus we support the results obtained with K_{eq} 3954 3955 near 10^5 M^{-1} .

We presently recommend the most recent result from Barker's group on the basis of the care and in-depth character of the study although we would be more comfortable if the prior low values could be rationalized or tested.

3959

3960 Recommended value:

- 3961
- 3962
- $K_{\rm eq} = (1.35 \pm 0.10) \times 10^5 \, {\rm M}^{-1}$
- 3963
- 3964 List of auxiliary thermodynamic data: none.
- 3965
- 3966 Nomenclature: See Data Sheet 45.
| 3967 | | | |
|------|------------|---|--|
| 3968 | References | | |
| 3969 | | | |
| 3970 | 1. | L. I. Grossweiner, M. S. Matheson. J. Phys. Chem. 61, 1089-1095 (1957). | |
| 3971 | 2. | J. H. Baxendale, P. L. T. Bevan, D. A. Stott. Trans. Faraday Soc. 64, 2389-2397 (1968). | |
| 3972 | 3. | J. H. Baxendale, P. L. T. Bevan. J. Chem. Soc. (A) 2240-2241 (1969). | |
| 3973 | 4. | J. K. Thomas. Adv. Rad. Chem. 1, 103-198 (1969). | |
| 3974 | 5. | P. Fornier de Violet, R. Bonneau, J. Joussot-Dubien. J. Chim. Phys. 70, 1404-1409 | |
| 3975 | (1973) | | |
| 3976 | 6. | P. Fornier de Violet, R. Bonneau, S. R. Logan. J. Phys. Chem. 78, 1698-1701 (1974). | |
| 3977 | 7. | A. Barkatt, M. Ottolenghi. Mol. Photochem. 6, 253-261 (1974). | |
| 3978 | 8. | A. Treinin, E. Hayon. Int. J. Radiat. Phys. Chem. 7, 387-393 (1975). | |
| 3979 | 9. | A. J. Elliot, F. C. Sopchyshyn. Int. J. Chem. Kinet. 16, 1247-1256 (1984). | |
| 3980 | 10. | H. A. Schwarz, B. H. Bielski. J. Phys. Chem. 90, 1445-1448 (1986). | |
| 3981 | 11. | A. J. Elliot. Can. J. Chem. 70, 1658-1661 (1992). | |
| 3982 | 12. | G. Merényi, J. Lind. J. Am. Chem. Soc. 116, 7872-7876 (1994). | |
| 3983 | 13. | Y. Liu, R. L. Sheaffer, J. R. Barker. J. Phys. Chem. A 107, 10296-10302 (2003). | |
| 3984 | 14. | D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989). | |
| 3985 | 15. | A. J. Elliot, S. Geertsen, G. V. Buxton. J. Chem. Soc., Faraday Trans. 1 84, 1101-1112 | |
| 3986 | (1988) | | |
| 3987 | | | |
| 3988 | | | |

3989	Data Sheet 53
3990	
3991	Chemical equilibrium: $HO^{\bullet} + I^{-} \Rightarrow IOH^{\bullet-}$ (53.1)
3992	
3993	List of reports:
3994	
3995	$K_{\rm eq} = 1.2 \times 10^4 \mathrm{M}^{-1}$, within a factor of 2 at 296 K and 10 M ionic strength [1]. We obtain
3996	this result from the ratio of forward and reverse rate constants reported by Büchler and Bühler.
3997	The estimated uncertainty is derived from the reported uncertainties in the individual rate
3998	constants. They obtained their rate constants by pulse radiolysis of iodide, fitting the kinetics
3999	with a complex procedure.
4000	
4001	Discussion
4002	
4003	As this is the sole report and seems to have been performed competently, we accept the
4004	result. Although the experiments were conducted at very high ionic strength, the equilibrium
4005	constant is not expected to be very sensitive to this parameter. However, this result leads to an
4006	unacceptable standard potential for $I_2^{\bullet-}/2I^-$, which implies that there is something fundamentally
4007	wrong with this result; see the iodine radical summary pages (Data Sheet 45) for an explanation.
4008	
4009	Recommended value:
4010	
4011	None, or $K_{eq} = 1.2 \times 10^4 \text{ M}^{-1}$, within a factor of 2.
4012	
4013	List of auxiliary thermodynamic data: none.
4014	
4015	Nomenclature: see Data Sheet 45.
4016	
4017	References
4018	
4019	1. H. Büchler, R. E. Bühler. Chem. Phys. 16, 9-18 (1976).
4020	
4021	

4022	Data Sheet 54
4023	
4024	Chemical equilibrium: $IOH^{\bullet-} + I^- \Rightarrow I_2^{\bullet-} + HO^-$ (54.1)
4025	
4026	List of reports:
4027	
4028	$K_{eq} = (2.5 \pm 1.2) \times 10^4$, at 296 K and 1 - 10 M ionic strength [1]. Büchler and Bühler used
4029	pulse radiolysis of iodide in strongly alkaline solutions, determining the position of equilibrium
4030	spectrophotometrically.
4031	
4032	Discussion
4033	
4034	As this is the sole report on this reaction, and it appears to have been conducted
4035	competently, we recommend the reported result. Note, however, that the result should depend
4036	significantly on ionic strength.
4037	
4038	Recommended value:
4039	
4040	$K_{\rm eq} = (2.5 \pm 1.2) \times 10^4$ at 25 °C and $\mu = 1.0$ M
4041	
4042	List of auxiliary thermodynamic data: none.
4043	
4044	Nomenclature: See Data Sheet 54.
4045	
4046	References
4047	
4048	1. H. Büchler, R. E. Bühler. Chem. Phys. 16, 9-18 (1976).
4049	
4050	

4051	Data Sheet 55
4052	
4053	Chemical equilibrium: $ISCN^{\bullet-} + SCN^{-} \Rightarrow (SCN)_2^{\bullet-} + I^{-}$ (55.1)
4054	
4055	List of reports:
4056	
4057	$K_{\rm eq} = 2.5 \times 10^{-3}$, presumably at room temperature, ionic strength varying from 0.3 to 1
4058	M, N ₂ O saturated, no pH control [1]. Shöneshofer and Henglein obtained this result by pulse
4059	radiolysis, monitoring the equilibrium absorbance at 550 nm.
4060	
4061	Discussion
4062	
4063	As this is the sole report on this reaction, and it appears to have been conducted
4064	competently, we recommend the reported result. The result should not depend significantly on
4065	ionic strength. Although no uncertainty was specified, we suggest $\pm 15\%$ based on the quality of
4066	the data.
4067	
4068	Recommended value:
4069	
4070	$K_{ m eq} = (2.5 \pm 0.4) \times 10^{-3}.$
4071	
4072	List of auxiliary thermodynamic data: none.
4073	
4074	Nomenclature: see Data Sheet 45.
4075	
4076	References
4077	
4078	1. M. Schöneshöfer, A. Henglein. Ber. Bunsenges. Phys. Chem. 74, 393-398 (1970).
4079	
4080	

4081	Data Sheet 56
4082	
4083	Chemical equilibrium: $ISCN^{\bullet-} + I^- \Rightarrow I_2^{\bullet-} + SCN^-$ (56.1)
4084	
4085	List of reports:
4086	
4087	K_{eq} = 55, presumably at room temperature, ionic strength 0.03 M, N ₂ O saturated, no pH
4088	control [1]. Shöneshofer and Henglein obtained this result by pulse radiolysis, plotting a function
4089	of the difference in the equilibrium absorbances at 420 nm and 550 nm as a function of [SCN ⁻],
4090	and deriving the equilibrium constant from the midpoint of the sigmoidal curve.
4091	
4092	Discussion
4093	
4094	As this is the sole report on this reaction, and it appears to have been conducted
4095	competently, we recommend the reported result. The result should not depend significantly on
4096	ionic strength. Although no uncertainty was specified, we suggest $\pm 35\%$ based on the graphical
4097	method of extracting the equilibrium constant from the data.
4098	
4099	Recommended value:
4100	
4101	$K_{\rm eq} = 55 \pm 19.$
4102	
4103	List of auxiliary thermodynamic data: none.
4104	
4105	Nomenclature: see Data Sheet 45.
4106	
4107	References
4108	
4109	1. M. Schöneshöfer, A. Henglein. Ber. Bunsenges. Phys. Chem. 74, 393-398 (1970).
4110	
4111	

4112 Data Sheet 57 4113 **Subject:** Dimethyl sulfide radical cation-iodide complex (iododimethylsulfur(•)) 4114 Couple type: $R_2S-I/R_2S,I^-$, (R = -CH₃). 4115 Solvent: Water 4116 4117 **Method:** Calculation in reference [1] from pulse radiolysis data in reference [2] and $E^{\circ}(I_2^{\bullet}/2I^{-})$: 4118 Equilibria: (i) $R_2S + I_2^{\bullet-} \Rightarrow R_2S^{\bullet\bullet}I + I^-$ 4119 (57.1) $K = 2.0 \times 10^{-1}$ Error limit in K stated ≤ 2 x. 4120 (*ii*) $I_2^{\bullet-} + e^- \Rightarrow 2I^-$ 4121 (57.2) $E^{\rm o} = (1.03 \pm 0.02) \, {\rm V}$ 4122 4123 (*ii*) - (*i*) $R_2S \bullet \bullet I + e^- \Rightarrow R_2S + I^-$ (57.3) $E^{\circ} = (1.07 \pm 0.03) \text{ V}$ 4124 4125 4126 **Reference:** $E^{\circ}(I_2^{\bullet-}/2I^-)$. 4127 **Temperature:** (293 \pm 2) K. **Ionic strength effects estimated:** Not needed. 4128 **Reference potential assumed:** $E^{\circ} = (1.03 \pm 0.02)$ V 4129 4130 Discussion 4131 No correction needed for ionic strength. (i) is charge symmetrical and Debye-Hückel corrections 4132 will cancel. (ii) is a standard potential. Recalculation taking $\pm 100\%$ error limit in K gives: (1.07) 4133 4134 \pm 0.03) V vs NHE. 4135 4136 Correction desirable for reference potential used: no. 4137 4138 **Recommended value:** 4139 4140 $E^{\circ}(R_2S-I/R_2S,I^-, (R = -CH_3)) = (1.07 \pm 0.03) \text{ V vs NHE}.$ 4141 4142 Nomenclature: see Data Sheet 45. 4143 4144 References 4145

- 4146 1. Armstrong, D. A. In S-Centered Radicals, (Alfassi, Z. B., ed.), p. 27-61. John Wiley &
- 4147 Sons, New York (1999).
- 4148 2. M. Bonifacic, K.-D. Asmus. J. Chem. Soc., Perkin Trans. II 758-762 (1980).

4150 Data Sheet 58 4151 Subject: Diethyl sulfide radical cation-iodide complex (iododiethylsulfur(•)) Couple type: R_2S -I/ R_2S ,I⁻, (R = -CH₂-CH₃). 4152 4153 Solvent: Water. 4154 4155 **Method:** Calculation in reference [1] from pulse radiolysis data in reference [2] and $E^{\circ}(I_2^{\bullet-}/2I^{-})$: Equilibria: (i) $R_2S + I_2^{\bullet-} \Rightarrow R_2S_{\bullet} I + I^-$ 4156 (58.1) $K = 4.5 \times 10^{-1}$. Error in K stated ≤ 2 x. 4157 4158 (ii) $I_2^{\bullet-} + e^- \Rightarrow 2I^-$ (58.2) $E^{\rm o} = (1.03 \pm 0.02) \, {\rm V}$ 4159 4160 (*ii*) - (*i*) $R_2S \bullet \bullet I + e^- \Rightarrow R_2S + I^-$ (58.3)4161 $E^{\rm o} = (1.05 \pm 0.03) \, {\rm V}$ 4162 4163 **Reference:** $E^{\circ}(I_2^{\bullet-}/2I^-)$. 4164 Temperature: (293 ± 2) K. Ionic strength effects estimated: No. 4165 **Reference potential assumed:** $E^{\circ} = (1.03 \pm 0.02)$ V 4166 4167 Discussion 4168 4169 No correction needed for ionic strength. Equilibrium (i) has charge symmetry and Debye-Hückel corrections will cancel. (ii) is a standard potential. 4170 Recalculation with $\pm 100\%$ error limit in K gives $E^{\circ} = +(1.05 \pm 0.03)$ V vs NHE. 4171 4172 4173 **Recommended value:** 4174 4175 $E^{\circ}(R_2S-Cl/R_2S,I^-, (R = -CH_2-CH_3)) = +(1.05 \pm 0.03) \text{ V vs NHE}$ 4176 4177 References 4178 4179 1. Armstrong, D. A. In S-Centered Radicals, (Alfassi, Z. B., ed.), p. 27-61. John Wiley & 4180 Sons, New York (1999). 4181 M. Bonifacic, K.-D. Asmus. J. Chem. Soc., Perkin Trans. II 758-762 (1980). 2. 4182 4183

4184 **Data Sheet 59**

- 4185 Summary of the SO₃^{•–} System
- 4186
- 4187 Tabulated below are the presently recommended equilibrium constants involving the
- 4188 trioxidosulfate(\bullet 1–) (sulfite) radical. Uncertainties are expressed as \pm 1 sigma; in many cases the
- 4189 value of sigma is merely a subjective guess.
- 4190

rxn #	reaction	K _{eq}	uncertainty	μ / M	Data
					Sheet #
60.1	$\mathrm{SO}_3^{2-} + [\mathrm{Ru}(\mathrm{phen})(\mathrm{NH}_3)_4]^{3+} \rightleftharpoons \mathrm{SO}_3^{\bullet-} +$	(1.8 – 7.4)	Factor of 2	0.1	60
	$[Ru(phen)(NH_3)_4]^{2+}$	$\times 10^{-4}$			
61.1	$SO_3^{\bullet-} + chlorpromazine^+ \Rightarrow S(IV) +$	11	± 2	0.1	61
	chlorpromazyl ^{•2+}				
62.1	$SO_3^{\bullet-} + ClO_2^- \Rightarrow SO_3^{2-} + ClO_2^{\bullet}$	4850	?	0	62
63.1	$SO_3^{\bullet-}$ + phenoxide ⁻ \Rightarrow SO_3^{2-} +	0.056	± 0.008	0	63
	phenoxyl(•)				
64.1	$TyrO^{\bullet} + SO_3^{2-} \Rightarrow TyrO^- + SO_3^{\bullet-}$	0.61	± 0.04	0	64
65.1	$3-\text{MeC}_6\text{H}_4\text{O}^{\bullet} + \text{SO}_3^{2-} \rightleftharpoons 3-\text{MeC}_6\text{H}_4\text{O}^- +$	0.88	0.09	0	65
	SO3•-				

4191

4192 Reaction 60.1 with E° [Ru(phen)(NH₃)₄]^{3+/2+} measured by cyclic voltammetry as +(0.516 4193 ± 0.002) V, leads to E° = +(0.72 ± 0.02) V at 25 °C and μ = 0.1 M.

4194 Reaction 61.1 leads to $E^{\circ} = +(0.71 \pm 0.01)$ V for SO₃^{•-/}SO₃²⁻. Note that this result is 4195 drastically corrected from the original report.

Reaction 62.1 has K_{eq} extrapolated to zero ionic strength. With use of $E^{\circ} = +0.934$ V for 4196 $ClO_2^{\bullet}/ClO_2^{-}$, this leads to $E^{\circ} = +(0.72 \pm 0.01)$ V for $SO_3^{\bullet-}/SO_3^{2-}$. A recent paper by Horvath and 4197 4198 Nagypal attempts to discredit the prior work on this reaction [1]. They claim that the prior report 4199 by Merényi, Lind and Shen [2] mistakenly observed the formation of a ClO₂SO₃⁻ adduct rather 4200 than electron-transfer products. However, the experimental basis for this assertion is quite 4201 tenuous. On the other hand, it must be acknowleged that Merényi et al. performed their 4202 equilibrium measurements at only one ClO₂⁻ concentration, so their data do not rule out adduct formation. As is described in Data Sheet 62, the measurement of K_{eq} for this reaction was also 4203 4204 compromised by neglect of the effects of $(ClO_2)_2^{\bullet-}$. Reaction 63.1 leads to $E^{\circ} = +(0.72 \pm 0.01)$ V for SO₃^{•-}/SO₃²⁻ and appears quite reliable. 4205

4206 Reaction 64.1 leads to $E^{\circ} = +(0.723 \pm 0.01)$ V for SO₃^{•-}/SO₃²⁻ and appears quite reliable.

4207 Reaction 65.1 leads to $E^{\circ} = +(0.737 \pm 0.01)$ V for SO₃^{•-}/SO₃²⁻ but was studied less 4208 extensively than reactions 63.1 and 64.1.

4209

4210 The broad agreement of the above determinations suggests that E° is in the neighborhood of +0.72 V for SO_3^{\bullet}/SO_3^{2-} . To obtain a more precise recommendation we disregard reaction 4211 4212 60.1 because of the difficulties in extrapolation to zero ionic strength for a reaction involving 4213 such high charges. We exclude reaction 61.1 because of the large corrections required to 4214 extrapolate from pH 3.3 to high pH. We also exclude reaction 62.1 because of the concerns 4215 raised by Horvath and Nagypal and because of the unknown effects of $(ClO_2)_2^{\bullet-}$. We also 4216 exclude reaction 65.1 because it was not studied in depth. We are then left with reactions 63.1 4217 and 64.1. Taking the average of these two leads to $E^{\circ} = +(0.72 \pm 0.01)$ V. Using the NBS value of $-(486.5 \pm 8)$ kJ mol⁻¹ for $\Delta_f G^{\circ}$ of SO₃²⁻(*aq*), the recommended 4218 value of $E^{\circ}(SO_3^{\bullet-}/SO_3^{2-})$ leads to $\Delta_f G^{\circ} = -(416 \pm 8) \text{ kJ mol}^{-1}$ for $SO_3^{\bullet-}$ (aq). Note that the NBS 4219 4220 uncertainty in $\Delta_f G^{\circ}(SO_3^{2-})$ seems unreasonably large. A more realistic assessment is based on $\Delta_{\rm f} H^{\circ}_{298}({\rm SO}_{2,g}) = -(296.84 \pm 0.21) \, \rm kJ \, mol^{-1}$ as reported in the NIST Webbook and in the JANAF 4221 tables, 4th ed. This then leads to $\Delta_f G^{\circ}(SO_2,g) = -(300.125 \pm 0.21)$ kJ mol⁻¹. We then use 4222 4223 following equilibrium constants as recommended in the Smith, Martell, and Motekaitis NIST 4224 compendium of aqueous formation constants [3]: for the Henry's law constant (M/atm) of SO₂, $\log K = (0.09 \pm 0.01)$, for the first K_a of "H₂SO₃" p $K_a = (1.85 \pm 0.01)$; for HSO₃⁻ p $K_a = (7.19 \pm 0.01)$ 4225 0.01). These data then lead to $\Delta G^{\circ} = +(51.11 \pm 0.11) \text{ kJ mol}^{-1}$ for SO₂(g) + H₂O(l) = SO₃²⁻(aq) 4226 + 2H⁺(aq). Finally, using the NBS $\Delta_f G^\circ$ for H₂O(l) we obtain $\Delta_f G^\circ = -(486.1 \pm 0.2)$ kJ mol⁻¹, 4227 which is in excellent agreement with the NBS value except for a much smaller uncertainty. This 4228 revised uncertainty then leads to an uncertainty of $\pm 2 \text{ kJ mol}^{-1}$ for $\Delta_f G^{\circ}(SO_3^{\bullet-})$. 4229 4230 4231 **Recommended values:** 4232 $SO_3^{\bullet-} + e^- \Rightarrow SO_3^{2-} \qquad E^\circ = +(0.72 \pm 0.01) V.$ 4233 $\Delta_{\rm f} G^{\circ} = -(416 \pm 2) \text{ kJ mol}^{-1}$ 4234 $SO_3^{\bullet-}(aq)$ 4235 4236 Nomenclature: ClO_2^{\bullet} , dioxidochlorine(\bullet); $SO_3^{\bullet-}$, trioxidosulfate($\bullet 1-$); chlorpromazine, IUPAC PIN 3-(2-chloro-10*H*-phenothiazin-10-yl)-*N*,*N*-dimethylpropan-1-amine 4237 4238 4239 References 4240 4241 1. A. K. Horvath, I. Nagypal. J. Phys. Chem. A 110, 4753-4758 (2006). G. Merényi, J. Lind, X. Shen. J. Phys. Chem. 92, 134-137 (1988). 4242 2.

- 4243 3. A. E. Martell, R. M. Smith, R. J. Motekaitis. *NIST Critically Selected Stability Constants*
- *of Metal Complexes Database, 7.0*, U.S. Department of Commerce, Gaithersburg, MD (2003).

4246	Data Sheet 60		
4247			
4248	Chemical equilibrium: $SO_3^{2-} + [Ru(phen)(NH_3)_4]^{3+} \Rightarrow SO_3^{\bullet-} + [Ru(phen)(NH_3)_4]^{2+}$ (60.1)		
4249			
4250	List of reports:		
4251			
4252	$K_{eq} = 3.7 \times 10^{-4}$ at ~25 °C and $\mu = 0.1$ M [1] obtained from the ratio of the forward and		
4253	reverse rate constants. The forward rate constant was measured by stopped-flow kinetics of the		
4254	reaction of SO_3^{2-} with [Ru(phen)(NH ₃) ₄] ³⁺ as a function of pH at 25.0 °C. The reverse was		
4255	measured by pulse radiolysis at room temperature (~22 °C). Uncertainties in K_{eq} were not		
4256	reported.		
4257			
4258	Discussion		
4259			
4260	An estimate of the uncertainty in K_{eq} can be derived from the uncertainties in the		
4261	individual rate constants. An uncertainty of \pm 7% was reported for $k_{\rm f}$. The uncertainty in $k_{\rm r}$ was		
4262	not reported but could be as large as a factor of 2, given the effects of the competing reaction		
4263	$\mathrm{SO}_3^{\bullet-} + \mathrm{Ru}^{3+} \rightarrow \mathrm{SO}_3 + \mathrm{Ru}^{2+}$		
4264	Thus we assign an uncertainty of a factor of 2 to K_{eq} .		
4265	Cyclic voltammetry was used to determine $E^{\circ} = +(0.516 \pm 0.002)$ V for		
4266	$[\text{Ru}(\text{phen})(\text{NH}_3)_4]^{3+/2+}$ at $\mu = 0.1$ M and 25 °C [1]. By combining this E_f with K_{eq} , a value of		
4267	+0.72 V was derived for E° for SO ₃ •-/SO ₃ ²⁻ . The factor-of-2 uncertainty in K_{eq} leads to a 20 mV		
4268	uncertainty in E° .		
4269			
4270	Recommended values:		
4271			
4272	$SO_3^{2-} + [Ru(phen)(NH_3)_4]^{3+} \Rightarrow SO_3^{\bullet-} + [Ru(phen)(NH_3)_4]^{2+}$		
4273	$K_{\text{eq}} = 3.7 \times 10^{-4}$ within a factor of 2 at ~25 °C and $\mu = 0.1$ M.		
4274	$SO_3^{\bullet-} + e^- \Rightarrow SO_3^{2-}$ $E^{\circ} = (0.72 \pm 0.02) \text{ V at } 25 \text{ °C and } \mu = 0.1 \text{ M}.$		
4275			
4276	List of auxiliary thermodynamic data: $K_{\rm w}$		
4277			
4278	Nomenclature: See Data Sheet 59		
4279			
4280	References		
4281			

4282	1.	R. Sarala, M. S. Islam, S. B. Rabin, D. M. Stanbury. <i>Inorg. Chem.</i> 29, 1133-1142 (1990).
4283		
4284		

4285	Data Sheet 61
4286	
4287	Chemical equilibrium: $SO_3^{\bullet-} + chlorpromazine^+ \Rightarrow S(IV) + chlorpromazyl^{\bullet 2+}$ (61.1)
4288	Chlorpromazine IUPAC PIN: 3-(2-chloro-10H-phenothiazin-10-yl)-N,N-dimethylpropan-1-
4289	amine
4290	
4291	List of reports:
4292	
4293	$K_{eq} = (11 \pm 2)$ at pH 3.6, $\mu = 0.1$ M, unspecified temperature [1]. Result obtined by pulse
4294	radiolysis, by measurement of the equilibrium optical absorbance of the chlorpromazyl radical
4295	cation.
4296	
4297 4298	Discussion
4299	We presume that the work was conducted at room temperature, 22 ± 2 °C.
4300	Huie and Neta used $E = +0.78$ V for the chlorpromazine (ClPz) couple to derive $E =$
4301	+0.84 V for the SO ₃ •-/S(IV) couple at pH 3.6. The value for E° (ClPz ^{•2+} /ClPz ⁺) was originally
4302	reported by Pelizzetti and Mentasti [2]. The Pelizzetti and Mentasti result was obtained in 1 M
4303	HClO ₄ , and there is no indication as to whether it should be applicable at pH 3.6. Several of the
4304	phenothiazine potentials reported by Pelizzetti and Mentasti subsequently have been argued to be
4305	incorrect [3].
4306	Huie and Neta then used their <i>E</i> value at pH 3.6, literature pK_a values for "H ₂ SO ₃ " and
4307	HSO ₃ ⁻ , and the assumption that HSO ₃ [•] is completely dissociated in the pH range considered, to
4308	derive $E^{\circ} = +0.63$ V for the couple SO ₃ ^{•-} /SO ₃ ²⁻ .
4309	Madej and Wardman have recently revised $E^{\circ}(\text{ClPz}^{\bullet 2+}/\text{ClPz}^{+})$, using both pulse
4310	radiolysis and cyclic voltammetry to confirm their result; they now recommend $E^{\circ} = +0.860 \pm$
4311	0.010 V [4] (see Supplementary Data Sheet S-9). Use of this revised potential leads to E° =
4312	$+0.92 \pm 0.01$ V for the SO ₃ ^{•-/} S(IV) couple at pH 3.6. Adjustment for the pK _a s as described above
4313	leads to $E^{\circ} = +(0.71 \pm 0.1)$ V for SO ₃ •-/SO ₃ ²⁻ .
4314	
4315	Recommended values:
4316	
4317	$SO_3^{\bullet-} + chlorpromazine^+ \Rightarrow S(IV) + chlorpromazyl^{\bullet^{2+}}$
4318	$K_{\text{eq}} = (11 \pm 2)$ at pH 3.6, $\mu = 0.1$ M, 22 °C
4319	$SO_3^{\bullet-} + e^- \Rightarrow SO_3^{2-}$ $E^\circ = +(0.71 \pm 0.1) V$
4320	

4321	List of	f auxiliary thermodynamic data: E° for chlorpromazyl, pK _a 1 and pK _a 2 for SO ₂ (aq)	
4322			
4323	Nomenclature: See Data Sheet 59		
4324			
4325	Refer	ences	
4326			
4327	1.	R. E. Huie, P. Neta, J. Phys. Chem. 88, 5665-5669 (1984).	
4328	2.	E. Pelizzetti, E. Mentasti, Inorg. Chem. 18, 583-588 (1979).	
4329	3.	S. V. Jovanovic, S. Steenken, M. G. Simic, J. Phys. Chem. 94, 3583-3588 (1990).	
4330	4.	E. Madej, P. Wardman, Rad. Phys. Chem. 75, 990-1000 (2006).	
4331			
4332			

4333	Data Sheet 62
4334	
4335	Chemical equilibrium: $\text{ClO}_2^{\bullet} + \text{SO}_3^{2-} \Rightarrow \text{ClO}_2^{-} + \text{SO}_3^{\bullet-}$ (62.1)
4336	
4337	List of reported equilibrium constants:
4338	
4339	$K_c = 2100$ from absorbance at 360 nm at $\mu = ca$. 1 M [1].
4340	At $\mu = 1$ M, the extended Debye-Huckel treatment yields the activity coefficient ratio,
4341	$K_{\gamma} = \gamma_{\text{ClO2}} - \gamma_{\text{SO3}} - \gamma_{\text{ClO2}} - \gamma_{\text{SO32}} = 2.31$. The thermodynamic equilibrium constant
4342	$K = K_c \times K\gamma = 2100 \times 2.31 = 4850.$
4343	Taking $E^{\circ}(ClO_2^{\bullet}/ClO_2^{-}) = +0.934 \text{ V}$ (Data Sheet 24)
4344	$E^{\circ}(\mathrm{SO}_3^{\bullet-}/\mathrm{SO}_3^{2-}) = +(0.72 \pm 0.02) \mathrm{V}.$
4345	
4346	Discussion
4347	
4348	In ref. [1] an erroneous calculation was made, in that K_c was divided rather than
4349	multiplied by the otherwise correctly evaluated factor $K_{\gamma} = 2.31$.
4350	Some uncertainty is introduced into the value of $K_{62.1}$ because its determination neglected
4351	the association of ClO_2^{\bullet} with ClO_2^{-} as in eq 62.2 [2, 3]:
4352	
4353	$ClO_2^{\bullet} + ClO_2^{-} \rightleftharpoons (ClO_2)_2^{\bullet-} $ (62.2)
4354	
4355	A value of 5.01 M ⁻¹ has been reported for $K_{62.2}$, which means that at the high (1 M) ClO ₂ ⁻
4356	concentrations used in measuring $K_{62.1}$ approximately 80% of the ClO ₂ • will be bound as
4357	$(ClO_2)_2^{\bullet-}$. This species contributes significantly to the absorbance at the wavelength where ClO_2
4358	was monitored, which introduces an additional complication to the interpretation of the results.
4359	While it seems likely that $K_{62.1}$ is in the neighborhood of 5×10^3 , further analysis of the
4360	experimental results is required.
4361	
4362	Recommended value:
4363	
4364	None
4365	
4366	Nomenclature: See Data Sheet 59
4367	
4368	References

4369		
4370	1.	G. Merényi, J. Lind, X. Shen, J. Phys. Chem. 92, 134-137 (1988).
4371	2.	Z. Körtvelyesi, G. Gordon, J. Am. Wat. Works. Assoc. 96, 81-87 (2004).
4372	3.	G. Gordon, F. Emmenegger, Inorg. Nucl. Chem. Lett. 2, 395-398 (1966).
4373		

4374	Data Sheet 63		
4375			
4376	Chemical equilibrium: $SO_3^{\bullet-+}$ phenoxide ⁻ \rightleftharpoons SC	$y_3^{2-} + \text{phenoxyl}^{\bullet}$	(63.1)
4377			
4378	List of reports:		
4379			
4380	$1/K_{eq} = (17 \pm 5)$ at pH 11.1, $\mu = 0.15$ M, at	an unspecified temperature [1]. This	result
4381	was obtained by pulse radiolysis, by measuring th	e equilibrium optical absorbance of th	ne
4382	phenoxyl radical.		
4383	$1/K_{eq} = (9 - 16)$ at pH 11.6; this value was	obtained at (21 \pm 2) °C [2] and dependence	nds on μ ,
4384	Result obtained by pulse radiolysis, measuring the	equilibrium optical absorbance of th	e
4385	phenoxyl radical.		
4386			
4387	Discussion		
4388			
4389	Huie and Neta (1984) used this equilibriur	n constant plus their (now) questional	ole
4390	$E^{\circ}(SO_3^{\bullet}/SO_3^{2-})$ to derive $E^{\circ}(phenoxyl/phenoxide)$) = +0.70 V [1].	
4391	In their reinvestigation, Das, Huie, and Ne	ta (1999) confirmed their prior determ	nination
4392	of the equilibrium constant, and they measured the	e equilibrium constant as a function o	f ionic
4393	strength. Das <i>et al.</i> then used E° (phenoxyl/phenox	tide) = (0.80 ± 0.01) V to derive E° =	+0.720 V
4394	for $SO_3^{\bullet-}/SO_3^{2-}$.		
4395	Extrapolation of the data in Table 2 of Das	et al.'s report to zero ionic strength is	s a
4396	challenge, because the value of $1/K$ at lowest ionic	c strength ($\mu = 0.067$ M) is rather dive	ergent.
4397	Inspection of their Figure 3 reveals that this is pro	bably a typo. Recalculation of the dat	a in Das
4398	<i>et al.</i> 's Figure 3 and extrapolation to $\mu = 0$ yields	$K^{\circ} = (18 \pm 1)$. Based on our current	
4399	recommendation (Data Sheet S-2) for $E^{\circ}(PhO^{\bullet}/Ph$	O^{-}) = +(0.793 ± 0.008) V we derive h	E°(SO ₃ •−
4400	$(SO_3^{2-}) = +(0.72 \pm 0.01) \text{ V}.$		
4401			
4402	Recommended values:		
4403			
4404	$SO_3^{\bullet-} + phenoxide^- \rightleftharpoons SO_3^{2-} + phenoxyl^{\bullet}$	$K_{\rm eq} = (0.056 \pm 0.003)$	
4405	$SO_3^{\bullet-} + e^- \rightleftharpoons SO_3^{2-}$	$E^{\circ} = +(0.72 \pm 0.01) \text{ V}$	
4406			
4407	Nomenclature; See Data Sheet 59.		
4408			

4409	List of	fauxiliary thermodynamic data: none
4410		
4411	Refer	ences
4412		
4413	1.	R. E. Huie, P. Neta. J. Phys. Chem. 88, 5665-5669 (1984).
4414	2.	T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4415		
4416		

4417	Data Sheet 64
4418	
4419	Chemical equilibrium: $TyrO^{\bullet} + SO_3^{2-} \Rightarrow TyrO^{-} + SO_3^{\bullet-}$ (64.1)
4420	TyrO• is the phenoxyl radical from tyrosine; TyrO ⁻ is the phenoxide form of tyrosine.
4421	
4422	List of reports:
4423	
4424	$K_{eq} = 0.5 - 0.6$ at pH 11.6 and $21 \pm 2^{\circ}$ C, a value that depends on μ [1]. This result was
4425	obtained by pulse radiolysis, by measurement of the equilibrium optical absorbance of the
4426	tyrosyl radical.
4427	
4428	Discussion
4429	
4430	Das, Huie, and Neta (1999) found only a small dependence of K_{eq} on μ , $\mu = (0.1 - 0.3)$
4431	M). We infer a value for K° of (0.61 ± 0.04). Das <i>et al.</i> also determined $E^{\circ} = +0.736$ V for the
4432	tyrosyl radical at pH 11.3 (relative to phenoxyl), and they used this result to derive $E^\circ = +0.736$
4433	V for SO ₃ ^{•-/} SO ₃ ²⁻ . Given that they assigned an uncertainty of ± 0.01 V to E° (phenoxyl), we
4434	propagate this to give an uncertainty of ± 0.01 V for $E^{\circ}(SO_3^{\bullet-}/SO_3^{2-})$. We note that they assign
4435	an uncertainty of only 0.003 V to E° , but this clearly does not take the uncertainty of the
4436	reference potential into account.
4437	We currently recommend $E^{\circ}(TyrO^{\bullet}/TyrO^{-}) = +(0.723 \pm 0.010)$ V (Supplementary Data
4438	Sheet S4). This leads to an adjustment of the derived value to $E^{\circ}(SO_3^{\bullet-}/SO_3^{2-}) = +(0.723 \pm$
4439	0.010) V.
4440	Recommended values:
4441	
4442	$TyrO^{\bullet} + SO_3^{2-} \Rightarrow TyrO^{-} + SO_3^{\bullet-}$ $K_{eq} = K_{eq}^{\circ} = (0.61 \pm 0.04)$
4443	$SO_3^{\bullet-} + e^- \Rightarrow SO_3^{2-}$ $E^\circ = +(0.723 \pm 0.01) V$
4444	
4445	List of auxiliary thermodynamic data: none
4446	
4447	Nomenclature: See Data Sheet 59
4448	
4449	References
4450	
4451	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4452	

4453	Data Sheet 65
4454	
4455	Chemical equilibrium: $3 \operatorname{MeC}_{6}\operatorname{H}_{4}\operatorname{O}^{\bullet} + \operatorname{SO}_{3}^{2-} \Rightarrow 3 \operatorname{MeC}_{6}\operatorname{H}_{4}\operatorname{O}^{-} + \operatorname{SO}_{3}^{\bullet-}$ (65.1)
4456	$3-MeC_6H_4OH = 3$ -cresol; IUPAC PIN: 3 -methylphenol
4457	
4458	List of reports:
4459	
4460	$K_{eq} = (0.88 \pm 0.09)$ at pH 11.6, $\mu = 0.080$ M, and (21 ± 2) °C [1]. This result was obtained
4461	by pulse radiolysis, by the measurement of the equilibrium optical absorbance of the cresyl
4462	radical.
4463	
4464	Discussion
4465	
4466	It is unclear how Das et al. extrapolated to zero ionic strength, given that they have data
4467	only at $\mu = 0.80$ M. We assume they made no correction and that $K^{\circ} = (0.88 \pm 0.09)$. Das <i>et al.</i>
4468	derive $E^{\circ} = +(0.737 \pm 0.004)$ V for SO ₃ ^{•-/} SO ₃ ²⁻ based on $E^{\circ} = +(0.736 \pm 0.003)$ V for the cresyl
4469	radical. The later, however, was measured relative to the phenoxyl radical, so full propagation of
4470	error gives an uncertainty of ± 0.01 V for E° (SO ₃ •-/SO ₃ ²⁻).
4471	
4472	Recommended values:
4473	
4474	$3 - MeC_6H_4O^{\bullet} + SO_3^{2-} \Rightarrow 3 - MeC_6H_4O^{-} + SO_3^{\bullet-} \qquad K_{eq}^{\circ} = (0.88 \pm 0.09)$
4475	$SO_3^{\bullet-} + e^- \Rightarrow SO_3^{2-}$ $E^{\circ} = +(0.737 \pm 0.01) V$
4476	
4477	Nomenclature: See Data Sheet 59.
4478	
4479	List of auxiliary thermodynamic data: none
4480	
4481	References
4482	
4483	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4484	
4485	

4486 **Data Sheet 66**

- 4487 Summary of the SO₅•- System
- 4488
- 4489 Tabulated below are the recommended equilibrium constants involving the $SO_5^{\bullet-}$ radical.

4490 Uncertainties are expressed as $\pm 1 \sigma$; in many cases the value of σ is merely a subjective guess.

	rxn #	Reaction	K _{eq}	Uncertainty	μ / M	Data	
						Sheet #	
	67.1	$C_6H_4O^{\bullet} + SO_5^{2-} \Rightarrow C_6H_4O^{-} + SO_5^{\bullet-}$	0.28	± 0.03	0.06	67	
	68.1	$3-\text{Me-C}_6\text{H}_4\text{O}^{\bullet} + \text{SO}_5^{2-} \rightleftharpoons$	3.7×10^{-2}	$\pm 0.4 \times 10^{-2}$	0.382	68	
		$3-\text{Me-C}_6\text{H}_4\text{O}^- + \text{SO}_5^{\bullet-}$					
	69.1	$TyrO^{\bullet} + SO_5^{2-} \Rightarrow TyrO^{-} + SO_5^{\bullet-}$	2.1×10^{-2}	$\pm 0.2 \times 10^{-2}$	0.4	69	
	70.1	$DMA^{\bullet+} + SO_5^{2-} \Rightarrow DMA + SO_5^{\bullet-}$	3.7×10^{-3}	$\pm 0.4 imes 10^{-3}$	~0.1	70	
4492	(DMA	= <i>N</i> , <i>N</i> -dimethylaniline)					
4493							
4494		Reactions 67.1, 68.1, 69.1, and 70.1 lead	to $E^{\circ} = +(0.8)$	$813 \pm 0.008)$ V	7, +(0.81	± 0.01) V,	
4495	+(0.804	4 ± 0.01) V, and $E^{\circ} = +(0.84 \pm 0.01)$ V, re	espectively, f	or the $SO_5^{\bullet-}/S$	O_5^{2-} cou	ple. Das <i>et</i>	
4496	al. sugg	gest that the last value (from DMA) should	d be exclude	d because of th	ne possil	oility that th	ie
4497	DMA v	was incompletely dissolved [1]. Exclusion	n of reaction	70.1 leads to e	xcellent	agreement	
4498	betwee	n the three other determinations, with an	average value	e of $E^\circ = +(0.8)$	31 ± 0.01) V for	
4499	SO5•-/S	SO ₅ ^{2–} .					
4500	Balej reports $\Delta_f G^\circ = -(637.5 \pm 2.0) \text{ kJ mol}^{-1}$ for HSO ₅ ⁻ (<i>aq</i>) [2]. The pK _a of HSO ₄ ⁻ is 9.3						
4501	± 0.2 [3], and thus $\Delta_f G^{\circ}(SO_5^{2-}) = -(584 \pm 3) \text{ kJ mol}^{-1}$. In combination with the E° recommended						
4502	above v	we then derive $\Delta_{\rm f}G^\circ = -(506 \pm 3) \text{ kJ mol}^-$	¹ for $SO_5^{\bullet-}$.				
4503							
4504	Recom	mended values:					
4505							
4506	$E^{\circ} = +($	(0.81 ± 0.01) V for SO ₅ •-/SO ₅ ²⁻					
4507	$\Delta_{\rm f}G^{\circ} =$	$-(506 \pm 3) \text{ kJ mol}^{-1} \text{ for SO}_5^{\bullet-}$					
4508							
4509	Nomen	clature: SO5 ^{•-} , (dioxido)trioxidosulfate(•	-)				
4510							
4511	Refere	nces					
4512							
4513	1.	T. N. Das, R. E. Huie, P. Neta. J. Phys. C	Chem. A 103,	3581-3588 (19	999).		

- 4514 2. J. Balej. J. Electroanal. Chem. **214**, 481-483 (1986).
- 4515 3. H. Elias, U. Götz, K. J. Wannowius. Atmos. Envir. 28, 439-448 (1994).

4517	Data Sheet 67
4518	
4519	Chemical equilibrium: $C_6H_4O^{\bullet} + SO_5^{2-} \Rightarrow C_6H_4O^{-} + SO_5^{\bullet-}$ (67.1)
4520	
4521	List of reports:
4522	
4523	$K_{eq} = (0.28 \pm 0.03)$ at $\mu = 0.06$ M, pH 11.3, and (21 ± 2) °C [1]. Das <i>et al.</i> obtained this
4524	result by pulse radiolysis, measuring the position of equilibrium optically.
4525	
4526	Discussion
4527	
4528	Das <i>et al.</i> extrapolated K_{eq} to zero ionic strength and then used $E^{\circ} = +0.800 \pm 0.005$ V for
4529	the phenoxyl radical to derive $E^{\circ} = +(0.820 \pm 0.005)$ V for SO ₅ ^{•-} /SO ₅ ²⁻ . Use of our presently
4530	recommended reference potential; $(+0.793 \pm 0.008)$ V for phenoxyl, Data Sheet S-2, leads to E°
4531	$= +(0.813 \pm 0.008) \text{ V for SO}_5^{\bullet-}/\text{SO}_5^{2-}.$
4532	
4533	Recommended values:
4534	
4535	$K_{\rm eq} = (0.28 \pm 0.03)$ at $\mu = 0.06$ M, pH 11.3, and (21 ± 2) °C
4536	$E^{\circ} = +(0.813 \pm 0.008) \text{ V for } \text{SO}_5^{\bullet-}/\text{SO}_5^{2-}$
4537	
4538	List of auxiliary thermodynamic data: none.
4539	
4540	Nomenclature: See Data Sheet 66.
4541	
4542	References
4543	
4544	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4545	
4546	

4547	DataSheet 68
4548	
4549	Chemical equilibrium: $3\text{-Me-C}_6\text{H}_4\text{O}^{\bullet} + \text{SO}_5^{2-} \Rightarrow 3\text{-Me-C}_6\text{H}_4\text{O}^{-} + \text{SO}_5^{\bullet-}$ (68.1)
4550	
4551	List of reports:
4552	
4553	$K_{\text{eq}} = (3.7 \pm 0.4) \times 10^{-2}$ at $\mu = 0.382$ M, pH 11.4, and (21 ± 2) °C [1]. Das <i>et al.</i> obtained
4554	this result by pulse radiolysis, measuring the position of equilibrium optically.
4555	
4556	Discussion
4557	
4558	Das <i>et al.</i> extrapolated K_{eq} to zero ionic strength and then used $E^{\circ} = +(0.736 \pm 0.003)$ V
4559	for the 3-methylphenoxyl radical to derive $E^{\circ} = +(0.806 \pm 0.005)$ V for the SO ₅ ^{•-} /SO ₅ ²⁻ couple
4560	Use of our presently recommended reference potential ($+0.74 \pm 0.01$ V for 3-methylphenoxyl,
4561	Data Sheet S-3) leads to $E^{\circ} = +(0.81 \pm 0.01)$ V for SO ₅ ^{•-/} SO ₅ ²⁻ .
4562	
4563	Recommended values:
4564	
4565	$K_{\rm eq} = (3.7 \pm 0.4) \times 10^{-2}$ at $\mu = 0.382$ M, pH 11.4, and 21 ± 2 °C
4566	$E^{\circ} = +(0.81 \pm 0.01) \text{ V for } \text{SO}_5^{\bullet-}/\text{SO}_5^{2-}$
4567	
4568	List of auxiliary thermodynamic data: none.
4569	
4570	Nomenclature: See Data Sheet 66.
4571	
4572	References
4573	
4574	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4575	
4576	

4577	Data Sheet 69
4578	
4579	Chemical equilibrium: $TyrO^{\bullet} + SO_5^{2-} \Rightarrow TyrO^{-} + SO_5^{\bullet-}$ (69.1)
4580	TyrO [•] is the phenoxyl radical from tyrosine; TyrO ⁻ is the phenoxide form of tyrosine.
4581	
4582	List of reports:
4583	
4584	$K_{eq} = (2.1 \pm 0.2) \times 10^{-2}$ at $\mu = 0.40$ M, pH 11.4, and (21 ± 2) °C [1]. Das <i>et al.</i> obtained
4585	this result by pulse radiolysis, measuring the position of equilibrium optically.
4586	
4587	Discussion
4588	
4589	Das <i>et al.</i> extrapolated K_{eq} to zero ionic strength and then used $E^{\circ} = +(0.737 \pm 0.004)$ V
4590	for the tyrosyl radical to derive $E^{\circ} = +(0.818 \pm 0.005)$ V for SO ₅ ^{•-/} SO ₅ ²⁻ . Use of our presently
4591	recommended reference potential (+0.723 \pm 0.01 V for the tyrosyl/tyrosine couple, Data Sheet S-
4592	4) leads to $E^{\circ} = +(0.804 \pm 0.01) \text{ V}$ for $SO_5^{\bullet-}/SO_5^{2-}$.
4593	
4594	Recommended values:
4595	
4596	$K_{\rm eq} = (2.1 \pm 0.2) \times 10^{-2}$ at $\mu = 0.40$ M, pH 11.4, and (21 ± 2) °C
4597	$E^{\circ} = +(0.804 \pm 0.01) \text{ V for } \text{SO}_5^{\bullet-}/\text{SO}_5^{2-}$
4598	
4599	List of auxiliary thermodynamic data: none.
4600	
4601	Nomenclature: See Data Sheet 66.
4602	
4603	References
4604	
4605	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4606	
4607	

4608	Data Sheet 70
4609	
4610	Chemical equilibrium: $DMA^{\bullet^+} + SO_5^{2-} \Rightarrow DMA + SO_5^{\bullet^-}$ (70.1)
4611	(DMA = <i>N</i> , <i>N</i> -dimethylaniline)
4612	
4613	List of reports:
4614	$K_{eq} = (3.7 \pm 0.4) \times 10^{-3}$ at $\mu = (0.090 - 0.141)$ M, pH 11, and (21 ± 2) °C [1]. Das <i>et al.</i>
4615	obtained this result by pulse radiolysis, measuring the position of equilibrium optically.
4616	
4617	Discussion
4618	
4619	Das <i>et al.</i> extrapolated K_{eq} to zero ionic strength and then used $E^{\circ} = +(0.692 \pm 0.003)$ V
4620	for the DMA ^{•+} radical to derive $E^{\circ} = +(0.836 \pm 0.005)$ V for SO ₅ ^{•-} /SO ₅ ²⁻ . Use of our presently
4621	recommended reference potential (+0.69 \pm 0.01) V for DMA, Data Sheet S-5 leads to E° =
4622	+(0.84 \pm 0.01) V for SO ₅ /SO ₅ ²⁻ . Das <i>et al.</i> suggest that the equilibrium constant may not be
4623	very accurate because in incomplete dissolution of DMA.
4624	
4625 4626	Recommended values:
4627	$K_{\rm eq} = (3.7 \pm 0.4) \times 10^{-3}$ at $\mu = (0.0.090 - 0.141)$ M, pH 11, and (21 ± 2) °C
4628	$E^{\circ} = +(0.84 \pm 0.01) \text{ V for SO}_5^{\bullet-}/\text{SO}_5^{2-}$
4629	
4630	List of auxiliary thermodynamic data: none.
4631	
4632	References
4633	
4634	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4635	
4636	

4637 **Data Sheet 71**

- 4638 Summary of the $S_2O_3^{-}/S_4O_6^{\bullet 3-}$ System
- 4639

4640 Tabulated below are the presently recommended equilibrium constants involving this related 4641 group of hexaoxidodisulfate(\bullet 3–) (thiosulfate and tetrathionate-derived) radicals. Uncertainties

4642 are expressed as $\pm 1 \sigma$; in many cases the value of σ is merely a subjective guess.

4643

rxn #	reaction	$K_{ m eq}$	dim.	uncertainty	μ / M	Data
						Sheet #
72.1	$N_3^{\bullet} + 2S_2O_3^{2-} \Rightarrow N_3^- +$	$1.9 imes 10^4$	M^{-1}	$\pm \ 0.2 \times 10^4$	0.44	72
	$(S_2O_3)_2^{\bullet 3-}$					
73.1	$4\text{-}\mathrm{CNC}_{6}\mathrm{H}_{4}\mathrm{O}^{\bullet} + 2\mathrm{S}_{2}\mathrm{O}_{3}^{2-} \rightleftharpoons$	2.2	M^{-1}	± 0.2	0.28	73
	$4-CNC_6H_4O^- + (S_2O_3)_2^{\bullet 3-}$					
74.1	$\mathrm{HS}_4\mathrm{O_6}^{\bullet 2-} \rightleftharpoons \mathrm{S}_4\mathrm{O_6}^{\bullet 3-} + \mathrm{H}^+$	$pK_a = 6.2$				74
75.1	$S_2O_3^{\bullet-} + SCN^- \rightleftharpoons$	1.2×10^3	M^{-1}	(2.4 –0.6) ×	?	75
	SCNS ₂ O ₃ • ^{2–}			10 ³		
76.1	$(\text{SCN})_2^{\bullet-} + S_2O_3^{2-} \rightleftharpoons$	1.6×10^2		$\pm 0.4 \times 10^2$	0.0	76
	$SCNS_2O_3^{\bullet 2-} + SCN^-$					

4644 4645

The equilibrium constant for the reaction

 $S_2O_3^{\bullet-} + 2SCN^- \Rightarrow S_2O_3^{2-} + (SCN)_2^{\bullet-}$

4646

4647 4648

4649 is obtained as the ratio of $K_{75,1}/K_{76,1}$: $K = 7.5 \text{ M}^{-1}$ within a factor of 2.1. Given our recommended 4650 $E^{\circ} = +1.30 \pm 0.02 \text{ V}$ for $(\text{SCN})_2^{\bullet}/2\text{SCN}^-$, we derive $E^{\circ} = +(1.35 \pm 0.03) \text{ V}$ for $\text{S}_2\text{O}_3^{\bullet}/\text{S}_2\text{O}_3^{2-}$.

(71.1)

4651 An independent derivation of $E^{\circ} = +1.30$ V for $S_2O_3^{\circ-}/S_2O_3^{2-}$ at $\mu = 0.1$ M was obtained 4652 from the rate constants for oxidation of $S_2O_3^{2-}$ by several outer-sphere metal-complex oxidants, 4653 making the assumption that the reverse reactions had diffusion-controlled rates [1].

In view of the ionic strength issues, the agreement between the two above determinations is good. We recommend the value derived from the thiocyanate equilibria because an assumed (not measured) reverse rate constant was used for the derivation from the reactions with metal complexes. The NBS Tables [2] give $\Delta_f G^\circ = -(522.5 \pm 8)$ kJ mol⁻¹ for S₂O₃²⁻(*aq*). Thus, we derive $\Delta_f G^\circ = -(392 \pm 8)$ kJ mol⁻¹ for S₂O₃⁻⁻(*aq*). Note that Cobble *et al.* [2a] recommend a value of $-(544.3 \pm 7.5)$ kJ mol⁻¹ for $\Delta_f G^\circ$ (S₂O₃²⁻), which differs substantially from the NBS 4660 value; however, to maintain consistency we retain the NBS value in calculating our

4661 recommended values.

4662 Reaction 72.1 leads to $E^{\circ} = +(1.10 \pm 0.01)$ V for $S_4O_6^{\bullet^3-}/2S_2O_3^{2-}$, while reaction 73.1 4663 leads to $+(1.09 \pm 0.03)$ V for this potential. The two results are equivalent within the specified 4664 uncertainties, and thus we recommend the more precise value derived from reaction 72.1. The 4665 corresponding $\Delta_f G^{\circ}$ is $-(939 \pm 8)$ kJ mol⁻¹ for $S_4O_6^{\bullet^3-}$.

4666 Das *et al.* [3] combined $E^{\circ}(S_4O_6^{\bullet 3-}/2S_2O_3^{2-}) = +1.07$ V and $E^{\circ}(S_2O_3^{\bullet -}/S_2O_3^{2-}) = +1.30$ V 4667 to derive the equilibrium constant for reaction 71.2:

4668

4669
$$(S_2O_3)_2^{\bullet 3-} \Rightarrow S_2O_3^{\bullet -} + S_2O_3^{2-}$$
 (71.2)

4670

4671 Their result, $K_{71,2} = 1.3 \times 10^{-4}$ M, is based on E° values that differ slightly from our 4672 recommended values; however, the differing E° values lead to an approximate cancellation of 4673 errors, so the final result is not much affected. Given the uncertainties in the component E° 4674 values, we assign an uncertainty of a factor of 3 for $K_{71,2}$. Thus, the reverse of reaction 71.2 4675 (which is a hemicolligation reaction) has log $K_{eq} = (4.1 \pm 0.5)$.

- 4676
- 4677 **Recommended values:**
- 4678

4679 $E^{\circ} = +(1.35 \pm 0.03)$ V for S₂O₃•-/S₂O₃²⁻ at 25 °C and $\mu = 0$ M.

4680 $\Delta_{\rm f} G^{\circ} = -(392 \pm 8) \text{ kJ mol}^{-1} \text{ for } \text{S}_2 \text{O}_3^{-1}$

4681 $pK_a = 6.2 \text{ for } HS_4O_6^{\bullet 2-}$

4682 $E^{\circ} = +(1.10 \pm 0.01) \text{ V for } \text{S}_4 \text{O}_6^{\bullet 3-}/2 \text{S}_2 \text{O}_3^{2-}$

4683 $\Delta_{\rm f}G^{\circ}$ is -(939 ± 8) kJ mol⁻¹ for S₄O₆^{•3-}

4684
$$\log K_{eq} = (4.1 \pm 0.5) \text{ for } S_2O_3^{\bullet-} + S_2O_3^{2-} = S_4O_6^{\bullet3-}$$

4685

```
4686 Nomenclature: N<sub>3</sub>•, trinitrogen(2N–N)(•); N<sub>3</sub><sup>-</sup>, trinitride(1–); SCN<sup>-</sup>, nitridosulfidocarbonate(1–),
4687 thiocyanate is allowed; (SCN)<sub>2</sub>•<sup>-</sup>, bis(nitridosulfidocarbonate)(S–S)(•1–); S<sub>2</sub>O<sub>3</sub>•<sup>-</sup>,
```

4688 trioxidosulfidosulfate(S-S)($\bullet-$); S₂O₃²⁻, trioxidosulfidosulfate(S-S)(2-), thiosulfate is allowed;

- 4689 $S_4O_6^{\bullet 3-}$, bis[(trioxidosulfate)sulfate]($\bullet 3-$), and SCNS₂O₃ $\bullet 2-$,
- 4690 (nitridosulfidocarbonato)trioxidosulfidosulfate(•2–)
- 4691

```
4692 References
```

- 4693
- 4694 1. R. Sarala, D. M. Stanbury. *Inorg. Chem.* **31**, 2771-2777 (1992).

- 4695 2. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
- 4696 Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
- 4697 2a. J. W. Cobble, H. P. Stephens, I. R. McKinnon, E. F. Westrum. *Inorg. Chem.* 11, 16694698 1674 (1972).
- 4699 3. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).

4701	Data Sheet 72
4702	
4703	Chemical equilibrium: $N_3^{\bullet} + 2S_2O_3^{2-} \Rightarrow N_3^{-} + (S_2O_3)_2^{\bullet 3-}$ (72.1)
4704	
4705	List of reports:
4706	
4707	$K_{\rm eq} = (2.0 \pm 0.2) \times 10^4 {\rm M}^{-1}$ at $\mu = 0.85 {\rm M}$ and $(21 \pm 2) {}^{\circ}{\rm C}$ [1]. Result obtained by pulse
4708	radiolysis with optical detection of the position of equilibrium.
4709	$K_{eq} = (1.9 \pm 0.2) \times 10^4 \text{ M}^{-1}$ at $\mu = 0.44 \text{ M}$ and $(21 \pm 2) \text{ °C}$ [1]. Result obtained by pulse
4710	radiolysis with optical detection of the position of equilibrium.
4711	
4712	Discussion
4713	
4714	Das <i>et al.</i> ¹ argue that the species $(S_2O_3)_2^{\bullet 3-}$ (or $S_4O_6^{\bullet 3-}$) on the time scale of the above
4715	measurements is not $(O_3SSSSO_3)^{\bullet_3-}$ but rather an isomer, such as $(O_3SSOSO_2S)^{\bullet_3-}$.
4716	This equilibrium constant should be sensitive to ionic strength. Das <i>et al.</i> [1] corrected
4717	the equilibrium constant to zero ionic strength by use of an incorrect equation (their eq. 27) for
4718	activity coefficients. The equation used may be appropriate when all reactants are uncharged as
4719	in their eq 26, but this is not the case for reaction 72.1.
4720	A more correct equation can be derived as follows: first,
4721	
4722	$\log K^{\circ} = \log K + \log \left(\gamma(N_{3}^{-}) \gamma(S_{4}O_{6}^{\bullet 3^{-}}) / \gamma(S_{2}O_{3}^{2^{-}})^{2} \right)$
4723	$= \log K + \log \gamma(N_3^{-}) + \log \gamma(S_4 O_6^{\bullet 3^{-}}) - 2\log \gamma(S_2 O_3^{2^{-}})$
4724	
4725	Then, we use the Guggenheim eq. for single-ion activity coefficients:
4726	$\log \gamma = -Az_i^2 \mu^{1/2} / (1 + \mu^{1/2}) + \beta \mu.$
4727	
4728	This leads to log $K^{\circ} = \log K - A\mu^{1/2} / (1 + \mu^{1/2}) (z(N_3^-)^2 + z(S_4O_6^{\bullet 3^-})^2 - 2z(S_2O_3^{2^-})^2)$
4729	(the β terms cancel out for this reaction, so long as β is the same for all ions).
4730	
4731	Thus, $\log K^{\circ} = \log K - A\mu^{1/2}/(1 + \mu^{1/2})((-1)^2 + (-3)^2 - 2(-2)^2) = \log K - A\mu^{1/2}/(1 + \mu^{1/2})(2)$
4732	or, $\log K = \log K^{\circ} + 2A\mu^{1/2}/(1 + \mu^{1/2})$. $A = 0.509$ for water at 25 °C.
4733	
4734	From the data at $\mu = 0.44$ M we thus calculate log $K^{\circ} = 3.87$, and $\Delta E = 0.229$ V. With our
4735	recommended $E^{\circ} = +(1.33 \pm 0.01)$ V for N ₃ •/N ₃ ⁻ we then obtain $E^{\circ} = +(1.10 \pm 0.01)$ V.
4736	

4737	Recommended values:
4738	
4739	$K_{\text{eq}} = (1.9 \pm 0.2) \times 10^4 \text{ M}^{-1}$ at $\mu = 0.44 \text{ M}$ and $(21 \pm 2) \text{ °C}$
4740	log $K^{\circ} = (3.87 \pm 0.04)$ at $\mu = 0.0$ M
4741	$E^{\circ} = +(1.10 \pm 0.01) \text{ V for } \text{S}_4 \text{O}_6^{\bullet 3-}/2 \text{S}_2 \text{O}_3^{2-}$
4742	
4743	Nomenclature: see Data Sheet 71.
4744	
4745	List of auxiliary thermodynamic data: none.
4746	
4747	References
4748	
4749	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4750	
4751	
4752	

4753	Data Sheet 73
4754	
4755	Chemical equilibrium: $4 - \text{CNC}_6 \text{H}_4 \text{O}^{\bullet} + 2\text{S}_2 \text{O}_3^{2-} = 4 - \text{CNC}_6 \text{H}_4 \text{O}^{-} + (\text{S}_2 \text{O}_3)_2^{\bullet 3-}$ (73.1)
4756	4-CNC ₆ H ₄ O ⁻ = 4-cyanophenoxide
4757	
4758	List of reports:
4759	
4760	$K_{eq} = (2.2 \pm 0.2) \text{ M}^{-1}$ at $\mu = 0.28 \text{ M}$ and $(21 \pm 2) \text{ °C}$ [1]. Result obtained by pulse
4761	radiolysis with optical detection of the position of equilibrium.
4762	
4763 4764	Discussion
4765	This equilibrium constant should be sensitive to ionic strength. Das et al. [1] corrected
4766	the equilibrium constant to zero ionic strength by use of an incorrect equation (their eq 27) for
4767	activity coefficients. The equation used may be appropriate when all reactants are uncharged as
4768	in their eq 26, but this is not the case for reaction 73.1.
4769	A more correct eq can be derived as follows: first,
4770	
4771	$\log K^{\circ} = \log K + \log \left(\gamma (4 - \text{CNC}_{6}\text{H}_{4}\text{O}^{-}) \gamma (\text{S}_{4}\text{O}_{6}^{\bullet 3-}) / \gamma (\text{S}_{2}\text{O}_{3}^{2-})^{2} \right)$
4772	$= \log K + \log \gamma (4 - \text{CNC}_{6}\text{H}_{4}\text{O}^{-}) + \log \gamma (\text{S}_{4}\text{O}_{6}^{\bullet 3^{-}}) - 2\log \gamma (\text{S}_{2}\text{O}_{3}^{2^{-}})$
4773	
4774	Then, we use the Guggenheim eq. for single-ion activity coefficients:
4775	$\log \gamma = -Az_i^2 \mu^{1/2} / (1 + \mu^{1/2}) + \beta I.$
4776	
4777	This leads to log $K^{\circ} = \log K - AI^{1/2} / (1 + \mu^{1/2}) (z(4 - \text{CNC}_6\text{H}_4\text{O}^-)^2 + z(\text{S}_4\text{O}_6^{\bullet 3-})^2 - 2z(\text{S}_2\text{O}_3^{2-})^2)$
4778	(the β terms cancel out for this reaction, so long as β is the same for all ions).
4779	
4780	So, $\log K^{\circ} = \log K - A\mu^{1/2}/(1 + \mu^{1/2})((-1)^2 + (-3)^2 - 2(-2)^2) = \log K - A\mu^{1/2}/(1 + \mu^{1/2})(2)$
4781	or, $\log K = \log K^{\circ} + 2A\mu^{1/2}/(1 + \mu^{1/2})$. $A = 0.509$ for water at 25 °C.
4782	
4783	From the data at $\mu = 0.28$ M we thus calculate log $K^{\circ} = -(0.010 \pm 0.020)$, and $\Delta E = -(0.001 \pm 0.020)$
4784	0.002) V. With our recommended $E^{\circ} = +(1.09 \pm 0.03)$ V 4-CNC ₆ H ₄ O [•] /4-CNC ₆ H ₄ O ⁻ (Data Sheet
4785	S-6) we then obtain $E^{\circ} = +(1.09 \pm 0.03)$ V for S ₄ O ₆ · ³⁻ /2S ₂ O ₃ ²⁻ .
4786	
4787	Recommended values:
4788	

4789	$K_{\rm eq} = (2.2 \pm 0.2) \mathrm{M}^{-1}$ at $\mu = 0.28 \mathrm{M}$ and $(21 \pm 2) ^{\circ}\mathrm{C}$
4790	log $K^{\circ} = -(0.01 \pm 0.02)$ at $\mu = 0.0$ M
4791	$E^{\circ} = +(1.09 \pm 0.03) \text{ V for } \text{S}_4 \text{O}_6^{\bullet 3-}/2 \text{S}_2 \text{O}_3^{2-}$
4792	
4793	Nomenclature: see Data Sheet 71.
4794	
4795	List of auxiliary thermodynamic data: none.
4796	
4797	References
4798	
4799	1. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
4800	
4801	

4802	Dat	ta Sheet 74		
4803				
4804	Cher	mical equilibrium: $HS_4O_6^{\bullet 2^-} \Rightarrow S_4O_6^{\bullet 3^-} + H^+$ (74.1)		
4805				
4806	List	of reports:		
4807				
4808		$pK_a = 6.2$ [1]. Determined by pulse radiolysis of $S_2O_3^{2-}$ solutions, with conductivity		
4809	measured 25 μ s after the pulse.			
4810				
4811 4812	Disc	cussion		
4813		Das <i>et al.</i> argue that the species $S_4O_6^{\bullet 3-}$ produced on this time scale is not $(O_3SSSSO_3)^{\bullet}$		
4814	but an isomer such as $(O_3SSOSO_2S)^{\bullet 3-}$ [2]. Their measurements on reactions 72.1 and 73.1 were			
4815	performed at pH 8.8 and 12, and thus do not disagree with the reported pK_a .			
4816				
4817	Recommended value:			
4818				
4819	$pK_{a} = 6.2$			
4820				
4821	List of auxiliary thermodynamic data: none.			
4822				
4823	Refe	erences		
4824				
4825	1.	M. Schöneshöfer. Int. J. Radiat. Phys. Chem. 5, 375-386 (1973).		
4826	2.	T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).		
4827				
4828				

4829	Data Sheet 75		
4830			
4831	Chemical equilibrium: $S_2O_3^{\bullet-} + SCN^- \Rightarrow SCNS_2O_3^{\bullet 2-}$ (75.1)		
4832			
4833	List of reports:		
4834			
4835	$1/K_{eq} = (8.3 \pm 2.5) \times 10^{-4}$ M, presumably at room temperature, with μ varying from 0.01		
4836	M to 0.12 M [1]. Obtained by pulse radiolysis of SCN ⁻ /S ₂ O ₃ ²⁻ mixtures, deriving the equilibrium		
4837	constant from the thiocyanate dependence of the kinetics.		
4838			
4839 4840	Discussion		
4841	The equilibrium constant is not expected to differ significantly between room		
4842	temperature and 25 °C. On the other hand, K_{eq} is expected to be sensitive to ionic strength, which		
4843	varied drastically in these experiments. Given this concern, we expand the uncertainty to $\pm a$		
4844	factor of 2.		
4845			
4846	Recommended value:		
4847			
4848	$K_{\rm eq} = 1.2 \times 10^3 \mathrm{M}^{-1}$ within a factor of 2.		
4849			
4850	List of auxiliary thermodynamic data: none.		
4851			
4852	References		
4853			
4854	1. M. Schöneshöfer. Ber. Bunsen-Ges. Phys. Chem. 77, 257-262 (1973).		
4855			
4856			
4857	Data Sheet 76		
------	--		
4858			
4859	Chemical equilibrium: $(SCN)_2^{\bullet-} + S_2O_3^{2-} \Rightarrow SCNS_2O_3^{\bullet2-} + SCN^-$ (76.1)		
4860			
4861	List of reports:		
4862			
4863	$K_{eq} = (1.6 \pm 0.4) \times 10^2$, presumably at room temperature, with μ ranging from 0.01 M to		
4864	0.1 M [1]. Obtained by pulse radiolysis of SCN ⁻ /S ₂ O ₃ ²⁻ mixtures, and derivation of the		
4865	equilibrium constant from the thiocyanate dependence of the kinetics.		
4866			
4867	Discussion		
4868			
4869	This equilibrium constant is expected to be insensitive to ionic strength; thus, the variable		
4870	ionic strength in the experiments is not a concern. The equilibrium constant is not expected to		
4871	differ significantly between room temperature and 25 °C.		
4872			
4873	Recommended value:		
4874			
4875	$K_{\rm eq} = (1.6 \pm 0.4) \times 10^2$ at $\mu = 0.0$ M and 25 °C.		
4876			
4877	List of auxiliary thermodynamic data: none.		
4878			
4879	References		
4880			
4881	1. M. Schöneshöfer. Ber. Bunsen-Ges. Phys. Chem. 77, 257-262 (1973).		
4882			
4883			

4884	Data Sheet 77
4885	
4886	Chemical equilibrium:
4887	$4-OCH_3-C_6H_4-NH_2^{\bullet+} + HS^{-}/H_2S \implies 4-OCH_3-C_6H_4-NH_2 + S^{\bullet-} \text{ at } pH = 7 $ (77.1)
4888	
4889	List of reports:
4890	Only one study has been made of this system. Das et al. [1] used pulse radiolysis to
4891	measure the equilibrium quotient as (68 ± 10) M ⁻¹ for reaction 77.2 at pH 7 and μ = 0.1 M:
4892	
4893	$4-OCH_3-C_6H_4-NH_2^{\bullet+}+2HS^{-}/H_2S \implies 4-OCH_3-C_6H_4-NH_2+HSS^{\bullet 2-}+H^+ \text{ at } pH = 7 (77.2)$
4894	$S^{\bullet-} + SH^- \Rightarrow HSS^{\bullet 2-}$ (77.3)
4895	
4896	By combining the equilibrium quotients for reactions 77.2 and 77.3 (taken as 9×10^3 M ⁻¹ , see
4897	Data Sheet 117) we calculate the equilibrium constant for reaction 77.1 to be 7.55×10^{-3} at pH =
4898	7. Using +0.79 V reported for the anilinium couple [2], Das <i>et al.</i> calculated $E^{\circ}(S^{\bullet}/(HS^{-}/H_2S))$
4899	$= +(0.92 \pm 0.03)$ V at pH = 7.
4900	
4901	Discussion
4902	
4903	The equilibrium "constant" calculated above for reaction 77.1 is obtained by combining
4904	equilibrium quotients at different ionic strengths, and hence is not well defined. Further
4905	complicating matters, the $E^{\circ}(S^{\bullet}/(HS^{-}/H_2S))$ value is derived by using the aniline E° value,
4906	leading to a further mixing of conditions. In what follows we make the approximation that results
4907	are obtained at zero ionic strength.
4908	The newly revised E° -value for promethazine [3] raises the E° of the anilinium couple to
4909	+(0.80 ± 0.02) V (see Supplementry Data Sheet S-11). Hence E° (S ^{•-} /(HS ⁻ /H ₂ S)) = +(0.93 ±
4910	0.03) V at pH = 7 and μ = 0. Utilizing that p $K_a(H_2S)$ = 6.97 and noting that p $K_a(HS^{\bullet}) \ll 7$, we
4911	can calculate from these data the following potentials at $pH = 0$:
4912	
4913	$S^{\bullet-} + e^- + H^+ \Rightarrow HS^ E^{\circ}(S^{\bullet-}, H^+/HS^-) = +(1.33 \pm 0.03) \text{ V} \text{ and}$ (77.4)
4914	$S^{\bullet-} + e^- + 2 H^+ \Rightarrow H_2 S \qquad E^{\circ}(S^{\bullet-}, 2H^+/H_2 S) = +(1.74 \pm 0.03) V $ (77.5)
4915	
4916	From recently revised and apparently rather accurate gas phase data [4], we calculate
4917	$\Delta_f G^o(\text{HS}^{\bullet}(g)) = 113.6 \text{ kJ mol}^{-1}$. As is well-known, $\Delta_f G^o(\text{H}_2\text{S}(g)) = -35.56 \text{ kJ mol}^{-1}$. The Henry's
4918	law constants, $K_{\rm H}$, of sulfides increase monotonously with increasing alkylation [5]. Thus, they
4919	vary from 1.07 M MPa ⁻¹ (0.107 M/bar) for H ₂ S to 3.9 M MPa ⁻¹ (0.39 M/bar) for CH ₃ SH to 5.4 M

MPa⁻¹ (0.54 M/bar) for (CH₃)₂S. This trend reveals that hydrogen bonding between S-H bonds 4920 4921 and water oxygens are of no consequence. Rather it is the hydrogen bonding between the lone 4922 pair on S and the water protons that matter. This suggests that $K_{\rm H}({\rm H_2S})/K_{\rm H}({\rm HS}^{\bullet}) \leq$ 4923 $K_{\rm H}({\rm HSCH}_3)/K_{\rm H}({\rm H}_2{\rm S})$. In fact, we assume $K_{\rm H}({\rm H}_2{\rm S})/K_{\rm H}({\rm HS}^{\bullet}) \approx (K_{\rm H}({\rm HSCH}_3)/K_{\rm H}({\rm H}_2{\rm S}))^{1/2} = 1.9$. 4924 Hence, we calculate the following aqueous potential: 4925 4926 $HS^{\bullet} + e^{-} + H^{+} \Rightarrow H_2S$ $E^{\circ}(\text{HS}^{\bullet},\text{H}^{+}/\text{H}_{2}\text{S}) = +(1.54 \pm 0.03) \text{ V}$ (77.6)4927 4928 The error margin assumes a maximum uncertainty factor of 3 in the Henry's constant ratios of 4929 the two species. This yields $E^{\circ}(\text{HS}^{\bullet}/\text{HS}^{-}) = +(1.13 \pm 0.03)$ V and $pK_{a}(\text{HS}^{\bullet}) = (3.4 \pm 0.7)$. When combined with NBS data for HS⁻ and H₂S(aq) the above E° values yield $\Delta_f G^{\circ} = +(140)$ 4930 ± 3) kJ mol⁻¹ for S^{•-} and $\Delta_f G^\circ = +(121 \pm 3)$ kJ mol⁻¹ for HS[•]. 4931 Das *et al.* [1] also determined the equilibrium constant for reaction 77.7: 4932 4933 $[Mo(CN)_8]^{3-} + 2 SH^- \Rightarrow [Mo(CN)_8]^{4-} + HSS^{\bullet 2-} + H^+$ 4934 (77.7)4935 4936 The result provides good support for the result obtained from the methoxyaniline reaction (eq 4937 77.1). However, this measurement was performed at $\mu = 0.1$ M, and given the high ionic charges 4938 involved in this reaction we prefer to base our recommendations on eq 77.1. 4939 Given our recommended equilibrium constant for eq 77.3 ($K = (9 \pm 2) \times 10^3 \text{ M}^{-1}$, see Data Sheet 4940 117), the NBS value of +(12.08 ±0.8) kJ mol⁻¹ for $\Delta_f G^{\circ}$ (HS⁻) [6], and our derived value for 4941 $\Delta_{\rm f} G^{\circ}({\rm S}^{\bullet-})$, we obtain $\Delta_{\rm f} G^{\circ}({\rm HSS}^{\bullet 2-}) = +(129 \pm 4) \text{ kJ mol}^{-1}$. Kamyshny *et al.* have reported a value 4942 4943 of +(20.2 ± 1.3) kJ mol⁻¹ for $\Delta_f G^{\circ}(HS_2^{-})$ [7], which thus leads to a value of -(1.13 ± 0.05) V for $E^{\circ}(\mathrm{HS}_{2}^{-}/\mathrm{HSS}^{\bullet 2^{-}}).$ 4944 4945 4946 **Recommended values**: 4947 4948 $E^{\circ}(S^{\bullet-},H^+/HS^-) = +(1.33 \pm 0.03) V$ 4949 $E^{\circ}(S^{\bullet-}, 2H^+/H_2S) = +(1.74 \pm 0.03)V$ $E^{\circ}(\text{HS}^{\bullet},\text{H}^{+}/\text{H}_{2}\text{S}) = +(1.54 \pm 0.03) \text{ V}$ 4950 $E^{\circ}(\text{HS}^{\bullet}/\text{HS}^{-}) = +(1.13 \pm 0.03) \text{ V}$ 4951 $E^{\circ}(\text{HS}_2^{-}/\text{HSS}^{\bullet 2-}) = -(1.13 \pm 0.05) \text{ V}$ 4952 4953 $pK_a(HS^{\bullet}) = (3.4 \pm 0.7)$ $\Delta_{\rm f} G^{\circ} = +(140 \pm 3) \, \rm kJ \, mol^{-1}$ for S^{•-} 4954 $\Delta_{\rm f} G^{\circ} = +(121 \pm 3) \, \rm kJ \, mol^{-1} \, for \, \rm HS^{\bullet}$ 4955

4956	$\Delta_{\rm f} G^{\circ}({\rm HSS}^{\bullet 2-}) = (129 \pm 4) {\rm kJ} {\rm mol}^{-1}$		
4957	$\Delta_{\rm f} G^{\circ}({\rm HS_2}^-) = +(20.2 \pm 1.3) \text{ kJ mol}^{-1}$		
4958			
4959	List of	auxiliary thermodynamic data: none	
4960			
4961	Nomer	nclature: S ^{•–} , sulfide(•–) or sulfanidyl, HS [•] , hydridosulfur(•) or sulfanyl; H ₂ S,	
4962	dihydri	idosulfur or sulfane (hydrogen sulfide or, better, dihydrogen sulfide is acceptable); HS_2^- ,	
4963	hydride	odisulfide(S-S)(1–) or disulfanide; $HSS^{\bullet 2-}$, hydridodisulfide(S-S)($\bullet 2-$) or disulfanudi-idyl;	
4964	HSSH•	, dihydridodisulfide(S-S)(\bullet 1–) or disulfanuidyl.	
4965			
4966	Refere	ences	
4967			
4968	1.	T. N. Das, R. E. Huie, P. Neta, S. Padmaja. J. Phys. Chem. A 103, 5221-5226 (1999).	
4969	2.	M. Jonsson, J. Lind, T. E. Eriksen, G. Merényi. J. Am. Chem. Soc. 116, 1423-1427	
4970	(1994)		
4971	3.	E. Madej, P. Wardman. Rad. Phys. Chem. 75, 990-1000 (2006).	
4972	4.	K. Lodders. J. Phys. Chem. Ref. Data 33, 357-367 (2004).	
4973	5.	A. Przyjazny, W. Janicki, W. Chrzanowski, R. Staszewski. J. Chromatog. 280, 249-260	
4974	(1983)		
4975	6.	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.	
4976	Churne	ey, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).	
4977	7.	A. Kamyshny, A. Goifman, J. Gun, D. Rizkov, O. Lev. Environ. Sci. Technol. 38, 6633-	
4978	6644 (2	2004).	
4979			

4981	
4982	Chemical equilibria:
4983	$\operatorname{SeO}_3^{2-} + \operatorname{HO}^{\bullet} \rightleftharpoons \operatorname{HSeO}_4^{\bullet^{2-}}$ (78.1)
4984	$\operatorname{SeO}_{3}^{2-} + \operatorname{O}^{\bullet-} + \operatorname{H}_{2}\operatorname{O} \rightleftharpoons \operatorname{HSeO}_{4}^{\bullet2-} + \operatorname{HO}^{-} $ (78.2)
4985	$\operatorname{SeO}_3^{\bullet-} + \operatorname{HO}^- \rightleftharpoons \operatorname{HSeO}_4^{\bullet^2-}$ (78.3)
4986	
4987	List of reports:
4988	There is only one report [1]. Kläning and Sehested have determined by pulse radiolysis the
4989	equilibrium constants $K_{78.1} = 4.8 \times 10^3 \text{ M}^{-1}$; $K_{78.2} = 37$; $K_{78.3} = 0.78 \text{ M}^{-1}$, all corrected to zero
4990	ionic strength.
4991	
4992	Discussion
4993	
4994	Although the above constants are extracted from a somewhat complex scheme, they
4995	appear to be very carefully and professionally done. Experimentally, rate constants for forward
4996	and reverse reactions are measured separately with due allowance for ionic strength effects. As
4997	for equilibrium 78.3, the hydrolysis of the SeO ₃ ^{•-} radical, the authors analyze the spectral change
4998	with varying [HO ⁻] at constant dose, while making the appropriate corrections. From the finding
4999	of a distinct isosbestic point, the simultaneous presence of only two species, SeO ₃ - and
5000	HSeO4 ^{•2-} , is deduced. At high pH the radical(s) disappear in a first order process, the rate
5001	increasing with increasing [HO ⁻]. When O_2 is present in such solutions, the authors observe a
5002	first order build-up of $O_3^{\bullet-}$, at a rate that exactly matches the decay of the HSeO ₄ $^{\bullet 2-}$ radicals.
5003	Hence the occurrence of reactions -78.1 and -78.2 is inferred. From measurements of the rate of
5004	radical disappearance at varying [HO ⁻] both $k_{-78.1}$ and $k_{-78.2}$ are obtained, while $k_{78.1}$ and $k_{78.2}$ are
5005	derived directly from the build-up of radical absorbance during SeO ₃ ²⁻ consumption by HO [•] /O ^{•-} .
5006	From the above equilibrium constants the authors derive a number of electrode potentials as well
5007	as Gibbs energies of formation for selenium radical species. These hinge, of course, on the
5008	correctly assumed values for the references HO^{\bullet} and $O^{\bullet-}$. Fortunately, the authors use the same
5009	electrode potential for $(HO^{\bullet}, H^+/H_2O) = +2.73$ V, as we have agreed upon. Hence we can use
5010	their published values, which they believe to be correct within 10 mV, a value that should be
5011	doubled to include all error sources.
5012	The qualitatively interesting part in this study is the finding that Se(V) can exist in four-
5013	coordinate form, something $S(V)$ cannot. This is no doubt mainly due to the size difference of
5014	the central atoms. Of further interest is the finding that both the four- and three-coordinate
5015	Se(V)-species can rapidly be produced by reduction of tetraoxidoselenate(2-), Se(VI), by the
	185

Data Sheet 78

```
hydrated electron. This is in sharp contrast to SO_4^{2-}, which is inert against one-electron
5016
           reduction. It is also intuitively non-trivial to understand how the electrode potential of SeO_3^{\bullet-} and
5017
           the H-O bond strength in H-O-SeO<sub>2</sub><sup>-</sup> can exceed by ca. 1 eV the corresponding values for
5018
5019
           SO_3^{\bullet-} and H-O-SO_2^{-}. Be it as it may, the finding that SeO_3^{\bullet-} oxidizes CO_3^{2-} rather fast (with
           E^{\circ}(CO_3^{\circ-}/CO_3^{2-}) = +1.59 \text{ V}, while SO_3^{\circ-} is completely unreactive towards CO_3^{2-}, firmly proves
5020
           this ranking.
5021
5022
5023
           Recommended values:
5024
           E^{\circ}(\text{SeO}_3^{\bullet-}/\text{SeO}_3^{2-}) = +(1.68 \pm 0.03) \text{ V}
5025
           E^{\circ}(\text{SeO}_3^{\bullet-}, \text{H}^+/\text{HSeO}_3^-) = +(2.18 \pm 0.03) \text{ V}
5026
           \Delta_{\rm f} G^{\rm o}({\rm SeO}_3^{\bullet-}) = -(202 \pm 3) \text{ kJ mol}^{-1}
5027
           \Delta_{\rm f} G^{\rm o}({\rm HSeO_4^{\bullet 2-}}) = -(358 \pm 3) \text{ kJ mol}^{-1}
5028
5029
           Nomenclature: SeO<sub>3</sub><sup>\bullet-</sup>, trioxidoselenate(\bullet-); SeO<sub>3</sub><sup>2-</sup>, trioxidoselenate(2-);
5030
           HSeO_3^-, hydroxidodioxidoselenate(-), and HSeO_4^{\bullet 2-}, hydroxidotrioxidoselenate(\bullet 2-)
5031
5032
5033
           List of auxiliary thermodynamic data: none
5034
5035
           References
5036
                     U. K. Kläning, K. Sehested. J. Phys. Chem. 90, 5460-5464 (1986).
5037
           1.
5038
```

5040	Data Sheet 79	
5041		
5042	Chemical equilibria:	
5043	$TeO_3^{2-} + HO^{\bullet} \Rightarrow HTeO_4^{\bullet 2-}$	(79.1)
5044	$TeO_3^{2-} + O^{\bullet-} \Rightarrow TeO_4^{\bullet 3-}$	(79.2)
5045	$TeO_3^{\bullet-} + H_2O \Rightarrow HTeO_4^{\bullet2-} + H^+$	(79.3)
5046	$\mathrm{HTeO_4}^{\bullet 2-} \Rightarrow \mathrm{TeO_4}^{\bullet 3-} + \mathrm{H^+}$	(79.4)
5047		
5048	List of reports:	
5049	There is only one report [1]. From the pulse radiolytic data of Kläning and Sehested the	
5050	following values for the above equilibrium constants are obtained:	
5051		
5052	$K_{79.1} = (3.7 \pm 1.3) \times 10^{6} \text{ M}^{-1}; K_{79.2} = (2.7 \pm 0.5) \times 10^{5} \text{ M}^{-1}; \text{ p}K_{79.3} = (9.96 \pm 0.15); \text{ p}K_{79.4}$	= (13.2
5053	\pm 0.2). $K_{79.1}$ should be independent of ionic strength. $K_{79.2}$ at $\mu = 0.1$ M, $K_{79.3}$ at $\mu = (0.0)$	1- 0.03)
5054	M; $K_{79.4}$ at $\mu = (0.01 - 0.3)$ M.	
5055		
5056	Discussion	
5057		
5058	Qualitatively, tellurium behaves similarly to selenium. Thus Te(V) species are fa	acilely
5059	obtained either by way of one-electron oxidation of Te(IV) by HO•/O•- or by one-electron	on
5060	reduction of Te(VI) by the hydrated electron. Just as in the case of selenium, and in con	trast to S,
5061	the four-coordinate Te(V) can exist in equilibrium with the corresponding three-coordin	ate
5062	Te(V) species. In the case of tellurium, the four-coordinate species is stable in a consider	rably
5063	larger pH-interval than the Se(V) species. This is in agreement with the larger size of Te	e as
5064	coMPared to Se. Hence, the authors can observe four $Te(V)$ species: to wit $TeO_3^{\bullet-}$, H_2T	eO₄•-,
5065	$HTeO_4^{\bullet 2-}$ and $TeO_4^{\bullet 3-}$. By spectral and kinetic analysis some acid –base dissociation co	nstants
5066	can be evaluated. From the kinetics of decay at different pH-values of the four-coordina	te
5067	species the rate constants of expulsion of HO•/O•- were determined, which in combination	on with
5068	the forward rates yielded the pertinent equilibrium constants. Hence, just as in the case of	of Se(V),
5069	the electrode potentials and Gibbs energies of formation of the Te(V) species hinge on t	he
5070	reference values for HO $^{\bullet}$ and O $^{\bullet-}$. The authors happen to employ the same electrode pot	ential for
5071	these species as was recommended by our task group. Hence their reported values can be	e

- 5072 recommended. The error margins in the potentials are probably \pm 20 mV. Note that the Gibbs
- 5073 energies of formation are dependent on a non-NBS value for $\Delta_f G^{\circ}(\text{TeO}_3^{2-})$ as is described in the
- 5074 cited publication. Although the derived E° and $\Delta_{f}G^{\circ}$ values are based, in part, on equilibrium

5075	constants that have not been corrected to zero ionic strength, we consider that the errors		
5076	introduced are small enough relative to the stated uncertainties.		
5077			
5078	Recommended values:		
5079			
5080	$E^{\circ}(\text{TeO}_3^{\bullet-}/\text{TeO}_3^{2-}) = +(1.74 \pm 0.03) \text{ V}$		
5081	$E^{\circ}(\text{TeO}_3^{\bullet-}, \text{H}^+/\text{HTeO}_3^-) = +(2.31 \pm 0.03) \text{ V}$		
5082	$\Delta_{\rm f} G^{\rm o}({\rm TeO_3}^{\bullet-}) = -(214 \pm 3) \rm kJ mol^{-1}$		
5083	$\Delta_{\rm f} G^{\rm o}({\rm HTeO_4}^{\bullet 2-}) = -(394 \pm 3) \text{ kJ mol}^{-1}$		
5084	$\Delta_{\rm f} G^{\rm o}({\rm TeO_4}^{\bullet 3-}) = -(319 \pm 3) \text{ kJ mol}^{-1}$		
5085			
5086	Nomenclature: $TeO_3^{\bullet-}$, trioxidotellurate($\bullet-$); TeO_3^{2-} , trioxidotelurate(2-);		
5087	HTeO ₃ ⁻ , hydroxidodioxidotellurate(1–); TeO ₄ $^{\bullet 3-}$ tetraoxidotellurate($\bullet 3-$), and HTeO ₄ $^{\bullet 2-}$,		
5088	hydroxidotrioxidotellurate(•2–)		
5089			
5090			
5091	List of auxiliary thermodynamic data: none		
5092			
5093	References		
5094			
5095	1. U. K. Kläning, K. Sehested. J. Phys. Chem. A. 105, 6637-6645 (2001).		
5096			
5097			

Data Sheet 80

5099 Summary of the N_3 • System

5101 Tabulated below are the presently recommended equilibrium constants involving the

- 5102 trinitrogen(2N-N)(•) (N₃•) radical. Uncertainties are expressed as $\pm 1 \sigma$; in many cases the value
- 5103 of σ is merely a subjective guess.

rxn #	Reaction	K _{eq}	dim.	uncertainty	μ / M	Data
						Sheet #
81.1	$N_3^- + [Ru(bpy)_3]^{3+} \rightleftharpoons N_3^{\bullet} +$	14		± 4	0	81
	$\left[\operatorname{Ru}(\operatorname{bpy})_{3}\right]^{2+}$					
82.1	$N_3^- + [IrCl_6]^{2-} \rightleftharpoons N_3^{\bullet} + [IrCl_6]^{3-}$	1.7×10^{-7}		± 0.2	1.0	82
83.1	$ClO_2^{\bullet} + N_3^{-} \Rightarrow ClO_2^{-} + N_3^{\bullet}$	4×10^{-7}		$\pm 1 \times 10^{-7}$	0	83
29.1	$Br_2^{\bullet-} + N_3^- \Rightarrow N_3^{\bullet} + 2Br^-$	$5.5 imes 10^4$	М	factor of 2	0	29
84.1	$(DMS)_2^{\bullet+} + N_3^- \Rightarrow 2DMS + N_3^{\bullet}$	16.4	М	± 1.0	?	84
72.1	$N_3^{\bullet} + 2S_2O_3^{2-} \Rightarrow N_3^- + (S_2O_3)_2^{\bullet 3-}$	1.9×10^4	M^{-1}	$\pm 2 \times 10^3$	0.44	72
85.1	$N_3^{\bullet} + N_3^- \Rightarrow N_6^{\bullet-}$	0.24	M^{-1}	$\pm 30\%$	0	85
86.1	$N_3^{\bullet} + e^- \rightleftharpoons N_3^-$	1.32	V	± 0.03	0.2	86
DMS is dimethylsulfide, CH ₃ SCH ₃ Reaction 81.1, in combination with the measured electrode potential of the Ru(III/II) couple						
leads to	leads to $E^{07} = +(1.33 \pm 0.01)$ V for N ₃ •/N ₃ ⁻ at 25 °C and $\mu = 0.01$ M.					
Reaction 82.1, in combination with the electrode potential of the Ir(IV/III) couple leads to E° = +(1.33 ± 0.02) V at 25 °C and μ = 1.0 M.						
Reaction +(1.312) the wide	Reaction 83.1, in combination with the standard potential of the $ClO_2^{\bullet}/ClO_2^{-}$ couple leads to $E^{\circ} = +(1.313 \pm 0.006)$ V at 25 °C and $\mu = 0.0$ M. The uncertainty here may be overly optimistic, given the wide range of reports for k_r .			s to E° = ic, given		
Reaction 29.1, in combination with the standard potential of the $Br_2^-/2Br^-$ couple (+1.625 ± 0.020) V leads to $E^\circ = +(1.34 \pm 0.03)$ V at 25 °C.						

5121	Reaction 84.1 is unsuitable for deriving $E^{\circ}(N_3^{\bullet}/N_3^{-})$ because it is used to derive the potential of
5122	the $(DMS)_2^{\bullet+}/2DMS$ system.
5123	
5124	Reaction 72.1 is unsuitable for deriving $E^{\circ}(N_3^{\bullet}/N_3^{-})$ because it is used to derive the potential of
5125	the thiosulfate system.
5126	
5127	Reaction 86.1 (from irreversible cyclic voltammetry) yields an electrode potential at $\mu = 0.2$ M.
5128	
5129	The various routes to E° given above are essentially all in agreement within their
5130	specified uncertainties. We assign relatively low weight to the result from reaction 83.1 because
5131	of concerns about the scatter in k_r . Given the consistency of the remaining results despite their
5132	varying ionic strengths, we recommend $E^\circ = +(1.33 \pm 0.02)$ V at 25 °C.
5133	
5134	NBS gives $\Delta_f G^\circ = +(348 \pm 8)$ kJ for N ₃ ⁻ (<i>aq</i>). The <i>E</i> ° recommended above yields
5135	$\Delta_{\rm f} G^{\circ}({\rm N}_3^-,aq) - \Delta_{\rm f} G^{\circ}({\rm N}_3^{\bullet},aq) = -(128 \pm 1) \text{ kJ mol}^{-1}. \text{ Thus, we obtain } \Delta_{\rm f} G^{\circ} = (476 \pm 8) \text{ kJ mol}^{-1}.$
5136	for N ₃ •(<i>aq</i>), where most of the uncertainty reflects the uncertainty in N ₃ ⁻ .
5137	
5138	Recommended values:
5139	
5140	$E^{\circ}(N_3^{\bullet}/N_3^{-}) = +(1.33 \pm 0.02) \text{ V at } 25 ^{\circ}\text{C}$
5141	$\Delta_{\rm f}G^{\circ} = +(476 \pm 8 \text{ kJ}) \text{ mol}^{-1} \text{ for } N_3^{\bullet}(aq)$
5142	
5143	Nomenclature: $Br_2^{\bullet-}$, dibromide($\bullet 1-$); Br^- , bromide($1-$) or bromide; ClO_2^{\bullet} , dioxidochlorine(\bullet) or
5144	chlorine dioxide; $[IrCl_6]^{2-}$, hexachloridoiridate(2-); N_3^{\bullet} , trinitrogen(2N-N)(\bullet); N_3^{-} , trinitride(1-),
5145	azide is acceptable; $N_6^{\bullet-}$, hexanitride($\bullet 1-$); $S_2O_3^{2-}$, trioxidosulfidosulfate(<i>S</i> - <i>S</i>)(2-); $(S_2O_3)_2^{\bullet 3-}$,
5146	bis[(trioxidosulfidosulfate)](S-S)(\bullet 3-); [Ru(bpy) ₃] ²⁺ , tris(bipyridine)ruthenium(2+).
5147	
5148	
5149	

5150	Data Sheet 81
5151	
5152	Chemical equilibrium: $N_3^- + [Ru(bpy)_3]^{3+} \Rightarrow N_3^{\bullet} + [Ru(bpy)_3]^{2+}$ (81.1)
5153	
5154	List of reports:
5155	
5156	$K_{eq} = (10 \pm 5)$ at $\mu = 0.01$ M and 25 °C [1]. Determined from the ratio of forward and
5157	reverse rate constants for approach to equilibrium, by pulse radiolysis experiments. The value of
5158	K_{eq} was not actually reported and the value given here is derived from the reported E° values for
5159	the N_3^{\bullet}/N_3^{-} and $[Ru(bpy)_3]^{3+}/[Ru(bpy)_3]^{2+}$ couples.
5160	
5161	$K_{eq} = (4.8 \pm 2.4)$ at $\mu = 0.01$ M and 25 °C [1]. Determined from absorbance
5162	measurements at equilibrium, during pulse radiolysis experiments. The value of K_{eq} was not
5163	actually reported and the value given here is derived from the reported E° ' values for the N ₃ •/N ₃ -
5164	and $\operatorname{Ru}(\operatorname{bpy})_3]^{3+/} \operatorname{Ru}(\operatorname{bpy})_3]^{2+}$ couples.
5165	
5166	Discussion
5167	
5168	The two determinations of the equilibrium constant are in good agreement and yield an
5169	average value of (7.4 \pm 3.7) at 25 °C and μ = 0.01 M. Given the low ionic strength of the
5170	measurements, it is reasonable to correct for activity coefficients by the eq
5171	log $\gamma = -Az^2 \mu^{1/2} / (1 + \mu^{1/2})$. This procedure yields $K_{eq} = (14 \pm 4)$ at 25 °C and $\mu = 0$ M.
5172	As reported by the original authors, the equilibrium constant plus the measured potential
5173	for the Ru(III/II) couple $E^{\circ} = +(1.28 \pm 0.01)$ V at $\mu = 0.1$ M leads to $E^{\circ} = +(1.33 \pm 0.01)$ V for
5174	N_3^{\bullet}/N_3^{-} . The estimated uncertainty is probably too small, given the varying ionic strengths in the
5175	component measurements.
5176	
5177	Recommended values:
5178	
5179	$K_{\rm eq} = (14 \pm 4)$ at 25 °C and $\mu = 0$ M
5180	$E^{\circ} = +(1.33 \pm 0.01)$ V for the N ₃ •/N ₃ ⁻ couple at 25 °C and $\mu = 0.01$ M.
5181	
5182	List of auxiliary thermodynamic data: none.
5183	
5184	Nomenclature: see Data Sheet 80.
5185	

5186	References			
5187				
5188	1.	M. R. DeFelippis, M. Faraggi, M. H. Klapper. J. Phys. Chem. 94, 2420-2424 (1990).		
5189				
5190				

5191	Data Sheet 82
5192	
5193	Chemical equilibrium: $N_3^- + [IrCl_6]^{2-} \Rightarrow N_3^{\bullet} + [IrCl_6]^{3-}$ (82.1)
5194	
5195	List of reports:
5196	
5197	$K_{\rm eq} = (1.45 \pm 0.23) \times 10^{-7}$ at unspecified ionic strength and temperature [1]. Result
5198	obtained from the ratio of the forward and reverse rate constants. The forward rate constant was
5199	obtained by stopped-flow measurements at 25 °C and μ = 1.0 M. The reverse rate constant was
5200	obtained by pulse radiolysis at 22 °C and $\mu = (0.01 - 0.1)$ M.
5201	
5202	$K_{\rm eq} = 1.7 \times 10^{-7}$ at 25 °C and $\mu = 1.0$ M [2]. Result obtained from the ratio of the forward
5203	and reverse rate constants. The forward rate constant was obtained by stopped-flow
5204	measurements at 25 °C and μ = 1.0 M. The reverse rate constant was obtained by pulse
5205	radiolysis at 22 °C and $\mu = (0.01 - 0.1)$ M.
5206	
5207	Discussion
5208	
5209	The two reports of K_{eq} differ because of slightly different values used for the forward rate
5210	constant; the reverse rate constant was identical in the two reports. The first report was a
5211	preliminary version of the second, and so we recommend the second with uncertainties as given
5212	in the first: $K_{eq} = (1.7 \pm 0.2) \times 10^{-7}$ at 25 °C and $\mu = 1.0$ M. Although the reverse rate constant
5213	was obtained under various ionic strengths, it is expected to be independent of ionic strength, and
5214	thus the derived value of K_{eq} pertains to the ionic strength at which the forward rate constant was
5215	determined.
5216	By use of $E^{\circ} = +0.93$ for Ir(IV/III) at $\mu = 1.0$ M, Ram and Stanbury derived $E^{\circ} = +(1.33)$
5217	± 0.02) V for N ₃ /N ₃ ⁻ .
5218	
5219	Recommended values:
5220	
5221	$K_{\rm eq} = (1.7 \pm 0.2) \times 10^{-7}$ at 25 °C and $\mu = 1.0$ M
5222	$E^{\circ} = +(1.33 \pm 0.02)$ V for N ₃ •/N ₃ ⁻ at 25 °C and $\mu = 1.0$ M
5223	
5224	List of auxiliary thermodynamic data: none.
5225	
5226	Nomenclature: see Data Sheet 80.

5227			
5228	References		
5229			
5230	1.	M. S. Ram, D. M. Stanbury. Inorg. Chem. 24, 4233-4234 (1985).	
5231	2.	M. S. Ram, D. M. Stanbury. J. Phys. Chem. 90, 3691-3696 (1986).	
5232			
5233			

- 5234 **Data Sheet 83**
- 5235 Chemical equilibrium: $ClO_2^{\bullet} + N_3^{-} \Rightarrow ClO_2^{-} + N_3^{\bullet}$ 5236 (83.1)5237 5238 List of reports: 5239 $K_{eq} = (4.0 \pm 1) \times 10^{-7}$ at 25 °C and $\mu = 0.1$ M. Calculated herein from the ratio of the 5240 forward and reverse rate constants. Awad and Stanbury determined $k_{\rm f} = (809 \pm 9) \,{\rm M}^{-1} \,{\rm s}^{-1}$ at 25 5241 5242 °C and $\mu = 0.1$ M from stopped-flow experiments [1]. The reverse rate constant was reported by DeFelippis *et al.* from pulse radiolysis as $7.8 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ at an unspecified temperature and $\mu =$ 5243 0.1 M [2]. Shoute *et al.* reported k_r from pulse radiolysis as 1.9×10^9 M⁻¹ s⁻¹ at 17 °C and $3.2 \times$ 5244 $10^9 \text{ M}^{-1} \text{ s}^{-1}$ at 33 °C, both at $\mu = 0.1 \text{ M}$ [3]. These workers noted the discrepancy between their 5245 5246 rate constant and that reported by DeFelippis *et al.* [2] (their ref. 25), and they also noted some 5247 other issues that undermine the credibility of ClO_2^- rate constants (with $(SCN)_2^{\bullet-}$ and $Br_2^{\bullet-}$) 5248 reported by DeFelippis et al. Difficulties in the (SCN)₂^{•-} and Br₂^{•-} reactions can be understood 5249 because ClO_2^- reacts with SCN⁻ and Br⁻ [4, 5]; a coMParable explanation for the $N_3^$ discrepancy is presently lacking. Merényi *et al.* used pulse radiolysis to obtain $k_r = 1.9 \times 10^9 \text{ M}^{-1}$ 5250 s^{-1} at an unspecified temperature and ionic strength [6]. We reject the report on k_r from 5251 5252 DeFelippis *et al.* [2] on the grounds that it disagrees seriously with the two other reports, which 5253 are quite consistent with each other. The value of k_r should be rather insensitive to μ and T; combining the results of Shoute *et al.* and Merényi *et al.* we recommend $k_r = (2.0 \pm 0.5) \times 10^9$ 5254 M^{-1} s⁻¹ at 25 °C and arbitrary ionic strength. The ratio of k_f and k_r is thus $(4 \pm 1) \times 10^{-7}$ at 25 °C 5255 5256 and $\mu = 0.1$ M. Note that this specified uncertainty is perhaps too optimistic, as it is based on a 5257 somewhat arbitrary rejection of the results of DeFelippis et al. [2]. 5258
 - 5259 **Discussion**
 - 5260

5261 As the values of k_f , k_r , and K_{eq} should be insensitive to μ , we recommend $K_{eq} = (4 \pm 1) \times 10^{-7}$ at 25 °C and $\mu = 0.0$ M.

5263 With $E^{\circ} = +0.935 \pm 0.003$ V for ClO_2°/ClO_2^{-} as we have recommended elsewhere in this 5264 compendium, we derive $E^{\circ} = +(1.313 \pm 0.006)$ V for N_3°/N_3^{-} at 25 °C. The uncertainty here may 5265 be overly optimistic.

- 5266
- 5267 **Recommended values**:
- 5268
- 5269 $K_{eq} = (4 \pm 1) \times 10^{-7}$ at 25 °C and $\mu = 0.0$ M

5270	$E^{\circ} = +(1.313 \pm 0.006) \text{ V for } \text{N}_3^{\bullet}/\text{N}_3^{-} \text{ at } 25 ^{\circ}\text{C}$		
5271			
5272	List of	auxiliary thermodynamic data: none.	
5273			
5274	Nomer	nclature: see Data Sheet 80.	
5275			
5276	Refere	ences	
5277			
5278	1.	H. H. Awad, D. M. Stanbury. J. Am. Chem. Soc. 115, 3636-3642 (1993).	
5279	2.	M. R. DeFelippis, C. P. Murthy, M. Faraggi, M. H. Klapper. Biochemistry 28, 4847-4853	
5280	(1989)		
5281	3.	L. C. T. Shoute, Z. B. Alfassi, P. Neta, R. E. Huie. J. Phys. Chem. 95, 3238-3242 (1991).	
5282	4.	M. Alamgir, I. R. Epstein. J. Phys. Chem. 89, 3611-3614 (1985).	
5283	5.	O. Valdes-Aguilera, D. W. Boyd, I. R. Epstein, K. Kustin. J. Phys. Chem. 1986, 6702-	
5284	6708 (1986).	
5285	6.	G. Merényi, J. Lind, X. Shen, T. E. Eriksen. J. Phys. Chem. 94, 748-752 (1990).	
5286			

5288	Data Sheet 84
5289	
5290	Chemical equilibrium:
5291	$(DMS)_2^{\bullet+} + N_3^- \rightleftharpoons 2DMS + N_3^{\bullet} $ (84.1)
5292	DMS is CH ₃ SCH ₃
5293	
5294	List of reports:
5295	
5296	$K_{eq} = 16.4$ M at room temperature and an unspecified ionic strength [1]. Obtained from
5297	pulse radiolysis measuring the absorbance at equilibrium.
5298	
5299	Discussion
5300	
5301	We assume room temperature is 22 °C. An uncertainty of ± 1 seems appropriate, given
5302	the number of significant figures specified.
5303	This reaction was used by Merényi <i>et al.</i> [1] to determine E° for the (DMS) ₂ ^{•+/2DMS}
5304	couple, and hence is not of much value in determining E° for the N ₃ •/N ₃ ⁻ couple.
5305	
5306	
5307	Recommended value:
5308	
5309	$K_{\text{eq}} = (16.4 \pm 1.0) \text{ M}$ at 22 °C and unspecified ionic strength.
5310	
5311	List of auxiliary thermodynamic data: none.
5312	
5313	Nomenclature: see Data Sheet 80.
5314	
5315	References
5316	
5317	1. G. Merényi, J. Lind, L. Engman. J. Phys. Chem. 100, 8875-8881 (1996).
5318	
5319	

5320	Data Sheet 85		
5321			
5322	Chemical equilibrium: $N_3^{\bullet} + N_3^{-} \Rightarrow N_6^{\bullet-}$ (85.1)		
5323			
5324	List of reports:		
5325			
5326	$K_{eq} = 0.33 \text{ M}^{-1}$ at an unspecified temperature with $\mu = (0.1 - 1) \text{ M} [1]$. Result obtained by		
5327	pulse radiolysis, with optical measurement of the position of equilibrium. Data were probably		
5328	acquired at room temperature: 22 °C.		
5329	$K_{eq} = (0.16 - 0.22) \text{ M}^{-1}$ at an unspecified temperature with $\mu = (0.5 - 4) \text{ M}$ [2]. This result		
5330	was obtained by pulse radiolysis, by measuring the equilibrium absorbance of $N_6^{\bullet-}$. Data were		
5331	probably acquired at room temperature: 22 °C.		
5332			
5333	Discussion		
5334			
5335	There is good agreement between the two reports on K_{eq} . Ionic strength considerations		
5336	should not be important for this reaction. We recommend an average value of 0.24 M^{-1} to K_{eq}		
5337	and assign an uncertainty of \pm 30%. The temperature effect is not likely to make K_{eq} significantly		
5338	different at 25 °C than at 22 °C.		
5339			
5340	Recommended value:		
5341			
5342	$K_{\rm eq} = (0.24 \pm 0.08) \mathrm{M}^{-1}$ at 25 °C and $\mu = 0 \mathrm{M}$.		
5343			
5344	List of auxiliary thermodynamic data: none.		
5345			
5346	Nomenclature: see Data Sheet 80.		
5347			
5348	References		
5349			
5350	1. J. Butler, E. J. Land, A. J. Swallow, W. Prutz. <i>Radiat. Phys. Chem.</i> 23, 265-270 (1984).		
5351	2. Z. B. Alfassi, W. A. Prütz, R. H. Schuler. J. Phys. Chem. 90, 1198-1203 (1986).		
5352			
5353			

5354	Data Sheet 86
5355	
5356	Chemical equilibrium: $N_3^{\bullet} + e^- \Rightarrow N_3^-$ (86.1)
5357	
5358	List of reports:
5359	
5360	$E_{1/2} = +(1.32 \pm 0.03)$ V at $\mu = 0.2$ M and an unspecified temperature. This result was
5361	obtained by cyclic voltammetry, based on the scan-rate dependence of the irreversible peak
5362	potential [1].
5363	
5364	Discussion
5365	
5366	We assume the experiments were performed at room temperature, i.e., 22 °C. Although obtained
5367	from an unconventional method for determining electrode potentials, the result seems reliable.
5368	The conversion from $E_{1/2}$ to E° is a function of the diffusion constants, but the difference is
5369	expected to be negligible relative to the specified uncertainty.
5370	
5371	Recommended value:
5372	
5373	$E^{\circ} = +(1.32 \pm 0.03)$ V at $\mu = 0.2$ M and 22 °C.
5374	
5375	List of auxiliary thermodynamic data: none.
5376	
5377	Nomenclature: see Data Sheet 80.
5378	
5379	
5380	References
5381	
5382	1. Z. B. Alfassi, A. Harriman, R. E. Huie, S. Mosseri, P. Neta. J. Phys. Chem. 91, 2120-
5383	2122 (1987).
5384	
5385	

5386 Data Sheet 87 5387 H₂NOH and H₂NO• 5388 Simple 1-electron oxidation of hydroxylamine can yield the corresponding radical cation, 5389 H₂NOH^{•+}: this cation is a strong acid as noted in Table 3. Thus, we begin with a discussion of 5390 the oxidation to the more accessible species H_2NO^{\bullet} as in 5391 5392 $H_2NO^{\bullet} + H^+ + e^- \Rightarrow H_2NOH$ 5393 (87.1) 5394 5395 E° values involving the H₂NO[•] radical are derived from the kinetics of oxidation of 5396 hydroxylamine, as described by Lind and Merényi [1]. 5397 The oxidation of H₂NOH by Pu(IV) under conditions of a large excess of hydroxylamine in nitric acid media $[H^+] = (1.28 - 2.5)$ M has the rate law as presented by Barney [2]: 5398 5399 $\frac{d[Pu(IV)]}{dt} = \frac{k[Pu(IV)]^{2}[H_{3}NOH^{+}]^{2}}{[Pu(III)]^{2}[H^{+}]^{4}(K_{4} + [NO_{3}^{-}])^{2}}$ 5400 (87.2) 5401 Values for k of (0.029 ± 0.008) M⁵ s⁻¹ and $K_d = (0.33 \pm 0.15)$ M were determined at 30 °C and 5402 5403 2.4 M ionic strength [2]. 5404 As discussed by Lind and Merényi, this rate law implies the following mechanism: 5405 $PuNO_3^{3+} \Rightarrow Pu^{4+} + NO_3^{-}$ 5406 $K_{\rm d}$ (87.3) $Pu^{4+} + H_3NOH^+ \Rightarrow Pu^{3+} + H_2NO^{\bullet} + 2H^+$ 5407 $K_{\rm et}$ (87.4) $2 \text{ H}_2\text{NO}^{\bullet} \rightarrow \text{H}_4\text{N}_2\text{O}_2 (\rightarrow \text{N}_2 + 2\text{H}_2\text{O})$ 5408 (87.5)kdim 5409 Thus, $k/K_d^2 = K_{et}^2(2k_{dim}) = (0.27 \pm 0.16) \text{ M}^3 \text{ s}^{-1}$. 5410 5411 The reaction of Fe(III) with hydroxylamine studied in perchlorate media has a similar rate law but lacking the nitrate dependence [3]. Bengtsson *et al.* interpreted the reaction as 5412 occurring via $Fe(OH)^{2+}$ and H_2NOH , but for the present purposes the alternative formulation 5413 $(Fe^{3+} + H_3NOH^+)$ is equivalent. In terms of the above mechanism, the measured rate constant, 5414 $K_{\rm et}^2(2k_{\rm dim})$, is $(1.5 \pm 0.4) \times 10^{-9}$ M³ s⁻¹ at 25 °C and $\mu = 1.0$ M [3]. This result is the average of 5415 measurements made both by initial rates and from the integrated rate law. 5416 5417 Lind and Merényi used pulse radiolysis to determine k_{dim} , obtaining $2k_{\text{dim}} = (2.8 \pm 0.5) \times$ $10^8 \text{ M}^{-1} \text{ s}^{-1}$ (presumably at room temperature) [1]. This rate constant is expected to be rather 5418 independent of ionic strength. 5419

The above results lead to values for $K_{\rm et}$ of $(3.1 \pm 1.7) \times 10^{-5}$ M² for Pu and $(2.3 \pm 0.8) \times$ 5420 10^{-9} M^2 for Fe. 5421 5422 In the calculation of $E^{\circ}(H_2NO^{\bullet})$ from the plutonium reaction, Lind and Merényi used +(0.982 \pm 0.001) V as the electrode potential of the Pu⁴⁺/Pu³⁺ couple at 25 °C in 1 M HClO₄, 5423 5424 which was measured by Connick and McVey [4]. A 1999 IUPAC recommendation seems to 5425 support a lower value of (0.954 ± 0.005) V in 1 M HClO₄ [5], but a more recent evaluation supports the older data [6]. According to Lemire's evaluation, the electrode potential is 5426 5427 essentially unchanged between 1.0 and 2.0 M ionic strength. Use of this electrode potential with 5428 the measured value of K_{et} leads to $E^{\circ}(H_2NO^{\bullet}, 2H^+/H_3NOH^+) = +(1.249 \pm 0.012)$ V. An electrode potential of $+(0.738 \pm 0.001)$ V for the Fe^{3+/2+} redox couple in 1 M HClO₄ 5429 at 25 °C was selected for analysis of the Fe³⁺/H₂NOH reaction [7]. The derived electrode 5430 5431 potential for the H₂NO[•], 2H⁺/H₃NOH couple is +(1.249 ± 0.010) V at μ = 1 M. 5432 In view of the excellent agreement between the potentials calculated from both the Pu⁴⁺ 5433 and Fe³⁺ reactions we have considerable confidence in the average result: $E^{\circ}((H_2NO^{\bullet}, 2H^+/$ H_3NOH^+) = +(1.249 ± 0.010) V at μ = 1 M. 5434 5435 Following Lind and Merényi [1], we apply a correction of 4 mV for the activity 5436 coefficient of the proton in 1 M perchlorate media, as described by Schwarz and Dodson [8]. We 5437 make the assumption that activity coefficients for H_3NOH^+ and H^+ are equal, which is supported by the weak ionic-strength dependence of the pK_a of H_3NOH^+ [9]. The 4 mV correction leads to 5438 $E^{\circ}((H_2NO^{\bullet}, 2H^+/H_3NOH^+) = +(1.253 \pm 0.010) V.$ 5439 5440 The conjugate acid of hydroxylamine has a p $K_a = 5.96$ at 25 °C and $\mu = 0$ [9]. Thus, $E^{\circ}(\text{H}_2\text{NO}^{\bullet},\text{H}^+/\text{H}_2\text{NOH}) = +(0.900 \pm 0.010) \text{ V}.$ 5441 5442 No value for $\Delta_f G^{\circ}(H_2 \text{NOH}(aq))$ is given in the NBS tables [10]. A value for this quantity 5443 is given in Bard, Parsons and Jordan's compilation [11], but it suffers from a sign error and is 5444 essentially just Latimer's estimate. In view of the uncertainties in Latimer's estimate we refrain from deriving further results from it. On the other hand, the NBS tables do provide a value of 5445 5446 $\Delta_{\rm f}H^{\circ} = -98.3 \text{ kJ mol}^{-1}$ for H₂NOH(*aq*) [10]. We derive the entropy of aqueous H₂NOH from its gas-phase entropy and its entropy of hydration. According to Gurvich et al. (Table 171), 5447 $S^{\circ}(H_2NOH, g) = 236 \text{ J K}^{-1} \text{ mol}^{-1} [12]$. We estimate the entropy of hydration ($\Delta_{hvd}S^{\circ}$) to be -100 5448 \pm 5 J K⁻¹ mol⁻¹ on the basis of coMParison with a variety of monohydroxy compounds [13] and 5449 N_2H_4 ($\Delta_{hvd}S^\circ = -100 \text{ J K}^{-1} \text{ mol}^{-1}$, NBS [10]). This leads to $S^\circ(H_2\text{NOH}, \text{ag}) = (136 \pm 5) \text{ J K}^{-1}$ 5450 mol⁻¹. By combining this aqueous entropy with the value of $\Delta_f H^\circ$ given above and the requisite 5451 standard NBS entropies [10] we obtain $\Delta_f G^\circ = -(21 \pm 2)$ kJ mol⁻¹ for aqueous hydroxylamine. 5452 This quantity, in combination with $E^{\circ}(H_2NO^{\bullet}, H^+/H_2NOH) = +(0.900 \pm 0.010)$ V, leads to $\Delta_f G^{\circ} =$ 5453 5454 +(66 ± 3) kJ mol⁻¹ for H₂NO[•] (*aq*).

5455 This value for $\Delta_f G^\circ$ for H₂NO[•] can be combined with $\Delta_f G^\circ$ (HNO,aq) = +(116 ± 2) kJ 5456 mol⁻¹ from Data Sheet 22 to derive a value for $E^{\circ}(\text{HNO},\text{H}^+/\text{H}_2\text{NO}^{\bullet}) = +(0.52 \pm 0.04) \text{ V}.$ 5457 5458 **Recommended values**: 5459 $H_2NO^{\bullet} + 2H^+ + e^- \Rightarrow H_3NOH^+$ $E^{\circ} = +(1.253 \pm 0.010)$ V at 25 °C 5460 $E^{\circ} = +(0.900 \pm 0.010)$ V at 25 °C $H_2NO^{\bullet} + H^+ + e^- \Rightarrow H_2NOH$ 5461 $E^{\circ} = +(0.52 \pm 0.04)$ V at 25 °C $HNO^{\bullet} + H^+ + e^- \Rightarrow H_2NO^{\bullet}$ 5462 5463 $\Delta_{\rm f}G^{\circ} = +66 \pm 3 \text{ kJ mol}^{-1} \text{ for } \mathrm{H}_2\mathrm{NO}^{\bullet}(aq)$ 5464 5465 Supplementary thermodynamic data: as indicated in the discussion above. 5466 5467 Nomenclature: ClO_4^- , tetraoxidochlorate, perchlorate is allowed: H₂NOH. 5468 dihydridohydroxidonitrogen, azanol; hydroxylamine is acceptable. H₂NOH^{•+}, 5469 dihydridohydroxidonitrogen(\bullet +); H₂NO \bullet , dihydridooxidonitrogen(\bullet), aminoxidanyl or 5470 hydroxyazanyl, aminoxyl is acceptable. 5471 5472 References 5473 5474 1. J. Lind, G. Merényi. J. Phys. Chem. A. 110, 192-197 (2006). 5475 2. G. S. Barney. J. Inorg. Nucl. Chem. 38, 1677-1681 (1976). 5476 G. Bengtsson, S. Fronaeus, L. Bengtsson-Kloo. J. Chem. Soc., Dalton Trans. 2548-2552 3. 5477 (2002). 4. R. E. Connick, W. H. McVey. J. Am. Chem. Soc. 73, 1798-1804 (1951). 5478 5479 5. S. Kihara, Z. Yoshida, H. Aoyagi, K. Maeda, O. Shirai, Y. Katatsuji, Y. Yoshida. Pure 5480 Appl. Chem. 71, 1771-1807 (1999). 5481 R. J. Lemire. *Chemical Thermodynamics of Neptunium and Plutonium*, Elsevier, New 6. 5482 York 308-312 (2001). L. B. Magnusson, J. R. Huizenga. J. Am. Chem. Soc. 75, 2242-2246 (1953). 5483 7. 5484 8. H. A. Schwarz, R. W. Dodson. J. Phys. Chem. 88, 3643-3647 (1984). 5485 A. E. Martell, R. M. Smith, R. J. Motekaitis. *NIST Critically Selected Stability Constants* 9. 5486 of Metal Complexes Database, 7.0, U.S. Department of Commerce, Gaithersburg, MD (2003). 5487 10. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982). 5488 5489 11. A. J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution, Marcel 5490 Dekker, Inc., New York 834 (1985).

- 5491 12. L. V. Gurvich, I. V. Veyts, C. B. Alcock. Thermodynamic Properties of Individual
- 5492 Substances, vol. 1, part two, Hemisphere Publishing Corp., New York (1989).
- 5493 13. G. A. Poskrebyshev, V. Shafirovich, S. V. Lymar. J. Am. Chem. Soc. 126, 891-899
 5494 (2004).
- 5495
- 5496

5497 **Data Sheet 88**

5498 Summary of the NO₂• System

5499

5500 Tabulated below are the presently recommended equilibrium constants involving the nitrogen 5501 dioxide radical. Uncertainties are expressed as $\pm 1 \sigma$; in many cases the value of σ is merely a

- 5502 subjective guess.
- 5503

rxn #	reaction	K _{eq}	dim.	uncertainty	μ / M	Data
						Sheet
						#
89.1	$N_2O_4 \rightleftharpoons 2NO_2^{\bullet}$	$1.5 imes 10^{-5}$	Μ	$\pm 20\%$?	89
91.1	$NO_2^- + [Fe(TMP)_3]^{3+} \rightleftharpoons NO_2^{\bullet}$	$3.9\ \times 10^{-4}$		$\pm 31\%$	0.3	91
	$+ [Fe(TMP)_3]^{2+}$					
92.1	$NO_2^- + RNO^+ \Rightarrow NO_2^{\bullet} +$	$1.5 imes 10^{-5}$		$\pm 33\%$	0	92
	RNO^{\bullet} ($RNO^{\bullet} = TEMPO$)					
49.1	$NO_2^{\bullet} + I^- \Rightarrow NO_2^- + I^{\bullet}(aq)$	none				49
93.1	$NO_2^{\bullet}(g) \rightleftharpoons NO_2^{\bullet}(aq)$	1.2×10^{-2}	M bar ⁻¹	$\pm 17\%$	0	93
94.1	$2HNO_2(aq) \Rightarrow NO^{\bullet}(aq) +$	1.1×10^{-7}		$\pm 10\%$	0	94
	$NO_2^{\bullet}(aq) + H_2O$					
95.1	$2\mathrm{NO}_2^{\bullet}(aq) \rightleftharpoons \mathrm{HNO}_2 + \mathrm{H}^+ +$	$3.8 imes 10^9$	Μ	$\pm 39\%$	0	95
	NO ₃ ⁻					

5504 TMP = tetramethylphenanthroline; TEMPO = 2,2,6,6-tetramethylpiperidine-1-oxyl

5505

5506 Reaction 91.1, when combined with E° (Fe(III)/Fe(II)), leads to $E^{\circ} = +(1.04 \pm 0.01)$ V at

5507 $\mu = 0.3 \text{ M} \text{ for } \text{NO}_2^{\bullet}(aq)/\text{NO}_2^{-}$.

5508 Reaction 92.1, in combination with $E^{\circ} = +(0.750 \pm 0.005)$ V for TEMPO^{+/0} as reviewed 5509 in Data Sheet S-7, yields $E^{\circ} = +(1.04 \pm 0.02)$ V for NO₂[•](*aq*)/NO₂⁻.

Reaction 94.1 can be combined with the equilibrium constant for the corresponding mixed-phase reaction $(2\text{HNO}_2(aq) = \text{NO}^{\bullet}(g) + \text{NO}_2^{\bullet}(g) + \text{H}_2\text{O}(l))$ and the Henry's law constant for NO[•] to obtain the Henry's law constant for NO₂[•]. An assumed value for H_{NO2} was used in the determination of K_{eq} for reaction 94.1, but the two quantities are not completely correlated because of an additional "*C*" parameter. This mixed-phase equilibrium constant $(1/K_{\text{M2}})$ in the parlance of Schwartz and White (1981)) has a value of $1/(1.26 \times 10^2)$ atm² M⁻² {*i.e.* $1/(1.23 \times$ $10^4)$ MPa² M⁻²} as reported by Schwartz and White [1]. Schwartz and White derived this value

5517 from the equilibrium constant for the corresponding gas-phase reaction and $H_{\rm HNO2}$. The latter has

been confirmed by Park and Lee [2]. We use $H_{NO} = (1.93 \pm 0.06) \times 10^{-3}$ M bar⁻¹ {*i.e.* 1.93×10^{-2} M MPa⁻¹} as recommended in Data Sheet 90. Thus, $H_{NO2} = K_{10.01}K_{M2'}/H_{NO} = 7.2 \times 10^{-3}$ M bar⁻¹ $\pm 12\%$ {*i.e.* 7.2×10^{-2} M MPa⁻¹}. The discrepancy between this result and the value tabulated above is likely due to the number of quantities used in the calculation and correlation issue noted above.

5523 Reaction 95.1 can be combined with the equilibrium constant for the corresponding 5524 mixed-phase reaction $(2NO_2^{\bullet}(g) = HNO_2(aq) + H^+(aq) + NO_3^-(aq)$ to obtain the Henry's law constant for NO₂[•]. This latter reaction (M 1' in the parlance of Schwartz and White (1981)) has 5525 $K_{eq} = 4.78 \times 10^5 \text{ M}^3 \text{ atm}^{-2} [1] \{i.e. 4.66 \times 10^7 \text{ M}^3 \text{ MPa}^{-2}\}$. Schwartz and White obtained this 5526 value by combining K_{M2} and K_{M3} , and these, respectively were obtained by combining (K_{G2} and 5527 $H_{\rm HNO2}$) and ($K_{\rm G3}$ and $K_{\rm V2}$). We do not question the gas-phase equilibrium constants $K_{\rm G2}$ and $K_{\rm G3}$, 5528 5529 and the values selected for $H_{\rm HNO2}$ and $K_{\rm V2}$ were subsequently confirmed by Park and Lee [2]. Following Schwartz and White (1981) we thus obtain $H_{NO2} = 1.1 \times 10^{-2} \text{ M atm}^{-1} \{i.e. \ 10.9 \times 10^{-1} \text{ M atm}^{-1} \}$ 5530 ² M MPa⁻¹ with a 39% uncertainty. In short, the tabulated equilibrium constants for reactions 5531 5532 94.1 and 95.1 are in acceptable agreement with the tabulated value for H_{NO2} .

5533 The tabulated value for $H_{\rm NO2}$, in combination with the NBS value for $\Delta_{\rm f} G^{\circ}({\rm NO}_2^{\bullet}(g))$ (= $+51.31 \pm 0.8 \text{ kJ mol}^{-1}$ [3] yields $\Delta_{f} G^{\circ}(NO_{2} \cdot (aq)) = +62.3 \pm 1.0 \text{ kJ mol}^{-1}$. The JANAF-NIST 5534 5535 tables give a very similar value and uncertainty for $\Delta_f G^{\circ}(NO_2^{\bullet}(g))$ [4]. With use of the 1982 NBS value for $\Delta_{\rm f} G^{\circ}({\rm NO}_2^{-}(aq)) = -32.2 \pm 8.0 \text{ kJ mol}^{-1} [3]$ we derive $E^{\circ}({\rm NO}_2^{-}(aq)/{\rm NO}_2^{-}(aq)) = +0.98$ 5536 ± 0.08 V. Ram and Stanbury have commented that the 1982 NBS value for $\Delta_f G^\circ$ of HNO₂(aq) or 5537 $NO_2(aq)$ may be incorrect [5, 6]. Further discussion of this issue appears in Park and Lee's 5538 5539 discussion of their measurement of the solubility of HNO₂ [2]; there seems to be good evidence 5540 that the NBS values for $\Delta_f G^\circ$ of HNO₂(*aq*) and HNO₂(*g*) are inconsistent with the solubility of 5541 HNO₂ by about 4.6 kJ mol⁻¹. At this time, it is unclear whether these considerations imply an 5542 error in $\Delta_f G^{\circ}(NO_2^{-}(aq))$, but the potential magnitude of the error is less than the 8 kJ uncertainty 5543 for $\Delta_{\rm f}G^{\circ}({\rm NO}_2^{-}(aq))$ indicated above. Overall, we conclude that the $E^{\circ}({\rm NO}_2^{-}(aq)/{\rm NO}_2^{-}(aq))$ value 5544 derived from the NBS data is consistent with the value derived from the equilibrium constant for 5545 reaction 92.1.

In summary, the various routes to determining $E^{\circ}(NO_2^{\bullet}(aq)/NO_2^{-}(aq))$ discussed above are all reasonably consistent with a value of +1.04 V. The result derived from reaction 91.1 is not used in the final recommendation because of the difficulties in making accurate corrections for activity coefficients in 0.3 M ionic strength. The final recommendation is the one derived from reaction 92.1: $E^{\circ}(NO_2^{\bullet}(aq)/NO_2^{-}(aq)) = +(1.04 \pm 0.02)$ V.

5551

5552 **Recommended value:**

5554	$E^{\circ}(NO_2^{\bullet}(aq)/NO_2^{-}(aq)) = +(1.04 \pm 0.02) V$		
5555			
5556	Refere	ences	
5557			
5558	1.	S. E. Schwartz, W. H. White. Adv. Environ. Sci. Eng. 4, 1-45 (1981).	
5559	2.	JY. Park, YN. Lee. J. Phys. Chem. 92, 6294-6302. (1988).	
5560	3.	D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.	
5561	Churne	ey, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).	
5562	4.	M. W. Chase. NIST-JANAF Thermodynamicchemical Tables, 4th ed, American Institute	
5563	of Phy	sics, Woodbury, NY (1998).	
5564	5.	M. S. Ram, D. M. Stanbury. Inorg. Chem. 24, 2954-2962 (1985).	
5565	6.	M. S. Ram, D. M. Stanbury. J. Am. Chem. Soc. 106, 8136-8142 (1984).	
5566			
5567			

5568	Data Sheet 89
5569	
5570	Chemical equilibrium: $N_2O_4(aq) = 2NO_2^{\bullet}(aq)$ (89.1)
5571	
5572	List of reports:
5573	
5574	$K_{eq} = 1.53 \times 10^{-5}$ M presumably at room temperature, obtained by Grätzel and co-workers using
5575	pulse radiolysis to generate NO_2^{\bullet} from NO_2^{-} and spectrophotometric NO_2^{\bullet} detection [1].
5576	
5577	$K_{eq} = (1.3 \pm 0.4) \times 10^{-5}$ M presumably at room temperature, derived from pulse radiolysis
5578	experiment with spectrophotometric NO ₂ • detection by Treinin and Hayon [2].
5579	
5580	$K_{\text{eq}} = (0.75 \pm 0.06) \times 10^{-5} \text{ M}$ at pH 8.8 and $K_{\text{eq}} = 1.8 \times 10^{-5} \text{ M}$ at pH 3.3, both at 25 °C, derived
5581	from experiments on flash photolysis of nitrate with conductivity detection by Strehlow and co-
5582	workers [3].
5583	
5584	Discussion
5585	
5586	The first two measurements agree well, with the value by Grätzel and co-workers [1] being
5587	preferred, as the significant amount of primary data showing little scatter is reported. Treinin and
5588	Hayon [2] have performed essentially the same experiment with similar results, but show no
5589	primary data for determining K_{eq} . Both determinations rely on knowing $\varepsilon_{400}(NO_2^{\bullet})$, to which K_{eq}
5590	is inversely proportional; both have used $\mathcal{E}_{400}(NO_2^{\bullet}) = 200 \text{ M}^{-1} \text{ cm}^{-1}$. Recently, some 10% lower
5591	$\mathcal{E}_{400}(NO_2^{\bullet})$ value have been reported [4]; the difference is mainly due to the different G values
5592	used. Additional uncertainty (possibly another 10%) comes from the $H^{\bullet} + NO_2^{-}$ reaction [4]
5593	leading to NO [•] that scavenges NO ₂ [•] .
5594	The latest reported K_{eq} has been obtained by fitting to a complex mechanism suggested by
5595	Strehlow and co-workers for flash photolysis of nitrate [3]. However, this mechanism has been
5596	recently completely revised [5]. It is also difficult to see how K_{eq} can be pH-dependent.
5597	
5598	Recommended value:
5599	
5600	$K_{\rm eq} = (1.5 \pm 0.3) \times 10^{-5}$ M, at room temperature
5601	
5602	List of auxiliary thermodynamic data: none
5603	

5604	Refe	erences
5605		
5606	1.	M. Grätzel, A. Henglein, J. Lilie, G. Beck. Ber. Bunsen-Ges. Phys. Chem. 73, 646-653
5607	(196	9).
5608	2.	A. Treinin, E. Hayon. J. Am. Chem. Soc. 92, 5821-5828 (1970).
5609	3.	I. Wagner, H. Strehlow, G. Busse. Z. Phys. Chem. (Wiesbaden) 123, 1-33 (1980).
5610	4.	S. V. Lymar, H. A. Schwarz, G. Czapski. J. Phys. Chem. A 106, 7245-7259 (2002).
5611	5.	D. Madsen, J. Larsen, S. K. Jensen, S. R. Keiding, J. Thogersen. J. Am. Chem. Soc. 125,
5612	1557	71-15576 (2003).
5613		

5615	Data Sheet 90
5616	
5617	Chemical equilibrium: $NO^{\bullet}(g) = NO^{\bullet}(aq)$ (90.1)
5618	
5619	List of reports:
5620	
5621	$K_H = (1.95 \pm 0.06) \times 10^{-3} \text{ M/atm} (1.93 \times 10^{-2} \text{ M MPa}^{-1}) \text{ at } 25 \text{ °C}, \text{ obtained from the equilibrium}$
5622	NO solubility near atmospheric pressure with the chemical analysis of dissolved NO [•] [1].
5623	
5624	$K_H = 1.92 \times 10^{-2}$ M MPa ⁻¹ at 25 °C, obtained from the volumetric determination of equilibrium
5625	NO• solubility near atmospheric pressure [2]. The uncertainty appears to be less than 1%.
5626	
5627	$K_H = (1.3 \pm 0.3) \times 10^{-2}$ M MPa ⁻¹ at 24 °C, obtained from the chemiluminescent evaluation of
5628	dissolved NO [•] at low NO [•] partial pressures in mixtures with other gases [3].
5629	
5630	Discussion
5631	
5632	The first two reported values are in excellent agreement. Quite possibly, even earlier original
5633	determinations not listed above exist in the literature. There are also several critical reviews that
5634	agree on the K_H value of $(1.93 \pm 0.06) \times 10^{-3}$ M/bar { <i>i.e.</i> 1.9×10^{-2} M MPa ⁻¹ } at 25 °C (see, <i>e.g.</i> ,
5635	comprehensive tables and discussions in Wilhelm et al. [4], Schwartz and White [5], and Batting
5636	[6]). The last listed reported value is most likely less accurate, due to the less straight forward
5637	technique and the large scatter in the results, as admitted by the authors.
5638	We thus adopt $K_H = (1.93 \pm 0.06) \times 10^{-3} \text{ M bar}^{-1} \{i.e. (1.93 \times 10^{-2} \text{ M MPa}^{-1})\}$ at 25 °C.
5639	Because there is no more accurately determined equilibrium involving NO [•] , we use this K_H and
5640	the NBS $\Delta_f G^\circ = +86.55 \text{ kJ mol}^{-1}$ for NO(g) to calculate $\Delta_f G^\circ$ for NO•(aq); the $\pm 0.20 \text{ kJ mol}^{-1}$
5641	standard error is that what has been assumed for the NBS number.
5642	
5643	Recommended values:
5644	
5645	$K_H = (1.93 \pm 0.06) \times 10^{-2} \text{ M MPa}^{-1} \text{ at } 25 \text{ °C}.$
5646	$\Delta_{\rm f} G^{\circ} = +102.0 \pm 0.2 \text{ kJ mol}^{-1} \text{ for NO}^{\bullet}(aq).$
5647	
5648	List of auxiliary thermodynamic data: $\Delta_f G^\circ = +86.55 \text{ kJ/mol for NO}(g)$ from the NBS tables [7]
5649	
5650	Nomenclature: NO•, oxidonitrogen(•) or nitrogen monoxide; nitric oxide is outdated.

- 5652
- 5653 1. J. N. Armor, J. Chem. Eng. Data 19, 82-84 (1974).
- 5654 2. A. W. Shaw, A. J. Vosper, J. Chem. Soc., Faraday Trans. 73, 1239-1244 (1977).
- 5655 3. O. C. Zafiriou, M. McFarland, Analyt. Chem. 52, 1662-1667 (1980).
- 5656 4. E. Wilhelm, R. Battino, R. J. Wilcock, Chem. Rev. 77, 219-262 (1977).
- 5657 5. S. E. Schwartz, W. H. White, *Adv. Environ. Sci. Eng.* 4, 1-45 (1981).
- 6 Battino, R., In *Oxides of Nitrogen*, (Young, C. L., ed.), p. 260-335. Pergamon Press, Elmsford,
 NY (1981).
- 5660 7. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
- 5661 Churney, R. L. Nuttall, J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
- 5662

5664	Data Sheet 91
5665	
5666	Chemical equilibrium: $NO_2^- + [Fe(TMP)_3]^{3+} \Rightarrow NO_2^{\bullet} + [Fe(TMP)_3]^{2+}$ (91.1)
5667	(TMP = 3, 4, 7, 8-tetramethyl-1,10-phenanthroline)
5668	
5669	List of reports:
5670	
5671	$1/K_{eq} = 2.6 \times 10^3$ (or $K_{eq} = 3.85 \times 10^{-4}$), at ~25 °C and unstated ionic strength [1]. This
5672	result was obtained from the ratio of the forward and reverse rate constants. The forward rate
5673	constant was measured by stopped-flow spectrophotometry [2], and the reverse by pulse
5674	radiolysis [1].
5675	
5676	Discussion
5677	
5678	The forward rate constant was determined at 25.0 °C and 0.3 M ionic strength and
5679	reported as $(3.94 \pm 0.09) \times 10^3$ M ⁻¹ s ⁻¹ . The reverse rate constant was obtained at room
5680	temperature (23 °C) and 0.005 M ionic strength, with k_r reported as $(1.0 \pm 0.3) \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$. It is
5681	reasonable to anticipate that, within its error margins, k_r is insensitive to ionic strength, so the
5682	value of K_{eq} is $(3.9 \pm 1.2) \times 10^{-4}$ at 25 °C and $\mu = 0.3$ M. This uncertainty is determined largely
5683	by the uncertainty in $k_{\rm r}$. Note that the value for $K_{\rm eq}$ derived from the published value of $1/K_{\rm eq}$
5684	deviates somewhat (but insignificantly) from the result given here because of some incorrect
5685	handling of significant figures in the original publication.
5686	Potentiometric titration of $[Fe(TMP)_3]^{2+}$ with Ce(IV) in 0.3 M H ₂ SO ₄ led to $E^{\circ} = +0.84$
5687	V vs NHE for the Fe(III/II) couple [2]. This result leads to $E^{\circ} = +1.04$ V for NO ₂ •(<i>aq</i>)/NO ₂ ⁻ at μ
5688	= 0.3 M. The presumed uncertainty is \pm 0.01 V.
5689	
5690	Recommended values:
5691	
5692	$K_{\rm eq} = (3.94 \pm 1.2) \times 10^{-4}$ at 25 °C and $\mu = 0.3$ M.
5693	$E^{\circ}(NO_2^{\bullet}(aq)/NO_2^{-}) = +1.04 \pm 0.01 \text{ V at } 25 \text{ °C and } \mu = 0.3 \text{ M}.$
5694	
5695	List of auxiliary thermodynamic data: none.
5696	
5697	Nomenclature: NO ₂ •, dioxidionitrogen(•), NO ₂ ⁻ , dioxidonitrate(1-)
5698	

5699	Refe	References		
5700				
5701	1.	M. S. Ram, D. M. Stanbury. Inorg. Chem. 24, 2954-2962 (1985).		
5702	2.	M. S. Ram, D. M. Stanbury. J. Am. Chem. Soc. 106, 8136-8142 (1984).		
5703				
5704				

5705	Data Sheet 92
5706	
5707	Chemical equilibrium: $NO_2^- + RNO^+ \Rightarrow NO_2^{\bullet} + RNO^{\bullet}$ (92.1)
5708	$(RNO^{\bullet} = TEMPO)$
5709	
5710	List of reports:
5711	
5712	$1/K_{eq} = 8.8 \times 10^4$ at $\mu = 0.1$ M and 25 °C [1]. Result obtained from the rate constant for
5713	reduction of RNO ⁺ by NO ₂ ⁻ , which is taken as $2(K_{eq})^2 k_{disp}$ and k_{disp} refers to the
5714	disproportionation of NO ₂ •. A literature value of 7.6 × 10 ⁷ M ⁻¹ s ⁻¹ was used for k_{disp} .
5715	$1/K_{eq} = 7 \times 10^4$ at $\mu = 0.02$ M and 25 °C [1]. Obtained from the kinetics of reduction of
5716	$C(NO_2)_4$ by RNO• with RNO• as the limiting reagent. In these reactions, NO_2^- inhibits the rates
5717	and causes the RNO• concentration to attain a steady state. Analysis of the steady-state
5718	concentration leads directly to a value for $(k_1/k_{disp})^{1/2}/K_{eq}$. Use of literature values for k_{disp} and k_1
5719	then lead to the reported value for K_{eq} . Here, k_1 is the second-order rate constant for oxidation of
5720	NO_2^- by C(NO ₂) ₄ .
5721	
5722	Discussion
5723	
5724	Goldstein et al. mention that the forward and reverse rate constants obtained in the
5725	above-mentioned studies are incorrect, but the equilibrium constant is not compromised by these
5726	errors [2]. A more significant potential source of error is the uncertainty in k_{disp} . Reported values
5727	of k_{disp} range from 2.7 × 10 ⁷ M ⁻¹ s ⁻¹ [3] to 1.0 × 10 ⁸ M ⁻¹ s ⁻¹ [4]. Much of the range in k_{disp} arises
5728	from the various values used for the Henry's law constant for NO ₂ •, as is discussed in Data Sheet
5729	93. Accordingly, we assign an uncertainty of a factor of 2 to K_{eq} . Given the small difference
5730	between the two determinations of K_{eq} at $\mu = 0.1$ M and 0.02 M, we make the approximation that
5731	the result also applies at $\mu = 0$ M.
5732	Given our recommended E° ' for TEMPO ^{+/0} of +0.750 ± 0.005 V (Data Sheet S-7), the
5733	value of E° given below is derived.
5734	
5735	Recommended values:
5736	
5737	$K_{\text{eq}} = 1.3 \times 10^{-5}$ within a factor of ± 2 at 25 °C and $\mu = 0.0$ M.
5738	$E^{\circ} = +(1.04 \pm 0.02) \text{ V for NO}_{2} \cdot (aq) + e^{-} = \text{ NO}_{2}^{-}$
5739	
5740	List of auxiliary thermodynamic data: none

5741				
5742	Nomenclature: See Data Sheet 91.			
5743				
5744	References			
5745				
5746	1.	A. N. Petrov, Y. N. Kozlov. Russ. J. Phys. Chem. 60, 195-198 (1986).		
5747	2.	S. Goldstein, A. Samuni, A. Russo. J. Am. Chem. Soc. 125, 8364-8370 (2003).		
5748	3.	J. L. Cheung, Y. Q. Li, J. Boniface, Q. Shi, P. Davidovits, D. R. Worsnop, J. T. Jayne, C.		
5749	E. Kolb. J. Phys. Chem. A. 104, 2655-2662 (2000).			
5750	4.	YN. Lee, S. E. Schwartz. J. Phys. Chem. 85, 840-848 (1981).		
5751				
5752				

5753	Data Sheet 93
5754	
5755	Chemical equilibrium: $NO_2^{\bullet}(g) \neq NO_2^{\bullet}(aq)$ (93.1)
5756	
5757	List of reports:
5758	
5759	$K_{\rm H} = (7.0 \pm 0.5) \times 10^{-3} \text{ M atm}^{-1} \{i.e. \ 6.9 \times 10^{-2} \text{ M MPa}^{-1} \text{ at } 22 \text{ °C}, \text{ obtained from the absorption} \}$
5760	kinetics of NO ₂ • bubbled into a water column [1].
5761	
5762	$K_H = 2.0 \times 10^{-2}$ M bar ⁻¹ { <i>i.e.</i> 2.0×10^{-1} M MPa ⁻¹ at 20 °C, obtained from the NO ₂ • gas uptake
5763	measurement at 15 °C by Komiyama and Inoue [2] and later temperature-adjusted by Cheung
5764	and co-workers [3].
5765	
5766	$K_H = (1.4 \pm 0.2) \times 10^{-2} \text{ M bar}^{-1} \{i.e. (1.4 \times 10^{-1} \text{ M MPa}^{-1} \text{ at } 20 \text{ °C}, \text{ obtained from the} \}$
5767	measurement of gas-phase NO ₂ • uptake by water in a bubble train flow reactor [3].
5768	
5769	$K_{\rm H} = (5.5 \pm 0.6) \times 10^{-2} \text{ M atm}^{-1} \{i.e. (5.4 \times 10^{-1} \text{ M MPa}^{-1})\}$ at 10 °C [4]. Obtained by bubbling
5770	NO_2^{\bullet} into water.
5771	
5772	$K_{\rm H} = 1.2 \times 10^{-2} \text{ M atm}^{-1} \{i.e. \ 1.18 \times 10^{-1} \text{ M MPa}^{-1}\}$ at 25 °C [5]. Obtained with a formula
5773	published by Chameides [6].
5774	
5775	Discussion
5776	
5777	The Henry's constant measurements for NO ₂ • are complicated by the NO ₂ • dimerization in
5778	both gas and aqueous phases and by its second-order hydrolysis
5779	
5780	$2 \operatorname{NO}_2^{\bullet} + \operatorname{H}_2 O \to \operatorname{HNO}_2 + \operatorname{HNO}_3 $ (93.2)
5781	
5782	that occurs with a bimolecular rate constant k , which is subject to significant uncertainty. As a
5783	result, most measurements could only provide a product $K_H k^{1/2}$. These products are fairly
5784	consistent across 4 studies and range from $\{(70 \pm 9) \text{ to } (106 \pm 20) \text{ M}^{1/2} \text{ bar}^{-1} \text{ s}^{-1/2}\} \{i.e (700 \text{ to } 100 \text{ to } 1000 $
5785	1060) $M^{1/2}$ MPa ⁻¹ s ^{-1/2}), as has been summarized by Cheung and co-workers [3]. Three of these
5786	measurements are within their experimental uncertainties. The Henry's law constant of Lee and
5787	Schwartz was obtained under relatively high NO2 [•] concentrations, where dissolution and
5788	disproportionation are competitive. The other two measurements (of Cheung and coworkers and

5789 of Komiyama and Inoue) were obtained under conditions where the disproportionation could be 5790 neglected.

In 1983 Schwartz and White published a very thorough review on the dissolution on nitrogen oxides, including NO₂• [7]. Figure 7 of their review is notable in conveying the various reports on the Henry's law constant for NO₂•, and it provides strong evidence from 6 different sources that the value lies between $(6 \times 10^{-3} \text{ and } 2 \times 10^{-2})$ M atm⁻¹{*i.e.* 0.059 to 0.197 M MPa⁻ }. After detailed consideration of the data in their Fig. 7, Schwartz and White conclude that $K_{\rm H}$ must lie between $(0.7 \times 10^{-2} \text{ and } 1.3 \times 10^{-2})$ M atm⁻¹{*i.e.* 0.069 to 0.128 M MPa⁻¹}.

5797 Cape *et al.* measured the solubility of NO₂• at 10 °C [4]. Because of the significant 5798 temperature dependence of the solubility we prfer to rely on other data obtained at temperatures 5799 closer to 25 °C.

5800 Mertes and Wahner [5] derived a value for $K_{\rm H}$ from the temperature-dependent equation 5801 given by Chameides [6]. Chameides, in turn, obtained his equation with data from the 1965 NBS 5802 tables. The current (1982) NBS tables do not provide data for NO₂•(*aq*), so we infer that NBS 5803 decided that the old data were unreliable.

From this discussion, it appears safe to base our evaluation on $K_H = (1.4 \pm 0.2) \times 10^{-2}$ M/bar {*i.e.* 0.14 M MPa⁻¹} at 20 °C. The value for $K_H = (1.2 \pm 0.2) \times 10^{-2}$ M/bar {*i.e.* 0.12 M MPa⁻¹} at 25 °C can be obtained assuming a value for the heat of NO₂• hydration; following Cheung and co-workers here we use -19 kJ mol⁻¹ for this enthalpy of hydration (same as for O₃). This result is within the range recommended by Schwartz and White [7]. Combining this number with the NBS' $\Delta_f G^\circ = +51.31$ kJ mol⁻¹ for NO₂•(*g*) and assuming \pm 0.20 kJ mol⁻¹ standard error in this value, we obtain $\Delta_f G^\circ = +(62.3 \pm 0.5)$ kJ mol⁻¹ for NO₂•(*aq*).

- 5811
- 5812 **Recommended values**:
- 5813

5814 $K_H = (1.2 \pm 0.2) \times 10^{-2} \text{ M bar}^{-1} \text{ at } 25 \text{ °C } \{i.e. \ 0.12 \pm 0.02 \text{ M MPa}^{-1}\}$

- 5815 $\Delta_{\rm f} G^{\circ} = +62.3 \pm 0.5 \text{ kJ mol}^{-1} \text{ for NO}_2^{\bullet}(aq) \text{ at } 25 \text{ }^{\circ}\text{C}$
- 5816

5817 List of auxiliary thermodynamic data: -19 kJ mol^{-1} for the enthalpy of hydration of O₃ [8]; $\Delta_f G^\circ$ 5818 = +51.31 kJ mol}{-1} for NO₂•(g) from the NBS tables [9]. 1 bar = 0.987 atm.

5819

5820 Nomenclature: See Data Sheet 91.

5821

5822 **References**

5823

5824 1. Y.-N. Lee, S. E. Schwartz. J. Phys. Chem. 85, 840-848 (1981).
- 5825 2. H. Komiyama, H. Inoue. *Chem. Eng. Sci.* **35**, 154-161 (1980).
- 5826 3. J. L. Cheung, Y. Q. Li, J. Boniface, Q. Shi, P. Davidovits, D. R. Worsnop, J. T. Jayne, C.
- 5827 E. Kolb. J. Phys. Chem. A. 104, 2655-2662 (2000).
- 5828 4. J. N. Cape, R. L. Storeton-West, S. F. Devine, R. N. Beatty, A. Murdoch. Atmos.
- 5829 *Environ.* **27A**, 2613-2621 (1993).
- 5830 5. S. Mertes, A. Wahner. J. Phys. Chem. 99, 14000-14006 (1995).
- 5831 6. W. L. Chameides. J. Geophys. Res. 89, 4739-4755 (1984).
- 5832 7. Schwartz, S. E., White, W. H. In Trace Atmospheric Constituents: Properties,
- 5833 Transformations, & Fates, (Schwartz, S. E., ed.), p. 1-116. Wiley, New York (1983).
- 5834 8. L. F. Kosak-Channing, G. R. Heiz. Environ. Sci. Technol. 17, 145-149 (1983).
- 5835 9. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
- 5836 Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
- 5837

5839	Data Sheet 94
5840	
5841	Chemical equilibrium: $2HNO_2(aq) \Rightarrow NO^{\bullet}(aq) + NO_2^{\bullet}(aq) + H_2O$ (94.1)
5842	
5843	List of reports:
5844	
5845	$K_{eq} = 8.5 \times 10^{-8}$ at 22 °C and $\mu = 0.014$ M [1]. Park and Lee obtained this result from the
5846	steady-state gas-phase concentrations of HNO ₂ , NO• and NO ₂ • generated from an acidified
5847	HNO ₂ solution under vigorous N ₂ bubbling.
5848	
5849	Discussion
5850	
5851	Park and Lee did not actually report the value of K_{eq} cited above but rather gave the
5852	corresponding values for the forward and reverse rate constants, which, in turn, were derived
5853	from a complex expression describing the mixed kinetics of gas evolution in a system under
5854	dynamic purging. The equation used to derive the equilibrium constant uses the Henry's law
5855	constant for NO ₂ , but the form of the equation is such that K_{eq} and H_{NO2} are not strictly
5856	correlated. Park and Lee also reported a ~10% uncertainty in the rate constants. The equilibrium
5857	constant is expected to be independent of ionic strength. Park and Lee also reported results at 10
5858	and 30 °C, from which a pronounced temperature dependence of K_{eq} was demonstrated. From
5859	these data we interpolate $K_{eq} = (1.1 \pm 0.1) \times 10^{-7}$ at 25 °C and $\mu = 0$ M.
5860	
5861	Recommended value:
5862	
5863	$K_{\rm eq} = (1.1 \pm 0.1) \times 10^{-7}$ at 25 °C and $\mu = 0$ M
5864	
5865	List of auxiliary thermodynamic data: none.
5866	
5867	Nomenclature: See Data Sheet 91.
5868	
5869	References
5870	
5871	1. JY. Park, YN. Lee. J. Phys. Chem. 92, 6294-6302 (1988).
5872	
5873	
5874	

5875	Data Sheet 95
5876	
5877	Chemical equilibrium: $2 \operatorname{NO}_2^{\bullet}(aq) = \operatorname{HNO}_2 + \operatorname{H}^+ + \operatorname{NO}_3^-$ (95.1)
5878	
5879	List of reports:
5880	
5881	$K_{eq} = (3.8 \pm 1.5) \times 10^9$ M at $\mu = 0$ and 25 °C. Result obtained by Schwartz and White [1]
5882	(1981) by evaluation of the potentiometric data of Vetter [2] (1949).
5883	
5884	Discussion
5885	
5886	Schwartz and White considered this equilibrium carefully, and there is little we can add
5887	to the discussion. There seems to be no direct measurements on this reaction published
5888	subsequent to Vetter's.
5889	
5890	Recommended value:
5891	
5892	$K_{\rm eq} = (3.8 \pm 1.5) \times 10^9 {\rm M}$ at $\mu = 0$ and 25 °C
5893	
5894	List of auxiliary thermodynamic data: none.
5895	
5896	Nomenclature: See Data Sheet 91.
5897	
5898	References
5899	
5900	1. S. E. Schwartz, W. H. White. Adv. Environ. Sci. Eng. 4, 1-45 (1981).
5901	2. K. Vetter. Z. Anorg. Chem. 260, 242-248 (1949).
5902	
5903	

5904	Data Sheet 96
5905	
5906	Chemical equilibrium: $PO_3^{\bullet 2-} + PenSH \Rightarrow HPO_3^{2-} + PenS^{\bullet}$ (96.1)
5907	PenSH is penicillamine, (Pen = $-CMe_2-C(NH_2)H-CO_2^-$)
5908	
5909	List of reports:
5910	
5911	The equilibrium constant for reaction 96.1 was determined in a pulse radiolysis experiment in
5912	neutral, N2O-saturated solutions by monitoring the yield of PenS [•] at any concentration ratio
5913	$HPO_3^{2-}/PenSH$ [1]. The plot of $G(HO^{\bullet}) - G(PenS^{\bullet})/G(PenS^{\bullet})$ vs. this ratio yields the
5914	equilibrium constant as the slope. $G(HO^{\bullet})$ is obtained simply as the maximum $G(PenS^{\bullet})$. The
5915	result was $K_{96.1} = 8 \times 10^2$. No uncertainty was reported; inspection of the figure from which the
5916	equilibrium constant was derived suggests that $\pm 1 \times 10^2$ would be a conservative estimate.
5917	
5918	The forward rate constant for this reaction was reported previously [2] as $k_f = 3.0 \times 10^8 \text{ L mol}^{-1}$
5919	s ⁻¹ ; this then leads to $k_r = 3.8 \times 10^5 \text{ L mol}^{-1} \text{ s}^{-1}$.
5920	
5921	Discussion
5922	
5923	In this Report, the potential for the couple PenS [•] , H ⁺ /PenSH is reported to be $+1.37 \pm 0.03$ V
5924	(Data Sheet S-8). Thus, the potential for the couple $PO_3^{\bullet 2-}$, H ⁺ / HPO ₃ ²⁻ is $E^{\circ} = (1.37 \pm 0.03) V +$
5925	$0.059 \text{ V} \log((8 \pm 1) \times 10^2) = +(1.54 \pm 0.04) \text{ V}.$
5926	
5927	Recommended value:
5928	
5929	$E^{\circ}(PO_3^{\bullet 2-}, H^+/HPO_3^{2-}) = +(1.54 \pm 0.04) V$
5930	
5931	List of auxiliary thermodynamic data: none.
5932	
5933	Nomenclature: $PO_3^{\bullet 2^-}$, trioxidophosphate($\bullet 2^-$); $HPO_3^{2^-}$, hydroxidodioxidophosphate(2^-);
5934	penicillamine, (2S)-2-amino-3-methyl-3-sulfanylbutanoic acid
5935	
5936	References
5937	
5938	1. K. Schäfer, KD. Asmus. J. Phys. Chem. 85, 852-855 (1981).
5939	2. K. Schäfer, KD. Asmus. J. Phys. Chem. 84, 2156-2160 (1980).

5940	Data Sheet 97
5941	
5942	Chemical equilibrium: $HO^{\bullet} + H_3PO_4 \Rightarrow H_2O + H_2PO_4^{\bullet}$ (97.1)
5943	
5944	List of reports:
5945	
5946	Forward and reverse rate constants were derived from a study of the pulse radiolysis of
5947	concentrated (3, 5, and 8) mol L^{-1} phosphoric acid solutions [1]. The sum of initially produced
5948	HO• and H ₂ PO ₄ • was obtained by allowing these radicals to react with Cl ⁻ and measuring the
5949	yield of $Cl_2^{\bullet-}$, taking $\varepsilon_{340nm} = 8200 \text{ L mol}^{-1} \text{ cm}^{-1}$. The absorption coefficient of $H_2PO_4^{\bullet}$ at 520 nm
5950	was determined to be $\varepsilon_{520nm} = 1850 \text{ L mol}^{-1} \text{ cm}^{-1} [2]$, and the radicals were monitored at this
5951	wavelength. At these high phosphoric acid concentrations, a substantial fraction of the phosphate
5952	radical is formed as a direct result of the pulse. The subsequent build-up of absorbance at 520 nm
5953	reflects primarily a competition among the forward reaction above, other loss reactions of HO [•] ,
5954	and the self-reaction of H ₂ PO ₄ •. Taking rate constants for critical reactions from the literature,
5955	and estimating rate constants for some less critical reactions, the authors modeled their results
5956	and concluded the rate constants for the forward and reverse reactions were, in $1 - 6 \text{ mol } L^{-1}$
5957	phosphoric acid: $k_{\rm f} = (4.2 \pm 0.4) \times 10^4 \text{ L mol}^{-1} \text{ s}^{-1}$ and $k_{\rm r} = (2.5 \pm 0.2) \times 10^3 \text{ L mol}^{-1} \text{ s}^{-1}$.
5958	
5959	From these, $K_{97.1} = 16.8$ (where the concentration of water is explicitly included).
5960	
5961	(At 8 mol L ⁻¹ phosphoric acid, slightly lower rate constants were obtained.)
5962	
5963	Discussion
5964	
5965	From the equilibrium constant, $K_{97.1} = 16.8$, an electrode potential of +2.65 V was
5966	calculated, based on +2.72 V for $E^{\circ}(HO^{\bullet}, H^+/H_2O)$.
5967	The reported reverse rate constant takes $[H_2O]$ = number of moles of water per liter of
5968	solution. But the correct procedure should be to take the standard state of water, 1 mol L^{-1} . As a
5969	first-order reaction, the reverse rate constant becomes $k_r = (1.4 \pm 0.1) \times 10^5 \text{ s}^{-1}$ and $K_{97.1} = (0.30 \text{ m})^{-1}$
5970	\pm 0.05) L mol ⁻¹ . If it is assumed that the value of $K_{97.1}$ is not significantly affected by the
5971	phosphoric acid concentration, this leads to the correct value of the standard potential: $E^{\circ} = +2.72$
5972	$-(0.059\log 0.3) = +2.75 \pm 0.01$ V, with no uncertainty assumed in $E^{\circ}(HO^{\bullet})$.
5973	A much larger value of the forward rate constant, $k_f = 2.7 \times 10^6 \text{ mol}^{-1} \text{ s}^{-1}$, was reported at
5974	pH 0 by Grabner et al. [3]. This value does not seem consistent, however, with rate constants

5975	reported for the reaction of HO [•] with $H_2PO_4^-$ (~2 × 10 ⁴ L mol ⁻¹ s ⁻¹ [2]), HPO ₄ ^{2–} (1.5 × 10 ⁵ L			
5976	$\text{mol}^{-1} \text{ s}^{-1}$ [2]), or with PO_4^{3-} (<1 × 10 ⁷ L mol ⁻¹ s ⁻¹ [4]).			
5977				
5978	The existence of a reasonably fast reverse reaction is supported by the observation of O_2			
5979	generation in the continuous photolysis of peroxydiphosphate solutions [5].			
5980				
5981	Recommended value:			
5982				
5983	$E^{\circ}(\text{H}_2\text{PO}_4^{\bullet}, \text{H}^+/\text{H}_3\text{PO}_4) = +(2.75 \pm 0.01) \text{ V}$			
5984				
5985	List of auxiliary thermodynamic data: none.			
5986				
5987	References			
5988				
5989	1. PY. Jiang, Y. Katsumura, M. Domae, K. Ishikawa, R. Nagaishi, K. Ishigure, Y.			
5990	Yoshida. J. Chem. Soc., Faraday Trans. 88, 3319-3322 (1992).			
5991	2. P. Maruthamuthu, P. Neta. J. Phys. Chem. 82, 710-713 (1978).			
5992	3. G. Grabner, N. Getoff, F. Schwörer. Int. J. Rad. Phys. Chem. 5, 393-403 (1973).			
5993	4. E. D. Black, E. Hayon. J. Phys. Chem. 74, 3199-3203 (1970).			
5994	5. D. O. Mártire, M. C. Gonzalez. Prog. React. Kin. Mech. 26, 201-218 (2001).			
5995				
5996				

5997 Data Sheet 98 5998 Couple: carbon dioxide/Dioxocarbonate(•1–) 5999 6000 List of reported equilibrium constants: 6001 6002 $CO_2^{\bullet-} + Tl^+ \rightleftharpoons CO_2(aq) + Tl$ (98.1)6003 6004 Schwarz and Dodson, 1989 [1]. K = 0.2, after correction for μ (experimental conditions: $\mu = 0.05$ M, pH 3.7, room 6005 temperature). Combined with $E^{\circ}(Tl^+/Tl^{\circ}) = -1.94$ V, estimated, and a K of 140 M⁻¹ for the 6006 equilibrium $Tl^{\circ} + Tl^{+} \rightleftharpoons Tl_{2}^{+}, E^{\circ}(CO_{2}(aq)/CO_{2}^{\bullet-}) = -(1.90 \pm 0.01) V.$ 6007 6008 6009 $CO_2^{\bullet-} + RSH \rightleftharpoons HCO_2^{-} + RS^{\bullet}$ (98.2)6010 6011 Surdhar et al., 1989 [2]. 6012 For the reactions with lipoamide (LS), penicillamine, and β -mercaptoethanol, equilibrium constants of 61 ± 15 (and 53 ± 20), 256 ± 30 , and 2000 ± 250 , respectively, were determined. 6013 6014 Given electrode potentials $E^{\circ}(RS^{\bullet}/RSH)$ of +1.43 V (for $E^{\circ}[LS_2H^{\bullet}, H^+/L(SH)_2]$), +1.32 V and 6015 +1.33 V, respectively, the standard electrode potential of the couple $CO_2^{\bullet-}/HCO_2^{-}$ was estimated 6016 at +(1.49 \pm 0.03) V. With this value and 2E°(HCO₂⁻/CO₂ag) = -0.364 V, the authors arrive at $-(1.85 \pm 0.06)$ V for $E^{\circ}(CO_2aq/CO_2^{\bullet-})$ 6017 6018 6019 Corrections: 6020 The potentials involving penicillamine and β -mercaptoethanol were based on equilibria with the 6021 the chlorpromazine radical/chlorpromazine couple. The electrode potential of this couple has 6022 been revised (see Data Sheet S-9) and, based on these 0.03 V higher values and an independently 6023 revised lipoamide electrode potential ($E^{\circ}[LS_2^{\bullet-}, 2H^+/L(SH)_2] = +(1.78 \pm 0.06)$ V, see Data Sheet 6024 S-10), the value of $E^{\circ}(CO_2^{\bullet-}/HCO_2^{-})$ changes to +1.52 V, and $E^{\circ}(CO_2ag/CO_2^{\bullet-})$ from -1.85 V to 6025 -1.89 V. The error is estimated at 0.06 V. 6026 6027 6028 **Recommended values**: Given the excellent agreement between the two determinations, 6029 6030 $E^{\circ}(CO_2(aq)/CO_2^{\bullet-}) = -(1.90 \pm 0.02) V$ $\Delta_f G^{\circ}(CO_2^{\bullet-}) = -(205 \pm 2) \text{ kJ mol}^{-1}$, see also Data Sheet 100. 6031 6032

6033	List of	auxiliary	thermody	mamic	data.
		5	5		

- 6035 Koppenol and Rush [3] estimated a standard potential of $-(1.84 \pm 0.22)$ V based on the electron
- 6036 affinity of carbon dioxide and an solvation Gibbs energy for CO₂^{•-} assumed to be similar to
- 6037 those of other triatomic anions. Older literature values are discussed there. The Gibbs energy of
- 6038 formation of -205 kJ mol^{-1} was also derived by Yu *et al.* [4].
- 6039
- 6040 Nomenclature: CO₂, dioxidocarbon, carbon dioxide is allowed; CO₂ \bullet ⁻, dioxidocarbonate(\bullet -);
- 6041 HCO_3^- , hydroxidodioxidocarbonate(1–); Tl^+ , thallium(+); Tl^{2+} , dithallium(+)
- 6042
- 6043 **References**
- 6044
- 6045 1. H. A. Schwarz, R. W. Dodson. J. Phys. Chem. 93, 409-414 (1989).
- 6046 2. P. S. Surdhar, S. P. Mezyk, D. A. Armstrong. J. Phys. Chem. 93, 3360-3363 (1989).
- 6047 3. W. H. Koppenol, J. D. Rush. J. Phys. Chem. **91**, 4429-4430 (1987).
- 6048 4. D. Yu, A. Rauk, D. A. Armstrong. J. Chem. Soc., Perkin Trans. 2 2207-2215 (1994).

6051 Data Sheet 99 6052 Couple: trioxocarbonate($\cdot 1$ -)/trioxocarbonate(2-) 6053 6054 List of reported equilibrium constants: 6055 Chemical equilibrium: $Br_2^{\bullet-} + CO_3^{2-} \rightleftharpoons 2Br^- + CO_3^{\bullet-}$ 6056 (99.1) 6057 6058 Huie *et al.* [1]. 6059 6060 $K = (3.2 \pm 0.7) (\mu = 3 \text{ M}, \text{ pH } 12.0), \Delta E = 0.030 \pm 0.006 \text{ V}.$ 6061 6062 Based on Reaction 99.1 and $E^{\circ}(Br_2^{\bullet}/2Br^{-}) = +(1.625 \pm 0.02) V [2]$ (see Data Sheet 26), $E^{\circ}(CO_3^{\bullet}/CO_3^{2-}) = +(1.59 \pm 0.02)$ V. 6063 6064 6065 Chemical equilibrium: $CO_3^{\bullet-} + 2SCN^- \rightleftharpoons CO_3^{2-} + (SCN)_2^{\bullet-}$ 6066 (99.2) 6067 6068 Lymar et al., 2000 [3]. 6069 $K = (1.5 \pm 0.3) \times 10^4 \text{ M}^{-1}$ and $(2.1 \pm 0.2) \times 10^4 \text{ M}^{-1}$ at 0.5 M and 1.5 M ionic strength. 6070 respectively. Based on these equilibrium constants $E^{\circ}(CO_3^{\bullet}/CO_3^{2-})$ is 0.25 V higher than 6071 $E^{\circ}((SCN)_2^{\bullet}/2SCN^{-})$. The authors have noted that this difference can be somewhat smaller at 6072 low ionic strength, as the electrolyte would tend to stabilize CO_3^{2-} the most. Given $E^{\circ}((SCN)_2^{--}$ 6073 $(2SCN^{-}) = +1.30 \text{ V}$ (see Data Sheet 101). $E^{\circ}(CO_{3}^{\circ}/CO_{3}^{2}) = +1.55 \text{ V}$. 6074 6075 Chemical equilibrium: $CO_3^{\bullet-} + ClO^- \rightleftharpoons CO_3^{2-} + ClO^{\bullet}$ 6076 (99.3) 6077 6078 Huie *et al.* [1]. 6079 $K = (9.5 \pm 3.0) \times 10^2 (\mu = 3.0 \text{ M}, \text{ pH } 12.2, 22.2 \text{ °C}), \Delta E = (0.176 \pm 0.010) \text{ V}.$ 6080 6081 6082 6083 **Comments**: The equilibrium constant for reaction 99.1 is the average of (3.3 ± 0.3) , derived 6084 from the absorbance at 360 nm (Br₂^{•–}) at equilibrium and of (3.1 ± 0.5) from the rate constants 6085 for the decay of $Br_2^{\bullet-}$ to its equilibrium value. The error in the assessment of the $Br_2^{\bullet-}/2Br_$ electrode potential determines that in $E^{\circ}(CO_3^{\bullet-}/CO_3^{2-})$. The difference of 0.04 V between two 6086

6087 careful measurements may be due to medium effects. The E° value derived in this way involves 6088 combining data at various ionic strengths and thus is not very well defined. 6089 6090 The standard electrode potential of the ClO[•]/ClO⁻ couple is not known precisely enough to determine $E^{\circ}(CO_3^{\circ-}/CO_3^{2-})$; in fact the value of +1.59 V is used to estimate $E^{\circ}(ClO^{\circ}/ClO^{-})$ [1]. 6091 6092 6093 6094 **Recommended values:** 6095 $E^{\circ}(CO_3^{\bullet}/CO_3^{2-}) = +(1.57 \pm 0.03) V$ 6096 $\Delta_{\rm f} G^{\circ}({\rm CO}_3^{\bullet-}) = -(89.1 \pm 0.8) \text{ kcal mol}^{-1}$, or $-(373 \pm 3) \text{ kJ mol}^{-1}$ 6097 6098 6099 List of auxiliary thermodynamic data 6100 6101 Based on a review of earlier literature Stanbury proposed a value of +1.5 V [2]. In an *ab initio* 6102 study, Armstrong *et al.* [4] suggest a value of $+(1.23 \pm 0.15)$ V. While not as accurate as the two 6103 experimentally derived values, this result is impressive for an *ab initio* calculation. 6104 Chemical equilibrium: $HCO_3^{\bullet} \rightleftharpoons H^+ + CO_3^{\bullet-}$ 6105 (99.4)6106 6107 Czapski et al. [5]. 6108 6109 A p K_a smaller than 0 has been determined [5], as expected for a HOXO₂ acid. 6110 6111 **Recommended value:** 6112 6113 Except that pK_a is negative, no numerical recommendation can be made. 6114 6115 Auxiliary thermodynamic data: Earlier p K_a estimates of 9.6 and 7.0 – 8.2 are discussed by 6116 Czapski et al. [5]. A recent value of 9.5 [6] was shown to be in error [3]. The result of an ab 6117 *initio* calculation [4], -4.1, also does not support the $pK_a \ge 7$ values. 6118 6119 References 6120 6121 1. R. E. Huie, C. L. Clifton, P. Neta. Radiat. Phys. Chem. 38, 477-481 (1991). 6122 2. D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).

- 6123 3. S. V. Lymar, H. A. Schwarz, G. Czapski. Rad. Phys. Chem. 59, 387-392 (2000).
- 6124 4. D. A. Armstrong, W. L. Waltz, A. Rauk. Can. J. Chem. 84, 1614-1619 (2006).
- 6125 5. G. Czapski, S. V. Lymar, H. A. Schwarz. J. Phys. Chem. A 103, 3447-3450 (1999).
- 6126 6. Z. Zuo, Z. Cai, Y. Katsumura, N. Chitose, Y. Muroya. Radiat. Phys. Chem. 55, 15-23
- 6127 (1999).
- 6128
- 6129

6130 Data Sheet 100 $Dioxidocarbonate(\cdot 1-)/hydrogendioxidocarbonate(1-)$ 6131 6132 $CO_2^{\bullet-} + HSLSH \rightleftharpoons HCO_2^- + HSLS^{\bullet}$ 6133 (100.1)6134 6135 Surdhar *et al.* [1]. 6136 HSLSH is dihydrolipoamide (HS-CH₂-C(SH)H-(CH₂)₄-CONH₂). $K = 61 \pm 15$, and 53 ± 20 from kinetic data, at pH 4 and 10 mM formate. $\Delta_{rxn}G^{\circ} = -(10 \pm 1)$ kJ mol⁻¹. Given 6137 $E^{\circ}(SLS^{\bullet-}/HSLSH) = +1.75 \text{ V} [2] \text{ and a } pK_a \text{ of } 5.5 \text{ for } HSLSH, E^{\circ}(CO_2^{\bullet-}/HCO_2^{-}) = +1.52 \text{ V}.$ 6138 6139 $CO_2^{\bullet-} + PenSH \rightleftharpoons HCO_2^- + PenS^{\bullet}$ 6140 (100.2)6141 6142 Surdhar *et al.* [1]. PenSH is penicillamine (Pen = $-CMe_2-C(NH_2)H-CO_2^{-}$). $K = (256 \pm 3)$ at pH 6 and 100 mM 6143 6144 formate. $\Delta_{rxn}G^{\circ} = -(13.6\pm0.3) \text{ kJ mol}^{-1}$. Given $E^{\circ}(\text{PenSH}) = +1.32 \text{ V}$ [2], 6145 $E^{\circ}(CO_2^{\bullet-}/HCO_2^{-}) = +1.46 \text{ V}.$ 6146 $CO_2^{\bullet-} + \beta \text{-RSH} \rightleftharpoons HCO_2^- + \beta \text{-RS}^{\bullet}$ 6147 (100.3)6148 6149 Surdhar *et al.* [1]. β -RSH is β -mercaptoethanol (HOCH₂CH₂SH). $K = (2000 \pm 250)$ at pH 3 and 0.1 M to 0.3 M 6150 formate. $\Delta_{rxn}G^{\circ} = -(13.6 \pm 0.3) \text{ kJ mol}^{-1}$. Given $E^{\circ}(\beta - RS^{\bullet}/\beta - RSH) = +1.33 \text{ V}$ [2], 6151 $E^{\circ}(CO_2^{\bullet-}/HCO_2^{-}) = +1.48 \text{ V}.$ 6152 6153 6154 Discussion 6155 6156 The above three reactions are symmetric with respect to reactant and product charges, and thus the equilibrium constants are expected to be minimally affected by ionic strength. For 6157 6158 this reason, the derived electrode potentials can be considered to be E° rather than E° values. 6159 Given the uncertainty in the determination of the standard electrode potentials of the used 6160 substituted sulfanyl/sulfane couples, Surdhar *et al.* [1] calculate an average of $+(1.49 \pm 0.06)$ V for $E^{\circ}(CO_2^{\bullet-}, H^+/HCO_2^{-})$. This value can be corrected, given a new evaluation of the 6161 6162 chlorpromazine electrode potential (see Data Sheet S-9) which was the reference electrode 6163 potential for Reactions 100.2 and 100.3, and a new evaluation of the lipoamide electrode 6164 potential (see Data Sheet S-10). On average, the electrode potential of the used substituted

6165 sulfanyl/sulfane couples increased by 0.03 V, which yields +(1.52 \pm 0.06) V for $E^{\circ}(CO_2^{\bullet-})$, 6166 H^+/HCO_2^-), see evaluation of $E^{\circ}(CO_2aq/CO_2^{\bullet-})$ (Data Sheet 98). 6167 6168 **Recommended value**: 6169 6170 $E^{\circ}(CO_2^{\bullet-}, H^+/HCO_2^{-}) = +(1.52 \pm 0.03) V.$ 6171 $HCO_2^{\bullet} \rightleftharpoons H^+ + CO_2^{\bullet-} (or COOH^{\bullet} \rightleftharpoons H^+ + CO_2^{\bullet-})$ 6172 (100.4)6173 6174 Fojtik et al., 1970 [3]. 6175 $pK_a = (3.0 \pm 0.3)$ 6176 6177 Buxton and Sellers, 1973 [4]. 6178 $pK_a = 1.4$ 6179 Jeevajaran et al., 1990 [5]. 6180 6181 $pK_a = -(0.2 \pm 0.1)$ 6182 6183 Flyunt et al., 2001 [6]. 6184 $pK_a \sim 2.3$ 6185 6186 Discussion 6187 Flyunt *et al.* [6] report that the Buxton and Sellers [4] result was an artifact. They also 6188 6189 argue that the result of Jeevarajan *et al.* [5] should be attributed to the protonation of COOH[°]. 6190 Flyunt et al. [6] are at a loss to explain the discrepancy between their result and that of Fojtik et 6191 *al.* [3]. 6192 This pK_a is interpreted by Loeff *et al.* [7] to correspond to the species **•**COOH. The Gibbs 6193 energy for the conversion of •COOH to HCO₂• is estimated at larger than 0.6 eV. Given the data 6194 of Jeevarajan *et al.* [5], a resemblance in the UV-spectra of HCO₂⁻ and Cl⁻, and a coMParison 6195 with electrode potentials of alkylperoxyl/alkylperoxide couples, a standard electrode potential of 6196 > 2.4 V is suggested for $HCO_2^{\bullet}/HCO_2^{-}$ [7]. Rauk and Armstrong calculate, with *ab initio* methods, a potential of +2.3 V for this couple, and +2.5 V for E°(HCO₂•/HCO₂H) [8]. Flyunt et 6197 6198 al. [6] are in agreement with the interpretation that $CO_2^{\bullet-}$ protonates preferentially on one of its 6199 oxygen atoms rather than carbon. We accept this interpretation and recommend a pK_a for 6200 COOH• that is the average of the results of Foitik *et al.* [3] and Flyunt *et al.* [6].

6201		
6202	Recon	nmended value:
6203		
6204	$pK_a =$	(2.6 ± 0.3) for COOH• \rightleftharpoons H ⁺ + CO ₂ •-
6205		
6206	Refer	ences
6207		
6208	1.	P. S. Surdhar, S. P. Mezyk, D. A. Armstrong. J. Phys. Chem. 93, 3360-3363 (1989).
6209	2.	P. S. Surdhar, D. A. Armstrong. J. Phys. Chem. 91, 6532-6537 (1987).
6210	3.	A. Fojtik, G. Czapski, A. Henglein. J. Phys. Chem. 74, 3204-3208 (1970).
6211	4.	G. V. Buxton, R. M. Sellers. J. Chem. Soc., Faraday Trans. 1 69, 555-559 (1973).
6212	5.	A. S. Jeevarajan, I. Carmichael, R. W. Fessenden. J. Phys. Chem. 94, 1372-1376 (1990).
6213	6.	R. Flyunt, M. N. Schuchmann, C. von Sonntag. Chem. Eur. J. 7, 796-799 (2001).
6214	7.	I. Loeff, S. Goldstein, A. Treinin, H. Linschitz. J. Phys. Chem. 95, 4423-4430 (1991).
6215	8.	D. Yu, A. Rauk, D. A. Armstrong. J. Chem. Soc., Perkin Trans. 2 2207-2215 (1994).
6216		
6217		

6218	Data Sheet 101
6219	
6220	Chemical equilibrium: $SCN^{\bullet} + SCN^{-} \rightleftharpoons (SCN)_{2}^{\bullet-}$ (101.1)
6221	
6222	List of reported equilibrium constants:
6223	
6224	Baxendale et al., 1968 [1].
6225	Thiocyanate was oxidized by hydroxyl radicals generated by pulse radiolysis. The equilibrium
6226	constant is 2.0×10^5 M ⁻¹ at both pH 2 and 7. Forward and backward rate constants are 7.0×10^9
6227	M^{-1} s ⁻¹ and 3.4 × 10 ⁴ s ⁻¹ , respectively at 22.0 °C. Ionic strength not stated. Given uncertainties of
6228	10% in each rate constant, an error of $0.3 \times 10^5 \text{ M}^{-1}$ is estimated.
6229	
6230	Baxendale and Bevan, 1969 [2].
6231	Temperature study $(22 - 88)$ °C; the authors use for 22 °C data from previous paper [1]. We
6232	interpolate the value of K at 25 °C from a lnK vs. 1/T graph: $K = 1.99 \times 10^5 \text{ M}^{-1}$.
6233	
6234	Elliot and Sopchyshyn, 1984 [3].
6235	Temperature study (10 -90) °C; reports $K = 1.08 \times 10^5 \text{ M}^{-1}$ at 22 °C. Conditions: pH 7 implied,
6236	concentrations of SCN ⁻ between 0.1 mM and 100 mM. Regarding the difference with the results
6237	obtained by Baxendale and coworkers [1, 2], the authors state: "No explanation can be given for
6238	this difference"
6239	
6240	Chin and Wine, 1992 [4].
6241	Hydroxyl radicals were generated by flash photolysis of hydrogen peroxide. $K = (2.2 \pm 0.3) \times$
6242	10^{5} M ⁻¹ at 297 K. Forward and backward rate constants are $(6.9 \pm 0.7) \times 10^{9}$ M ⁻¹ s ⁻¹ and $(3.09 \pm 0.7) \times 10^{9$
6243	$(0.25) \times 10^4$ s ⁻¹ , respectively. Ionic strength is below mM. The pH was not stated, and no buffer
6244	was used.
6245	
6246	Lymar <i>et al.</i> , 2000 [5].
6247	Forward rate constant taken from Nagarajan and Fessenden [6], 9×10^9 M ⁻¹ s ⁻¹ combined with
6248	$4.2 \times 10^4 \text{ s}^{-1}$ at 0.5 M ionic strength, yields $K = 2.1 \times 10^3 \text{ M}^{-1}$.
6249	
6250	Wu <i>et al.</i> , 2001 [7].
6251	Temperature study (25 – 400) °C; reports $K = 1 \times 10^{5} \text{ M}^{-1}$ at 25 °C. The Van 't Hoff plot shows
6252	good agreement with results obtained by Elliot and Sopchyshyn [3].
6253	

Recommendation: The choice, in essence, is between $(1 \times 10^5 \text{ and } 2 \times 10^5) \text{ M}^{-1} \text{ s}^{-1}$ at 25 °C. 6254 6255 Given the excellent agreement between an experimental and a simulated increase of absorbance 6256 at 472 nm of the (SCN)₂^{•-} radical obtained by Milosavljevic and LaVerne [8], $K_{101,1} = (2.0 \pm 0.3)$ $\times 10^5$ M⁻¹ s⁻¹ at 25 °C. The standard Gibbs energy of Reaction 101.1 is $-(30.3 \pm 0.5)$ kJ. Given 6257 6258 the charge-type of reaction 101.1 it is reasonable to expect that the K value is independent of ionic strength. Consequently, $E^{\circ}(SCN^{\circ}/SCN^{-})$ is (314 ± 5) mV higher than $E^{\circ}((SCN)_{2}^{\circ}/2SCN^{-})$. 6259 6260 6261 Chemical equilibrium: BrSCN⁻ + SCN⁻ \rightleftharpoons (SCN)₂⁻ + Br⁻ 6262 (37.1)6263 6264 List of reported equilibrium constants: 6265 6266 Schöneshofer and Henglein, 1970 [9]. 6267 6268 $K = 10^{-3}$. Conditions: 0.3 M to 1.0 M ionic strength, no buffer, pH not known, no estimate of 6269 error. 6270 6271 **Chemical equilibrium**: BrSCN^{•–} + Br[–] \rightleftharpoons Br₂^{•–} + SCN[–] 6272 (36.1)6273 6274 List of reported equilibrium constants: 6275 6276 Schöneshofer and Henglein, 1970 [9]. 6277 $K = 1.1 \times 10^2$. Conditions: 10 mM ionic strength, no buffer, pH not known, no estimate of error. 6278 6279 6280 Reactions 37.1 and -36.1 can be added to yield: 6281 Chemical equilibrium: $Br_2^{\bullet-} + 2SCN^- \rightleftharpoons (SCN)_2^{\bullet-} + 2Br^-$ 6282 (101.2)6283 with $K_{37,1} K_{-36,1} = 9 \times 10^{-6}$. This equilibrium constant is expected to be minimally affected by 6284 ionic strength, given the ionic charge distribution. It leads to a difference in electrode potential 6285 6286 between $E^{\circ}(Br_2^{\bullet-}/Br^{-})$ and $E^{\circ}((SCN)_2^{\bullet-}/2SCN^{-})$ of 298 mV (see also Data Sheet 26). Given 6287 estimated errors of 15% in $K_{37,1}$ and $K_{36,1}$, the electrode potential difference has an uncertainty of 6288 7 mV. 6289

6290		
6291	Chemical equilibrium : $ISCN^{\bullet-} + SCN^{-} \rightleftharpoons (SCN)_2^{\bullet-} + I^{-}$	(55.1)
6292		
6293	List of reported equilibrium constants:	
6294		
6295	Schöneshofer and Henglein, 1970 [9].	
6296		
6297	$K = 2.5 \times 10^{-3}$. Conditions: 0.3 M to 1.0 M ionic strength, no buffer, pH not known, no	estimate
6298	of error.	
6299		
6300		
6301	Chemical equilibrium : ISCN ^{•–} + $I^- \rightleftharpoons I_2^{\bullet-} + SCN^-$	(56.1)
6302		
6303	List of reported equilibrium constants:	
6304		
6305	Schöneshofer and Henglein, 1970 [9].	
6306		
6307	K = 55. Conditions: 10 mM ionic strength, no buffer, pH not known, no estimate of err	or.
6308		
6309	Reactions 55.1 and –56.1 can be added to yield:	
6310		
6311		(101.0)
6312	Chemical equilibrium: $I_2^{\bullet-} + 2SCN^- \rightleftharpoons (SCN)_2^{\bullet-} + 2I^-$	(101.3)
6313		
0314 (215	with $K_{55.1} K_{-56.1} = 4.55 \times 10^{-5}$. Given the ionic charges involved, this equilibrium const	ant is
6315	expected to be minimally dependent on ionic strength. It leads to a difference in electron $E^{0}(1 + 2E)$ and $E^{0}(SCN) + 2SCN-$ of 257 mV. [see also the avaluation of the strength of 257 mV. [see also the avaluation of the strength of 257 mV. [see also the avaluation of the strength of 257 mV. [see also the strength of the strength of 257 mV. [see also the strength of the strengt of the strength of the strength of the strength of the str	ae
6310	potential between $E^{(12^{-7}/21)}$ and $E^{(SCN)_2^{-7}/2SCN}$ of 257 mV. [see also the evalual $E^{(12^{-7}/21^{-7})}$ Data Sheet 45]. Given estimated emerge of 150/ in K and K at the electron	tion of
6219	$E^{-}(12^{-7}/21^{-7})$, Data Sheet 45]. Given estimated errors of 15% in K _{55.1} and K _{56.1} , the electric	ode
6210	potential difference has an uncertainty of 7 mV.	
6320		
6321	Chemical equilibrium: TrpH• ⁺ + 2SCN ⁻ → (SCN)• ⁺ + TrpH	(101.4)
6322	$\leftarrow (3 C N_{12} + 11 p) + 2 S C N_{12} \leftarrow (3 C N_{12} + 11 p) + 1 c$	(101.4)
6323	Posener <i>et al</i> 1976 [10]	
6324		
UJ4T		

6325 $K = 0.0125 \text{ M}^{-1}$ at low pH and high ionic strength. The conditions are not clearly stated. The same study gives the p K_a of TrpH^{•+} as 4.3. 6326 6327 6328 6329 **Chemical equilibrium**: $TrpH^{\bullet+} + SCN^{-} \rightleftharpoons SCN^{\bullet} + TrpH$ (101.5)6330 6331 Posener et al., 1976 [10]. 6332 $K = 6.3 \times 10^{-8}$ at low pH and high ionic strength. The conditions are not clearly stated. The 6333 equilibrium constant was obtained by combining the measured equilibrium constant for reaction 6334 101.4 and a literature value of 2.0×10^{-5} M⁻¹ for reaction 101.1. 6335 6336 6337 **Chemical equilibrium**: $(SCN)_2^{\bullet-} + Os(bpy)_3^{2+} \rightleftharpoons 2SCN^- + Os(bpy)_3^{3+}$ 6338 (101.6)6339 6340 Nord *et al.*, 1982 [11]. 6341 Forward and backward rate constants are $(2.8 \pm 0.2) \times 10^9$ M⁻¹ s⁻¹ and (25 ± 5) M⁻² s⁻¹, 6342 respectively. Thus, $K = (1.1 \pm 0.2) \times 10^8$ M at 22 °C and 0.1 M ionic strength. The pH for the 6343 forward reaction was 3, and the hydron concentration for the backward reaction was 0.5 M. 6344 although the ionic strength was reported as 0.1 M! Given $E^{\circ}(Os(bpy)_3^{3+}/Os(bpy)_3^{2+}) = +0.857 \pm$ 6345 0.004 V at $\mu = 0.1$ M and 22 °C [11], $E^{\circ}((SCN)_2^{\bullet}/2SCN)$ is $+(1.331 \pm 0.008)$ V at $\mu = 0.1$ M. 6346 6347 6348 **Chemical equilibrium**: $(SCN)_2^{\bullet-} + Ru(bpy)_3^{2+} \rightleftharpoons 2SCN^- + Ru(bpy)_3^{3+}$ 6349 (101.7)6350 6351 DeFelippis et al., 1990 [12]. 6352 $K = (1.69 \pm 0.30)$ M at 0.02 M ionic strength. Determined $E^{\circ}(\text{Ru}(\text{bpy})_3^{3+}/\text{Ru}(\text{bpy})_3^{2+}) = +1.28$ 6353 6354 V, at 25 °C, 0.1 M ionic strength and pH 7. With this electrode potential and the equilibrium constant a value for $E^{\circ}((SCN)_2^{\bullet}/2SCN^{-})$ was calculated as $+(1.29 \pm 0.01)$ V. A value for 6355 $E^{\circ}(SCN^{\bullet}/SCN^{-})$ of +1.61 V was calculated by use of a literature value for $K_{101,1}$. 6356 6357 6358 Chemical equilibrium: $CO_3^{\bullet-} + 2SCN^- \rightleftharpoons CO_3^{2-} + (SCN)_2^{\bullet-}$ 6359 (99.2) 6360

```
6361
          Lymar et al., 2000 [5].
          K = 2.3 \times 10^4 M<sup>-1</sup> near pH 11 and high (1.5 M) ionic strength: K = 1.7 \times 10^4 M<sup>-1</sup> near pH 11 and
6362
          0.5 M ionic strength. Experiments performed at 25 °C (Lymar, personal communication). Values
6363
          obtained by both measuring the position of equilibrium and from the ratio of the forward and
6364
6365
          reverse rate constants.
6366
6367
          Chemical equilibrium: CO_3^{\bullet-} + SCN^- \rightleftharpoons CO_3^{2-} + SCN^{\bullet}
6368
                                                                                                                    (101.8)
6369
6370
          Lymar et al., 2000 [5].
6371
          K = 0.08 near pH 11 and high (0.5 M) ionic strength. Value obtained by combining the measured
          equilibrium constants for reactions 99.2 and 101.1. From this equilibrium constant
6372
          E^{\circ}(CO_3^{\bullet-}/CO_3^{2-}) is 0.06 V lower than E^{\circ}(SCN^{\bullet}/SCN^{-}). Given the reevaluation of
6373
          E^{\circ}(CO_3^{\bullet}/CO_3^{2-}), +(1.57 ± 0.03) V (Data Sheet 99), E^{\circ}(SCN^{\bullet}/SCN^{-}) = +(1.63 ± 0.03) V.
6374
6375
6376
          Indirect determinations and estimates of E°(SCN<sup>•</sup>/SCN<sup>-</sup>)
6377
6378
6379
6380
          Sarala et al., 1980 [13].
6381
6382
          Based on E^{\circ}(I^{-}/I^{-}) = +1.33 V (assumed), E^{\circ}(SCN^{-}/SCN^{-}) is recalculated from the energetics of I
          - SCN-equilibria determined by Schöneshöfer and Henglein [9]. The result is +1.60 V for
6383
6384
          E^{\circ}'(SCN^{\bullet}/SCN^{-}).
6385
6386
6387
          Butler et al., 1982 [14].
6388
6389
          Literature calculation:
                                                                        K = 1/(1.3 \times 10^{-8} \text{ M}) [9]
                   I^- + SCN^{\bullet} \rightleftharpoons ISCN^{\bullet-}
6390
                                                                        K = 4.8 \times 10^{-4} \text{ M} [9]
6391
                   ISCN^{-} \rightleftharpoons SCN^{-} + I^{\bullet}
                                                                         E^{\circ} = +1.3 \text{ V} [15]
6392
                   I^{\bullet} + e^{-} \rightleftharpoons I^{-}
          The sum of these three equations leads to E^{\circ}(SCN^{\bullet}/SCN^{-}) = +1.56 \text{ V}, and, consequently,
6393
6394
          E^{\circ}((SCN)_2^{\bullet}/2SCN) = +1.25 \text{ V}. The authors indicate an error of 0.22 V.
6395
6396
```

6397 Schwarz and Bielski, 1986 [16].

6398

6429

From the kinetics of the reaction of HO₂• with I₂ at $\mu = 1$ M and a value of 1.1 kcal mol⁻¹ (4.6 kJ 6399 mol⁻¹) for $\Delta_f G^{\circ}$ of HO₂[•] these authors determined a standard Gibbs energy of formation of I₂^{•-} of 6400 -0.9 kcal mol⁻¹ (-3.8 kJ mol⁻¹). Via reactions 55.1 and 56.1 they arrive at $\Delta_f G^{\circ}(SCN)_2^{\bullet-} = +74.0$ 6401 kcal mol⁻¹ (+310 kJ mol⁻¹), $E^{\circ}((SCN)_2^{\bullet}/2SCN) = +1.31 \text{ V}$, and $E^{\circ}(SCN^{\bullet}/SCN) = +1.62 \text{ V}$. 6402 6403 These potential are approximate because of the various ionic strengths used in their derivation. 6404 6405 6406 Merényi et al., 1988 [17]. 6407 6408 From the kinetics of the reaction of ClO_2^{\bullet} with tryptophan, the authors derive a value of $1.08 \pm$ 0.02 V for E° (trp[•]/trpH) at pH 7. With an equilibrium constant of 6.3×10^{-8} for reaction 101.5 6409 (TrpH^{•+}/SCN⁻) determined by Posener *et al.* [10], see above, there is a 426 mV difference 6410 6411 between $E^{\circ}(\text{trpH}^{+}/\text{trpH})$ and $E^{\circ}(\text{SCN}^{-}/\text{SCN}^{-})$. Given a pK_a of 4.3 of TrpH⁺, this leads to E° (SCN•/SCN⁻) = +1.67 V, although the authors list +1.66 ± 0.02 V. More recent investigations 6412 of the TrpH^{•+}/TrpH couple indicate that its potential is ~0.05 V lower (see Supplementary Data 6413 6414 Sheet S-12. 6415 6416 Discussion 6417 There are only two direct determinations (the reactions with $[Os(bpy)_3]^{2+}$ and $[Ru(bpy)_3]^{2+}$) [11, 6418 6419 12] of which the one by Nord *et al.* [11] is based on a rather large equilibrium constant under 6420 uncertain ionic strength conditions. We therefore give more weight to the determination by 6421 DeFelippis et al. [12]. Unfortunately, the results from DeFelippis et al. were obtained by combining data at differing ionic strengths; we consider that accurate correction of the values to 6422 6423 the same ionic strength would be unreliable. As a result, the derived potentials are E° values at 6424 an undefined ionic strength. Fortunately and surprisingly, the indirect determinations yield 6425 values that are very similar. 6426 6427 A consistency test can be performed by considering the equilibrium constants for the following 6428 reactions:

- 6430 $\operatorname{BrSCN}^{\bullet-} + \operatorname{SCN}^{-} \rightleftharpoons (\operatorname{SCN})_2^{\bullet-} + \operatorname{Br}^{-}$ (37.1)
- $6431 \quad \text{BrSCN}^{\bullet-} + \text{Br}^{-} \rightleftharpoons \text{Br}_{2}^{\bullet-} + \text{SCN}^{-} \tag{36.1}$
- $6432 \quad \operatorname{Br}_{2}^{\bullet-} + \operatorname{CO}_{3}^{2-} \rightleftharpoons 2\operatorname{Br}^{-} + \operatorname{CO}_{3}^{\bullet-} \tag{99.1}$

6433						
6434	CO ₃ •	$-+2\text{SCN}^- \rightleftharpoons \text{CO}_3^{2-} + (\text{SCN})_2^{\bullet-}$	(99.2)			
6435						
6436	This	leads to $K_{99.1}/(K_{37.1}K_{36.1}) = 3.4 \times 10^4 \text{ M}^{-1}$, which is equivalent to the equilibrium con	stant for			
6437	react	reaction 99.2. The directly-measured value for $K_{99.2}$ is 2.3×10^4 M ⁻¹ , which demonstrates				
6438	excel	llent self-consistency.				
6439						
6440	Reco	ommended values:				
6441						
6442	E° '(S	$SCN^{\bullet}/SCN^{-}) = +(1.61 \pm 0.02) V$				
6443	<i>E</i> °'(($SCN_2^{-/2}SCN^{-} = +(1.30 \pm 0.02) V$				
6444	$\Delta_{\rm f} G^{\circ}$	$(SCN^{\bullet}) = +248 \pm 2 \text{ kJ mol}^{-1}$				
6445	$\Delta_{\rm f} G^{\circ}$	$(SCN)_2^{\bullet-} = +310 \pm 2 \text{ kJ mol}^{-1}$				
6446						
6447	Nom	enclature: SCN ⁻ , nitridosulfidocarbonate(1-), thiocyanate is allowed; SCN [•] ,				
6448	nitrid	nitridosulfidocarbon(•); $(SCN)_2^{\bullet-}$, bis(nitridosulfidocarbonate) $(S-S)(\bullet 1-)$; ISCN $^{\bullet-}$,				
6449	(iodo	osulfato)nitridocarbonate(•1–)				
6450						
6451	Refe	rences				
6452						
6453	1.	J. H. Baxendale, P. L. T. Bevan, D. A. Stott. Trans. Faraday Soc. 64, 2389-2397	(1968).			
6454	2.	J. H. Baxendale, P. L. T. Bevan. J. Chem. Soc. (A) 2240-2241 (1969).				
6455	3.	A. J. Elliot, F. C. Sopchyshyn. Int. J. Chem. Kinet. 16, 1247-1256 (1984).				
6456	4.	M. Chin, P. H. Wine. J. Photochem. Photobiol. A 69, 17-25 (1992).				
6457	5.	S. V. Lymar, H. A. Schwarz, G. Czapski. Rad. Phys. Chem. 59, 387-392 (2000).				
6458	6.	V. Nagarajan, R. W. Fessenden. J. Phys. Chem. 89, 2330-2335 (1985).				
6459	7.	G. Wu, Y. Katsumura, Y. Muroya, M. Lin, T. Morioka. J. Phys. Chem. A 105, 49	33-4939			
6460	(2001	1).				
6461	8.	B. H. Milosavljevic, J. A. LaVerne. J. Phys. Chem. A. 109, 165-168 (2005).				
6462	9.	M. Schöneshöfer, A. Henglein. Ber. Bunsenges. Phys. Chem. 74, 393-398 (1970).				
6463	10.	M. L. Posener, G. E. Adams, P. Wardman, R. B. Cundall. J. Chem. Soc., Faraday	, Trans.			
6464	1 72,	2231-2239 (1976).				
6465	11.	G. Nord, B. Pedersen, E. Floryan-Løvborg, P. Pagsberg. Inorg. Chem. 21, 2327-2	,330			
6466	(1982	2).				
6467	12.	M. R. DeFelippis, M. Faraggi, M. H. Klapper. J. Phys. Chem. 94, 2420-2424 (199) 0).			
6468	13.	R. Sarala, S. B. Rabin, D. M. Stanbury. Inorg. Chem. 30, 3999-4007 (1991).				

6469 14. J. Butler, E. J. Land, W. A. Prütz, Swallow, A, J. *Biochim. Biophys. Acta* 705, 150-162
6470 (1982).

- 6471 15. A. Henglein. Radiat. Phys. Chem. 15, 151-158 (1980).
- 6472 16. H. A. Schwarz, B. H. Bielski. J. Phys. Chem. 90, 1445-1448 (1986).
- 6473 17. G. Merényi, J. Lind, X. Shen. J. Phys. Chem. 92, 134-137 (1988).

6475	Data Sheet 102
6476	
6477	Chemical equilibrium : $\operatorname{HgCl}_2(aq) + \operatorname{MV}^{\bullet^+} \rightleftharpoons \operatorname{HgCl}(aq) + \operatorname{Cl}^- + \operatorname{MV}^{2+}$ (102)
6478	$(MV^{2+} = methyl viologen)$
6479	
6480	List of reports:
6481	
6482	$1/K_{eq} = 2.5$, presumably at room temperature, with 0.05 M Cl ⁻ and an unspecified
6483	concentration of phosphate buffer at pH \sim 6 [1]. Result obtained by pulse radiolysis, measuring
6484	the equilibrium absorbance of $MV^{\bullet+}$. The reported equilibrum constant (2.5) is actually for the
6485	reaction when written as $Hg(I) + MV^{2+} \rightleftharpoons Hg(II) + MV^{\bullet+}$, and thus is dependent on the chloride
6486	concentration.
6487	
6488 6489	Discussion
6490	The authors convert the conditional equilibrium constant into a conditional electrode
6491	potential of -0.47 V (at 0.05 M Cl ⁻) by use of $E^{\circ} = -0.45$ V for MV ²⁺ /MV ⁺⁺ . They then derive a
6492	formal potential of -0.55 V for HgCl ₂ (<i>aq</i>) + e ⁻ \rightleftharpoons HgCl(<i>aq</i>) + Cl ⁻ . This potential is expected to
6493	be dependent on ionic strength, but without knowledge of the ionic strength employed we are
6494	unable to estimate the magnitude of the correction. Given the uncertainties about the speciation
6495	of Hg(I), the uncertainty in the formal potential must be at least 20 mV.
6496	The authors then use solvation energy estimates to derive $E^{\circ} < -2.0$ V for Hg ²⁺ /Hg ⁺ , but
6497	we consider this outcome to be contrary to expectations based on stability constant estimates:
6498	chloride should stabilize Hg(II) more than Hg(I) and thus $E^{\circ}(Hg^{2+}/Hg^{+})$ is expected to be
6499	positive of $E^{\circ}(\text{HgCl}_2/\text{HgCl}, \text{Cl}^-)$.
6500	
6501	Recommended value:
6502	
6503	$E^{\circ \circ} = -(0.55 \pm 0.02) \text{ V for HgCl}_2(aq) + e^- \rightleftharpoons \text{HgCl}(aq) + \text{Cl}^-$
6504	
6505	List of auxiliary thermodynamic data: none.
6506	
6507	References
6508	
6509	1. K. Gårdfeldt, M. Jonsson. J. Phys. Chem. A 107, 4478-4482 (2003).
6510	

6511	Data Sheet 103	
6512		
6513	$E^{\circ}(NO_{3}^{\bullet}(aq)/NO_{3}^{-})$	
6514		
6515	Published reports:	
6516	The electrode potential $E^{\circ}(NO_{3}^{\bullet}/NO_{3}^{-})$ has been evaluated by two methods:	
6517	a) Through the estimation of the Gibbs energy of formation of NO_3^{\bullet} in the gas phase	se and in
6518	water. In chronological order: $E^{\circ} = +2.3 \pm 0.1 \text{ V} [1]; 1.9 \text{ V} [2]; 2.28 \text{ V} [3]; 2.49$	V [4].
6519	b) From the positions of three equilibria with other radicals:	
6520	$HO^{\bullet} + HNO_3(aq) \rightleftharpoons H_2O + NO_3^{\bullet}(aq)$	(104.1)
6521	$E^{\circ} = +2.67 \text{ V} [5]; E^{\circ} = +(2.48 \pm 0.01) \text{ V} [6]; E^{\circ} = +(2.58 \pm 0.02) \text{ V} [7].$	
6522	$SO_4^{\bullet-} + NO_3^- \rightleftharpoons SO_4^{2-} + NO_3^{\bullet}(aq)$	(14.1)
6523	$E^{\circ} = +(2.45 \pm 0.05) \text{ V } [8].$	
6524	$NO_3^{\bullet}(aq) + Cl^- \rightleftharpoons NO_3^- + Cl^{\bullet}(aq)$	(16.1)
6525	$E^{\circ} = +(2.47 \pm 0.01) \text{ V } [7].$	
6526		
6527	Discussion	
6528		
6529	Historically, the thermodynamicchemical estimates preceded the equilibrium data. T	These
6530	estimates have been reviewed by Stanbury [4] and are not considered or discussed here.	We only
6531	note a large spread in the E° values obtained by that method, although some of them con	me close
6532	to the recommended value given below.	
6533	The electrode potentials for reference radicals and the literature reports on their equi	ilibria
6534	with NO ₃ • have been individually assessed in this work. The following values are recom	nmended:
6535	$K_{104.1}$ = none (see Data Sheet 104).	
6536	Accordingly, all $E^{\circ}(NO_3^{\bullet}/NO_3^{-})$ reported from this equilibrium are to be considered unr	eliable.
6537	$K_{14.1} = (0.28 \pm 0.1)$ at $\mu = 0$ M; $E^{\circ}(SO_4^{\bullet-}/SO_4^{2-}) = +(2.43 \pm 0.02)$ V (see Data Sheet	14)
6538	From these values, $E^{\circ}(NO_3^{\bullet}/NO_3^{-}) = +(2.46 \pm 0.02)$ V.	
6539	$K_{16.1} = (3.33 \pm 0.24)$ at $\mu = 0$ M; $E^{\circ}(Cl^{\bullet}/Cl^{-}) = +(2.43 \pm 0.02)$ V (see Data Sheet 16)	
6540	From these values, $E^{\circ}(NO_3^{\bullet}/NO_3^{-}) = +2.46 \pm 0.02 \text{ V}.$	
6541	Excellent agreement between the last two evaluations gives significant confidence in the	e result.
6542	The electrode potential $E^{\circ}(NO_3^{\circ}, H^+/HNO_3) = +(2.39 \pm 0.02)$ V can be calculated from	om the
6543	equilibrium evaluated in this work:	
6544	$SO_4^{\bullet-} + HNO_3 \rightleftharpoons HSO_4^- + NO_3(aq)$	(15.1)
6545	$K_{15.1} = (5 \pm 2) \times 10^2$, and	
6546	$pK_a(HSO_4^-) = 1.96$ [9].	

6547	The latest printed NBS tables [10] give an erroneous value for $\Delta_f G^{\circ}(NO_3^{-})_{aq}$, while the previous		
6548	version contains the correct value of $-111.3 \text{ kJ mol}^{-1}$ [11, 12]. With this value, $E^{\circ}(NO_{3}^{\circ}/NO_{3}^{-}) =$		
6549	+(2.46 ± 0.02) V corresponds to $\Delta_{\rm f} G^{\circ}({\rm NO}_3^{\bullet})_{aq}$ = +(126 ± 2) kJ mol ⁻¹ . Accepting $K_{\rm a}({\rm HNO}_3)$ = 20		
6550	M [13], we calculate $E^{\circ}(NO_3^{\bullet}, H^+/HNO_3^{\bullet})$	$_{3}$) = +2.38 V, which is within the uncertainty of the	
6551	estimate based on $K_{3,21}$.		
6552			
6553	Recommended values:		
6554			
6555	$NO_3^{\bullet}(aq) + e^- \rightleftharpoons NO_3^{-}(aq)$	$E^{\circ} = +(2.46 \pm 0.02) \text{ V}$	
6556	$NO_3^{\bullet}(aq) + H^+ + e^- \rightleftharpoons HNO_3(aq)$	$E^{\circ} = +(2.39 \pm 0.02) \text{ V}$	
6557	NO ₃ •(aq)	$\Delta_{\rm f}G^{\circ} = +(126 \pm 2) \rm kJ mol^{-1}$	
6558			
6559	Nomenclature: NO ₃ •, trioxidonitrogen(•), NO ₃ ⁻ , trioxidonitrate(1–), nitrate is acceptable.	
6560			
6561	References		
6562			
6563	1. V. M. Berdnikov, N. M. Bazhin.	Russ. J. Phys. Chem. 44, 395-398 (1970).	
6564	2. Endicott, J. F. In Concepts of Inorganic Photochemistry, (Adamson, A. W., Fleischauer,		
6565	P. D., eds.), p. 81-142. Wiley, New York (1975).		
6566	3. R. G. Pearson. J. Am. Chem. Soc. 108, 6109-6114 (1986).		
6567	4. D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).		
6568	5. PY. Jiang, Y. Katsamura, K. Ishigure, Y. Yoshida. <i>Inorg. Chem.</i> 31 , 5135-5136 (1992)		
6569	6. G. A. Poskrebyshev, P. Neta, R. E. Huie. J. Geophys. Res. 106, 4995-5004 (2001).		
6570	7. G. A. Poskrebyshev, R. E. Huie, P. Neta. J. Phys. Chem. A 107, 1964-1970 (2003).		
6571	8. T. Løgager, K. Sehested, J. Holcman. Radiat. Phys. Chem. 41, 539-543 (1993).		
6572	9. A. Albert, E. P. Serjeant. <i>The Determination of Ionization Constants</i> , Chapman and Hall		
6573	London (1984).		
6574	10. D. D. Wagman, W. H. Evans, V.	B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.	
6575	Churney, R. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).		
6576	11. D. G. Archer, personal communi	cation to Lymar, S.V. The Standard Reference Data	
6577	Program tape of the NBS Tables that su	percedes the printed version contains the same Gibbs	
6578	energy of formation for the nitrate ion as does the referenced here Technical Note 270-3, printed		
6579	in 1968. (2003).		
6580	12. D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, R. H. Schumm.		
6581	Selected Values of Chemical Thermodynamic Properties; National Bureau of Standards and		
6582	Technology Note 270-3, U.S. Government Printing Office, Washington, D. C. (1968).		

6583 13. O. Redlich, R. W. Duerst, A. Merbach. J. Chem. Phys. 49, 2986-2994 (1968).
6584

- 6585 **Data Sheet 104**
- 6586 Chemical equilibrium: $HO^{\bullet} + HNO_3(aq) \rightleftharpoons H_2O + NO_3^{\bullet}(aq)$ 6587 (104.1)6588 6589 List of reports: 6590 $K_{eq} = 1 \times 10^2$, dimensionless, in 0.2-1.5 M HNO₃, was estimated from the ratio of the rate 6591 constants $k_f = 5.3 \times 10^7 \text{ M}^{-1} \text{ s}^{-1}$ and $k_r = 5.3 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$ obtained by pulse radiolysis [1]. Both 6592 $k_{\rm r}$ and $K_{\rm eq}$ have been reported in improper units because water was explicitly included in the 6593 6594 reverse reaction rate law; this inclusion was also performed in an improper manner using water 6595 activity around 1 M. 6596 $K_{eq} = (2.8 \pm 0.4) \times 10^5$, dimensionless at $\mu = 0$ M, was obtained from the ratio of the rate 6597 constants $k_{\rm f} = (8.6 \pm 1.3) \times 10^7 \,{\rm M}^{-1} \,{\rm s}^{-1}$ and $k_{\rm r} = (3 \pm 1) \times 10^2 \,{\rm M}^{-1} \,{\rm s}^{-1}$ derived from pulse 6598 radiolysis in solutions of HNO₃ [2]. As in the previous report by Katsumura and co-workers, 6599 6600 water was explicitly included in the reverse reaction rate law and k_r and K_{eq} had improper units. In the subsequent paper from the same laboratory [3], these values have been converted using 6601 water concentration of 55.6 M to have appropriate dimensionalities, that is $k_r = (1.7 \pm 0.6) \times 10^4$ 6602 s^{-1} and $K_{eq} = (5.0 \pm 1.5) \times 10^3 \text{ M}^{-1}$. 6603 6604 6605 Discussion 6606

In the earlier of these reports by Katsumura and co-workers [1], activities of the reagents instead
of their concentrations were used in the rate law for the reaction approach to equilibrium. This
treatment is kinetically incorrect.

6610

6611 Poskrebyshev *et al.* also treated the rate laws in terms of activities [2], but our concerns about the 6612 validity of this approach are overshadowed by the concerns regarding the dose dependence.

- 6613 Three methods for the evaluation of K_{eq} were applied by these authors. The first method was the 6614 same as used by Katsumura and co-workers [1] and was based on the approach to equilibrium; it
- 6615 yielded $K_{eq} = (5.5 \pm 2.2) \times 10^4 \,\mathrm{M}^{-1}$. In the second method, a K_{eq} ranging from about $(2.5 \times 10^4 \,\mathrm{to})$
- 6616 7×10^4) M⁻¹at various radiation doses was obtained from the NO₃• absorption maximum in its
- 6617 kinetic profile, where a complete equilibration was assumed. From the dose dependence shown
- by this latter method, the authors properly concluded that a significant loss of radicals due to the
- 6619 radical-radical reactions had occurred and resorted to kinetic modeling, which gave $K_{eq} = (2.8 \pm$
- $6620 \quad 0.4) \times 10^5$ and this value was considered as the most reliable. However, just as with the

6621	absorption maximum, the modeling result is heavily dependent upon the rates of the radical-			
6622	radical reactions. It appears that the major radical loss should occur through the $HO^{\bullet} + NO_2^{\bullet}$			
6623	reac	reaction, but reasonable kinetic fits could be obtained only with the rate constant for this reaction		
6624	that	that was more than an order of magnitude below the well-supported literature values [4-6]. These		
6625	cons	siderations seem to imply that there is insufficient reversibility in the reaction of HO• with		
6626	NO	NO_3^{\bullet} for accurate equilibrium measurements, unless exceedingly small doses can be employed.		
6627				
6628	In s	ummary, neither of the reported K_{eq} can be recommended with reasonable confidence.		
6629				
6630	Recommended value:			
6631				
6632		None		
6633				
6634	List of auxiliary thermodynamic data: none			
6635				
6636	Ref	References		
6637				
6638	1.	PY. Jiang, Y. Katsumura, K. Ishigure, Y. Yoshida. Inorg. Chem. 31, 5135-5136 (1992).		
6639	2.	G. A. Poskrebyshev, P. Neta, R. E. Huie. J. Geophys. Res. 106, 4995-5004 (2001).		
6640	3.	G. A. Poskrebyshev, R. E. Huie, P. Neta. J. Phys. Chem. A 107, 1964-1970 (2003).		
6641	4.	T. Løgager, K. Sehested. J. Phys. Chem. 97, 6664-6669 (1993).		
6642	5.	G. Merényi, J. Lind, S. Goldstein, G. Czapski. J. Phys. Chem. A 103, 5685-5691 (1999).		
6643	6.	I. Wagner, H. Strehlow, G. Busse. Z. Phys. Chem. (Wiesbaden) 123, 1-33 (1980).		
6644				
6645				

6646	Data Sheet 105
6647	
6648	Chemical equilibria:
6649	$H_2 NO^{\bullet} \rightleftharpoons H NO^{\bullet-} + H^+ $ (105.1)
6650	$H_3 NO^{\bullet +} \rightleftharpoons H_2 NO^{\bullet} + H^+ $ (105.2)
6651	
6652	List of reports:
6653	
6654	$pK_a(H_2NOH^{\bullet+}) = (4.2 \pm 0.1)$, at ~ 22 °C with ionic strength uncontrolled and as high as
6655	0.01 M [1]. From pulse radiolysis of NH2OH, by monitoring the absorbance at 240 nm of the
6656	radical intermediate between pH 2 and 10.
6657	$pK_a(H_2NOH^{\bullet+}) = (4.0 \pm 0.1)$, presumably at room temperature, with ionic strength
6658	uncontrolled and as high as 0.5 M [2]. From pulse radiolysis of NH ₂ OH, monitoring the
6659	absorbance of the radical intermediate as a function of pH at 230 nm. A similar pH dependence
6660	of the absorbance was obtained from flash photolysis, although the pH range was limited to less
6661	than 4.
6662	$pK_a(H_2NO^{\bullet}) = (12.6 \pm 0.3)$, presumably at room temperature, with ionic strength
6663	uncontrolled and as high as 1 M [3]. Result from pulse radiolysis, monitoring the kinetics as a
6664	function of pH for the recombination of H_2NO^{\bullet} , with the reaction of H_2NO^{\bullet} with $MV^{\bullet+}$ (MV is
6665	methylviologen, 1,1'-dimethyl-4,4'-bipyridinium(2+)) as an indicator. Experiments were
6666	performed between pH 8 and 14.
6667	
6668 6669	Discussion
6670	The two early reports give spectral evidence for a radical pK_a at about 4.1, while the
6671	recent report from Lind and Merényi [3] gives kinetic evidence for a radical pK_a of 12.6. None of
6672	the three studies gives data over a sufficiently broad pH range to encoMPass both pK_a regions, so
6673	one might argue that the radical has two successive pK_a values. However, Lind and Merényi [3]
6674	argue that H ₃ NO ^{•+} (or NH ₂ OH ^{•+}) should be a strong acid with $pK_a < -5$; they base their argument
6675	on two lines of evidence: 1) The reactions of hydroxylamine with Fe ³⁺ and Pu ⁴⁺ have rate laws
6676	that require the radical to be unprotonated even in 1 M acid, and 2) by analogy with TEMPO and
6677	related nitroxyl radicals, which are protonated only in concentrated H ₂ SO ₄ solutions. Lind and
6678	Merényi also argue that the spectral changes that were previously interpreted in terms of a pK_a
6679	near 4.1 were due instead to a diminished yield of the radical at low pH. We are pursuaded by
6680	the results and interpretations of Lind and Merényi and thus recommend their values.
6681	

6682			
6683	Reco	ommended values:	
6684			
6685	NH ₂	$OH^{\bullet^+} \rightleftharpoons NH_2O^{\bullet} + H^+$	$pK_a < -5$
6686	NH ₂	$O^{\bullet} \rightleftharpoons \text{NHO}^{\bullet-} + \text{H}^+$	$pK_a = 12.6 \pm 0.3$
6687			
6688	List	of auxiliary thermodynamic data	1:
6689			
6690	Nomenclature: NH ₂ OH, dihydridohydroxidonitrogen or azanal, hydroxylamine is acceptable;		
6691	$NH_2OH^{\bullet+}$, dihydridohydroxidonitrogen(\bullet 1+); NH_2O^{\bullet} , dihydridooxidonitrogen(\bullet); $NHO^{\bullet-}$,		
6692	hydr	idoxidonitrate(•1–)	
6693			
6694	Refe	rences	
6695			
6696	1.	M. Simic, E. Hayon. J. Am. Ch	em. Soc. 93 , 5982-5986 (1971).
6697	2.	D. Behar, D. Shapira, A. Treini	in. J. Phys. Chem. 76, 180-186 (1972).
6698	3.	J. Lind, G. Merényi. J. Phys. C	<i>hem. A.</i> 110, 192-197 (2006).
6699			
6700			

6702	Data Sheet 106	
6703		
6704	Chemical equilibrium: $HPO_3^{\bullet-} \rightleftharpoons PO_3^{\bullet 2-} + H^+$	(106.1)
6705		
6706	List of reports:	
6707		
6708	Over the wavelength range 230 nm to 290 nm, the optical absorptivity of PO	^{•2–} was found to be
6709	significantly higher than that for HPO ₃ ^{•-} [1]. This allowed a simple determina	ation of the second
6710	pK_a of this radical by measuring the absorptivity subsequent to the pulse irrad	liation of phosphite
6711	solutions at various pH values. From the inflection point of the S-shaped curv	$Ve, pK_{106.1} = 5.75$
6712	was obtained, in excellent agreement with earlier ESR measurements of pK_{10}	$_{6.1} = 5.8 [2].$
6713		
6714	Discussion	
6715		
6716	The authors gave no uncertainty estimate. Based on the good agreement with	the previous
6717	results, the large difference between the absorption coefficients for the two for	orms and the quality
6718	of the results, we recommend $pK_{106.1} = (5.75 \pm 0.05)$.	
6719		
6720	Recommended value:	
6721		
6722	$pK_{106.1} = (5.75 \pm 0.05)$	
6723		
6724	Nomenclature : HPO ₃ •-, hydroxidodioxidophosphate(•–); PO ₃ • ^{2–} , trioxidoph	osphate(•2–).
6725		
6726	References	
6727		
6728	1. K. Schäfer, KD. Asmus. J. Phys. Chem. 84, 2156-2160 (1980).	
6729	2. O. P. Chawla, R. W. Fessenden. J. Phys. Chem. 79, 2693-2700 (1975)).
6730		
6731		

6732	Data Sheet 107	
6733		
6734	Chemical equilibrium: $H_2PO_3^{\bullet} \rightleftharpoons HPO_3^{\bullet-} + H^+$	(107.1)
6735		
6736	Chemical equilibrium: $H_3PO_3^{\bullet+} \rightleftharpoons H_2PO_3^{\bullet} + H^+$	(107.2)
6737		
6738	List of reports:	
6739		
6740	The shift in the ³¹ P hyperfine constant in the ESR spectrum of HPO ₃ ^{•-} was measured	red as a
6741	function of acidity from pH 2.4 to 61.2% HClO ₄ [1]. It was argued that a plot of the	he reciprocal of
6742	the shift would be directly proportional to an acidity function applicable to this his	gh acidity. An
6743	approach that assumes that each acid proton is associated with four water molecul	les to form
6744	$H_9O_4^+$ was taken, and the function h/w^4 utilized, where $h = [H_9O_4^+]$ and $w = [H_2O_4^+]$	$]/[H_2O]_0$, the
6745	total water concentration relative to pure water [2]. Although a linear relation betw	ween the
6746	reciprocal of the shift in the hyperfine constant and this acidity function was found	d for the
6747	ascorbate radical, which confirmed a single proton-transfer equilibrium, a non-line	ear relationship
6748	was found for hydroxidodioxidophosphate(\bullet -) (HPO ₃ \bullet -). This was taken to indica	ite the presence
6749	of two protonation equilibria, 107.1 and 107.2.	
6750		
6751	The observed curve could be fit to a more complex expression involving these two	o equilibria.
6752	The equilibrium constant $K_{107.1}$ and its associated splitting constant were derived by	oy a straight-
6753	line fit to the lowest four acid concentrations and similar parameters for reaction 1	107.2 were
6754	obtained from a fit to the highest acid concentrations.	
6755		
6756	$K_{107.1} = 1.1 \text{ mol } L^{-1}$	
6757		
6758	$K_{107,2} = 54 \text{ mol } L^{-1}$	
6759		
6760	Discussion	
6761		
6762	These parameters and the splitting constants provided a good fit to the observation	ns, but due to
6763	the nature of their derivation and their relative closeness, these values should be c	onsidered only
6764	approximate.	
6765		
6766	Recommended values:	
6767		

6768	$K_{107.1} = 1.1 \text{ mol } \mathrm{L}^{-1}$		
6769	$K_{107.2} = 54 \text{ mol } \mathrm{L}^{-1}$		
6770			
6771	Nomenclature: $H_3PO_3^{\bullet+}$, trihydroxidophoshorus($\bullet1+$); $H_2PO_3^{\bullet}$, dihydroxidooxidophosphoru	ıs(●),	
6772	HPO ₃ •-, hydroxidodioxidophosphate(•1–).		
6773			
6774	References		
6775			
6776	1. H. F. Davis, H. J. McManus, R. W. Fessenden. J. Phys. Chem. 90, 6400-6404 (1986)).	
6777	2. W. T. Dixon, D. Murphy. J. Chem. Soc., Faraday Trans. 2 74, 432-439 (1978).		
6778			
6779			

6780	Data Sheet 108	
6781		
6782	Chemical equilibrium: $H_2PO_4^{\bullet} \rightleftharpoons H^+ + HPO_4^{\bullet-}$	(108.1)
6783		
6784	Chemical equilibrium: $HPO_4^{\bullet-} \rightleftharpoons H^+ + PO_4^{\bullet 2-}$	(108.2)
6785		
6786	List of reports:	
6787		
6788	The three acid-base forms of the phosphate radical were generated through the put	lse radiolysis of
6789	bis(tetraoxidophosphate)(O - O)(4–) ($P_2O_8^{4-}$) solutions at pH 4, 7, and 11 [1]. The a	absorption
6790	spectra were measured over the range 400 nm to 600 nm. The maximum absorption	on shifted from
6791	about 520 nm at pH 4, to 510 nm at pH 7, and 530 nm at pH 11. These shifts allow	ved the two
6792	pK_a values to be determined by monitoring the absorption at a convenient waveler	1gth, 540 nm,
6793	over the pH range 4 to 11. The best-fit curve gave $pK_{108.1} = (5.7 \pm 0.2)$ and $pK_{108.2}$	$=(8.9\pm0.1),$
6794	where the error estimates are from the authors.	
6795		
6796	Discussion	
6797		
6798	The differences among the spectra are not too large, and the fact that there is a blue	e shift going
6799	from $H_2PO_4^{\bullet}$ to $HPO_4^{\bullet-}$, but a red shift for $H_2PO_4^{\bullet}$ to $PO_4^{\bullet 2-}$ suggests a somewhat	greater
6800	uncertainty in these results. The general positions for these forms on the pH scale	are supported
6801	by kinetic results. Generally, it appears that the order of electrode potential is: H_2H_2	$PO_4^{\bullet} > HPO_4^{\bullet-}$
6802	$> PO_4^{\bullet 2-}.$	
6803		
6804	Recommended values:	
6805		
6806	$pK_{108.1} = (5.7 \pm 0.4)$	
6807	$pK_{108.2} = (8.9 \pm 0.2)$	
6808		
6809	Nomenclature: H ₂ PO ₄ •, dihydroxidodioxidophosphorus(•); HPO ₄ •-,	
6810	hydroxidotrioxidophosphate($\bullet 1-$); PO ₄ $\bullet 2-$, tetraoxidophosphate($\bullet 2-$)	
6811		
6812	References	
6813		
6814	1. P. Maruthamuthu, P. Neta. J. Phys. Chem. 82, 710-713 (1978).	
6815		

6816	Data Sheet 109	
6817		
6818	Chemical equilibrium: $HPO_5^{\bullet-} \rightleftharpoons PO_5^{\bullet2-} + H^+$	(109.1)
6819		
6820	List of reports:	
6821		
6822	The trioxidophosphate(•2–) radical, or its hydronated form, which absorb over the	wavelength
6823	range 230 nm to 290 nm, react rapidly with dioxygen [1].	
6824		
6825	$PO_3^{\bullet 2-}, HPO_3^{\bullet -} + O_2 \rightarrow PO_5^{\bullet 2-}, HPO_5^{\bullet -}$	
6826		
6827	The peroxy radicals have a weaker absorption over the wavelength range 240 nm	to 340 nm,
6828	with the doubly-charged anion somewhat red-shifted coMPared to the singly-char	ged anion.
6829	Transient conductivity measurements confirmed the formation of the two types of	anions, and a
6830	point of inflection was observed in a plot of the conductivity against pH over the r	ange 2 – 5.
6831	This results in the value $pK_{109,1} = 3.4$.	
6832		
6833	Discussion	
6834		
6835	No uncertainty was quoted in the paper, but we estimate ± 0.2 , due to the lack of c	onfirmation by
6836	other experiments and to the observation that not quite full conductance appears to	be attained at
6837	the highest pH. The basic observation seems to be quite reliable, however.	
6838		
6839	Recommended value:	
6840		
6841	$pK_{109,1} = (3.4 \pm 0.2).$	
6842		
6843	Nomenclature: HPO ₃ ^{$\bullet-$} , hydroxidodioxidophosphate(\bullet 1–); PO ₃ ^{$\bullet-2-$} , trioxidophosph	ate(●2–);
6844	$HPO_5^{\bullet-}$, (dioxido)hydroxidodioxidophosphate($\bullet 1-$); $PO_5^{\bullet 2-}$, (dioxido)trioxidophos	sphate(•2–).
6845		
6846	References	
6847		
6848	1. K. Schäfer, KD. Asmus. J. Phys. Chem. 84, 2156-2160 (1980).	
6849		
6850		

6851	Data Sheet 110		
6852			
6853	Chemical equilibrium: $As(OH)_4^{\bullet} \rightleftharpoons As(OH)_3O^{\bullet-} + H^+$	(110.1)	
6854			
6855	Chemical equilibrium: $HAsO_3^{\bullet-} \rightleftharpoons AsO_3^{\bullet2-} + H^+$	(110.2)	
6856			
6857	Chemical equilibrium: $HAsO_3^{\bullet-} + H_2O \rightleftharpoons As(OH)_3O^{\bullet-}$	(110.3)	
6858			
6859	Chemical equilibrium: $HAsO_3^{\bullet-} + H_2O + H^+ \rightleftharpoons As(OH)_4^{\bullet-}$	(110.4)	
6860			
6861	List of reports:		
6862			
6863	As(IV) species were generated through the pulse radiolysis of N_2O -saturated arse	enite or	
6864	arseneous acid solutions [1].		
6865			
6866	$As(III) + HO^{\bullet} \rightarrow As(IV)$		
6867		1 (77)	
6868	Spectra corresponding to four different protonation forms of As(IV) were recorded. These		
0809	species exhibit a somewhat complicated relationship that depended on pH and the	ne, and appear	
08/0	to be related through protonation and hydration equilibria.		
00/1 6972	Palow pH 2 only one species was observed, which is formed in a reprid reserved.	and underwant a	
6872	second order decay. Petween pH 2 and 6, this species also decayed by first order	reaction to	
6874	other absorbing species. A second, rapidly formed species was observed in the pl	= 12000000000000000000000000000000000000	
6875	range which also decayed by a combination of first- and second-order processes	In the nH	
6876	range, which also decayed by a combination of first and second order processes.	l in an acid-base	
6877	equilibrium		
6878			
6879	Because the pK_a indicated for these two species is characteristic of weak oxyacid	s. Kläning. <i>et</i>	
6880	<i>al.</i> [1] suggested that HO [•] reacts with As(III) by addition	_,,	
6881			
6882	$As(OH)_3 + HO^{\bullet} \rightarrow As(OH)_4^{\bullet}$		
6883			
6884	$As(OH)_2O^- + HO^{\bullet} \rightarrow As(OH)_3O^{\bullet-}$		
6885			
6886	And the protolytic equilibrium between the two is		
6887			
------	---	------------------------------	
6888	$As(OH)_4^{\bullet} \rightleftharpoons As(OH)_3O^{\bullet-} + H^+$	(110.1)	
6889			
6890	The anion in 110.1 has a spectrum red-shifted from the spectrum of the neutral f	form. From a plot	
6891	involving the logarithm of the absorption ratio against pH, the acid dissociation	constant at an	
6892	ionic strength of 0.1 mol L ⁻¹ was determined to be $pK_{110.1} = 7.26$. This was corrected as $K_{110.1} = 7.26$.	ected to $(7.38 \pm$	
6893	0.06) at zero ionic strength.		
6894			
6895	Both As(OH) ₄ • and As(OH) ₃ O ^{•-} decay through first-order reactions to two speci	es with	
6896	considerably changed spectra. One species appears to exist in equilibrium with A	As(OH) ₄ • in the	
6897	pH range 5 to 6. A pK value could be derived from an analysis of the molar abso	orption of these	
6898	species after attainment of equilibrium. Values of $pK = (3.78 \pm 0.05)$ at ionic str	ength 0.002 mol	
6899	L^{-1} and $pK = (3.64 \pm 0.05)$ at 0.1 mol L^{-1} were derived. These values corrected to	to zero ionic	
6900	strength become 3.82 and 3.88, identical within experimental error. This suppor	ts the	
6901	identification of the initially formed As(IV) species as this uncharged As(OH)4.	. The authors	
6902	suggest that this equilibrium corresponds to the dehydration reaction		
6903			
6904	$As(OH)_4^{\bullet} \rightleftharpoons HAsO_3^{\bullet-} + H_2O + H^+$	(110.5)	
6905			
6906	which proceeds through the intermediate formation of $H_2AsO_3^{\bullet}$. Thus, $pK_{110.5} =$	(3.85 ± 0.05)	
6907	and $pK_{-110.5} = -(3.85 \pm 0.05)$.		
6908			
6909	Similarly, $As(OH)_3O^{\bullet-}$ decays through a dehydration reaction		
6910			
6911	$As(OH)_3O^{\bullet-} \rightarrow HAsO_3^{\bullet-} + H_2O$		
6912			
6913	followed by deprotonation		
6914			
6915	$HAsO_3^{\bullet-} \rightleftharpoons AsO_3^{\bullet 2-} + H^+$	(110.2)	
6916			
6917	with $pK_{110.2} = (7.81 \pm 0.04)$.		
6918			
6919	The equilibrium constant for reaction 110.3 is obtained as $K_{110.3} = K_{110.1} \times K_{110.4}$. =	
6920	3×10^{-4} or p $K_{110.3} = 3.53$.		
6921			
6922	Discussion		

6923			
6924	Reco	ommended values:	
6925			
6926	As(C	$OH)_4^{\bullet} \rightleftharpoons As(OH)_3O^{\bullet-} + H^+$	$pK_{110.1} = (7.38 \pm 0.06)$
6927	HAs	$O_3^{\bullet-} \rightleftharpoons AsO_3^{\bullet 2-} + H^+$	$pK_{110.2} = (7.81 \pm 0.04)$
6928	HAs	$O_3^{\bullet-} + H_2O \rightleftharpoons As(OH)_3O^{\bullet-}$	$pK_{110.3} = (3.53 \pm 0.11)$
6929	HAs	$O_3^{\bullet-} + H_2O + H^+ \rightleftharpoons As(OH)_4^{\bullet-}$	$pK_{110.4} = -(3.85 \pm 0.05)$
6930			
6931	Refe	rences	
6932			
6933	1.	U. K. Kläning, B. H. Bielski, K. Se	hested. Inorg. Chem. 28, 2717-2724 (1989).
6934			
6935			

6936	Data Sheet 111
6937	
6938	Chemical equilibrium: $HOSCN^{\bullet-} + SCN^{-} \rightleftharpoons (SCN)_{2}^{\bullet-} + HO^{-}$ (111.1)
6939	
6940	List of reports:
6941	
6942	$K_{eq} = 6.45 \times 10^3$ at an unspecified temperature and ionic strength [1]. From pulse
6943	radiolysis with optical measurement of the position of equilibrium.
6944	
6945	Discussion
6946	
6947	The results were obtained with [HO ⁻] varying from 0.2 M to 0.8 M, so the ionic strength
6948	might not have been constant, and μ certainly was rather high. On the other hand, K_{eq} is expected
6949	to be insensitive to ionic strength. The study probably was performed at room temperature. No
6950	uncertainty was specified for K_{eq} ; given the usual accuracy of such measurements we assign an
6951	uncertainty of $\pm 20\%$.
6952	We presently recommend an association constant of $(2.0 \pm 0.3) \times 10^{5}$ M ⁻¹ for the reaction
6953	of SCN [•] with SCN ⁻ (See Data Sheet 101) Taking $K_w = 1 \times 10^{-14} \text{ M}^2$ then leads to $pK_a = 12.5 \pm$
6954	0.1 for SCN [•] + H ₂ O \rightleftharpoons SCNOH [•] + H [•] .
6955	
6956	Recommended values:
6957	$K = ((5 + 1.2) \times 10^3 - 1.22) \times 10^3 - 1.22 \times 10^3 - 1.2$
6958	$K_{eq} = (6.5 \pm 1.3) \times 10^{\circ}$ at 22 °C and zero ionic strength.
6939	$pX_a - (12.5 \pm 0.1)$ for SCN ⁺ + H ₂ O \equiv HOSCN ⁺ + H
6960 6061	Nomenelature: SCN- nitridesulfideeerbonate(1) this events is allowed: (SCN).
6062	$his(nitridosulfidocarbonate)(S S)(\bullet 1): HOSCN - cvanidobydrovidosulfate(\bullet 1)$
6962	ols(intraosumacearoonate)(5-5)(•1-), moselv , cyandonyaroxidosunate(•1-).
6967	List of auxiliary thermodynamic chemical data: none
6965	List of auxiliary incliniouynamechemical data. none.
6966	Rafarances
6967	
6968	1 D Behar P I T Beyan G Scholes I Phys Cham 76 1537-1542 (1072)
6960	1. D. Denar, 1. L. 1. Devan, O. Senores. J. 1 nys. Chem. 10, 1557-1542 (1772).
6070	
0770	

6971	Data Sheet 112
6972	
6973	Chemical equilibrium: $Tl + Tl^+ \rightleftharpoons Tl_2^+$ (112.1)
6974	
6975	List of reports:
6976	
6977	$K_{\rm eq} = 2.3 \times 10^3 {\rm M}^{-1}$, with μ ranging from 0.1 mM to 0.1 M, presumably at room
6978	temperature [1]. Obtained from the equilibrium optical absorbance as a function of [Tl ⁺]. Result
6979	confirmed by Butler and Henglein (1980) [2].
6980	$K_{eq} = (140 \pm 5\%) \text{ M}^{-1}$, with μ ranging from 0.1 mM to 0.1 M, presumably at room
6981	temperature [3]. Obtained from the equilibrium optical absorbance as a function of [Tl ⁺].
6982	
6983 6984	Discussion
6985	The disagreement between the two above results is substantial. Schwarz and Dodson [3]
6986	presented convincing arguments that the original absorbance data of Cercek et al. [1] were
6987	misinterpreted and that proper manipulation of the data yield a value for K_{eq} that is in agreement
6988	with the more recent determination. Schwarz and Dodson [3] were less confident in their
6989	explanation of the discrepant results of Butler and Henglein [2], but they suggest that the
6990	absorbance data of Butler and Henglein [2] may have been distorted by subsequent reactions.
6991	Overall, we favor the results of Schwarz and Dodson [3]. Although these experiments were
6992	performed at various ionic strengths, the magnitude of K_{eq} is expected not to be sensitive to this
6993	variation.
6994	
6995	Recommended values:
6996	
6997	$K_{\rm eq} = (140 \pm 7) {\rm M}^{-1}$
6998	
6999	List of auxiliary thermodynamic data: none.
7000	
7001	Nomenclature: Tl, thallium, Tl_2^+ , dithallium(+)
7002	
7003	References
7004	
7005	1. B. Cercek, M. Ebert, A. J. Swallow. J. Chem. Soc. (A) 612-615 (1966).
7006	2. J. Butler, A. Henglein. Radiat. Phys. Chem. 15, 603-612 (1980).

7007 3. H. A. Schwarz, R. W. Dodson. J. Phys. Chem. 93, 409-414 (1989).
7008

7009	Data Sheet 113		
7010			
7011	Chemical equilibrium: Tl ²⁺ +	$-Cl^- \rightleftharpoons TlCl^+$	(113.1)
7012			
7013	List of reports:		
7014			
7015	$K_{\rm eq} = (6.2 \pm 0.7) \times 10^4 \mathrm{M}^{-1} \mathrm{a}$	t $\mu = 1.0$ M and room temperature [1]. Data obtained by puls	e
7016	radiolysis with optical detect	ion. Equilibrium constant determined from the position of	
7017	equilibrium.		
7018			
7019	Discussion		
7020			
7021	The experiments app	ear to have been conducted properly and reliably. No other	
7022	conflicting data are known.	Thus we recommend the equilibrium constant as given.	
7023	With use of this equil	librium constant, the NBS value [2] of $\Delta_f G^\circ$ for Cl ⁻ (<i>aq</i>) and t	he
7024	recommended value of $\Delta_{\rm f} G^{\circ}$	for Tl^{2+} (+182 ± 20 kJ mol ⁻¹ from reaction 113.1 ($Tl^{2+} + Fe^{3+}$	⁺) we
7025	derive $\Delta_{\rm f} G^{\circ} = +(23.3 \pm 0.3)$ l	kJ mol ⁻¹ for TlCl ⁺ . From the NBS values for $\Delta_{\rm f}G^{\circ}$ for TlCl ²⁺	and
7026	TlCl we derive $E^{\circ} = +(0.179)$	9 ± 0.004) V for the TlCl ²⁺ /TlCl ⁺ couple and $E^{\circ} = +(1.972 \pm$	0.004)
7027	V for the TlCl ⁺ /TlCl couple.	These electrode potentials are not corrected for ionic strength	h
7028	effects and thus are designate	ed E° values.	
7029			
7030	Recommended values:		
7031			
7032	$\mathrm{Tl}^{2^+} + \mathrm{Cl}^- \rightleftharpoons \mathrm{Tl}\mathrm{Cl}^+(aq)$	$K_{\rm eq} = (6.2 \pm 0.7) \times 10^4 \mathrm{M}^{-1} \text{ in 1 M H}^+.$	
7033	$TlCl^+$	$\Delta_{\rm f}G^{\circ} = +(23.3 \pm 0.4) \text{ kJ mol}^{-1}$	
7034	$TlCl^{2+} + e^{-} \rightleftharpoons TlCl^{+}$	$E^{\circ} = +(0.179 \pm 0.004) \text{ V}$	
7035	$TlCl^+ + e^- \rightleftharpoons TlCl$	$E^{\circ} = +(1.972 \pm 0.004) \text{ V}$	
7036			
7037	List of auxiliary thermodyna	mic data: $\Delta_{f}G^{\circ}$ for $\text{Tl}^{2+}(aq)$, $\text{Tl}\text{Cl}^{2+}(aq)$, $\text{Tl}\text{Cl}(aq)$ and $\text{Cl}^{-}(aq)$).
7038			
7039	Nomenclature: Tl ²⁺ , thallium	h(2+); TlCl ⁺ , thallium chloride(1+).	
7040			
7041	References		
7042			
7043	1. R. W. Dodson, H. A.	Schwarz, J. Phys. Chem. 78, 892-899 (1974).	

- 2. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
- 7045 Churney, R. L. Nuttall, J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).

7047

7048	Data Sheet 114		
7049			
7050	Chemical equilibrium: TlCl ⁺	$^{+} + Cl^{-} \rightleftharpoons TlCl_{2}$	(114.1)
7051			
7052	List of reports:		
7053			
7054	$K_{\rm eq} = (1.9 \pm 0.4) \times 10^3 \mathrm{M}^{-1} \mathrm{a}$	at $\mu = 1.0$ M and room temperature [1]. Data were obtained	l by pulse
7055	radiolysis with optical detect	tion. The equilibrium constant was determined from the po	osition of
7056	equilibrium.		
7057			
7058	Discussion		
7059			
7060	The experiments app	bear to have been conducted properly and reliably. No othe	r
7061	conflicting data are known.	Thus we recommend the equilibrium constant as given.	
7062	With use of this equi	librium constant, the NBS value [2] of $\Delta_{\rm f} G^{\circ}$ for Cl ⁻ and th	e
7063	recommended value of $\Delta_{\rm f} G^{\circ}$	' for TlCl ⁺ (23.3 ± 0.4) kJ mol ⁻¹ from reaction 113.1 (Tl ²⁺ -	$+ Cl^{-}$) we
7064	derive $\Delta_{\rm f} G^{\circ} = -(126.6 \pm 0.7)$) kJ mol ⁻¹ for TlCl ₂ . From the NBS values for $\Delta_f G^\circ$ for TlC	$2l_2^+$ and
7065	TlCl_2^- we derive E° ' = +(0.0)	0.029 ± 0.008) V for the TlCl ₂ ⁺ /TlCl ₂ couple and $E^{\circ} = +(1.7)^{\circ}$	54 ±
7066	0.008) V for the $TlCl_2/TlCl_2$	couple.	
7067			
7068	Recommended values:		
7069	1	2 1 +	
7070	$\mathrm{TlCl}^+ + \mathrm{Cl}^- \rightleftharpoons \mathrm{TlCl}_2(aq)$	$K_{\rm eq} = (1.9 \pm 0.4) \times 10^3 {\rm M}^{-1}$ in 1 M H ⁺ .	
7071	TlCl ₂	$\Delta_{\rm f}G^{\circ} = -(126.6 \pm 0.7) \rm kJ mol^{-1}$	
7072	$\text{TlCl}_2^+ + e^- \rightleftharpoons \text{TlCl}_2$	$E^{\circ} = +(0.029 \pm 0.008) \mathrm{V}$	
7073	$TlCl_2 + e^- \rightleftharpoons TlCl_2^-$	$E^{\circ} = +(1.754 \pm 0.008) \text{ V}$	
7074			
7075	List of auxiliary thermodyna	amic data: $\Delta_f G^\circ$ for TICI', TICl ₂ ', TICl ₂ ⁻ and Cl ⁻ .	
7076	+		
7077	Nomenclature: TlCl', thalliu	um chloride(1+); TlCl ₂ , thallium dichloride.	
7078			
7079	References		
7080	1		
7081	I. R. W. Dodson, H. A.	. Schwarz. J. Phys. Chem. 78, 892-899 (1974).	•1 •• -
7082	2. D. D. Wagman, W. H	H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Ba	iley, K. L.
7083	Churney, R. L. Nuttall. J. Ph	<i>hys. Chem. Ref. Data</i> 11, Suppl. No. 2 (1982).	

7084	Data Sheet 115
7085	
7086	Chemical equilibrium: $TlCl_2 + Cl^- \rightleftharpoons TlCl_3^-$ (115.1)
7087	
7088	List of reports:
7089	
7090	$K_{eq} = (13 \pm 3) \text{ M}^{-1}$ at $\mu = 1.0 \text{ M}$ and room temperature [1]. Data obtained by pulse radiolysis with
7091	optical detection. Equilibrium constant determined from the position of equilibrium.
7092	
7093	Discussion
7094	
7095	The experiments appear to have been conducted properly and reliably. No other
7096	conflicting data are known. Thus we recommend the equilibrium constant as given.
7097	With use of this equilibrium constant, the NBS value [2] of $\Delta_f G^\circ$ for Cl ⁻ and the
7098	recommended value of $\Delta_{\rm f} G^{\circ}$ for TlCl ₂ (-126.6 ± 0.4) kJ mol ⁻¹ from reaction 114.1 (TlCl ⁺ + Cl ⁻)
7099	we derive $\Delta_f G^\circ = -(264.2 \pm 0.7) \text{ kJ mol}^{-1}$ for TlCl ₃ ⁻ . From the NBS value for $\Delta_f G^\circ$ for TlCl ₃ we
7100	derive $E^{\circ} = -(0.106 \pm 0.007)$ V for the TlCl ₃ /TlCl ₃ couple. Corrections for the effect of ionic
7101	strength were not applied, and hence the electrode potential is designated an E° value.
7102	
7103	Recommended values:
7104	
7105	$\text{TlCl}_2 + \text{Cl}^- \rightleftharpoons \text{TlCl}_3^- K_{\text{eq}} = (13 \pm 3) \text{ M}^{-1} \text{ in } 1 \text{ M H}^+.$
7106	TlCl ₃ ⁻ $\Delta_{\rm f} G^{\circ} = -(264.2 \pm 0.7) \text{ kJ mol}^{-1}$
7107	$\text{TlCl}_3 + e^- \rightleftharpoons \text{TlCl}_3^- \qquad E^{\circ} = -(0.106 \pm 0.007) \text{ V}$
7108	
7109	List of auxiliary thermodynamic data: $\Delta_f G^\circ$ for TlCl ₂ (<i>aq</i>), TlCl ₃ (<i>aq</i>) and Cl ⁻ (aq).
7110	
7111	Nomenclature: $TlCl_2$, thallium dichloride; $TlCl_3^-$, trichloridothallate(1–).
7112	
7113	References
7114	
7115	1. R. W. Dodson, H. A. Schwarz. J. Phys. Chem. 78, 892-899 (1974).
7116	2. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
7117	Churney, K. L. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).
7118	
/119	

7120	Data Sheet 116
7121	
7122	Chemical equilibrium: $HO^{\bullet}(aq) \rightleftharpoons O^{\bullet-}(aq) + H^{+}(aq)$ (106.1)
7123	
7124	List of reports:
7125	
7126	$pK_a = (11.9 \pm 0.2)$ at 23 °C. Result obtained by pulse radiolysis determination of the kinetics of
7127	oxidation of $[Fe(CN)_6]^{4-}$ by HO [•] /O ^{•-} [1].
7128	
7129	$pK_a = (11.9 \pm 0.2)$ at 23 °C (?) and low ionic strength. Result obtained by pulse radiolysis
7130	determination of the kinetics of oxidation of $[Fe(CN)_6]^{4-}$ by OH/O ⁻ [2].
7131	
7132	$pK_a = (11.8 \pm 0.2)$ at ~23 °C at low ionic strength. Result obtained by pulse radiolysis
7133	determination of the kinetics of oxidation of CO_3^{2-} by HO•/O•- [3].
7134	
7135	$K_a/K_w = (56 \pm ?)(pK_a = 12.2)$ at 25 °C at ~0.01 M ionic strength. Baxendale <i>et al.</i> obtained this
7136	result by pulse radiolysis determination of the kinetics of oxidation of BH_4^- by HO [•] /O ^{•-} [4].
7137	
7138	$pK_a = (11.9 \pm ?)$ presumably at room temperature at ~0.01 M ionic strength. Result obtained by
7139	pulse radiolysis determination of the kinetics of oxidation of IO_3^- by $HO^{\bullet/}O^{\bullet-}$ [5].
7140	
7141	$pK_a = (11.8 \pm ?)$ at 25 °C without control of ionic strength. Result obtained by pulse radiolysis
7142	determination of the kinetics of oxidation of CO_3^{2-} by HO [•] /O ^{•-} [6]. Value of p K_a obtained by
7143	inspection of Figure 3 in the paper.
7144	
7145	$pK_a = (11.7 \pm 0.1)$ at zero ionic strength and 25 °C. Elliot and McCracken obtained this result by
7146	pulse radiolysis determination of the kinetics of oxidation of $[Fe(CN)_6]^{4-}$ by HO [•] /O ^{•-} [7]. p K_a
7147	values obtained from measurements of K_a/K_w and then using K_w values at appropriate
7148	temperature and ionic strength. Value of pK_a at 25 °C interpolated from data at 20 °C and 30 °C.
7149	
7150	$pK_a = (12.0 \pm 0.2)$ at 22 °C and ~0.01 M ionic strength. Hickel <i>et al.</i> obtained this result by pulse
7151	radiolysis determination of the ratio of the forward and reverse rate constants as revealed by the
7152	kinetics of addition of O ^{•–} to O ₂ at $P(O_2) = (10 - 140)$ atm { <i>i.e.</i> (1.01-14.2) MPa} [8]. An
7153	essentially identical result was obtained from the pH dependence of the addition reaction under
7154	conditions where proton transfer was at equilibrium at $P(O_2) = 0.2$ atm (<i>i.e.</i> 0.02) MPa. Both
7155	calculations depended on pK_w , for which a value of 14.08 was selected.

7156	
7157	$pK_a = (11.54 \pm 0.04)$ at 25 °C and ~0.01 M ionic strength. Poskrebyshev <i>et al.</i> obtained this
7158	result by pulse radiolysis determination of the kinetics of oxidation of benzoate by HO•/O•- [9].
7159	A value of (1.01×10^{-14}) M ² for K_w was used in deriving p K_a from the measured K_b .
7160	
7161	Discussion
7162	
7163	The result of Baxendale <i>et al.</i> can be converted into a pK_a by use of $K_w = (1.01 \times 10^{-14})$
7164	M ² : $pK_a = 12.2$. With this addition, the extensive list of measurements of the pK_a of HO [•] gives
7165	considerable confidence that the value lies in the range of 11.5 to 12.2; most of the reports
7166	suggest a value near 11.9.
7167	We exclude from detailed consideration the three early reports from the Rabani group [1-
7168	3] because the results were obtained without temperature control and not extrapolated to zero
7169	ionic strength. Likewise we exclude the result from Barat et al. [5], which also failed to report an
7170	uncertainty analysis.
7171	We exclude the result of Buxton <i>et al.</i> [6] because the pK_a was derived from experiments
7172	spanning a wide range of ionic strengths and no appropriate correction was applied. Moreover,
7173	there is no meaningful analysis of uncertaintes.
7174	One of the extreme values, as inferred from the work of Baxendale et al. [4], was not
7175	actually reported in the original work, was not assigned an uncertainty, and was not coMPared to
7176	prior work; for these reasons we exclude it from further consideration.
7177	Another of the extreme p K_a values (11.54 ± 0.04) [9] requires discussion. The unusually
7178	high precision assigned to the measurement appears only in the abstract of the paper. The high
7179	assigned precision implies that the deviation of the pK_a value from the prior determinations is
7180	statistically significant; however, the paper presents no discussion of this fact, nor does it provide
7181	any suggestions as to the origins of the deviation. We note that Figure 1 of the paper presents
7182	plots of k_{obs} vs [benzoate] at various pH values, where the pH values are given to only 0.1 unit
7183	precision. It seems likely that the uncertainty in the derived pK_a is overly optimistic. In view of
7184	these concerns we consider this report [9], although the most recent, not necessarily the best.
7185	Of the remaining reports, those of Elliot and McCracken [7] and of Hickel et al. [8] are
7186	significant in that they include data at 25 °C with well-defined uncertainty estimates. The work
7187	of Elliot and McCracken [7] shows substantial temperature dependence for pK_a , which
7188	underscores the importance of obtaining data at 25 °C. The work of Hickel et al. [8] is important
7189	because it is the only study to determine pK_a from the ratio of the forward and reverse proton-
7190	transfer rate constants (rather than just from the pH dependence of an irreversible HO•/O•-
7191	reaction); as such it provide strong additional support that the quantity being determined is

7192	actually the p K_a . One weakness in the paper by Hickel <i>et al.</i> [8] is in the way that [HO ⁻] was	
7193	obtained: for $pH > 11$ it was calculated "from the weight of NaOH in the solutions", which is a	
7194	quite unreliable method. For $pH < 11$ it was calculated from the pH, but the details of the	
7195	calculation are not described. In contrast, the work of Elliot and McCracken determined [OH ⁻]	
7196	by titration [7]. Of these two papers, the one by Elliot and McCracken [7] is preferred because	
7197	of its greater precision, its more reilable method of determining [OH ⁻], and its use of ionic-	
7198	strength dependent $K_{\rm w}$ values.	
7199	In comparing the results from the papers of Poskrebyshev et al. [9] and of Elliot and	
7200	McCracken [7] it is difficult to find any flaws in either, with the exception of the weak handling	
7201	of uncertainties in the former. However, since the Poskrebyshev paper [9] yields a value that is	
7202	so far from the values reported elsewhere we regard it as anomalous and recommend the result o	
7203	Elliot and McCracken [7].	
7204		
7205	Recommended values:	
7206		
7207	$HO^{\bullet}(aq) \rightleftharpoons O^{\bullet-}(aq) + H^{+}(aq) \qquad pK_a = (11.7 \pm 0.1)$	
7208		
7209	List of auxiliary thermodynamic data: $K_{\rm w}$	
7210		
7211	References	
7212		
7213	1. J. Rabani, M. S. Matheson. J. Am. Chem. Soc. 86, 3175-3176 (1964).	
7214	2. J. Rabani, M. S. Matheson. J. Phys. Chem. 70, 761-769 (1966).	
7215	3. J. L. Weeks, J. Rabani. J. Phys. Chem. 70, 2100-2106 (1966).	
7216	4. J. H. Baxendale, M. D. Ward, P. Wardman. <i>Trans. Faraday Soc.</i> 67 , 2532-2537 (1971).	
7217	5. F. Barat, L. Gilles, B. Hickel, B. Lesigne. J. Phys. Chem. 76, 302-307 (1972).	
7218	6. G. V. Buxton, N. D. Wood, S. Dyster. J. Chem. Soc., Faraday Trans. 1 84, 1113-1121	
7219	(1988).	
7220	7. A. J. Elliot, D. R. McCracken. Rad. Phys. Chem. 33, 69-74 (1989).	
7221	8. B. Hickel, H. Corfitzen, K. Sehested. J. Phys. Chem. 100, 17186-17190 (1996).	
7222	9. G. A. Poskrebyshev, P. Neta, R. E. Huie. J. Phys. Chem. A 106, 11488-11491 (2002).	
7223		
7224		

7225	Data Sheet 117
7226	
7227	Chemical equilibrium:
7228	$S^{\bullet-} + SH^- \rightleftharpoons HSS^{\bullet 2-}$ (117.1)
7229	
7230	List of reports:
7231	
7232	$K = 1 \times 10^4$ M ⁻¹ , determined by pulse radiolysis of H ₂ S solutions at pH 7.0 in 2 mM phosphate
7233	buffer [1].
7234	
7235	$K = 8 \times 10^3$ M ⁻¹ , determined by flash photolysis of H ₂ S solutions buffered at pH 7 and 7.5,
7236	calculated from the ratio of k_f and k_r [2]. The ionic strength was not specified; (20 ± 2) °C.
7237	
7238	Discussion
7239	
7240	The two determinations are in good agreement despite the likely differing ionic strengths.
7241	We recommend the average value: $9 \times 10^3 \text{ M}^{-1}$, and we suggest an uncertainty of $\pm 20 \%$ given
7242	the unknown effect of ionic strength. The first determination was performed at rather low ionic
7243	strength, so the ionic strength correction could be negligible. Although the exact pK_as of HS [•] and
7244	HSSH ^{•-} are unknown, Das <i>et al.</i> [2] provide evidence that they are low enough that the
7245	protonated species do not affect the measurements at pH 7 significantly.
7246	
7247	Recommended value:
7248	
7249	$K(117.1) = (9 \pm 2) \times 10^3 \text{ M}^{-1}.$
7250	
7251	References
7252	
7253	1. G. Mills, K. H. Schmidt, M. S. Matheson, D. Meisel. J. Phys. Chem. 91, 1590-1596
7254	(1987).
7255	2. T. N. Das, R. E. Huie, P. Neta, S. Padmaja. J. Phys. Chem. A 103, 5221-5226 (1999).
7256	
7257	

7258 Supplementary Data Sheet S-1

7293

7259 **Subject:** 2-*tert*-butyl-1,4-benzosemiquinone (TBQ)

266

overstated, since activity coefficients are not reliably estimated for di-anions at $\mu = 0.12$ M.

- 7295 **Discussion:** The comproportionation equilibrium was also investigated by Roginsky *et al.* [2]. 7296 Roginsky et al. used ESR to determine the equilibrium constant in 50 mM phosphate buffer, and 7297 they obtained a value approximately 4-fold greater than reported by Dohrmann and Bergmann. 7298 The origin of the discrepancy is not understood, but the consequence is a 36 mV difference in the 7299 derived potentials. We thus recommend the potentials derived by Dohrmann and Bergman after adjusting them by 36/2 mV; we increase the incertainties accordingly by 10 mV. In the case of 7300 7301 $E^{\circ}(TBQ^{\bullet-}/TBQ^{2-})$ we add another 5 mV of uncertainty because of the ionic strength issues. The $E_{\rm m}$ values recommended below are from Dohrmann and Bergmann, adjusted again by 18 mV 7302 7303 and with a correspondingly increased uncertainty.
- 7304 A further check on the TBQ potential is provided by data in the Dohrmann and 7305 Bergmann paper, where they use pulse radiolysis to measure the redox equilibrium constant for the reaction of TBQ^{•-} with 4-(dimethylamino)phenoxyl (DMAP): $TBQ^{2-} + DMAP^{\bullet} = TBQ^{\bullet-} + DMAP^{\bullet}$ 7306 DMAP⁻. They obtain an equilibrium constant of $(1.1 \pm 0.5) \times 10^3$ at 22 °C and $\mu \sim 0.5$ M in 0.9 7307 M ethylene glycol at pH 13.5. Then they use their E° value for TBQ^{•-}/TBQ²⁻ and estimated 7308 activity coefficients for TBQ^{•-} and TBQ²⁻ to obtain $E^{\circ}(DMAP^{\bullet}/DMAP^{-}) = +(0.10 \pm 0.02)$ V at 7309 22 °C and $\mu \sim 0.5$ M in 0.9 M ethylene glycol. This differs by 70 mV from the DMAP potential 7310 7311 reported by Steenken and Neta. Dohrmann and Bergmann sugested various sources for the 7312 disagreement and principal among them seems to be the possibility that the organic cosolvents affect the equilibria. Given the doubts introduced by these considerations, the uncertainties 7313 7314 presented below may be highly optimistic.
- 7315

7316 **Recommended values:**

7317

7318	$E^{\circ}(\text{TBQ/TBQ}^{\bullet-}) = -(0.014 \pm 0.016) \text{ V}.$
7319	$E^{\circ}(\text{TBQ},\text{H}^+/\text{TBQH}^{\bullet}) = +(0.237 \pm 0.025) \text{ V}$
7320	$E^{\circ}(\text{TBQ}^{\bullet-}, 2\text{H}^+/\text{TBQH}_2) = +(1.297 \pm 0.016) \text{ V}$
7321	$E^{\circ}(\text{TBQ}^{\bullet-}/\text{TBQ}^{2-}) = -(0.130 \pm 0.030) \text{ V}$
7322	$E^{\circ}(\text{TBQ/TBQ}^{\bullet}) = -(0.007 \pm 0.016) \text{ V at pH 7 and } \mu = 0.12 \text{ M}$
7323	$E^{\circ}(\text{TBQ}^{\bullet}/\text{TBQH}_2) = +(0.471 \pm 0.016) \text{ V at pH 7 and } \mu = 0.12$
7324	

7325 References

- 7326
- 7327 1. J. K. Dohrmann, B. Bergmann. J. Phys. Chem. 99, 1218-1227 (1995).
- 7328 2. V. A. Roginsky, L. M. Pisarenko, W. Bors, C. Michel. J. Chem. Soc., Perkin Trans. 2
 7329 871-876 (1999).
- 7330
- 7331

Μ

7332 **Supplementary Data Sheet S-2** 7333 7334 Chemical equilibrium: $ClO_2^{\bullet} + PhO^- \rightleftharpoons ClO_2^- + PhO^{\bullet}$ (S-2) PhOH = phenol7335 7336 $K = 2.2 \times 10^2$ from absorbance, $(2.5 \pm 0.9) \times 10^2$ from kinetics, pH 13 [1]. 7337 Taking $E^{\circ}(ClO_2^{\bullet}/ClO_2^{-}) = +0.936$ V at 298 K [2]. 7338 $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +(0.796 \pm 0.010) V$ 7339 $k_{\rm f} = (1.6 \pm 0.3) \times 10^7 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}, k_{\rm r} = (6.3 \pm 1.2) \times 10^4 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}$ 7340 7341 $K = 3.0 \times 10^2$ from absorbance, 2.7×10^2 from kinetics, pH 11-12, $\mu = 1$ M [3]. 7342 7343 Taking $E^{\circ}(ClO_2^{\bullet}/ClO_2^{-}) = +0.936 \text{ V} [2].$ $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +(0.791 \pm 0.010) V$ 7344 $k_{\rm f} = 3.5 \times 10^7 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}, k_{\rm r} = 1.3 \times 10^5 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}$ 7345 7346 $K = (2.1 \pm 0.3) \times 10^2$ from absorbance, pH 11.5, $\mu = 0.12$ M [4]. 7347 Taking $E^{\circ}(ClO_2^{\bullet}/ClO_2^{-}) = +0.934 \text{ V} [5].$ 7348 $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +(0.796 \pm 0.005) V$ 7349 7350 7351 Electrochemistry 7352 $E^{\circ} = +0.803$ V, by cyclic voltametry, from a Pourbaix diagam, at an ionic strength estimated 7353 7354 near 0.15 M (0.05 M Britton-Robinson buffer) at, presumably, room temperature. The 7355 concentration of phenol was 0.2 mM, the scan rate 0.2 V s^{-1} [6]. 7356 Discussion 7357 Average of all 5 K's is $(2.5 \pm 0.5) \times 10^2$. Assuming all measured equilibrium constants at 295 K 7358 are the same as that at 298 K, and taking $E^{\circ}(\text{ClO}_2^{\bullet}/\text{ClO}_2^{-}) = +(0.935 \pm 0.003)$ V (Data Sheet 24), 7359 we find $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +(0.793 \pm 0.008)$ V, a value in excellent agreement with the very solid 7360 7361 study on the electrochemistry of phenol [6]. As the value of K(S-2) is expected to be independent 7362 of ionic strength, the derived electrode potential can be regarded as a standard potential. 7363 7364 **Recommended value** 7365 $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +(0.793 \pm 0.008) V$ 7366 7367 List of auxiliary thermodynamic data

7368	$pK_{a}(P)$	nOH) = 10.0	
7369	$pK_{a}(PhOH^{\bullet+}) = -2.0 [7] \text{ or } -2.75 [8]$		
7370	$E^{\circ}(PhO^{\bullet}, H^{+}/PhOH) = +1.38 \text{ V or } +1.42 \text{ V}$		
7371	E°'(p⊟	I(7) = +0.97 V.	
7372			
7373	Das [8] argues that the p K_a of -2.0 previously reported for PhOH ^{•+} is in error because the prior	
7374	report	overlooked the association of PhOH with PhOH ^{•+} ; the revised p K_a is $-(2.75 \pm 0.05)$.	
7375			
7376	References		
7377			
7378	1.	G. Merényi, J. Lind, X. Shen. J. Phys. Chem. 92, 134-137 (1988).	
7379	2.	N. V. Troitskaya, K. P. Mishchenko, I. E. Flis. Russ. J. Phys. Chem. 33, 77-79 (1959).	
7380	3.	J. Lind, X. Shen, T. E. Eriksen, G. Merényi. J. Am. Chem. Soc. 112, 479-482 (1990).	
7381	4.	T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).	
7382	5.	D. M. Stanbury. Adv. Inorg. Chem. 33, 69-138 (1989).	
7383	6.	C. Costentin, C. Louault, M. Robert, JM. Savéant. Proc. Natl. Acad. Sci. U.S.A. 106,	
7384	18143-18148 (2009).		
7385	7.	W. T. Dixon, D. Murphy. J. Chem. Soc., Faraday Trans. 2 72, 1221-1230 (1976).	
7386	8.	T. N. Das. J. Phys. Chem. A 109, 3344-3351 (2005).	
7387			
7388			

7389	Supplementary Data Sheet S-3
7390	
7391	Chemical equilibrium: $PhO^{\bullet} + MePhO^{-} \rightleftharpoons PhO^{-} + MePhO^{\bullet}$ (S-3.1)
7392	PhOH = phenol
7393	MePhOH = 3-methylphenol
7394	
7395	$K = (12.4 \pm 1.2)$ from absorbance, pH 13, $I = 0.1$ M [1].
7396	Taking $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +0.80 \text{ V}$ (Data Sheet S-2)
7397	
7398	The equilibrium constant for reaction S-3.1 is expected to be insensitive to ionic strength, which
7399	enables the derived electrode potential to be regarded as a standard potential.
7400	
7401	Recommended value:
7402	
7403	$E^{\circ}(\text{MePhO}^{\bullet}/\text{MePhO}^{-}) = +(0.74 \pm 0.01) \text{ V at } \mu = 0$
7404	
7405	List of auxiliary thermodynamic data:
7406	$pK_{a}(MePhOH) = 10.0$
7407	
7408	References
7409	
7410	1. T. N. Das, R. E. Huie, P. Neta, J. Phys. Chem. A 103, 3581-3588 (1999).
7411	
7412	

7413	Supplementary Data Sheet S-4
7414	tyrosine
7415	
7416	Chemical equilibrium: $PhO^{\bullet} + TyrO^{-} \rightleftharpoons PhO^{-} + TyrO^{\bullet}$ (S-4.1)
7417	PhOH = phenol, TyrOH = tyrosine
7418	
7419	$K_{\text{S-4.1}} = 21$ from absorbance, 18 from kinetics, pH 11-12, $\mu = 0.5$ M [1].
7420	The authors took $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +0.80 \text{ V}$ to derive $E^{\circ}(TyrO^{\bullet}/TyrO^{-}) = +(0.72 \pm 0.02) \text{ V}$.
7421	$k_{\rm f} = 4.9 \times 10^8 \text{ L mol}^{-1} \text{ s}^{-1}, k_{\rm r} = 2.8 \times 10^7 \text{ L mol}^{-1} \text{ s}^{-1}$
7422	
7423	$K_{\text{S-4.1}} = (12.0 \pm 1.2)$ from absorbance, pH 11.3, $\mu = 0.076$ M [2].
7424	The authors took $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +0.80 \text{ V}$ to derive $E^{\circ}(TyrO^{\bullet}/TyrO^{-}) = +(0.736 \pm 0.005) \text{ V}$ at
7425	$\mu = 0.$
7426	
7427	$K_{\text{S-4.1}} = (11.5 \pm 1.2)$ from absorbance, pH 11.3, $\mu = 0.5$ M [2].
7428	The authors took $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +0.80 \text{ V}$ to derive $E^{\circ}(TyrO^{\bullet}/TyrO^{-}) = +(0.737 \pm 0.005) \text{ V}$ at
7429	$\mu = 0.$
7430	
7431	Chemical equilibrium: $TyrO^{\bullet} + ABTS^{2-} + H^+ \rightleftharpoons TyrOH + ABTS^{\bullet-}$ (S-4.2)
7432	ABTS = 2,2'-azinobis(3-ethylbenzothiazoline-6-sulphonate)
7433	
7434	$K_{\text{S-4.2}}$ was determined at pH 9.08, 10.00, and 11.03 by pulse radiolysis, both from the equilibrium
7435	absorbance and from the ratio of the forward and reverse rate constants [3]. Taking $E^{\circ}(ABTS^{\bullet-})$
7436	$(ABTS^{2-}) = +0.68$ V and a p K_a of 10.4 for the TyrOH phenolic dissociation the authors
7437	calculated $E^{\circ}(TyrO^{\bullet}/TyrO^{-}) = +(0.717 \pm 0.002)$ V, and $E^{\circ} = +(0.93 \pm 0.02)$ V at pH 7. We note
7438	that Table 1 of this publication has several typos: k_6 and k_{-6} should be reversed, K_6 should be
7439	$1/K_6$, and ΔE_6 should be $-\Delta E_6$; E_m , however, is correct.
7440	
7441	Discussion
7442	
7443	The various determinations of $E^{\circ}(TyrO^{\bullet}/TyrO^{-})$ span a range of 20 mV, which exceeds some of
7444	the stated uncertainties. On the other hand, the smaller stated uncertainties seem overly
7445	optimistic. In the case of the ABTS reaction (S-4.2) the uncertainty in $E^{\circ}(ABTS^{\bullet-}/ABTS^{2-})$ was
7446	not included in calculating $E^{\circ}(TyrO^{-}/TyrO^{-})$; that uncertainty is probably at least 10 mV. Thus,
7447	the various reports of $E^{\circ}(TyrO^{\bullet}/TyrO^{-})$ are in reasonable agreement.
7448	

7449 An indirect calculation of $K_{S-4,1}$ can be performed by combining the equilibrium constants for 7450 two reactions involving sulfite: 7451 $SO_3^{\bullet-} + PhO^- \rightleftharpoons SO_3^{2-} + PhO^{\bullet}$ $K_{63,1} = 0.056$ at $\mu = 0$ M. (Data Sheet 63) 7452 TyrO• + SO₃²⁻ \rightleftharpoons TyrO⁻ + SO₃•- $K_{64,1} = 0.61$ at pH 11.6 (independent of μ) (Data Sheet 7453 7454 64) 7455 7456 The sum of the two reactions gives the reverse of reaction S-4.1: $1/K_{S-4.1} = (K_{63.1})(K_{64.1}) = 3.4 \times$ 7457 10^{-2} (or $K_{S-4,1} = 29$) at $\mu = 0$ M. This result is in reasonable agreement with the direct measurements of $K_{S-4.1}$ summarized above, given the effects of propagation of error. 7458 7459 7460 Overall, the value of $K_{S-4,1}$ determined by Das *et al.* appears to be the most reliable, while the uncertainty is probably best estimated by considering all of the above reports. Thus we 7461 recommend a value of (12 ± 5) for $K_{S-4.1}$ (or $\Delta E^{\circ} = 64$ mV). We currently recommend 7462 7463 $E^{\circ}(PhO^{\bullet}/PhO^{-}) = (0.793 \pm 0.008)$ (Data Sheet S-2), and thus we derive $E^{\circ}(TyrO^{\bullet}/TyrO^{-}) =$ 7464 $+(0.729 \pm 0.01)$ V from K₈₋₄₁. Combining this result with that derive from reaction S-4.2 leads to $E^{\circ}(\text{TyrO}^{\bullet}/\text{TyrO}^{-}) = +(0.723 \pm 0.01) \text{ V}.$ 7465 7466 7467 **Recommended values:** 7468 $K_{\text{S-4.1}} = 12 \pm 5$ 7469 $E^{\circ}(TyrO^{\bullet}/TyrO^{-}) = (0.723 \pm 0.010) V$ 7470 7471 List of auxiliary thermodynamic data 7472 $pK_{a}(tyrosine) = 2.18, 9.21, 10.1 [4]$ 7473 $E^{\circ}(\text{pH 7}) = +0.91 \text{ V}$ (assuming pK_as of amino and carboxyl group are the same in the radical as 7474 in the parent tyrosine). 7475 $E^{\circ}(ABTS^{\bullet-}/ABTS^{2-}) = +0.68 \text{ V}.$ 7476 7477 **Further comments:** 7478 During the 1980s proton-coupled electron transfer from tyrosine to the tryptophan radical 7479 in peptides and proteins has been observed at pH 7 by pulse radiolysis [5-8]. Given the values that we find for the equilibrium constants of those reactions, the difference in electrode potential 7480 7481 is at most 60 mV; this inference excludes the data of Faraggi *et al.* because it is unclear whether 7482 the reactions reached equilibrium [6]. As the couple Trp[•], H⁺/TrpH has an electrode potential of 7483 +(1.03 \pm 0.02) V at pH 7 (see Data Sheet S12), that of the TyrO[•],H⁺/TyrOH couple is expected 7484 to be near +0.97 V. However, the values cited above yield a value of +0.91 V. Of course, one can

7485	accept a value of +0.91 V, but then the electrode potential of the Trp•, H ⁺ /TrpH couple would be			
7486	incorrect. The origin of this discrepancy is not known. Recent cyclic voltammetry experiments			
7487	yield +0.97 \pm 0.01 V for E° (TyrO [•] , H ⁺ / TyrOH) at pH 7 (L. Mahmoudi, R. Kisner, T. Nauser,			
7488	W. H. Kopper	nol, 2014, unpu	ublished.), quite close to that	obtained for a tyrosine in an artificial
7489	protein, +0.98	3 V [9].		
7490	Experi	imental measur	rements at pH 7 [10] gave E ^c	$P(TyrO^{\bullet}/TyrO^{-})$ between +0.90 and
7491	+0.97 V, but i	t is not clear w	hether real equilibrium was	achieved in those cases (because of the
7492	slow electron	transfer with n	eutral phenols). The results	were:
7493				
7494	Reference	Ref. <i>E°'</i> /V	$E^{\circ}'(TyrO^{\bullet}/TyrO^{-})/V$	<i>E</i> °'(TyrO•/TyrO ⁻)/V
7495			from kinetics	from absorbance
7496	$\mathrm{IrBr_6}^{2-/3-}$	+0.80	+0.92	+0.92
7497	$Os(bpy)_3^{3+/2+}$	+0.83	+0.97	+0.94
7498	$IrCl_6^{2-/3-}$	+0.91	+0.94	+0.96
7499	$ClO_2^{\bullet}/ClO_2^{-}$	+0.92	+0.94	
7500	$Os(terpy)_2^{3+/2}$	+++0.93		+0.90
7501				
7502	Harrin	nan [11] and D	eFilippis et al. [12] determin	ed electrode potentials of +0.93 V and
7503	+0.94 V, respectively, by cyclic voltammetry and differential pulse polarography. As the tyrosyl			
7504	radical dimerizes rapidly, the cathodic peak is hardly observable in a cyclic voltammogram. Still,			
7505	with an equation derived by Nicholson [13], an electrode potential can be derived from the CV			
7506	data. However, that equation was incorrectly modified by Harriman [11], and used as such by			
7507	DeFillipis et al. [12]. While differential pulse polarography is very sensitive, it does not yield a			
7508	reliable potential if the oxidation product undergoes subsequently a rapid reaction; for this reason			

- we do not trust the value of +0.83 V by Nocera and coworkers [14].
- 7510 7511

7512 **References**

- 7513
- 7514 1. J. Lind, X. Shen, T. E. Eriksen, G. Merényi. J. Am. Chem. Soc. **112**, 479-482 (1990).
- 7515 2. T. N. Das, R. E. Huie, P. Neta. J. Phys. Chem. A 103, 3581-3588 (1999).
- 7516 3. L. K. Folkes, M. Trujillo, S. Bartesaghi, R. Radi, P. Wardman. *Arch. Biochem. Biophys.*7517 **506**, 242-249 (2011).
- 7518 4. R. B. Martin, J. T. Edsall, D. B. Wetlaufer, B. R. Hollingsworth. *J. Biol. Chem.* 233,
 7519 1429-1435 (1958).

- J. Butler, E. J. Land, W. A. Prütz, Swallow, A, J. *Biochim. Biophys. Acta* 705, 150-162
 (1982).
- 7522 6. M. Faraggi, M. R. DeFelippis, M. H. Klapper. J. Am. Chem. Soc. 111, 5141-5145 (1989).
- 7523 7. W. A. Prütz, J. Butler, E. J. Land, A. J. Swallow. *Biochem. Biophys. Res. Commun.* 96,
 7524 408-414 (1980).
- 7525 8. W. A. Prütz, E. J. Land, R. W. Sloper. J. Chem. Soc., Faraday Trans. 177, 281-292
- 7526 (1981).
- 7527 9. B. W. Berry, M. C. Martinez-Rivera, C. Tommos. *Proc. Nat. Acad. Sci.* 109, 9739-9743
 7528 (2012).
- M. R. DeFelippis, C. P. Murthy, M. Faraggi, M. H. Klapper. *Biochemistry* 28, 4847-4853
 (1989).
- 7531 11. A. Harriman. J. Phys. Chem. 91, 6102-6104 (1987).
- 12. M. R. DeFelippis, C. P. Murthy, F. Broitman, D. Weinraub, M. Faraggi, M. H. Klapper.
- 7533 J. Phys. Chem. 95, 3416-3419 (1991).
- 7534 13. R. S. Nicholson. Analyt. Chem. 37, 667-671 (1965).
- 7535 14. C. S. Yee, M. R. Seyedsayamdost, M. C. Y. Chang, D. G. Nocera, J. Stubbe.
- 7536 Biochemistry 42, 14541-14552 (2003).
- 7537
- 7538

7539	Supplementary Data Sheet S-5
7540	
7541	Chemical equilibrium: $PhO^{\bullet} + PhNMe_2 \rightleftharpoons PhO^- + PhNMe_2^{\bullet^+}$ (S-5.1)
7542	$PhNMe_2 = N, N$ -dimethylaniline
7543	PhOH = phenol
7544	
7545	$K = (69 \pm 7)$ from absorbance measurements, pH 12, $\mu = 0.18$, 2.7 mol L ⁻¹ ethylene glycol [1].
7546	Taking $E^{\circ}(PhO^{\bullet}/PhO^{-}) = +0.80 \text{ V}$
7547	$E^{0}(PhNMe_{2}^{\bullet+}/PhNMe_{2}) = +(0.69 \pm 0.01) V \text{ at } I = 0$
7548	
7549	Discussion
7550	The authors used a high concentration of ethylene glycol to help dissolve N,N-dimethylaniline,
7551	Furthermodynamicre, they used a linear accelerator, not a Febetron, thus the dose per pulse was
7552	lower.
7553	Holcman and Schested [2] report PhNMe ₂ ^{•+} + HO ⁻ \rightarrow PhNMeCH ₂ [•] + H ₂ O with $k \approx 1 \times 10^5$ L
7554	$mol^{-1} s^{-1}$, thus, at pH 12, $k \approx 1 \times 10^3 s^{-1}$
7555	
7556	Earlier study:
7557	Chemical equilibrium: $ClO_2^{\bullet} + PhNMe_2 \rightleftharpoons ClO_2^{-} + PhNMe_2^{\bullet+}$ (S-5.2)
7558	$K = (15 \pm 5)$ from kinetics measurements at pH 9.6 [3].
7559	Taking $E^{\circ}(\text{ClO}_2^{\bullet}/\text{ClO}_2^{-}) = +0.936 \text{ V} [4], E^{\circ}(\text{PhNMe}_2^{\bullet+}/\text{PhNMe}_2) = +(0.87 \pm 0.02) \text{ V}.$
7560	The authors used a Febetron with a high dose per pulse. The limited solubility of PhNMe2 is an
7561	issue here as the authors did not use ethylene glycol, with the consequence that, if not all
7562	PhNMe ₂ was dissolved, K will be higher. We will not use this value.
7563	
7564	Recommended value:
7565	
7566	$E^{\circ}(PhNMe_2^{\bullet+}/PhNMe_2) = +(0.69 \pm 0.01) V \text{ at } \mu = 0.$
7567	
7568	List of auxiliary thermodynamic data
7569	$pK_{a}(PhNMe_{2}H^{+}) = 5.1$
7570	
7571	References
7572	
7573	1. T. N. Das, R. E. Huie, P. Neta, J. Phys. Chem. A 103, 3581-3588 (1999).
7574	2. J. Holcman, K. Sehested, Proc. Tihany Symp. Rad. Chem. 5, 693-696 (1982).

- 7575 3. R. E. Huie, P. Neta, J. Phys. Chem. 90, 1193-1198 (1986).
- 7576 4. N. V. Troitskaya, K. P. Mishchenko, I. E. Flis, Russ. J. Phys. Chem. 33, 77-79 (1959).

7578

7579	Supplementary Data Sheet S-6
7580	
7581	Chemical equilibrium: $I_2^{\bullet-} + CNPhO^- \rightleftharpoons 2I^- + CNPhO^{\bullet}$ (S-6.1)
7582	CNPhOH = 4-cyanophenol
7583	
7584	$K = 0.1$ M from absorbance measurements, 0.07 M from kinetics, pH 11 – 12, $\mu = 1$ M [1].
7585	Taking $E^{\circ}(I_2^{\bullet-}/2I^-) = +1.03 \text{ V}$ (from Data Sheet 45)
7586	$E^{\circ}(\text{CNPhO}^{\bullet}/\text{CNPhO}^{-}) = +(1.09 \pm 0.03) \text{ V}$ (the paper uses $E^{\circ}(I_2^{\bullet}/2I^{-}) = +1.06 \text{ V}$ and gives $E^{\circ} =$
7587	+1.12 V)
7588	
7589	$k_{\rm f} = 7 \times 10^4 \text{ L mol}^{-1} \text{ s}^{-1}, k_{\rm r} = 1 \times 10^6 \text{ L mol}^{-2} \text{ s}^{-1}$
7590	
7591	This equilibrium constant is expected to be insensitive to ionic strength, so the derived electrode
7592	potential at 1 M H ⁺ may be regarded a standard potential.
7593	
7594	List of auxiliary thermodynamic data
7595	$pK_{a}(\text{CNPhOH}) = 7.95$
7596	
7597	Recommended values:
7598	
7599	$E^{\circ}(\text{CNPhO}^{\bullet}/\text{CNPhO}^{-}) = +(1.09 \pm 0.03) \text{ V}$
7600	$E^{\circ}(\text{CNPhO}^{\bullet}, \text{H}^+/\text{CNPhOH}) = +1.56 \text{ V}$
7601	$E^{\circ}(pH 7) = +1.14 V$
7602	
7603	References
7604	
7605	1. J. Lind, X. Shen, T. E. Eriksen, G. Merényi, J. Am. Chem. Soc. 112, 479-482 (1990).
7606	
7607	
7608	

Supplementary Data Sheet S-7

- 7610
- 7611 Aqueous electrode potentials involving the nitroxyl radical TEMPO[•].
- 7612
- 7613 Nitroxyl radicals: R_2ON^{\bullet} , TEMPO $^{\bullet} = 2,2,6,6$ -tetramethylpiperidine-1-oxyl
- 7614
- 7615 Abbreviations used here: |· 0 $TEMPO^+ =$ 7616 TEMPO• = TEMPOH = Ġн 7617 $TEMPOH^{+} =$ 7618 $TEMPHOH^+ =$ Ċн ĊΗ¹ 7619 7620 List of Reports. 7621 7622 Neimann *et al.* reported on the polarography (reduction at Hg) of TEMPO[•] [1]. They note some 7623 specific medium effects, but these effects are not severe in alkaline media. Their data (Fig. 2) 7624 suggest $E^{\circ} \sim -250 \text{ mV}$ vs SCE at pH 11 for reduction of TEMPO[•] to TEMPOH, but the exact 7625 results are not clearly stated. 7626 7627 Golubev et al. [2] reported in 1975 on the acid-induced disproportionation of TEMPO• and its 7628 reverse, both for kinetics and equilibrium constants. From the ratio of the forward and reverse rate constants they obtained $K_{disp} = (3.3 \pm 0.2) \times 10^4 \text{ M}^{-2}$ at 25 °C for the reaction 7629 7630 $2\text{TEMPO}^{\bullet} + 2\text{H}^+ \rightleftharpoons \text{TEMPO}^+ + \text{TEMPHOH}^+$ 7631 (S-7.1)7632 From the equilibrium concentration of TEMPO[•] they obtained $K_{disp} = (1.0 \pm 0.4) \times 10^4 \text{ M}^{-2}$, in 7633 7634 reasonable agreement with the kinetics result. 7635 7636 In 1976, Golubev *et al.* used potentiometry to determine E° for TEMPO⁺/TEMPO[•]: +(750 ± 5) mV vs NHE at 25 °C, extrapolating data at various ionic strengths to get a value at $\mu = 0$ M [3]. 7637 7638

7639	In 1977, Golubev et al. (1977) reported on the reaction of alcohols with oxoammonium ions [4].		
7640	These studies lead to a value for the comproportionation constant for TEMPO [•] : $K_{disp} = (3 \pm 1) \times$		
7641	10^4 M^{-2} at 25 °C for the following reaction:		
7642			
7643	$2\text{TEMPO}^{\bullet} + 2\text{H}^{+} \rightleftharpoons \text{TEMPO}^{+} + \text{TEMPHOH}^{+} $ (S-7.2)		
7644			
7645	This result is in good agreement with that of Golubev et al. from (1975) [2]. From this		
7646	equilibrium constant, their prior value for $E^{\circ}(\text{TEMPO}^{+/0})$, and their prior value for		
7647	pK _a (TEMPOH) they [4] derived a value for the two-electron E° for TEMPO ⁺ /TEMPOH of +0.68		
7648	V vs NHE.		
7649			
7650	In 1986, Petrov and Kozlov used the reaction of tetranitromethane with nitroxyls to measure a		
7651	rate constant k, which is assigned in terms of the following mechanism [5]:		
7652			
7653	$NO_2^{\bullet} + TEMPO^{\bullet} \rightleftharpoons NO_2^{-} + TEMPO^{+} \qquad K_{et}$ (S-7.3)		
7654	$2NO_2^{\bullet} + H_2O \rightarrow 2H^+ + NO_2^- + NO_3^- \qquad k_{NO2}$ (S-7.4)		
7655			
7656	Thus, $k = k_{\text{NO2}}K_{\text{et}}$. With use of a literature value for k_{NO2} they derive $K_{\text{et}} = 8.8 \times 10^4$. An		
7657	alternative method, using the steady-state concentration of TEMPO [•] , gave a value for $K_{\rm et}$ of 7 ×		
7658	10 ⁴ . They combined K_{et} with a literature electrode potential for TEMPO ^{+/0} to derive $E^{\circ} = +1.04$		
7659	V for NO ₂ •/NO ₂ ⁻ , which is in good agreement with alternative determinations. Note that		
7660	Goldstein et al. [6] subsequently reported rate constants for this reaction that disagree drastically		
7661	with those of Petrov and Kozlov [5]; as discussed by Goldstein et al. [6], this disagreement does		
7662	not, however, extend to the values of the equilibrium constant.		
7663			
7664	Fish <i>et al.</i> reported CV data on the TEMPO ^{+/0} redox couple [7]. They obtain $E^{\circ} = +0.49$ V vs		
7665	SCE at $\mu = 0.08$ M, presumably at room temperature. We correct their potential to +0.73 V vs		
7666	NHE.		
7667			
7668	Krishna <i>et al.</i> reported CV data on $R_2NO^+ + e^- \rightleftharpoons R_2NO$ for TEMPO• [8]. They report $E^{\circ} =$		
7669	+722 mV vs NHE at μ = 0.15 M and 23 °C.		
7670			
7671	Kato et al. reported reversible CVs for reduction of TEMPO• [9]. Inspection of their CV's,		
7672	however, reveals that the reduction process is irreversible, with the two CV waves having a		
7673	peak-to-peak separation of ~1.4 V. It is highly unlikely that thermodynamic data can be derived		
7674	from such voltammograms.		

7675	
7676	Baur <i>et al.</i> reported CVs of nitroxyls, giving $E_{1/2} = +0.62$ V vs Ag/AgCl for TEMPO [•] [10]. The
7677	data were obtained by rapid-scan voltammetry and hence the difference between the peak
7678	potentials is +360 mV. Accordingly, such data should not be used for obtaining accurate
7679	thermodynamic cell potentials.
7680	
7681	Goldstein et al. reported the equilibrium constant for the following reaction, as determined from
7682	the ratios of the forward and reverse rate constants [11].
7683	
7684	$\text{TEMPO}^{\bullet} + \text{HO}_2^{\bullet} \rightleftharpoons \text{TEMPO}^+ + \text{HO}_2^- \qquad K = 0.86 \pm 0.22 \qquad (S-7.5)$
7685	
7686	From this equilibrium constant and the HO_2^{\bullet}/HO_2^{-} electrode potential they [11] derived
7687	$E^{\circ}(\text{TEMPO}^+/\text{TEMPO}^{\bullet}) = +0.75 \text{ V}.$
7688	
7689	Goldstein <i>et al.</i> reported the equilibrium constant for reduction of TEMPO ⁺ by NO [•] [12]:
7690	
7691	$\text{TEMPO}^+ + \text{NO}^{\bullet} + \text{H}_2\text{O} \rightleftharpoons \text{TEMPO}^{\bullet} + \text{HNO}_2 + \text{H}^+ K = 0.045 \pm 0.005 \text{ M} $ (S-7.6)
7692	
7693	From this equilibrium constant and the NO•/HNO2 electrode potential, they [12] derived
7694	$E^{\circ}(\text{TEMPO}^+/\text{TEMPO}^{\bullet}) = +0.74 \text{ V}.$
7695	
7696	Sen and Golubev (2009) report on the kinetics of disproportionation of TEMPO in strong acid
7697	[13]. From the pH dependence in strongly acidic H_2SO_4 media they obtained the p K_a of the
7698	protonated TEMPO radical: $pK_a = -(5.8 \pm 0.3)$. This is in good agreement with Malatesta and
7699	Ingold's [14] prior estimate.
7700	
7701	Meaningful interpretation of the comproportionation/disproportionation data requires knowledge
7702	of the p K_a 's of R ₂ NHOH ⁺ . Reports on this are summarized below.
7703	
7704	Golubev <i>et al.</i> [2] reported for TEMPOH that $K_a = 1.26 \times 10^{-7}$ M at 25 °C and $\mu = 0$ M (p $K_a =$
7705	6.90). They used the classical potentiometric titration method.
7706	
7707	Kato <i>et al.</i> obtained $pK_a = 7.95$ for TEMPOH from the pH dependence of the reductive CVs of
7708	TEMPO [•] [9]. The theoretical basis for obtaining pK_as from such data is not indicated, and we
7709	suspect that the results may refer to the pK_a of surface species at the graphite electrode.
7710	

7711 Sosnovsky and Bell determined the p K_a potentiometrically at 20 °C, and obtained p K_a = 6.29 for 7712 TEMPOH [15].

7713

Israeli *et al.* determined $pK_a = (7.5 \pm 0.2)$ by an electrochemical method [16]. The

electrochemical determination used essentially the same method as was used by Kato et al. [9],

- and it likewise lacks theoretical justification.
- 7717

Israeli *et al.* also determined $pK_a = (7.5 \pm 0.1)$ at 25 °C and unspecified ionic strength by a kinetic method [16]. The kinetics determination was based on the pH-dependence of the rate of comproportionation of TEMPO⁺ with TEMPOH.

- 7721
- 7722 **Discussion**
- 7723

The electrochemical data on the oxidation of TEMPO[•] to TEMPO⁺ generally agree that *E* $^{\circ}$ is near +730 mV vs NHE. The most reliable study appears to be that of Golubev *et al.* [3]; these workers used potentiometry, rather than CV, thermodynamic stated their solutions, and obtained data as a function of ionic strength. Support for this result also comes from the equilibrium constants determined for the reactions with HO₂•, NO₂•, and NO•, but none of these can be considered as accurate as the direct potentiometric measurement of Golubev *et al.* [3].

7730 Of the four reports on the pK_a of TEMPOH, the one by Kato *et al.* [9] can be rejected on the grounds that it has no theoretical justification. The electrochemical determination by Israeli et 7731 7732 al. [16] used essentially the same method as was used by Kato et al. [9] and is likewise rejected. 7733 The kinetic determination by Israeli et al. [16] appears reliable but differs substantially from the two potentiometric determinations. The other two (Golubev et al. [2] and Sosnovsky and Bell 7734 7735 [15] used the same method, potentiometric titration, and would be expected to give highly 7736 accurate results; the outcome, however, is unsatisfactory, with the two pK_a reports differing by 7737 0.6 units. The temperature difference between the two studies is unlikely to cause such a large 7738 difference in pK_a . This outcome is rather unsatisfactory, with the reports of Israeli *et al.* [16], Golubev *et al.* [2], and Sosnovsky and Bell [15] leading to an average pK_a of 6.9 ± 0.6 . Sen and 7739 7740 Golubev have reinvestigated this problem very recently [13]. They claim that the addition of 7741 OH⁻ to TEMPO⁺ in alkaline media was not taken into account in the voltammetric and kinetic 7742 studies of Israeli *et al.*, and that this will perturb the apparent pK_a significantly. Thus, they place great confidence in their p K_a of (6.90 ± 0.02). 7743

The Golubev *et al.* reports [2, 4] on the disproportionation of TEMPO[•] are in good agreement, leading to a recommended value of $K_{disp} = (3 \pm 1) \times 10^4 \text{ M}^{-2}$. If we then use the

7746	recommended values for E° (TEMPO ^{+/0}) and pK _a (TEMPOH), we derive $E^{\circ} = +(0.61 \pm 0.04)$ V				
7747	for [for TEMPO•,H ⁺ /TEMPOH.			
7748					
7749	Rec	Recommended values:			
7750					
7751	TEN	$(\mathrm{APO}^+ + e^- \rightleftharpoons \mathrm{TEMPO}^\bullet)$	$E^{\circ} = +(0.750 \pm 0.005)$ V.		
7752	TEN	$\text{APHOH}^+ \rightleftharpoons \text{TEMPOH} + \text{H}^+$	$pK_a = (6.90 \pm 0.02)$		
7753	TEN	$(\text{APO}^{\bullet} + \text{H}^+ + \text{e}^- \rightleftharpoons \text{TEMPOH})$	$E^{\circ} = +(0.61 \pm 0.04) \text{ V}$		
7754	2TE	$EMPO^{\bullet} + 2H^{+} \rightleftharpoons TEMPO^{+} + TEMPHOH^{+}$	$K_{\rm disp} = (3 \pm 1) \times 10^4 {\rm M}^{-2}$		
7755					
7756	Ref	erences.			
7757					
7758	1.	M. B. Neimann, S. G. Mairanovskii, B. M. k	Kovarskaya, E. G. Rozantsev, E. G. Gintsberg.		
7759		Bull. Acad. Sci. USSR, Chem. Sci. 1424-1420	5 (1964).		
7760	2.	V. A. Golubev, V. D. Sen', I. V. Kulyk, A. L	. Aleksandrov. Bull. Acad. Sci. USSR, Chem.		
7761		<i>Sci.</i> 24 , 2119-2126 (1975).			
7762	3.	V. A. Golubev, T. S. Rudyk, V. D. Sen', A. I	L. Aleksandrov. Bull. Acad. Sci. USSR, Chem.		
7763		<i>Sci.</i> 25 , 744-750 (1976).			
7764	4.	V. A. Golubev, V. N. Borislavskii, A. L. Ale	ksandrov. Bull. Acad. Sci. USSR, Chem. Sci.		
7765		1874-1881 (1977).			
7766	5.	A. N. Petrov, Y. N. Kozlov. Russ. J. Phys. C	<i>hem.</i> 60 , 195-198 (1986).		
7767	6.	S. Goldstein, A. Samuni, A. Russo. J. Am. Chem. Soc. 125, 8364-8370 (2003).			
7768	7.	J. R. Fish, S. G. Swarts, M. D. Sevilla, T. Malinski. J. Phys. Chem. 92, 3745-3751 (1988).			
7769	8.	M. C. Krishna, D. A. Grahame, A. Samuni,	B. Mitchell, A. Russo. Proc. Natl. Acad. Sci.		
7770		89 , 5537-5541 (1992).			
7771	9.	Y. Kato, Y. Shimizu, L. Yijing, K. Unoura, I	H. Utsumi, T. Ogata. Electrochim. Acta 40,		
7772		2799-2802 (1995).			
7773	10.	J. E. Baur, S. Wang, M. C. Brandt. Anal. Ch	em. 68, 3815-3821 (1996).		
7774	11.	S. Goldstein, G. Merényi, A. Russo, A. Sam	uni. J. Am. Chem. Soc. 125, 789-795 (2003).		
7775	12.	S. Goldstein, A. Samuni, G. Merényi. Chem.	Res. Toxicol. 17, 250-257 (2004).		
7776	13.	V. D. Sen, V. A. Golubev. J. Phys. Org. Che	<i>m.</i> 22 , 138-143 (2009).		
7777	14.	V. Malatesta, K. U. Ingold. J. Am. Chem. So	c. 95 , 6404-6407 (1973).		
7778	15.	G. Sosnovsky, P. Bell. Life Sci. 62, 639-648	(1998).		
7779	16.	Israeli, A, M. Patt, M. Oron, A. Samuni, R. I	Kohen, S. Goldstein. Free Rad. Biol. Med. 38,		
7780		317-324 (2005).			
7781					

Supplementary Data Sheet S-8 7782

7783

7784 Penicillamine Thiyl Radical.

7785

Couple: PenS[•], H⁺/PenSH, (Pen = $-CMe_2-C(NH_2)H-CO_2^{-}$). 7786

7787 *Published value(s):*

7788 Method: Pulse radiolysis Solvent: Water

7789 *Measurement by electron transfer equilibrium:*

$$PenS^{\bullet} + D(SH)_2 = PenSH + H^+ + \int S \bullet S^{\dagger} S_{\dagger}$$

7790

7791 **Reference:** Dithiothreitol (dithiothreitol = (2S, 3S)-1,4-bis(sulfanyl)butane-2,3-diol, C₄H₁₀O₂S₂):

(S-8.1)

(S-8.2)

$$[S \bullet \overline{S}] + e + 2H^+ = D(SH)_2$$

7792

7793 Other solutes: Gas: N₂O Buffer: Phosphate

7794 pH = 7.0. Ambient temperature stated to be: (296.2 ± 2) K. Ionic strength: 0.01 M.

7795 Ionic strength effects estimated: Yes.

7796 Observed equilibrium constant/measurement corresponds to $\Delta E = (0.38 \pm 0.02) \text{ V} [1]$.

7797

7798 Reference electrode potential: $E^{\circ}(DS_2^{\bullet-}, 2H^+/D(SH)_2) = +(1.75 \pm 0.03) \text{ V vs NHE } [2].$

7799 Standard electrode potential of couple: $+(1.37 \pm 0.03)$ V vs NHE.

7800

7801 **Recommended value:**

7802

7803 7804 $E^{\circ}(\text{PenS}^{\bullet},\text{H}^{+}/\text{PenSH}) = +(1.37 \pm 0.03) \text{ V}$

7805 **Comments**:

7806 The third radical of penicillamine and other third abstracts, to a limited extent ($K \sim 0.1$ 7807 for penicillamine), H from the α -carbon [3]. This hydrogen-atom transfer equilibrates rather rapidly $(k_f + k_r = 1.5 \times 10^6 \text{ s}^{-1} \text{ for PenS}^{\bullet} [4])$, and thus, on the time-scale that bimolecular redox 7808 7809 equilibria are attained by pulse radiolysis, the equilibrium constants for reaction S-8.1 and others 7810 involving "PenS[•]" will reflect the contribution of the carbon-centered form of the "thiyl" radical. 7811 Thus, the recommended value given above for $E^{\circ}(\text{PenS}^{\bullet}, \text{H}^{+}/\text{PenSH})$ is not strictly a thivl radical 7812 potential. Nevertheless, when this redox couple is used in establishing electron-transfer equilibria

for the $CO_2^{\bullet-}$ and $PO_3^{\bullet 2-}$ radicals (Data Sheets 96 and 98) the net result should not be 7813 7814 compromised by this effect. An estimate of (1.63 ± 0.03) V for $E^{\circ}(DS_2^{\circ}/D(SH)_2)$ can be obtained by extrapolation of 7815 $E^{\circ} = +0.81$ V at pH 7 [5]. The value at pH 7 was obtained by combining several quantities: one 7816 7817 was obtained by making the assumption that $E^{\circ}(D(S^{\bullet})(SH), H^+/D(SH)_2) = E^{\circ}(GS^{\bullet}, H^+/GSH) =$ 0.92 V at pH 7. Another was the equilibrium constant (K_1) for formation of DS₂^{•-} from D(S⁻)(S[•]) 7818 $(= 7.9 \times 10^3)$, which was calculated from two other reactions: 7819 7820 7821 $D(S_2H^{\bullet}) \rightleftharpoons D(S_2^{\bullet-}) + H^+$ $K_{\rm a}(\rm DS_2H^{\bullet})$ (S-8.3)7822 $D(SH)(S^{\bullet}) \rightleftharpoons D(S^{-})(S^{\bullet}) + H^{+}$ $K_{a}(D(SH)(S^{\bullet}))$ (S-8.4)7823 $D(S^{-})(S^{\bullet}) \rightleftharpoons D(S_{2}^{\bullet-})$ $K_1 = K_a(DS_2H^{\bullet})/K_a(D(SH)(S^{\bullet}))$ (S-8.5)7824 A value of 6.3×10^{-6} M was used for $K_a(DS_2H^{\bullet})$, as measured by Akhlag and von Sonntag [6]; it 7825 should be noted that Akhlag and von Sonntag expressed the opinion that their K_a value actually 7826 is an overall acid dissociation constant for the sum of $D(S_2H^{\bullet})$ and $D(SH)(S^{\bullet})$. A value of 7.9 × 7827 10^{-10} M was used for $K_a(D(SH)(S^{\bullet}))$, assumed to be equal to the first K_a of $D(SH)_2$. Given the 7828 approximations made, the estimate of +1.63 V [5] should be regarded as support for the 7829 7830 experimental value of +1.75 V [2]. 7831 7832 pK_a values: Radical values (lowest first): pK_{s1} None [7]. 7833 Reductant values (lowest first): $pK_{s1} = 7.9$; $pK_{s2} = 10.46$ [8]. 7834 7835 7836 References 7837 P. S. Surdhar, D. A. Armstrong. J. Phys. Chem. 91, 6532-6537 (1987). 7838 1. 7839 Armstrong, D. A. In S-Centered Radicals, (Alfassi, Z. B., ed.), p. 27-61. John Wiley & 2. 7840 Sons, New York (1999). 3. C. Schöneich, O. Mozziconacci, W. H. Koppenol, T. Nauser. Israel J. chem. 54, 265-271 7841 7842 (2014).4. T. Nauser, W. H. Koppenol, C. Schöneich. J. Phys. Chem. B 116, 5329-5341 (2012). 7843 7844 T. Nauser, D. Steinmann, G. Grassi, W. H. Koppenol. Biochemistry 53, 5017-5022 5. 7845 (2014). M. S. Akhlaq, C. von Sonntag. Z. Narturforsch. 42c, 134-140 (1987). 7846 6. J. W. Purdie, H. A. Gillis, N. V. Klassen. Can. J. Chem. 51, 3132-3142 (1973). 7847 7. 8. 7848 E. W. Wilson, R. B. Martin. Arch. Biochem. Biophys. 142, 445-454 (1971).

49 Supplementary Data Sheet S-9

- 7850
- 7851 **Subject:** Chlorpromazine radical cation.
- 7852 Chlorpromazine IUPAC PIN: 3-(2-chloro-10H-phenothiazin-10-yl)-N,N-dimethylpropan-1-
- amine 7853
- 7854
- 7855 Couple type: $CPZH^{\bullet 2+} + e^- \rightleftharpoons CPZH^+$

The conjugate acid of the amine sidechain of CPZ has $pK_a \sim 8$, and the pK_a of the radical cation is ~ 7, so below pH 6 both components of the redox couple are protonated [1]. Wardman (1989) cited four reports published prior to 1989 on E° for CPZ, the values ranging from 766 mV to 844 mV, and he recommended $E^\circ = +0.78$ V [2]. Madej and Wardman (2006) have reinvestigated this system carefully, both by pulse radiolysis and cyclic voltammetry, and they arrived at a significantly revised potential [1].

7864

7865 List of reports:

7866

 $E^{\circ} = +0.541 \text{ V vs NCE (normal calomel electrode) in 0.1 N H_2SO_4, presumably at room temperature. Kabasakalian and McGlotten [3] obtained this result polarographically. Correction of this to NHE (+0.280 V) leads to <math>E^{\circ} = +0.821 \text{ V vs NHE}$. Later workers argue that the radical is unstable at this pH [4, 5].

7871

Polarographic oxidation of CPZH⁺ to the radical occurs with $E^{\circ} \sim +0.4$ V vs SCE in 12 N

7873 H₂SO₄, presumably at room temperature [4]. The high acid concentration was used to stabilize

the radical.

7875

7876 $E_{1/4} = +0.570$ V vs Ag/AgCl in 3 M H₂SO₄, presumably at room temperature [5]. Result obtained7877by chronopotentiometry. Correction of $E_{1/4}$ to NHE (addition of 0.197 V) leads to $E^{\circ'} = +0.767$ V7878vs NHE. Patriarche and Lingane [5] cited the prior work of Merkle and Discher [4], claimed the7879oxidation of CPZH⁺ to be reversible, and made no comment regarding apparent irreversibility in7880the work of they cited.

7881

 $E^{\circ'} = +0.78 \text{ V}$ in 1.0 M HClO₄ at 25.0 °C [6]. Obtained from the equilibrium constant for the oxidation of CPZH⁺ by Fe³⁺ and taking $E^{\circ'} = +0.738 \text{ V}$ for Fe(III)/Fe(II) in this medium. Note that no tests were performed to determine whether Fe(III) or Fe(II) binds CPZ in any of its forms.

7886

 $E^{\circ} = +0.83$ V in 0.01 M phosphate buffer at pH 6 [7]. Surdhar and Armstrong cite unpublished CV results of Hinman and Surdhar for this value.

7889

 $E^{\circ} = +0.859 - +0.864 \text{ V vs NHE at room temperature } (23 \pm 2 \text{ °C}), \text{ extrapolated from data in 0.1}$ $M \text{ KCl [1]. Data obtained by cyclic voltammetry with a sweep rate of 100 mV s⁻¹ with a macroelectrode and 10 mV s⁻¹ with a microelectrode. The CV experiments showed that the couple is reversible and that$ *E*° is constant over the pH range from 3 to 6.

7894

7895 $E^{\circ'} = +0.614$ V vs SCE in 0.1 M phosphate buffer at pH 2 at (20 ± 2) °C, by cyclic voltammetry7896[8]. We adjust this value to NHE by adding 0.241 V to obtain $E^{\circ'} = +0.855$ V.

7897

7898 **Discussion**

Madej and Wardman used pulse radiolysis to measured equilibrium constants for electron transfer between CPZH⁺ and 5 other phenothiazines [1]. They also used cyclic voltammetry to determine E° for these 5 other phenothiazines, and they got excellent agreement between the 5 measured electron-transfer equilibrium constants and the equilibrium constants calculated from ΔE° .

The results of Mielech-Lukasiewicz *et al.* [8] are in good agreemnt with those of Madej and Wardman [1], but the former were not obtained with the objective of determining an accurate value of E° . For this reason we prefer the result of Madej and Wardman.

7907		The disagreement between the results of Madej and Wardman and the prior studies most	
7908	likel	y reflects the combined effects of unrecognized radical reactions at the relatively long time	
7909	scale	es of the prior studies, the high acidity of the prior studies, and the possibility of Fe^{3+} binding	
7910	to C	PZ. The mild disagreement between the results of Madej and Wardman and those cited by	
7911	Surd	lhar and Armstrong [7] is disregarded because of the incomplete publication status of the	
7912	latte	r. Overall, we recommend the result of Madej and Wardman, including their indicated	
7913	unce	ertainty of ± 10 mV.	
7914			
7915	Rec	ommended value:	
7916			
7917	$CPZH^{\bullet 2^+} + e^- \rightleftharpoons CPZH^+$ $E^\circ = +(0.860 \pm 10) \text{ mV}$ between pH 5 to 7.		
7918			
7919	References:		
7920			
7921	1.	E. Madej, P. Wardman. Rad. Phys. Chem. 75, 990-1000 (2006).	
7922	2.	P. Wardman. J. Phys. Chem. Ref. Data 18, 1637-1755 (1989).	
7923	3.	P. Kabasakalian, J. McGlotten. Analyt. Chem. 31, 431-433 (1959).	
7924	4.	F. H. Merkle, C. A. Discher. Analyt. Chem. 36, 1639-1643 (1964).	
7925	5.	G. J. Patriarche, J. J. Lingane. Analyt. Chim. Acta 49, 25-34 (1970).	
7926	6.	E. Pelizzetti, E. Mentasti. Inorg. Chem. 18, 583-588 (1979).	
7927	7.	P. S. Surdhar, D. A. Armstrong. J. Phys. Chem. 91, 6532-6537 (1987).	
7928	8.	K. Mielech-Lukasiewicz, H. Puzanowska-Tarasiewicz, A. Panuszko. Analyt. Lett. 41, 789-	
7929		805 (2008).	
7930			
7931			
7932			

7933	Supplementary Data Sheet S-10			
7934				
7935	Disulphide Anion Radical of Lipoamide,			
7936	$Dihydrolipoamide = HS-CH_2-CH_2-C(SH)H-(CH_2)_4-CONH_2, (L(SH)_2).$			
7937				
	$S \therefore S$ HS SH			
7938	Couple: $/ + 2H^+ + e^- \rightleftharpoons$			
	R R			
7939	References:			
7940	Armstrong, D. A., "Thermodynamicchemistry of Sulfur Radicals" in "S-Centered Radicals",			
7941	Chapter 2, Alfassi, Z. B. Ed., Wiley, New York 1999;			
7942	Surdhar, P. S.; Armstrong, D. A. J. Phys. Chem. 1987, 91, 6532.			
7943				
7944	Published value(s):			
7945	Method: Pulse radiolysis Solvent: Water			
7946	Measurements by electron transfer equilibrium:			
	${}_{\Gamma}S \bullet^{\bullet} \bullet S_{\Gamma} + PhOH + H^{+} = HS - SH + PhO \bullet$			
7947	Reference: PhO•, H ⁺ /PhOH			
7948	Other solutes:			
7949	Gas: N ₂ O Buffer: Phosphate			
7950	pH = 9. Temperature: Ambient temperature stated to be: (296 ± 2) K. Ionic strength: 0.010 M.			
7951	Uncorrected equilibrium constant from concentrations: 3.2×10^{-8} .			
7952	Ionic strength effects estimated: Yes.			
7953	Corrected equilibrium constant given: 2.5×10^{-8} (calculated allowing for ionisation of reactants			
7954	and ionic strength effects on the redox reaction).			
7955	Observed equilibrium constant/measurement corresponds to $\Delta E = (0.45 \pm 0.03)$ V.			
7956	Reference potential assumed: $E^{\circ} = +(1.38 \pm 0.03)$ V.			
7957	Standard electrode potential of the couple as indicated by author: $+(1.83 \text{ V} \pm 0.03) \text{ V} \text{ vs} \text{ NHE}.$			
7958				
7959	Discussion			
7960	No correction for ionic strength effects is nececessary. Surdhar and Armstrong's paper does not			
7961	mention whether one of the enantiomers of dihydrolipoamide or a racemic mixture was used;			
7962	however, the results should not depend on this aspect of the stereochemistry.			
7963				
7964	References:			
7965	Armstrong, D. A, "Thermodynamicchemistry of Sulfur Radicals" in "S-Centered Radicals",			
7966	Chapter 2, Alfassi, Z. B. Ed., Wiley, New York 1999.			
7967	Surdhar, P. S.; Armstrong, D. A. J. Phys. Chem. 1987, 91, 6532.			
7968				
- 7969 Method: Pulse radiolysis Solvent: Water
- 7970 *Measurements by electron transfer equilibrium:*

 $RS^{\bullet} + L(SH)_2 = RSH + H^+ + \Gamma S \bullet^{\bullet} \cdot \bar{S}_{\uparrow}$

- 7971 RSH = β -mercaptoethanol = HSCH₂CH₂OH
- 7972 Reference: RS^{\bullet} , H^+/RSH
- 7973 Other solutes: Gas: N₂O Buffer: Phosphate
- pH = 7. Temperature: Ambient temperature stated to be: (296.2 ± 2) K. Ionic strength: 0.01 M.
- 7975 Ionic strength effects estimated: Yes.
- 7976 Corrected equilibrium constant given: 4.3×10^{-7} (calculated for pH = 0.0).
- 7977 Observed equilibrium constant/measurement corresponds to $\Delta E^{\circ} = 0.37 \text{ V}.$
- 7978 Reference potential assumed: $E^{\circ} = +(1.35 \pm 0.03)$ V
- 7979 Standard electrode potential of couple indicated by author: +1.72 V vs NHE.
- 7980 Reviewer's revised calculations
- No correction for ionic strength effects is nececessary.
- 7982

7983 Average from the two equilibria = (1.78 ± 0.06) V.

- 7984
- 7985
- 7986 Other data
- 7987 **Oxidant pKa values (lowest first):** pK_{o1} PhOH = 1×10^{-10}
- 7988 References: Biggs, A. I.; Robinson, R. A. J. Chem. Soc. 1961, 388; Chen, D. T. Y.; Laidler, K. J.
- 7989 Trans. Faraday. Soc. 1962, 58, 480.
- 7990 **Radical values (lowest first):** $L(S)_2H^{\bullet}$, $pK_{s1} = 5.85$.
- 7991 Reference: von Sonntag, C. "The Chemical Basis of Radiation Biology", Taylor and Francis,
- 7992 London (1987), p 359.
- 7993 **L(SH)**₂ values (lowest first): $pK_{s1} = 10.4$; $pK_{s2} = 11.0$.
- 7994 References: Gascoigne, I. M.; Radda, G. K. Biochim. Biophys. Acta 1967, 131, 498; Szajewski,
- 7995 R. P.; Whitesides, G. M.; J. Am. Chem. Soc. 1980, 102, 2011.
- 7996
- 7997 Reviewers' evaluation
- 7998 There are sufficient experimental details available to evaluate data
- 7999
- 8000
- 8001

2 Supplementary Data Sheet S-11

8003	
8004	Chemical equilibrium
8005	$MeOPhNH_2^{\bullet^+} + Pz^+ = MeOPhNH_2 + Pz^{\bullet^{2+}} $ (S11.1)
8006	$MeOPhNH_2 = 4$ -methoxyaniline;
8007	Pz = promethazine; IUPAC PIN: N,N-dimethyl-2-(10H-phenothiazin-10-yl)propan-2-amine
8008	
8009	List of Reports
8010	$K = 9.3 \times 10^{-3}$ from absorbance, ($\approx 6.7 \times 10^{-3}$ from kinetics), pH 5.7, $\mu \approx 0.010$ M [1]. Data
8011	obtained by pulse radiolytic generation of the N_3^{\bullet} as the primary oxidant.
8012	
8013	Discussion
8014	Jonsson <i>et al.</i> derived E° (MeOPhNH ₂ ^{•+} /MeOPhNH ₂) = +(0.79 ± 0.02) V by using a value
8015	of +0.91 V for $E^{\circ}(Pz^{\bullet 2+}/Pz^{+})$ [1] and assuming that the value of $K(S11.1)$ is independent of ionic
8016	strength. This latter assumption was based on the concept that the net charge on a side chain of
8017	promethazine, remote from the reactive site, does not introduce ionic strength dependence (see
8018	footnote 33 of [1]). However, this concept overlooks that the activity coefficients of the reactants
8019	and products in equilibrium such as S11.1 are independent of the structure of the transition state,
8020	and, for the calculation of activity coefficients with the Debye-Hückel theory, it is the net charge
8021	that counts. On the other hand, the measurement of $K(S11.1)$ was performed at a rather low ionic
8022	strength (0.01 M), so the correction to zero ionic strength should be rather small.
8023	Subsequent to the work of Jonsson et al. the promethazine potential has been extensively
8024	reinvestigated [2]. If we adopt the revised $E^{\circ}(Pz^{\bullet 2^+}/Pz^+) = +0.925 \text{ V}$ [2], then we obtain
8025	$E^{\circ}(MeOPhNH_2^{\bullet+}/MeOPhNH_2) = +(0.80 \pm 0.02)$ V. The 20 mV uncertainty encompasses the
8026	uncertainties introduced by the ionic-strength issue noted above, enabling the potential to be
8027	regarded as a standard potential.
8028	
8029	Recommended value:
8030	
8031	$E^{\circ}(MeOPhNH_2^{\bullet+}/MeOPhNH_2) = +(0.80 \pm 0.02) V$
8032	
8033	List of auxiliary thermodynamic data:
8034	$pK_{a}(MeOPhNH_{3}^{+}) = 5.3; pK_{a}(MeOPhNH_{2}^{\bullet+}) = 9.6 [1]$
8035	
8036	References
8037	

- 8038 1. M. Jonsson, J. Lind, T. E. Eriksen, G. Merényi. J. Am. Chem. Soc. 116, 1423-1427
- 8039 (1994).
- 8040 2. E. Madej, P. Wardman. Rad. Phys. Chem. 75, 990-1000 (2006).

8041

8042 **Supplementary Data Sheet S-12** 8043 8044 Tryptophan 8045 8046 Chemical equilibrium $ClO_2^{\bullet} + TrpH \rightleftharpoons ClO_2^{-} + TrpH^{\bullet^+}$ 8047 (S-12.1) 8048 TrpH = tryptophan8049 $K = (1.6 \pm 0.6) \times 10^{-5}$ from kinetics, pH 4, $\mu = 0.5$ M [1]. 8050 At $\mu = 0$, $K = (8.1 \pm 3.2) \times 10^{-6}$. 8051 Taking $E^{\circ}(ClO_2^{\bullet}/ClO_2^{-}) = 0.936 \text{ V}$ (Data Sheet 24 recommends $0.935 \pm 0.003 \text{ V}$) 8052 8053 $E^{\circ}(\text{TrpH}^{+}/\text{TrpH}) = +(1.24 \pm 0.01) \text{ V}$ $k_{\rm f} = (8.8 \pm 3.1) \times 10^3 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}, k_{\rm r} = (5.5 \pm 0.2) \times 10^8 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}$ 8054 8055 8056 8057 List of auxiliary thermodynamic data 8058 pK_a (Trp) = 2.38, 9.39 pK_a (TrpH^{•+}) = 4.3 [2] 8059 $E(\text{Trp}^{\bullet}, \text{H}^+/\text{TrpH})(\text{pH 7}) = +1.08 \text{ V}$ (assuming pK_a values of amino and carboxyl groups are the 8060 8061 same in the radical and parent molecule). 8062 8063 Chemical equilibrium $(tacn)_2 Ni^{3+} + TrpH \rightleftharpoons (tacn)_2 Ni^{2+} + Trp^{\bullet} + H^+$ 8064 (S-12.2) $(tacn)_2 Ni^{3+} = bis(1.4.7-triazacvclononane)Ni(III)$ 8065 8066 $K = (0.10 \pm 0.03)$ from absorbance, (0.104 ± 0.03) from kinetics, pH 7, $\mu = 0.1$ M [3] 8067 Taking $E^{\circ}((tacn)_2 Ni^{3+}/(tacn)_2 Ni^{2+}) = +0.95 V [4]$ 8068 $E(\text{Trp}^{\bullet}, \text{H}^+/\text{TrpH})(\text{pH 7}) = 1.01 \text{ V}$ 8069 $k_{\rm f} = (5 \pm 1) \times 10^4 \text{ L mol}^{-1} \text{ s}^{-1}, k_{\rm r} = (4.8 \pm 0.5) \times 10^5 \text{ L mol}^{-1} \text{ s}^{-1}$ 8070 8071 8072 Chemical equilibrium $Pz^{\bullet 2^+} + TrpH \rightleftharpoons Pz^+ + Trp^{\bullet} + H^+$ 8073 (S-12.3) 8074 Pz = promethazine8075 $K = 5.5 \times 10^{-3}$ from absorbance, $(5.7 \pm 1) \times 10^{-3}$ from kinetics, pH 6, $\mu = 0.1$ M [3] 8076 Taking $E^{\circ}(Pz^{\bullet 2+}/Pz^{+}) = +0.925 V [5]$ 8077

8078 $E(\text{Trp}^{\bullet}, \text{H}^+/\text{TrpH})(\text{pH 6}) = +1.06 \text{ V}, E(\text{Trp}^{\bullet}, \text{H}^+/\text{TrpH})(\text{pH 7}) = +1.00 \text{ V}$ $k_{\rm f} = (6.2 \pm 1) \times 10^5 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}, k_{\rm r} = (1.1 \pm 0.1) \times 10^8 \,{\rm L} \,{\rm mol}^{-1} \,{\rm s}^{-1}$ 8079 8080 8081 Chemical equilibrium 8082 $X^{\bullet} + TrpH \rightleftharpoons X^{-} + Trp^{\bullet} + H^{+}$ (S-12.4) 8083 8084 K values not given, experiments at pH 7 [6] 8085 8086 Based on $E^{\circ}(X^{\bullet}/X^{-})/V$ $E(\text{Trp}^{\bullet}, \text{H}^+/\text{TrpH})/\text{V} \text{ at (pH 7)}$ 8087 from kinetics from absorbance 8088 $ClO_2^{\bullet}/ClO_2^{-}$ +0.92+1.03+1.04 $Os(terpy)_2^{3+/2+} +0.93$ 8089 +1.06+1.03 NO_2^{\bullet}/NO_2^{-} 8090 +1.03+1.07 $Fe(bpy)_{3^{3+/2+}}$ 8091 +1.05+1.09+1.008092 8093 Average value given $E(\text{Trp}^{\bullet}, \text{H}^+/\text{TrpH})(\text{pH 7}) = (+1.05 \pm 0.01) \text{ V at 298 K}$ 8094 8095 **Recommended values:** 8096 8097 $E^{\circ}(\text{TrpH}^{\bullet+}/\text{TrpH}) = +(1.24 \pm 0.01) \text{ V at } \mu = 0.$ 8098 $E^{\circ}(\text{Trp}^{\bullet},\text{H}^+/\text{TrpH})$ at pH 7: +(1.03 ± 0.02) V. 8099 8100 Harriman [7] and DeFelippis et al. [8] determined electrode potentials of +1.015 V and +1.02 V 8101 at pH 7, respectively, by cyclic voltammetry and differential pulse polarography. Although these 8102 values fit with the recommended value, they are based on a formula derived by Nicholson [9] that was incorrectly modified by Harriman [7]. Recent cyclic voltammetry experiments yield 8103 8104 $+(0.99 \pm 0.01)$ V at pH 7 (L. Mahmoudi, R. Kisner, T. Nauser, W. H. Koppenol, 2014, 8105 unpublished.) 8106 8107 8108 Nomenclature: tryptophan, (2S)-2-amino-3-(1H-indol-3-yl)propanoic acid. 8109 8110 References 8111 8112 1. G. Merényi, J. Lind, X. Shen. J. Phys. Chem. 92, 134-137 (1988).

8113	2.	M. L. Posener, G. E. Adams, P. Wardman, R. B. Cundall. J. Chem. Soc., Faraday Trans
8114	1 72	, 2231-2239 (1976).

- 8115 3. S. V. Jovanovic, S. Steenken, M. G. Simic. J. Phys. Chem. 95, 684-687 (1991).
- 8116 4. K. Wieghardt, W. Schmidt, W. Herrmann, H.-J. Kuppers. Inorg. Chem. 22, 2953-2956
- 8117 (1983).
- 8118 5. E. Madej, P. Wardman. Rad. Phys. Chem. 75, 990-1000 (2006).
- 8119 6. M. R. DeFelippis, C. P. Murthy, M. Faraggi, M. H. Klapper. *Biochemistry* 28, 4847-4853
- 8120 (1989).
- 8121 7. A. Harriman. J. Phys. Chem. 91, 6102-6104 (1987).
- 8122 8. M. R. DeFelippis, C. P. Murthy, F. Broitman, D. Weinraub, M. Faraggi, M. H. Klapper.
- 8123 J. Phys. Chem. 95, 3416-3419 (1991).
- 8124 9. R. S. Nicholson. Analyt. Chem. 37, 667-671 (1965).
- 8125