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Abstract

Background: The ability to confidently predict health outcomes from gene expression would catalyze a revolution

in molecular diagnostics. Yet, the goal of developing actionable, robust, and reproducible predictive signatures of

phenotypes such as clinical outcome has not been attained in almost any disease area. Here, we report a

comprehensive analysis spanning prediction tasks from ulcerative colitis, atopic dermatitis, diabetes, to many cancer

subtypes for a total of 24 binary and multiclass prediction problems and 26 survival analysis tasks. We systematically

investigate the influence of gene subsets, normalization methods and prediction algorithms. Crucially, we also explore

the novel use of deep representation learning methods on large transcriptomics compendia, such as GTEx and TCGA,

to boost the performance of state-of-the-art methods. The resources and findings in this work should serve as both an

up-to-date reference on attainable performance, and as a benchmarking resource for further research.

Results: Approaches that combine large numbers of genes outperformed single gene methods consistently and

with a significant margin, but neither unsupervised nor semi-supervised representation learning techniques yielded

consistent improvements in out-of-sample performance across datasets. Our findings suggest that using

l2-regularized regression methods applied to centered log-ratio transformed transcript abundances provide the best

predictive analyses overall.

Conclusions: Transcriptomics-based phenotype prediction benefits from proper normalization techniques and

state-of-the-art regularized regression approaches. In our view, breakthrough performance is likely contingent on

factors which are independent of normalization and general modeling techniques; these factors might include

reduction of systematic errors in sequencing data, incorporation of other data types such as single-cell sequencing

and proteomics, and improved use of prior knowledge.
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Background
The potential to tailor therapies for individual patients

rests on the ability to accurately diagnose disease and

predict outcomes under various treatment conditions.

Predictors based on high-throughput ’omics technolo-

gies hold great promise, but a number of technical chal-

lenges have limited their applicability [1]. Phenotypes may

be complex—involving contributions from large numbers

of genes—but ’omics data are so high-dimensional that

exploring all possible interactions is intractable. This sit-

uation is further complicated by the small sample sizes of

typical biological studies and by large systematic sources

of variation between experiments [2, 3]. However, recent

developments in machine learning have raised hopes that

new computational methods integrating data from many

studies may be able to overcome these difficulties. Accu-

rate prediction of phenotype or endpoint(s) from ’omics

data would usher in an era of molecular diagnostics [4, 5].

Machine learning methods often benefit from large

datasets where learning complex relationships is feasi-

ble. Although individual biological experiments tend to be

small, relatively large amounts of ’omics data are available

in public repositories. For example, hundreds of thou-

sands of samples from human RNA sequencing (RNA-

seq) experiments are available from the recount2 and

ARCHS4 databases [6–8]. Still, these data cover a wide

variety of tissues and diseases. Moreover, there are no

specific diseases with large numbers of samples and, in

many cases, the metadata are not sufficient to determine

basic experimental facts like the tissue of origin [9]. As a

result, leveraging these data to improve prediction tasks

will require machine learning techniques that can learn

from large, heterogeneous datasets.

Genes rarely act in isolation, so it is reasonable to expect

that combinations of genes may be more effective than

individual genes for predicting phenotypes. For example,

linear models operating on RNA-seq data create predic-

tors from a weighted combination of gene expression

values. However, some of these features could reflect bio-

logical processes that are involved inmultiple phenotypes.

Many previous analyses have explored this possibility

by creating complex features that incorporate biological

knowledge from gene sets [10, 11], ontologies [12], or

interaction graphs [13–15]. More recently, unsupervised

machine learning methods incorporating principal com-

ponents analysis [16], autoencoders [17–20], or other neu-

ral network architectures have been developed to discover

such features by analyzing large transcriptomics datasets.

These attempts are examples of a general program called

representation learning in which the purpose of training

such unsupervised models is to extract a complex feature

embedding from the model [21]. In this setting represen-

tation learning holds great promise which is furthermore

straightforwardly testable: If these learned features cap-

ture biologically relevant processes, then predictive models

built from those features should outperform models built

directly from relative transcript abundances.

In this work, we present a comprehensive analysis of

phenotype prediction from transcriptomics data with a

particular emphasis on representation learning. Using

the recount2 database [7], we systematically explored the

impact of normalization techniques, gene sets, learned

representations, and machine learning methods on pre-

dictive performance for a set of 24 binary and multi-

class prediction problems and 26 survival analysis tasks.

In total, we analyzed thousands of predictive mod-

els using 5-fold nested cross validation to rigorously

assess out-of-sample performance. We found that predic-

tors that combined multiple genes outperformed single

gene predictors, that logarithmic transformations outper-

formed untransformed relative expressionmeasurements,

and that for survival analyses larger gene sets outper-

formed smaller gene sets. However, neither unsupervised

nor semi-supervised representation learning techniques

yielded consistent improvement on out-of-sample predic-

tive performance across datasets. In fact, l2-regularized

regression methods applied directly to the centered log-

ratio transform of transcript abundances performed con-

sistently well relative to the other methods. Therefore

we recommend treating that particular combination as a

baseline method for predictive analysis on RNAseq data.

Throughout this text we refer to the combination of l2-

regularized regression methods applied directly to the

centered log-ratio transform of transcript abundances as

the recommended model.

Results
Approach

A high-level description of our quality control, data pro-

cessing, and machine learning analyses is provided in

Fig. 1. Details of the dataset and these steps are provided

in the “Methods” section.

Briefly, our dataset is sourced from the recount2 data-

base [7], and contains expression data from Genotype-

Tissue Expression (GTEx) project [22], The Can-

cer Genome Atlas (TCGA) Pan-Cancer Clinical Data

Resource [23], and The Sequence Read Archive (SRA).We

selected a subset of experiments from recount2 that did

not have sparse gene expression data and could bemapped

to the same set of tissues covered in GTEx. We assigned

the various experiments to “training” (∼37k samples),

“validation” (∼4k samples), and “test” sets (∼4k sam-

ples). All samples lacking suitable metadata for supervised

learning were allocated to the training set. Frommetadata

provided with recount2, the Gene Expression Omnibus

[24], and TCGA Pan-Cancer Clinical Data Resource we

derived labels for 24 binary and multiclass and 26 survival

analysis tasks. Descriptions of these tasks and their assign-
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Fig. 1 Schematic. An overview of the quality control, data processing, and training pipelines. Data from recount undergoes several quality checks at

the sample and study level, resulting in a dataset of approximately 45,000 samples divided into training, testing, and validation datasets. Twelve

different datasets are created from these data, each with a different gene set (all, comprising all genes; O, comprising key GO categories; OT,

comprising O genes that are known transcription factors) and transform (“TPM”, transcripts per million; “CLR”, a centered-log-ratio transform of TPM;

“Z-score”, a Z-score normalization of the CLR data relative to healthy tissue expression levels in GTEx; “Z-ternary”, a ternarization of Z-score). The

training data is used to train unsupervised models capable of embedding the data (a “no embedding” model is also included, which does not alter

the data). These embedded features, along with labels for individual tasks, are used to train a variety of supervised models. The supervised models

are trained and evaluated using nested cross validation
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ment to the training, validation, and test sets are provided

in the “Methods” section (see Tables 1, 2, 3, and 4).

We considered four different normalization methods

to correct for variance introduced in the data collection

and measurement process. We first converted the sam-

ples from counts to Transcripts Per Million (TPM) [25],

a normalization which estimates relative molar concen-

tration of transcripts in a sample. Under the operating

assumption that relative transcript abundance is determi-

nant of downstream biological function, TPMs should be

the baseline quantification to work with from RNAseq.

In contrast, raw counts or counts per million (CPMs)

contain irrelevant counting bias stemming from variable

transcript length. Likewise, the common alternative of

fragments per kilobase per million (FPKMs) do not coher-

ently measure relative molar concentration, because they

rely on a sample-dependent normalization factor. As such,

FPKMs are not a useful measure when processing sam-

ples which are not entirely technical replicates of a single

tissue sample [25, 26]. Secondly we applied the centered

log-ratio transformation (CLR) [27] to the TPM data

to address the fact that RNA-seq data quantify relative,

rather than absolute, gene expression [28, 29]. The CLR

transform has two useful features. First of all, it normalizes

compositional data so that samples representing the same

relative abundances are equated. Secondly it converts

multiplicative relationships between the relative abun-

dances into linear relationships – a feature which allows

statistical models to represent fold-differences between

expression vectors, and to model the error properly. Since

these two normalization methods do not account for the

tissue of origin of the sample, we evaluated additional

normalization methods based on differential expression

with respect to normal tissue. The third normalization

method converted the CLR transformed expression data

from each sample to a tissue-normalized Z-score by sub-

tracting the mean and dividing by the standard deviation

of the associated tissue in GTEx. This mean and stan-

dard deviation of the CLR transformed expression data

were computed across the GTEx data in recount2 for each

annotated tissue type. Therefore the tissue-normalized Z-

score expression data measures deviations from normal

tissue of each type. As a result, characteristic deviations

from normal expression will have the same features after

this transformation, even across different tissue types.

Finally, a fourth ternarized normalization discretized the

Z-scores into down-regulated (Z < −2), normal (−2 <

Z < 2), or up-regulated (Z > 2) categories.

For each of these normalization approaches, we also

explored three gene sets corresponding to transcription

factors [30] (denoted OT), protein coding genes anno-

tated as with biological processes or molecular functions

in the Gene Ontology 12 (denoted O), and all genes pro-

vided by recount2 (denoted all). The O and OT gene sets

are substantially smaller than the all gene set and allow

exploration of the dependence on the number of genes.

In total, we examined twelve different normalization-gene

set combinations for each predictive problem.

Table 1 TCGA binary tasks

Project Disease Label Label type Group Samples

TCGA stage tasks

COAD colon adenocarcinoma II- vs. III+ binary train 505

KIRC kidney renal clear cell carcinoma II- vs. III+ binary train 544

LIHC liver hepatocellular carcinoma I- vs. II+ binary train 374

LUAD lung adenocarcinoma I- vs. II+ binary train 542

SKCM skin cutaneous melanoma II- vs. III+ binary train 249

STAD stomach adenocarcinoma II- vs. III+ binary train 416

THCA thyroid cancer I- vs. II+ binary train 513

UCEC uterine corpus endometrial carcinoma I- vs. II+ binary train 554

LUSC lung squamous cell carcinoma I- vs. II+ binary validate 504

BRCA breast invasive carcinoma II- vs. III+ binary test 1134

TCGA grade tasks

CESC cervical squamous cell carcinoma II- vs. III+ binary train 306

KIRC kidney renal clear cell carcinoma II- vs. III+ binary train 544

LGG low grade glioma II- vs. III+ binary train 532

LIHC liver hepatocellular carcinoma II- vs. III+ binary train 374

PAAD pancreatic adenocarcinoma II- vs. III+ binary train 179

STAD stomach adenocarcinoma II- vs. III+ binary train 416

UCEC uterine corpus endometrial carcinoma II- vs. III+ binary train 554

HNSC head-neck squamous cell carcinoma II- vs. III+ binary test 504

The 18 binary tasks derived from TCGA used to train supervised models and validate the unsupervised embeddings. The tasks are grouped into two categories, TCGA tumor

stage tasks (10), and TCGA tumor grade tasks (8). The project names correspond to those in Fig. 2
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Table 2 SRA tasks

SRA tasks

Project Disease Label Label type Group Samples

GSE65832 atopic dermatitis lesional vs. not binary train 40

GSE66207 Crohn’s disease type: B1, B2 or B3 multiclass (3) train 20

GSE72819 ulcerative colitis treatment remission binary validate 69

GSE47944 psoriasis lesional vs. not multiclass (3) validate 63

GSE50244 diabetes normoglycemic, impaired, diabetic multiclass (3) validate 76

GSE67785 psoriasis lesional vs. not binary test 28

The 8 tasks derived from SRA used to train supervised models and validate the unsupervised embeddings. The project names correspond to those in Fig. 2

Table 3 TCGA overall survival (OS) tasks

TCGAOS tasks

Project Disease Label Label type Group Samples

CESC cervical squamous cell carcinoma OS survival train 304

COAD colon adenocarcinoma OS survival train 455

ESCA esophageal carcinoma OS survival train 184

KIRP kidney papillary cell carcinoma OS survival train 289

LUAD lung adenocarcinoma OS survival train 507

OV ovarian cancer OS survival train 420

PAAD pancreatic adenocarcinoma OS survival train 178

SARC sarcoma OS survival train 259

STAD stomach adenocarcinoma OS survival train 409

UCEC uterine corpus endometrial carcinoma OS survival train 540

HNSC head-neck squamous cell carcinoma OS survival validate 501

BLCA bladder urothelial carcinoma OS survival test 407

LUSC lung squamous cell carcinoma OS survival test 495

The 13 overall survival tasks derived from TCGA used to train supervised models and validate the unsupervised embeddings. The project names correspond to those in Fig. 2

Table 4 TCGA progression-free interval (PFI) tasks

TCGA PFI tasks

Project Disease Label Label type Group Samples

CESC cervical squamous cell carcinoma PFI survival train 304

COAD colon adenocarcinoma PFI survival train 455

ESCA esophageal carcinoma PFI survival train 184

KIRP kidney papillary cell carcinoma PFI survival train 288

LUAD lung adenocarcinoma PFI survival train 507

OV ovarian cancer PFI survival train 420

PAAD pancreatic adenocarcinoma PFI survival train 178

SARC sarcoma PFI survival train 259

STAD stomach adenocarcinoma PFI survival train 411

UCEC uterine corpus endometrial carcinoma PFI survival train 540

HNSC head-neck squamous cell carcinoma PFI survival validate 501

BLCA bladder urothelial carcinoma PFI survival test 408

LUSC lung squamous cell carcinoma PFI survival test 496

The 13 progression-free surivival tasks derived from TCGA used to train supervised models and validate the unsupervised embeddings. The project names correspond to

those in Fig. 2
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We considered four different types of representations of

the gene expression data learned by unsupervised models.

First, supervised models were trained directly on the nor-

malized expression data without a learned embedding.We

also considered representations constructed with Prin-

cipal Components Analysis (PCA), a Stacked Denois-

ing Autoencoder (SDAE), and a Variational Autoencoder

(VAE) trained on the 37k samples in the training set

without any supervising information.

For each binary or multiclass prediction task, we

trained a k-Nearest Neighbor (kNN) classifier, a Random

Forest (RF), and an l2-regularized multinomial Logis-

tic Regression (LR) on the normalized and transformed

data using 5-fold nested cross validation. Using nested

cross validation (“Methods” section) is important because

it accounts for performance variance that results from

different hyperparameter choices (e.g., the number of

nearest neighbors, the depth of the trees in the forest,

or the strength of the regularization coefficient). An l2-

regularized Cox proportional hazards model was used for

all survival tasks, also with 5-fold nested cross valida-

tion. Binary tasks were compared using the Area Under

the receiver operating characteristic Curve (AUC); mul-

ticlass tasks were compared using the accuracy, and sur-

vival tasks were compared using the concordance-index

(C-index) [31, 32].

Our systematic model search covered four normal-

ization methods, three gene sets, four representations,

and three supervised algorithms totaling 144 comparison

models for each of the 24 binary and multiclass tasks.

For the survival tasks we used the same normalization

methods, gene sets, and representations, but considered

only one supervised algorithm (Cox proportional haz-

ards). For comparison, we also trained linear predictors

using the recommended method that were only allowed

to use a single gene. The choice of gene was treated as a

hyperparameter and optimized using 5-fold nested cross

validation.

Analyses

The predictive performance assessed through 5-fold

nested cross validation varied considerably across and

within the predictive problems (see Fig. 2). Gene expres-

sion data improved predictive performance relative to

Fig. 2 Performance by predictive task. The performance of all models on each task, ordered by the median performance on each task. The tasks are

divided into three groups based on the type of label; the top row shows classification tasks (binary and multiclass) while the bottom shows survival

tasks. Each task is labeled by an abbreviation at the top of the plot and the number of samples at the bottom; see the Supplementary material for

more details on each task. The task label has one star if the data is in the validation group and two stars if the data is in the test group. For each task,

the gray points show the results over the entire set of models and the horizontal line shows their median. The filled black circle shows the

performance of the recommended model, while the open black circle shows the performance of the best single gene model. The recommended

model uses no embedding, all genes, and the CLR transform; the supervised model is logistic regression for the classifier tasks and a Cox

proportional hazards model for the survival tasks. The recommended model is often among the best models on a problem and frequently

outperforms the best single gene model; the primary exception is the pancreatic adenocarcinoma overall survival (PAAD OS) dataset
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random guessing in almost all cases, indicating that RNA-

seq data do contain information that is broadly useful

for out-of-sample prediction. Moreover, linear predictors

that used the expression data from all genes generally

outperformed models that only used a single, most pre-

dictive gene. It is still common to analyze genes indepen-

dently in differential expression and regression analyses;

our results indicate, however, that linear combinations

of genes are significantly more predictive than individ-

ual genes. Although there was sizable variance in per-

formance across tasks, predictive performance was not

correlated with any obvious dataset characteristics such as

the number of subjects.

In order to compare the effects of the gene set size

and transformation, it is helpful remove between-task

variance and then to aggregate results across tasks. To

remove the between-task variance, we defined a shifted

statistic in which we subtracted the median value of all

models on the same task. For example, the AUC for the

random forest classifier on the STAD stage dataset was

shifted by subtracting themedianAUC for all of the binary

classifiers trained on the STAD stage dataset. Averages

of the shifted statistics across predictive problems can

be easily interpreted: if the value is less than zero then

the method underperformed the median, whereas the

method outperformed the median if the value is greater

than zero.

Within-task variance in predictive performance was

partially explained by the choice of gene set and nor-

malization method (see Fig. 3). Because the number of

samples in each dataset was much smaller than the num-

ber of genes annotated in recount2, we hypothesized

that using prior knowledge to select small, biologically

relevant gene sets based on the Gene Ontology or tran-

scription factor activity would improve out-of-sample pre-

dictive performance by preventing overfitting. However,

this hypothesis was not supported by our analyses. The

choice of gene set made no difference for the classification

problems, whereas the smaller gene sets underperformed

on the survival tasks. The log-transformed normalization

methods slightly outperformed TPMs, and the Z-score

normalization performed the best, on average. Perfor-

mance improvements of Z-score normalization relative to

CLR were small, however, and we do not think that the

small gains justify the additional complexity introduced

by referencing each sample to an external dataset (i.e.,

GTEx).

Next, we examined differences in absolute performance

between the kNN, RF, and LR models on the classification

problems (only a linear Cox proportional hazards model

was tested on the survival tasks). As shown in Fig. 4, the

kNN classifier consistently underperformed the RF and

LR classifiers. The RF was the best performing method

for thirteen tasks, LR for nine tasks, and kNN for two

tasks, but LR was more consistent than RF and had better

average performance.

Gene expression data are very high dimensional, with

the number of genes ranging from ∼1.5k in the transcrip-

tion factor gene set to∼56k in the gene set consisting of all

genes annotated in recount2. In contrast, the supervised

task datasets typically consisted of only a few hundred

samples. Moreover, it seems unlikely that genes actually

coordinate in a linear fashion to generate complex pheno-

types. Therefore we hypothesized that predictive perfor-

mance could be improved by training predictors on lower

dimensional representations derived from unsupervised

analyses of the∼37k unlabeled samples in the training set.

One could also view these analyses as a type of transfer

learning, in which biological knowledge derived from the

analysis of one dataset is used to inform the analyses of

another.

The first feature representation that we considered was

a Principal Components Analysis (PCA) with 512 latent

dimensions. These principal components are orthogo-

nal linear combinations of expression values that rep-

resent the directions of largest variance in the training

set. Together, the 512 principal components we used

explained the majority of the variation in the transcrip-

tional datasets (see Supplementary figures).We found that

using PCA derived representations as features decreased

the out-of-sample performance of downstream predictive

analyses (Fig. 5). Therefore, we do not recommend using

features derived from PCA of large RNA-seq compendia

for predictive analyses.

Training a linear model on top of representations

derived from a linear transformation like PCA is equiva-

lent to a regularized linear model trained on the unem-

bedded data. Deep neural network-based architectures

like SDAEs and VAEs, by contrast, process an input

expression vector through a series of nonlinear transfor-

mations to learn more complex features. Therefore, we

also trained a 512-dimensional SDAE and VAE on the

training set for each gene set-normalization combination

and used the representations derived from these neural

networks as features for downstream prediction tasks.

Nevertheless, we found that preprocessing the expression

data using these networks decreased the out-of-sample

performance of downstream prediction tasks relative to

just using the normalized expression data directly (Fig. 5).

Semi-supervised representation learning

There are a variety of reasons that unsupervised repre-

sentation learning can fail to discover features that are

useful for downstream predictive tasks. For example, a

small but consistent difference in the expression of a gene

between two groups (e.g., healthy and diseased) can be

used to train a highly accurate predictor. However, if this

difference is much smaller than the variance in the expres-
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Fig. 3 Performance by gene set and normalization. The performance of all models on each gene set (left column) and transform (right column). The

results are divided by row into binary, multiclass, and survival tasks. For each gene set or normalization and task type, the gray points show the

shifted statistics computed by subtracting the median of all models trained on the same task as a given model, and the black line is the median

taken across all models and tasks

sion of other non-predictive genes, then it will be ignored

by most unsupervised representation learning algorithms.

One way to avoid this problem is use a semi-supervised

method to learn the representation.

The goal of semi-supervised representation learning is

to derive a common set of features that are useful for mul-

tiple downstream predictive tasks. Our semi-supervised

model consists of an autoencoder along with a number

of logistic regression classifiers, one for each supervised

task involved in the training set. The predictors oper-

ate on the 512-dimensional latent space embedding of

the autoencoder. For any expression vector the autoen-

coder contributes a reconstruction loss. Furthermore, if

there is a predictive task label associated to the expression
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Fig. 4 Performance by supervised model. The classifier tasks are shown in the same format as Fig. 2. In this figure, the model results are divided into

groups based on which supervised model is used, kNN (k-nearest neighbors), LR (logistic regression), or RF (random forest). The three horizontal

lines for each task show the median result for each of these supervised models in this order (shown in the upper left of the first column plot). For

each task, the supervised model with the best median result is shown at the bottom of the plot. While the median over the RF results is most

frequently best (for thirteen tasks, compared to nine for logistic regression and two for k-nearest neighbors), the best performing logistic regression

models are more consistently high performing among models

vector, then the associated linear predictor contributes a

classification loss as well. We trained the model to min-

imize a loss function that was a weighted combination

of the autoencoder loss and the supervised loss averaged

across each of the predictive tasks. We considered the

out-of-sample predictive performance of four representa-

tions: the unembedded data, data embedded by a model

trained using only autoencoder loss, data embedded by a

model trained on the combined autoencoder and super-

vised losses, and data embedded by a model trained using

only the supervised loss. More details are provided in the

online “Methods” section.

In order to test the semi-supervised model, we divided

the larger labeled training datasets into two halves. The

first half of the labeled training datasets were combined

with the unlabeled data from the training set and used to

train the semi-supervised autoencoder. The second half

of the training datasets were held out as validation. We

also held out the validation and testing labeled datasets

as in the analyses of the representations learned by unsu-

pervised algorithms. This strategy provided two types of

validation tasks: those in which the representation was

trained on similar data (e.g., from the same study), and

those in which the representation had not been trained

on similar data. The results are shown in Fig. 6. Using

the learned features slightly improved median predictive

performance on the divided tasks but did not improve pre-

dictive performance on the validation and testing tasks

used in the previous analyses.

Discussion
The hypothesis that gene expression measurements can

be combined into higher level features that should be

useful for predicting phenotypic characteristics has intu-

itive appeal. Indeed, we believe that genes act together

as coordinated pathways that control cellular processes.

Moreover, changes in expression at the tissue level could

reflect higher level changes due to differences in cellu-

lar composition. As a result, one would expect that it is

possible to define useful high-level features for expression

Fig. 5 Performance by unsupervised model and gene set. The binary task performance of each unique model type is shown, grouped by

unsupervised model and gene set. A model type is a combination of unsupervised model, supervised model, gene set, and normalization; for

example, the recommended model is one model type. Each model type is a single line on this plot. The performance shown is the average of

shifted AUCs across binary tasks, weighted by the number of samples in each task to reduce the effect of fluctuations in tasks with fewer samples.

There are four unsupervised model types, VAE (variational autoencoder), SDAE (autoencoder), PCA (principal components analysis), and

no-embedding (in which the data is unchanged). The best results come from using all genes without an unsupervised embedding
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Fig. 6 Performance for semi-supervised models. The binary task performance is shown for four different types of embedding models across two

different datasets and two different gene sets. The four models are a purely unsupervised autoencoder (autoenc.), a semi-supervised embedding

model (mixture), a purely supervised embedding model (pure sup.), and a no-embedding model (no emb.). To train the supervised component of

the embedding models, specific task datasets are divided into two halves, one contributing to the supervised loss in training, and the other held

out; the performance of the four models on the held-out halves are shown in the left column. The performance of the same models on the

validation and testing tasks (which take no part in training any embedding model) are shown in the right column. Models on the O gene set are

shown in the upper row, and on the OT gene set in the lower row. The gray points show the shifted AUCs on all tasks in each group and all model

types, which include all supervised model types and all transforms. The bars show the median score

data; this intuition has driven the development of pathway

analyses [33–35], gene set analyses [10, 11], knowledge

graphs [14, 15], and cell-type deconvolution approaches

[36–38] to analyzing transcriptomics experiments. More

recently, a number of studies have introduced deep learn-

ing methods that aim to discover useful gene, or tran-

script, combinations that reflect the underlying biology

without imposing particular prior knowledge [4, 5, 39–

41]. In theory, these learned representations should pro-

vide better predictive performance because they are trans-

ferring biological knowledge derived from one dataset to

another. In addition, they reduce the dimension of the

input data and, as a result, potentially mitigate overfitting.

Here, we set out to systematically and rigorously assess the

impact of these representations on downstream predictive

tasks.

Our key results can be summarized in a few bullet

points:

• Multivariate predictors outperformed predictors

based on the best single gene.
• Larger gene sets performed better than smaller gene

sets.
• CLR and tissue-specific Z-score normalization were

better than TPM.
• Logistic regression and random forests performed

equally well.

Representations derived from unsupervised or semi-

supervised methods did not improve out-of-sample per-

formance for phenotype prediction. Based on these key

results, we conclude that l2-regularized regression applied

to the CLR transformed relative transcript abundances

is generally the best choice for predictive analyses using

transcriptomics data. The Z-score and Z-ternary nor-

malizations generally perform comparably to CLR, but

require the GTEx data as a reference and hence CLR is

recommended.
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Figures 2, 3, 4 and 5 present results for the evalua-

tion of unsupervisedmodels on supervised tasks, studying

performance as different aspects of the models change.

Figure 2 shows how the performance varies across super-

vised tasks and demonstrates that the recommended

model is nearly always one of the better performing mod-

els. Figure 3 presents the relative performance for the

choices of normalization and gene set, showing that using

larger gene sets improves performance on survival tasks.

Figure 4 presents the performance across supervised tasks

for different choices of the supervised model, showing

that random forest and logistic regressionmodels perform

well. Figure 5 shows the relative performance across dif-

ferent unsupervised models, divided by gene set, demon-

strating that supervised models on unembedded data for

all genes are the best performing. The supervised evalua-

tion results are recorded in an online repository [42] and

further visualized in the Supplementary material. Taken

together, these motivate the choice of the recommended

model.

Our first conclusion, that multivariate predictors out-

perform predictors based on single gene expression mea-

surements, was the clearest cut. This has some practical

consequences when combined with our other conclusion

that larger gene sets are better, especially for the fitting

of proportional hazards models used for survival anal-

yses. First, using multivariate predictors on large gene

sets means that the number of covariates will almost

always vastly outnumber the subjects in a study. There-

fore, it is absolutely necessary to regularize these models

by adding penalties to the coefficients. Moreover, nested

cross validation should be used for all performance assess-

ments to mitigate overfitting to hyperparameter choices

and to minimize variance in the performance metric. Sec-

ond, it is often impractical —or even impossible— to fit

these models using standard methods on typical comput-

ing architectures. For example, open source packages for

survival analyses typically use second-order methods to

optimize the objective function. This works for a single

gene, but fitting the multivariate model requires comput-

ing a very large matrix of second derivatives, e.g., 56,000 x

56,000 in this study. As a result, it was necessary to imple-

ment first-order optimization methods and perform most

of the matrix operations using graphical processing units

to make the survival analyses in this study feasible.

Overall, we found that choices such as the normaliza-

tion method, the gene set, the type of supervised predic-

tion algorithm, and the use of a learned representation

made surprisingly little impact on out-of-sample predic-

tive performance. Moreover, we could not identify any

clear trends. For example, it is not necessarily better to use

smaller gene sets or other lower dimensional representa-

tions for studies with smaller sample sizes. In light of these

results, it is not clear that features derived from either

prior knowledge or from representation learning methods

have much value in the analyses of bulk RNA-seq data. If

the relationship between bulk gene expression and phe-

notype is not one-to-one, then there is already a limit on

how well one could predict phenotype from gene expres-

sion. Relatively simple methods may be already very close

to this limit.

Feature importance for the recommendedmodel

This study consists of an analysis of methods for pheno-

type prediction in which methods are compared against

each other according to their performance across a large

number of predictive problems. The overarching ques-

tion is how well different methods perform in finding

a predictive signal in the datasets. Once such a method

demonstrates that a useful predictive signal is present it

may become beneficial to attempt an interpretation of

the model features. Such analysis can yield useful insights

about biological function, and the presence of the pre-

dictive signal provides credence to such interpretations.

Although it is beyond the scope of this work to attempt

interpretations of model features for each of the model

types, we performed an interpretive analysis of the rec-

ommended model as it operates on the binary predictive

tasks included in this study. We included tables [43] in

the figshare repository of the relative predictive impor-

tance of genes for each of the binary tasks, and among

all three gene sets. A logistic regression model assigns

coefficients to each covariate (in this case genes) which

describes the strength of influence of that covariate on

the outcome variable. In order to compare the importance

of different genes for each regression model we ranked

the genes according to their regression coefficient values

and normalized the ranking by the total number of genes

included. Because the predictive models are trained with

five-fold cross-validation, there are five different models

for each predictive problem, each with different coeffi-

cient values. Therefore, the feature importance of a gene

on a particular predictive task is the average normal-

ized rank of that gene’s regression coefficient across the

five cross-validation folds. The most striking observation

we made upon reviewing the gene importance rankings

was that many genes related to epithelial-to-mesenchymal

transition (EMT) were present in the top genes that dif-

ferentiate stage in various TCGA cancer types. Tumors

with EMT features are more likely to metastasize, consis-

tent with the fact that these features distinguish cancer

stage. In fact, the ranks of feature importance derived

from our models can be further used for gene set enrich-

ment tests to enable exploring biological processes that

associate with contrasts or survival. However, we are wary

of placing too much emphasis on such an interpretation

of l2 coefficient rankings. When looking at the distri-

bution of coefficient rankings we did not see examples
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of obvious outliers. Rather we saw distributions which

looked roughly normal, consistent with the imposition of

an l2 prior on the coefficients.

Conclusions
We believe our analysis will have three important effects

on the wide community engaged in the project of extract-

ing insights from RNAseq data.

• Our work provides strong justification for

recommendations that guide other researchers

working on similar problems with RNAseq datasets.

A researcher confronted with the problem of

predicting phenotypes from RNAseq data ought to

feel confident that l2-regularized linear predictors

will yield results which are at or near state-of-the-art.
• Our work provides a collection of curated datasets

and benchmarks which can provide terra firma on

which to further develop techniques for predictive

analyses on RNAseq datasets. Benchmark datasets

coupled with standardized testing protocols are used

extensively in machine learning research to assess

technological improvements. This work provides

such a resource to the computational biology

community.
• Our work encourages researchers to direct more

energy towards the reduction of systematic errors

which appear “higher” in the data chain – from

improved lab techniques for handling tissue samples

to controlling errors in assay technology itself.

Because such sources of error are likely just as

present in other technologies such as single-cell

RNAseq, improvements in these regards effect more

than just bulk RNAseq data.

In summary, transcriptomics-based phenotype predic-

tion clearly benefits from proper normalization tech-

niques and state-of-the-art regression approaches. How-

ever, breakthrough performance is likely contingent on

factors such as reduction of systematic errors in sequenc-

ing data, incorporation of other data types such as single-

cell sequencing and proteomics, and improved use of

prior knowledge.

Methods
The analysis presented here and depicted in Fig. 1 is a

multi-step procedure, starting from read counts data in

the recount2 database and ending at performance met-

rics for various models. There are principally three stages:

dataset preparation, unsupervised model training, and

supervised model training.

Dataset preparation

The recount2 database [7] is a repository of transcrip-

tomics data sourced from over 2000 independent tran-

scriptomics experiments. The transcriptomics data from

these experiments has been reprocessed using a uniform

processing pipeline, forming a single dataset amenable to

large scale computational analyses. Such analyses would

otherwise be problematic due to systematic differences

between the original processing pipelines. The data in

recount2 consists of counts of gene reads as well as

exon-level quantifications. Our study concerned the gene

counts data exclusively.

The data comprising recount2 can be divided into three

broad groups according to their sources: GTEx, TCGA,

and SRA. The GTEx group was sourced from the Geno-

type Tissue Expression program and contains 9538 sam-

ples from healthy individuals across 30 tissue types. The

TCGA group was sourced from the Cancer Genome Atlas

project and contains 11284 samples from individuals with

cancer across 21 tissue types. In that group samples were

taken from tumor sites as well as normal tissue adjacent to

tumor (NAT) sites. GTEx and TCGA are each single, large

collaboration projects with high quality control standards

and protocols for sample processing. Metadata for these

projects is extensive. The SRA group contains 49638 sam-

ples from 2033 smaller, distinct experiments collected in

the Sequence Read Archive. Metadata for experiments in

SRA are sparser, with tissue labels occasionally absent.

In total, 70460 samples were available in recount2 when

the database was downloaded. However, many of these

samples are not ideal for representation learning with

transcriptomics data. We developed a quality control

(QC) pipeline to remove samples or entire SRA studies.

The number of samples remaining after the QC pipeline

is 39848. The QC steps are as follows:

• Remove samples in which the reported cell type is a

cell line. 9644 samples fit this criterion.
• Remove studies in SRA from single-cell sequencing.

Examining metadata from GEO, 38 studies in SRA

with 5865 samples in recount2 have single-cell

transcriptomic data.
• Remove samples in which the reported tissue does

not match any tissue in GTEx. 6824 samples fit this

criterion (see Z-score normalization later).
• Remove samples in SRA which have duplicate GEO

accession numbers (GSMs). There were 9601

samples that met this criterion.
• Remove samples in which more than 30% of genes

listed in the Gene Ontology (GO) 12 under the

“biological process” or “molecular function”

categories have a counts value of 0. 15390 samples

met this criterion.

The number of matching samples in each step are non-

exclusive, meaning a sample can match more than one of

the exclusion criteria. These effect of these exclusion cri-

teria are depicted in the Supplementary figures. In total we

removed 30612 samples, approximately 43% of the total.
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No GTEx samples were removed; and only 521 TCGA

samples were removed.

It is useful to present some detailed commentary on the

duplicate GEO accession number criterion. We observed

that several samples have duplicate GSMs, and that many

such samples had the same number of reads (a round

number, e.g., 8 million). This suggests that the individual

samples could be chunks of reads from the same under-

lying sample. However, we could find no satisfying reason

for duplicate GSMs or the round number of read counts

for these samples, and therefore excluded them from the

dataset.

The QC pipeline determines which samples are admit-

ted to the final dataset; there are also choices to be made

about which genes to consider in the analysis, and which

normalizing procedures to apply to the expression data.

We considered three different gene sets in the analysis:

• all genes: (57992 genes).
• O genes: genes in GO under the “biological process”

or “molecular function” categories (17970 genes at

the time of dataset creation).
• OT genes:O genes also labeled as transcription

factors 29 (1530 genes at the time of dataset creation).

In addition, we considered four different normalizing

transformations of the counts data:

• TPM: The counts are transformed into transcripts

per million (tpm), which account for gene length to

normalize reads. The TPM value is determined in

terms of the counts as,

tpmi =
106 · (countsi/lengthi)∑

j(countsj/lengthj)
,

in which i and j index genes.
• CLR: A centered-log-ratio transform is carried out

on the TPM vectors. The CLR value is determined in

terms of the TPM values as,

clri = log(tpmi) −
1

N

∑

j

log(tpmj),

in which N is the number of genes.
• Z-score: The Z-score transform is carried out on the

CLR features. The Z-score is the CLR value

standardized by the mean expression of a gene in

healthy tissue, determined by the GTEx samples for

the same tissue. The Z-score value is determined in

terms of the CLR value as,

z-scorei =
clri − mean(clr, tissue)i

std(clr, tissue)i
.

• Z-ternary: The Z-ternary transform is carried out on

the Z-score features. The Z-score values are

ternarized based on their value, and the ternarization

indicates whether the gene’s expression is increased,

decreased, or unchanged relative to the mean

expression in healthy tissue. Since the distribution of

Z-score values is expected to be approximately

normal for healthy tissue, any Z-score value below -2

is assigned the Z-ternary value of -1; any Z-score

value above 2 is assigned the Z-ternary value of 1, and

any Z-score value between -2 and 2 is assigned the

Z-ternary value of 0.

We made use of the open-source python library gene-

munge [44] for making these normalizations and selecting

the gene sets. Each of the normalizations are carried out

on the expression data for all genes. Whenever a smaller

gene set is used, the values of the features for the selected

genes are simply taken from the data for all genes. The

three gene sets and four normalizations yield twelve dif-

ferent datasets that are used in the analysis.

Tasks and dataset allocation

The above procedure describes the preparation of the

gene expression datasets. In addition to the expression

data, some samples have one or more labels suitable for

predictive modeling. TCGA has rich metadata with natu-

ral label types, available in the TCGA Pan-Cancer Clinical

Data Resource [23]; some SRA studies also contain useful

metadata in GEO [24] relevant to human disease. From

the TCGA and recount2 metadata we selected four cat-

egories of predictive tasks: binary labels for the grade of

a tumor in various cancer types (8 tasks); binary labels

for the stage of a tumor in various cancer types (10

tasks); times for overall survival in various cancer types

(13 tasks); and times for progression free interval in var-

ious cancer types (13 tasks). From the GEO metadata we

selected binary and multiclass labels for various clinical

characteristics (6 tasks) [45–50]. In total there are 50 tasks

for which supervised models may be built.

We divided the 50 predictive tasks into three groups,

“training”, “validation”, and “test”. We then built a “train-

ing” gene expression dataset consisting of any samples

with a label in the training task group, as well as any sam-

ples with no label. This dataset, which has 36794 gene

expression samples, was used to train the unsupervised

models. A sample’s inclusion in this dataset distinguishes

the training and validation task groups. Both the train-

ing and validation tasks were used in the analysis, whereas

tasks in the test group were held out until the end of the

project so that no model selection criteria might influence

performance on these tasks in any way. The supervised

tasks are summarized in Tables 1, 2, 3, and 4.

Unsupervised models

Three different typesof unsupervisedmodels were trained

on the gene expression datasets: principal components
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analysis (PCA), stacked denoising autoencoders (SDAE),

and variational autoencoders (VAE). These three types

were chosen because they offer a range of sophistica-

tion, features, and expressive power. PCA is a simple

means of generating a linear feature embedding. SDAEs

and VAEs are examples of deep neural networks which

have significant expressive power. The SDAE is capable of

learning an implicit distribution of feature embeddings of

a dataset; the VAE learns an explicit distribution of feature

embeddings which can be sampled from.

Principal components analysis (PCA)

The problem of finding the k principal components of a

suitably large collection of vectors of dimension n admits

an analytic solution. But the computation required to per-

form this calculation is in O(n3), making it intractable

in high dimensions. Due to the high dimension of the

larger gene sets (>17k), we performed the PCA analy-

sis via stochastic gradient descent following the algorithm

introduced by Arora et al. [51] called “Stochastic Approx-

imation.” The leading 512 principal components were

retained.

Stacked denoising autoencoders (SDAE)

We employed denoising autoencoder architectures of

“hourglass” shape with seven layers. The hourglass nar-

rows to a middle layer of 512 dimensions, yielding a

512-dimensional encoder. The details of the architecture

are recorded in the Supplementary material. The models

were trained with stochastic gradient descent to minimize

the mean squared reconstruction loss. We found that pre-

training the models layerwise before end-to-end training

produced the best results. Therefore these models are best

described as stacked denoising autoencoders per the orig-

inal presentation [52]. The models were regularized by

input noise variance and an l2 weight penalty, with these

hyperparameters selected by sweeping a range.

Variational autoencoders (VAE)

We also included a deep generative model among our

unsupervised model types, the variational autoencoder

[53]. In particular, we employed the methods of Klam-

bauer et al. [54] which make use of self-normalizing units,

SNNs, for improved training dynamics and representa-

tional capability. We trained the models using the KL-

annealing method of Bowman et al. [55] during the first

100 epochs and then let training proceed with the nor-

mal loss function for the remaining epochs. The layer

dimensions are recorded in the Supplementary material.

The latent encodings consist of 512 dimensions for the

distributional means and 512 for the distributional log

variances. Therefore the trained model’s feature encoder

is the restriction to the 512 dimensions of the means

variables.

The “no-embedding”model

In addition to these unsupervised models, we also em-

ployed a kind of control comparator: a “no-embedding”

model which does nothing to the expression data. The

dimension of the gene expression data is not reduced

under the no-embedding model; the features are the nor-

malized gene expression vectors themselves.

Computational constraints

We trained the PCAmodel on each of the four normaliza-

tions for each of the three gene sets. Due to computational

constraints we applied the SDAE and VAE models to each

of the four normalizations for the O and OT gene sets

excluding the all genes set. The lack of an improvement

in performance on smaller gene sets indicated the dataset

with all genes was unlikely to provide quality embedding

models.

Supervised models

We evaluated the ability of an unsupervised model to

learn useful representations across transcriptomics data

by assessing the performance of supervised models oper-

ating on the learned representations. For each unsuper-

vised model and predictive task, we trained and evaluated

supervised models using nested cross validation. The per-

formance of these predictive models gave an indication of

how well the learned representation captured features in

the data useful for various kinds of phenotype prediction.

Before presenting the different kinds of supervised mod-

els, we present a small primer on nested cross validation.

Nested cross validation

Nested cross validation is designed to provide a robust

estimate of the expected (predictive) model performance

on new data, optimizing over a set of hyperparameter val-

ues (such as the maximum depth in a random forest). In

nested cross validation, there are two loops over the data,

the outer and inner loop. The inner loop is used to select

an optimal hyperparameter value, and the outer loop is

used to estimate the performance of the model with this

hyperparameter value. In the outer loop, data is divided

evenly into K groups, or folds (we use K = 5). For each

fold, the data for that fold is held out and the remaining

K − 1 folds are used for the inner loop. In the inner loop,

this data is divided into K folds, and on each fold the data

for that fold is held out and the model is trained on the

remaining K −1 folds for each hyperparameter value. The

held-out fold is used to estimate the model performance

for each hyperparameter value, and this performance is

averaged over all folds in the inner loop. The best per-

forming hyperparameter value is selected, and the model

is re-trained on all data used in the inner loop. The model

performance is then evaluated on the held out data from

the outer fold. This value is averaged over all folds in the
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outer loop, and this final average is the estimated model

performance. Note that a different optimal hyperparam-

eter may be selected for each outer fold. Nested cross

validation is resistant to hyperparameter overfitting, as

the model is evaluated on data completely held out from

the process of selecting the optimal hyperparameter. With

this robustness comes increased computational complex-

ity —if there are N hyperparameter values tested, nested

cross validation requires training K(KN + 1) individual

models.

Classification tasks

For classification tasks we applied three different types of

supervised models:

• Logistic regression (LR). Logistic regression with an

l2 penalty, trained via stochastic gradient descent.

The logistic regression model is a single layer neural

network with a softmax activation on the output. The

hyperparameter optimized was the l2 penalty,

logarithmically spaced between 10−6 and 103 in ten

steps. The model was implemented in pytorch [56].

Hyperparameters and training notes are provided in

the Supplementary material.
• Random forest (RF). Random forest models with

100 trees per forest. The hyperparameter optimized

was the maximum depth of the random forest,

logarithmically spaced between 2 and 27 in seven

steps. We relied on the scikit-learn [57]

implementation of random forest.
• K-nearest neighbors (kNN). The hyperparameter

optimized was the value of k, the number of

neighbors used, taking a value of 1, 3, 5, 7, or 9.

Although there are countless types of predictive models,

we chose these three because they cover a wide range of

features and characteristics of predictive models. LR is the

canonical example of a generalized linear model. A ran-

dom forest is a decision tree-based, non-linear classifier

which is known to achieve state-of-the art performance

on a large number of difficult classification problems [58].

And finally, the kNN is a non-parametric model, making

a contrast with the other two parametric models.

Survival tasks

For survival tasks, in which the overall survival time or the

progression free interval time were predicted, we trained

a Cox proportional hazard (CPH) model. The standard

solvers for CPH models use second-order methods, such

as versions of Newton’s method, making them unsuitable

for use with a large number of features. The computa-

tion time required for the 512-dimensional embedding,

using nested cross validation, is already immense; training

CPH models on data without an embedding is completely

impractical. Instead, we implemented a CPH model in

pytorch, and trained it via stochastic gradient descent

by backpropagating through the Cox-Efron pseudolikeli-

hood[59]. Suchmodels can be trained with a large number

of features —even all genes— and can be accelerated with

graphical processing units. We regularized these models

with an l2 penalty whose strength, logarithmically spaced

between 10−6 and 103 in ten steps, was optimized in the

inner cross-validation loop. Even with this computational

speedup, evaluating the survival tasks requires the bulk

of compute time. It bears noting that these models were

still trained with a fixed initial learning rate which was

small enough to guarantee controlled gradient descent

across all tasks. It is certain that absolute performance

on individual contrasts could be improved by also opti-

mizing the learning rate in the nested cross validation.

However, because the study concerns the relative perfor-

mance of this algorithm across gene sets, embeddings, and

normalizations, we avoided this additional multiplier on

the computational time.

Single-gene comparators

All of the above supervised models are trained on features

from multiple genes. In order to compare our embed-

ding models to single-gene analysis, we also trained a

set of models on single genes with no-embedding model.

For these models the hyperparameter optimized in the

inner cross validation loop is the gene selected for the

model. We had no need to run these comparators across

all transform/predictor combinations so we restricted

these examples to clr-transformed data and used only

the univariate logistic regression models for classification

tasks. For survival tasks, single-gene CPH models were

trained. No regularization term was necessary in either

case because these models have so few parameters. These

results provide a direct comparison to the multi-gene,

CLR-transformed, no-embedding results.

Components of supervisedmodel results

In total, we evaluated a very large number of (multi-gene)

supervised models. There are five different characteristics

of a single result:

• Task. There are 24 classification tasks and 26 survival

tasks.
• Gene set. There are three gene sets, all genes,O

genes, andOT genes.
• Normalization. There are four data normalizations,

TPM, CLR, Z-score, and Z-ternary.
• Unsupervised model. There are four types of

unsupervised model, PCA, SDAE, VAE, and

no-embedding. SDAE and VAE were only trained on

theO andOT gene sets.
• Supervised model. For classification tasks, three

different supervised models were trained, LR, RF, and

kNN. For survival tasks, a CPH model was trained.
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This amounts to 3920 results. In terms of individual

models trained during nested cross validation, there are

807600 models.

Semi-supervised models

The semi-supervised models are designed to learn a fea-

ture embedding which is co-adapted to the purpose of

reconstruction as well as the performance of supervised

models operating on the embedding. Each of the semi-

supervised models consists of a linear, single-hidden layer

autoencoder coupled to a number of logistic regression

predictors —one for each supervised task involved in

the training dataset. The supervised predictors operate

on the autoencoder’s 512-dimensional encoding. Both a

schematic diagram of the model architecture and the

details of the architectures are recorded in the Supple-

mentary figures.

Data preparation

In order to be able to assess the performance of semi-

supervised representation learning within-task, we had to

further subdivide some of the labeled expression data. In

particular, we subdivided into two halves the binary pre-

dictive tasks within the “training set” which contained at

least 200 samples. The first half was used in the training

of the semi-supervised model; the second half was held

out for validation. We called these sets the “divided tasks”;

they were drawn from the following binary tasks:

{CESC grade, COAD stage, KIRC grade, KIRC stage,

LGG grade, LIHC stage, LIHC grade, LUAD stage, SKCM

stage, STAD stage, STAD grade, THCA stage, UCEC

stage, UCEC grade}.

The rest of the tasks which constituted the original “val-

idation” and “test” sets were used for validation. So the

training set for each semi-supervised model consisted of

all expression data from the first halves of the fourteen

divided tasks along with their associated binary labels.

Training of semi-supervisedmodels

Given any sample expression vector x from the training

set we can compute the autoencoder reconstruction loss

on that sample, specifically as the squared reconstruction

error, R(x)i := (AE(x)i − xi)
2, in which AE(x) denotes

the action of the autoencoder on x. Supposing that x has a

class label lx ∈ {0, 1} from the jth predictive task, we can

also compute a classification error of the associated binary

logistic regression classifier Pj,

C(x, lx) = CrossEntropy(Pj, x, lx)

:= −log(Pj(x)lx + (1 − Pj(x))(1 − lx)).

We trained our semi-supervised models (via stochas-

tic gradient descent) to minimize a convex combination

of these two error terms. The constant controlling the

interpolation of these two losses we called the “predic-

tor strength,” π , which ranged from 0 to 1. Our training

algorithm allowed different batch sizes for the autoen-

coder loss and the predictor losses; let these be denoted

by BR, and BC, respectively. Let {xm}, {xn, lxn} be batches

drawn randomly from the training data, the first consist-

ing of only expression vectors, the second containing both

expression vectors and paired class labels. Our loss term

takes the form,

L({xm}, {xn, lxn}) :=
1 − π

BR
·

BR∑

m=1

R(xm)+
π

BC
·

BC∑

n=1

C(xn, lxn)

+ λAE · l2(AE) + λP ·

J∑

j=1

l2(Pj).

Here, J denotes the total number of predictive tasks. The

last two terms are l2 weight penalties on themodel param-

eters; these are controlled by adjustable constants λAE and

λP.

We compared three scenarios for the predictor strength

in our analysis,

• π = 0.0, i.e. the model is an autoencoder only.
• π = 0.1, the model is trained with a mixture of both

losses.
• π = 1.0, i.e. the model is a purely supervised

shared-embedding model.

We also compared results to a no-embedding model as

a kind of control.

For each gene set, data normalization, and predictor

strength scenario, we performed a sweep over all 16

pairs of values for λAE and λP in the cartesian product

{0, 0.1, 0.01, 0.001}2. We selected the l2 coefficient pair

which minimized average error on the held-out half of the

divided contrasts.

Finally, we assessed the performance of predictive mod-

els (across all three types, LR, RF, kNN) operating on the

learned data embedding to compare the effect of semi-

supervised representation learning across these three sce-

narios. Those results are displayed in Fig. 6 in the main

text.
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