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Standard-model prediction for direct CP violation in K → ππ decays C. Kelly

1. Introduction

Direct CP-violation was first observed in the late 1990s at CERN and FermiLab with the

demonstration of a non-unit value for the ratio of decay amplitudes |η00/η±|, where ηi j = A(KL →
πiπ j)/A(KS → πiπ j). This is related to the measures of direct and indirect CP-violation, ε ′ and ε

respectively, as follows:

Re(ε ′/ε)≈ 1

6
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2
)

= 16.6(2.3)×10−4 ,

where the number is the experimental value. The small size of ε ′ (O(10−6)) makes it highly

sensitive to new, beyond the Standard Model sources of CP violation that may explain the origin of

the matter-antimatter asymmetry in the Universe.

In terms of isospin the K → ππ decays proceed via two allowed decay channels: a ∆I = 3/2

decay to an I = 2 final state, and a ∆I = 1/2 decay to an I = 0 state, the amplitudes of which are

denoted A2 and A0 respectively. ε ′ is related to a difference in their complex phases:

ε ′ =
iωei(δ2−δ0)

√
2

(

Im(A2)

Re(A2)
− Im(A0)

Re(A0)

)

. (1.1)

While the underlying physics are high-energy ∆S = 1 weak interactions at the ∼80 GeV scale,

these decays receive substantial corrections from low-energy QCD interactions at the GeV scale

and below. For example, a long-standing puzzle was the origin of the so-called ∆I = 1/2 rule: the

observation that neutral kaons are ∼450 times more likely to decay in the ∆I = 1/2 channel than the

∆I = 3/2. This corresponds to Re(A0)/Re(A2) ≃ 22.5. While a factor of ∼2 can be explained by

the perturbative running from the weak to the hadronic scales, the origin of the remaining factor of

∼10 remained a mystery for several decades. In recent years the RBC and UKQCD collaborations

have demonstrated that it likely arises due to a strong cancellation between the two dominant non-

perturbative hadronic contributions to the ∆I = 3/2 decay amplitude [1].

It is therefore vital to correctly describe the low-energy dynamics of these decays. Phenomeno-

logical calculations suffer from difficulties in assessing a priori the size of their systematic errors.

On the other hand, lattice QCD provides an ab initio, systematically improvable technique for

studying these non-perturbative effects.

These proceedings detail the RBC & UKQCD collaboration’s recent lattice determination of

ε ′ [2]. We begin by discussing the computational strategy, then discuss the ensemble used for the

calculation. This is followed by an in-depth discussion of the fits to the matrix elements and ππ

two-point functions. We conclude with a discussion of the systematic errors.

2. Summary of lattice approach

At the weak scale there are three classes of diagram that contribute to the K → ππ decays: the

current-current (Fig. 1a), QCD penguin (Fig. 1b) and the electroweak penguin (Fig. 1c) diagrams.

At low-energy these are described very precisely by the following effective Hamiltonian:

HW =
GF√

2
V ∗

udVus

10

∑
j=1

[z j(µ)+ τy j(µ)]Q j(µ) .

Here z j and y j are perturbatively-computed Wilson coefficients encapsulating the high energy be-

havior. τ = − V ∗
tsVtd

V ∗
usVud

= 0.0014606+ 0.00060408i is the only term with an imaginary part and is

responsible for the CP violation. Q j are 10 local effective four-quark operators: Q1 and Q2 cor-

respond to the current-current diagrams, Q3 −Q6 the QCD penguin diagrams and Q7 −Q10 the

electroweak penguin diagrams. The current-current operators Q1 and Q2 give the dominant con-

tributions to the real parts of both A0 and A2; the QCD penguins Q4 and Q6 dominate Im(A0);
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Standard-model prediction for direct CP violation in K → ππ decays C. Kelly

(a) Current-current (b) QCD penguin (c) Electroweak penguin

Figure 1: Weak-scale diagrams contributing to K → ππ decays.

and the electroweak penguin operator Q8 dominates Im(A2). Note that only 7 of the 10 operators

are linearly independent, hence it is sometimes convenient during the calculation to work in the

7-operator ‘chiral basis’ defined in Ref. [3].

On the lattice we compute the non-perturbative matrix elements of the four-quark operators

between kaon and ππ states: M
I, lat
i = 〈(ππ)I|Qi|K〉 where I = 0,2 is the isospin quantum number

of the ππ final state. These are determined via the following three-point functions:

〈Jππ(tππ)Qi(tQ)JK(tK)〉= e−Eππ (tππ−tQ)e−mK(tQ−tK)〈0|Jππ(0)|ππ〉〈ππ|Qi|K〉〈K|JK(0)|0〉+ . . . ,
(2.1)

after dividing out the source normalization computed from the corresponding two-point function:

〈0|J†
X(ta)JX(tb)|0〉= e−EX (ta−tb) |〈0|JX(0)|X〉|2 + . . . , (2.2)

where X = ππ or K. In the above JX are appropriately chosen operators that overlap with the states

of interest, and the ellipses indicate the presence of excited state contributions and, for Green’s

function containing the I = 0 ππ state, the contribution of the vacuum intermediate state.

The operator matrix elements must be renormalized in the same scheme as used to compute

the Wilson coefficients; typically this is the MS scheme, which involves dimensional regularization

and is therefore not appropriate for a lattice calculation. Instead we utilize variants of the Rome-

Southampton regularization-invariant momentum schemes [4] with non-exceptional kinematics [5]

(RI/SMOM) as an intermediate scheme, with coefficients computed at an energy scale low enough

to avoid discretization effects but sufficiently high to allow a subsequent perturbative matching to

the MS scheme [3]. In this calculation the one-loop truncation of the perturbative series used to

compute these matching factors is one of the dominant sources of systematic error.

The amplitudes are obtained by combining the renormalization factors (which form a matrix

due to operator mixing) with the lattice matrix elements and Wilson coefficients as follows:

AI = F
GF√

2
V ∗

udVus

10

∑
i, j=1

(zi(µ)+ τyi(µ))Zlat→MS
i j (µ)MI, lat

j . (2.3)

Here the only new ingredient is the Lellouch-Lüscher factor F [6] that relates finite-volume matrix

elements to infinite-volume amplitudes:

F2 = 8πq

(

∂φ

∂q
+

∂δ

∂q

)

mKE2
ππ

p3
(2.4)

where p =
√

E2
ππ −m2

π and q = pL/2π where L is the lattice size. φ is a known analytic function

and δ is the ππ scattering phase shift, the derivative of which must be determined either on the

lattice or via phenomenology. For A2 the derivative of φ dominates and we need only estimate the

phase-shift derivative; however for A0 the terms are comparable in size and the procedure by which

the derivative is determined becomes a significant source of systematic error.

In order to determine physically-relevant quantities it is vital to simulate with physical kine-

matics, i.e. the energy of the two-pion state must match that of the kaon. For physical particles,

the kaon mass mK ≃ 500 MeV is considerably larger than the lightest two-pion state of energy

2×mπ ∼ 270 MeV (ignoring finite-volume interactions). A physical decay can therefore only be

3
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achieved via an excited two-pion state in which the pions are non-stationary in the kaon rest frame.

On the lattice these contributions are highly subdominant and in a conventional setup can only be

extracted with multi-exponential fits to the time dependence, likely coupled with a careful choice

of ππ operators. This strategy is made much more difficult for A0 by the presence of disconnected

diagrams in which the two pions annihilate into the vacuum and re-appear at a later time. These

diagrams are highly susceptible to gauge-field noise and ultimately dominate the statistical error.

An alternative approach is to take advantage of the freedom to choose the quark spatial boundary

conditions (BCs) by choosing those that eliminate the stationary pion state; it is this approach that

we adopt for our calculations.

3. Summary of A2 determination

We begin by summarizing the most recent determination of A2. This amplitude can be deter-

mined directly from the decay of charged kaons via

〈(π+π0)I=2|HW |K+〉=
√

2A2eiδ2 .

Due to the absence of disconnected diagrams we can compute this quantity with high precision

using standard lattice methods. The principle challenge is obtaining physical kinematics, which we

achieve by imposing antiperiodic BCs on the down-quark propagators. Combined with up-quarks

that satisfy standard periodic BCs, this results in charged pion states that are antiperiodic in space

and therefore have allowed momenta that are odd-integer multiples of π/L. This eliminates the

stationary ground-state but at the cost of explicitly breaking isospin (by applying different BCs to

the up and down quarks). It also only applies to the charged pions, whereas the desired final state

also contains a neutral pion. Both of these issues can be circumvented by applying the Wigner-

Eckart relation to relate the above to the unphysical decay,

〈(π+π0)I=2|Q∆Iz=1/2|K+〉=
√

3

2
〈(π+π+)I=2|Q∆Iz=3/2|K+〉 ,

where the final state contains only charged pions and is protected from mixing with other isospin

states by virtue of being the only charge-2 state with these quantum numbers.

Our first determination of A2 [7, 8] was performed with physical masses and energy-conserving

kinematics on a 323 × 64× 32 Shamir domain wall ensemble with the Iwasaki+DSDR gauge ac-

tion [9] and a single, coarse lattice spacing of a−1 = 1.378(7) GeV (β = 1.75) [10]. Here the

dislocation-suppressing determinant ratio (DSDR) reduces the chiral symmetry breaking induced

by ’dislocations’ (tears) in the gauge field, which appear more frequently at strong coupling. An

almost identical ensemble is used for our calculation of A0 (this work).

Recently a significantly more precise determination [11] has been performed on our 483×96×
24 and 643 × 128× 12 Möbius domain wall ensembles with the Iwasaki gauge action and lattice

spacings of a−1 = 1.730(4) (β = 2.13) and a−1 = 2.359(7) GeV (β = 2.25), respectively. Here we

were able to take the continuum limit, eliminating the associated O(15%) systematic error on the

original measurement. In addition, using the all-mode averaging technique coupled with EigCG

to generate the eigenvectors, we were able to compute the amplitude on these ensembles with a

statistical precision of only ∼ 3%. The results are

Re(A2) = 1.50(4)stat(14)sys ×10−8

Im(A2) =−6.99(20)stat(84)sys ×10−13 (3.1)

where the errors are statistical and systematic, respectively. We find excellent agreement with the

experimental value for the real part, Re(A2)expt = 1.4787(31)×10−8. The imaginary part is known

only from these calculations.

4
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Figure 2: Examples of the four types of diagram contributing to the ∆I = 1/2, K → ππ decay.

Lines labeled ℓ or s represent light or strange quarks. Unlabeled lines are light quarks.

The systematic errors are dominated by perturbative truncation errors in the computation of

the Wilson coefficients and the matching from the non-perturbative RI/SMOM renormalization

schemes to MS. These errors can be reduced in the future either by computing higher-order pertur-

bative contributions to these quantities or by step-scaling the RI/SMOM renormalization factors to

a higher energy scale than the present µ = 3 GeV.

4. Techniques for the determination of A0

In order to obtain A0 we must measure the decays of a neutral kaon into two-pion states com-

prising both charged (π+π−) and neutral (π0π0) pions. These give rise to roughly 50 distinct

contraction topologies that are divided into the four-classes shown in Figure 2. Here the type-4

diagrams are the disconnected contributions that dominate the statistical error.

Aside from the large number of contractions, this calculation is significantly more challenging

than that of A2 for two further reasons: the presence of disconnected diagrams makes it necessary

to employ advanced error-reduction techniques to manage the statistical error; and the simple ap-

proach to obtaining physical kinematics used for the A2 calculation is not applicable to A0 and a

more sophisticated technique is required. Below we describe how these two issues are addressed.

4.1 Disconnected diagrams

A significant amount of the ππ vacuum coupling can be eliminated by separating the pion

sources in Euclidean time, a refinement first introduced in Ref. [12]. Further suppression can be

achieved by combining the quark and anti-quark fields into “meson wavefunctions” constructed

in our case from hydrogen atom wavefunctions. The remaining statistical error can be reduced by

averaging over all spatial locations of the two-pion wavefunctions. These two steps are made possi-

ble by employing the all-to-all propagator technique of Ref. [13] whereby an approximation to the

propagator from any site to any other is obtained by first computing a subset of exact eigenmodes

of the Dirac matrix using, for example, the Lanczos algorithm, and ‘patching up’ the remaining,

typically less important, high-mode contributions using a stochastic technique. In this approach

one can optionally ‘dilute’ the stochastic sources in the spin, color, and in our case flavor indices,

in order to reduce the reliance on stochastic cancellation to correctly describe the index structure of

the propagator on a given site, at the cost of increasing the number of inversions and the memory

footprint. In practice we dilute in all three of these indices, and additionally dilute in the source

time coordinate to improve the temporal resolution.

4.2 Physical kinematics

For A0 we must compute both K0 → π+π− and K0 → π0π0 decays. As in the A2 calculation,

some of the final states contain neutral pions that remain stationary when we impose antiperiodic

BCs on the down quark. Unfortunately, in the I = 0 case there is no Wigner-Eckart relation that

can be used to work around this issue as well as to protect us from isospin breaking. Following

Ref. [14] we instead apply G-parity spatial boundary conditions (GPBC) [15, 14, 16] to achieve the
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desired effect. G-parity is the combined action of charge conjugation and an 180-degree isospin

rotation about the y-axis: Ĝ = Ĉeiπ Îy , where the hat-symbol is used to denote operators. The

charged and neutral pions are G-parity odd, thus applying the operation at a spatial boundary is

equivalent to imposing antiperiodic boundary conditions on the pions, again resulting in momenta

that are odd-integer multiples of π/L.

At the quark level,

Ĝ

(

u

d

)

Ĝ−1 =

(

−Cd̄T

CūT

)

, (4.1)

where C = γ2γ4 in our conventions. This flavor mixing at the boundary introduces a number of

difficulties that we had to overcome [17, 18, 19, 20]. In summary,

• Consistency across the boundary between the u and d quarks, which couple to the standard

gauge links U , and their G-parity partners d̄T and ūT which couple to the complex-conjugate

links U∗, requires the gauge field to obey complex conjugate (charge conjugation) BCs. This

requires the generation of custom ensembles.

• Quark propagators spanning the boundary introduce unusual Wick contractions between

oppositely-flavored spinor fields duT and conjugate spinors ūT d̄. This results in a number of

additional diagrams that must be evaluated for a given Green’s function.

• For GPBC in two or more directions the hypercubic rotational symmetry is broken at the

quark level, manifesting as restrictions on the allowed values of discretized quark momenta.

Although this symmetry is respected at the pion level (these just obey antiperiodic BCs), the

restrictions on the quark momenta prevent us from forming ππ operators for pions moving

along orthogonal axes that are related by rotations. As the Lüscher formalism requires that

the ππ states reside in the A1 representation of the hypercubic group we must treat this

issue with care. In practise we found [19, 20] that a careful choice of pion operator heavily

suppresses the breaking to below the level of statistical resolution.

• The neutral kaon states, K0 = ds̄ and K̄0 = sd̄, are not eigenstates of the system as GPBC

transforms the down quark but not the strange. In addition, modifications to the strange-quark

Lagrangian are required for consistency with the charge-conjugation BCs on the gauge fields.

The solution is to impose GPBC on an isospin doublet comprising the s-quark and a fictional,

degenerate quark field s′. The operator, K̃0 = 1√
2
(ds̄+ ūs′) is then G-parity even and hence

projects only onto states with zero momentum.

For the K → ππ interaction we use the physical four-quark operators, which act solely on

the ds̄ component and hence couple only to the ūs′ through terms that are exponentially

suppressed in the kaon mass and lattice size.

In order to revert to a three flavor simulation we must take the square-root of the s/s′ deter-

minant that represents the fermionic contribution to the path integral. Due to the coupling

between the fields at the boundary, this results in a non-local determinant that potentially in-

troduces universality violations; however, it can be shown that such effects are exponentially

suppressed in the lattice size.

5. Ensemble details and basic measurements

We perform this first determination of A0 using a single 323 ×64 domain wall ensemble with

the Iwasaki+DSDR gauge action at β = 1.75. This is essentially identical to the ensemble used for

6
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the original A2 determination and described above, apart from in the following regards: Firstly we

reduced the input quark mass from 1× 10−3 to 1× 10−4 in order to obtain physical pion masses;

secondly we switched from Shamir DWF with Ls = 32 to Möbius DWF with Ls = 12 and b+ c =
32/12, the latter of which has the same degree of chiral symmetry breaking as the former but

costs substantially less to generate; and finally we use GPBC for the sea quarks. One benefit of

choosing the same parameters as an existing ensemble is that we can use that ensemble to obtain

the renormalization factors for the K → ππ matrix elements free from the difficulties of GPBC,

which, like all boundary conditions, have no impact on high-energy observables and would serve

only to further complicate the calculation.

Although the lattice spacing of this ensemble is coarse, with a−1 = 1.378(7) GeV, we attain

a large physical box size of (4.6 fm)3 without having to simulate with a large number of lattice

sites (for example the 643 ×128 lattice size used in our recent A2 calculation). This is particularly

important here because GPBC introduce a naïve factor of two increase in the cost of inversions

due to the double-sized (two-flavor) Dirac matrix. Additional overheads arise because the square

of this operator, which is used as the kernel of the CG inversion in order to guarantee hermiticity

and positive-definiteness, represents four flavors of quarks; we must therefore take the square-root

of the light-quark determinant in order to simulate with two light flavors. This requires the use

of the RHMC algorithm, for which the underlying multi-shift CG has a substantial linear algebra

overhead over traditional CG which results in a significant reduction in performance on the IBM

Blue Gene/Q machines used for this calculation.

For this calculation we make use of 216 configurations separated by 4 MD time units. The

ensemble generation and subsequent measurements were performed using the following IBM Blue

Gene/Q installations: the 512-node USQCD machine at BNL, the US DOE “Mira” machine at ANL

and the STFC “DiRAC” machine at Edinburgh, UK. The computational cost of each measurement

(4 configurations plus 1 measurement) is approximately 1 BG/Q rack-day, and the calculation

required roughly 200M BG/Q core-hours in total.

All measurements were performed using the all-to-all propagators. As mentioned above we

dilute in all indices (spin, color, flavor and time), and we use one stochastic hit per configuration.

In order to examine the effects of autocorrelations between configurations we performed a

binning analysis using several quantities, from which we observed no bin size dependence. This

is not unreasonable given that it is such a coarse lattice. As a result all of our measurements are

performed without binning the data.

We fit both the pion and kaon two-point functions using uncorrelated fits. The data were

folded (averaged) about t = 32 and fit to 6 ≤ t ≤ 32. The fits to the ππ two-point function were

more challenging, and will be discussed in more detail below. The measured masses and energies

are given in Table 1. We obtain a pion ground-state energy consistent with the physical pion mass

as desired, and we observe excellent agreement between the measured I = 0 ππ energy and the

kaon mass, thereby achieving our goal of energy conserving kinematics in the K → ππ decay.

6. Determination of the I = 0 ππ energy

The Wick contractions for the I = 0 ππ two-point function

C(t) = 〈0|J†
ππ(t)Jππ(0)|0〉

are given in Fig. 3. Here the ‘V’-diagrams are disconnected and dominate the noise.

Here and for the K → ππ matrix elements below we use ground-state hydrogen atom wave-

function sources for the pions with a radius of 2 in lattice units, and we separate the sources by

4 timeslices in order to reduce the coupling to the vacuum. Despite these efforts, the dominant

7
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Quantity Value

mK 490.6(2.4) MeV

Eππ(I = 0) 498(11) MeV

Eπ 274.6(1.4) MeV

(mπ 143.1(2.0) MeV)

Table 1: Measured energies of the kaon, pion and ππ states. The value of mπ on the final line was

obtained by applying the continuum dispersion relation m2
π = E2

π − 3 π2

L2 to the measured moving-

pion energy.

(a) C (b) D (c) R
(d) V

Figure 3: The four Wick contractions for the I = 0 ππ two-point function. The subcaption indicates

the label we assign to each diagram. The black circles on the left and right of each diagram are the

pion destruction and creation operators respectively, which are separated in time along the x-axis

and in space along the y-axis. In practise we separate the two source (and sink) operators in time

to reduce the vacuum coupling, although this is not shown in this figure.

contribution to the amplitude remains the vacuum intermediate state (by roughly a factor of 10),

and therefore a subtraction is required. For these two-point functions this can be achieved either by

direct subtraction,

Csub(t) = 〈0|J†
ππ(t)Jππ(0)|0〉−〈0|J†

ππ(t)|0〉〈0|Jππ(0)|0〉 ,
or by appending an additional constant term to the fit function Eq. 2.2 and allowing the fit to

determine the vacuum contribution; both approaches give consistent results. Such a constant term

also arises due to round-the-world effects in which one pion propagates backwards through the

boundary while the other propagates in the forwards direction, although in practise we found this

contribution to be statistically consistent with zero after the vacuum subtraction was performed.

We observed strong correlations between values of the two-point function at different times,

necessitating the use of correlated fits – fortunately the condition number was small enough, O(1×
104), that the correlation matrix could be reliably inverted. In order to properly take into account

the fluctuations in the correlation matrix between jackknife samples we compute separate matrices

for each sample using the double-jackknife technique.

In Fig. 4 we plot the effective energy of the ππ state. We observe a rapid deterioration of the

signal-to-noise ratio, which implies that any single-exponential fit will be dominated by the lowest

one or two points in the fit window. This makes it very difficult to separate the effects of statistical

fluctuations in the data from any actual underlying time dependence arising from excited state

contamination. Indeed when we perform single-exponential fits, varying the lower bound above

the apparent onset of the plateau region at t = 4, we observe fluctuations in the fitted energies

(Table 2) that closely mirror the temporal fluctuations in the two-point effective energy seen in the

figure. To clarify the situation we also performed double-exponential fits with several different

tmin, the results of which are also given in the table. While this approach gives larger errors, the

measured ground-state energies agree well and are all somewhat lower than the values obtained

8
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tmin Eππ χ2/dof

4 0.377(4) 2.1(8)

5 0.376(6) 2.2(8)

6 0.361(7) 1.6(7)

7 0.379(11) 1.3(6)

tmin Eππ Eexc χ2/dof

2 0.363(9) 1.04(17) 1.7(7)

3 0.367(11) 1.27(73) 1.8(8)

4 0.364(12) 0.86(39) 1.9(8)

Table 2: Results of single-exponential (left) and double-exponential (right) to the I = 0 ππ two-

point function, varying the lower bound of the fit, tmin.

from the single-exponential fits with tmin ≤ 5 (this is also the case for tmin = 7 but we judge this

to be a statistical fluctuation based on Fig. 4). Given that the fitted excited-state energies are all

in good agreement, we take these lower ground-state energies as evidence of a small underlying

excited-state contamination in the region t ≤ 5. We therefore choose the single-exponential fit with

tmin = 6 as our final value, for which Eππ = 0.361(7) in lattice units or 498(11) MeV in physical

units.

As discussed in Ref. [21], the expected finite-volume ππ energy for a lattice with our size and

BCs can be estimated by matching the Lüscher formula [22] (appropriately modified for antiperi-

odic spatial boundary conditions on the pion [23, 11]) with phenomenological curves [24, 25] of the

energy dependence of the phase shift based on the Roy equations and experimental measurements

of the scattering lengths and the phase shift at high energies. This gives a value of Eππ ≈ 470 MeV,

∼3σ smaller than our result. Correspondingly, our phase shift, δ0 = 23.8(4.9)(1.2)◦, is smaller

than the 38.0(1.3)◦ obtained for our pion mass from phenomenology [26, 25]. The origin of this

discrepancy requires further investigation.

If the lattice calculation presented here is the source of this discrepancy, it would likely arise

from the two dominant systematic effects: the lattice discretization and possibly further excited

state contamination hidden by the rapidly decreasing signal-to-noise ratio.

One source of discretization error is associated with the use of the continuum dispersion rela-

tion (E2 = ~p2 +m2) rather than the lattice relation to determine amπ and the Lüscher momentum

q that parameterizes the interaction energy. Ref. [27] provides a modified form appropriate for

Gaussian fields on the lattice:

cosh(E) = 2∑i sin2(pi/2)+ coshm .

With this relation we find δ0 = 23.9◦, only 0.1◦ larger than our previous quoted value. This change

is small compared to the statistical error and can therefore be neglected. An additional source of

error arises due to discretization corrections to the Lüscher zeta function. Such effects are known

to be exponentially suppressed in the lattice size and pion mass (cf. e.g. [28]). In our case the

GPBC causes the pion mass to be replaced by the ground-state energy, for which EπL = 6.38,

and therefore we might expect corrections O(0.2%). Of course the coefficient of such terms is

unknown, therefore we choose a more conservative estimate whereby the phase shift is assigned a

O(5%) discretization error based on that measured for a number of other physical observables on

this coarse lattice [9]. This is the origin of the 1.2◦ systematic in the value quoted above.

As previously stated our two-state fits showed excellent consistency in their determination of

the ground-state energy and therefore we have no evidence of further excited state contamination.

While we cannot yet rule out such a nearby excited state, such a state is not predicted by the

conventional phenomenological analysis and its presence would represent an equally serious failure

of current phenomenological expectations. At present we do not assign a systematic error to this

possibility, but we expect that the situation will be clarified with more statistics.
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Figure 4: Effective energies of the kaon (squares) and two-pion (circles) states deduced from the

corresponding two-point functions by equating the results from two time separations to the function

AcoshEeff(T/2− t) where T = 64 is the temporal lattice size, plotted as a function of the smallest

of those two separations. (We replace T by T − 8 for the ππ case.) These are overlaid by the

errorbands corresponding to the fitted values of Eππ (light blue) and mK (pink).

7. Lellouch-Lüscher factor

The phase shift enters the determination of the K → ππ amplitudes via the Lellouch-Lüscher

(LL) formula Eq. 2.4 as a derivative with respect to the binding energy. We observe that changing

the phase between the lattice and phenomenological value results only in a 4% change in the am-

plitude; much smaller than the other systematic errors in the problem (including the determination

of the derivative itself - cf. below). We therefore proceed using the lattice value.

In Ref. [5] it was recognized that the derivative of the zeta-function φ dominates the LL factor

for the ∆I = 3/2 decays, therefore it was sufficient to make use of the scattering length approxi-

mation, which states that the phase shift depends linearly on q at low energies, i.e. ∂δ
∂q

= δ
q

. From

the phenomenological curves [24, 25] it is clear that the derivative of δ0 is much larger than δ2. We

must therefore treat the determination of the phase-shift derivative with more care. In absence of a

second lattice momentum we cannot compute this directly and instead consider three choices:

1. Using the scattering length approximation: ∂δ
∂q

= 0.55(13) (with the numerator in radians).

2. Taking the derivative of the phenomenological fit in Refs. [24]: ∂δ
∂q

= 1.54(3).

3. Using a linear approximation in Eππ −2mπ inspired by the strong linearity of the phase shifts

in the above phenomenological curves: ∂δ
∂q

= 0.87(21).

We prefer to base our final value on pure-lattice numbers and therefore take the scattering-length

approximation for our central value, giving F = 23.96(61). The full 11% spread in F is included

as a systematic error.

8. K → ππ matrix element fits

We generated the three-point functions with five different tππ − tK separations: 10, 12, 14, 16,

18. In Figure 5 we show the effective lattice amplitudes for Q2 and Q6, which are the dominant

contributions to the real and imaginary parts of A0, respectively. These figures were obtained by

performing the error-weighted average over the five time separations. For the fits themselves we fit

all five time separations simultaneously with a common matrix element amplitude.

Prior to fitting we must account for an unphysical, quadratically-divergent contribution that

arises because the type-3 and type-4 diagrams of Figure 2 mix with the dimension-3 operator

s̄γ5d. This operator is the divergence of an axial current hence its matrix elements vanish when the

10
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Figure 5: The Q2 and Q6 three-point functions, plotted in lattice units as functions of tππ − tQ, with

the time dependence in Eq. 2.1 removed. The horizontal lines show the central value and errors

from the fit described below.

four-momenta of the kaon and ππ are equal; it will therefore not contribute to a physical process.

However, for matrix elements with unphysical kinematics this term may be 20× larger than the

other, physical terms. Even with physical kinematics it will introduce both noise and increased

systematic error due to contamination from excited states with energies larger than the kaon mass.

We remove this contribution by computing the amplitudes with subtracted operators [29, 5], Qsub
i =

Qi −αis̄γ5d, where the coefficients αi are chosen such that the following expression is satisfied:

〈0|Qi −αis̄γ5d|K〉= 0 .

These coefficients are time independent, but in practise we obtained smaller statistical errors on the

subtracted matrix elements by performing the subtraction timeslice-by-timeslice, i.e. by computing

αi separately for each timeslice t and using those coefficients in the subtraction for Qi(t). The

subtraction leaves behind an unphysical, regulator dependent s̄γ5d piece, but one that is no longer

1/a2 enhanced and is therefore small providing we tune the kaon and ππ energies sufficiently well.

We include this potential effect as an ‘unphysical kinematics’ systematic error below.

Note that both the type-4 diagrams, and the corresponding diagrams in which Qi is substituted

for s̄γ5d, require a vacuum subtraction which here must be computed directly.

In order to isolate the ground-state contribution we must impose a lower bound on the sepa-

ration between the four-quark operator and the ππ sink (tππ − tQ). We found that bounds of 3,4,5
and 6 all gave results consistent within statistics. Given how rapidly the signal degenerates we

chose a lower bound of tππ − tQ = 4, smaller than the π −π separation of 6 used for the two-point

function. We include the possibility of any remaining excited state contamination in our system-

atic error budget, below. We also use a minimum tQ − tK = 6, consistent with that used for the

kaon two-point function. The total number of data points included in the fit is 25. We performed

uncorrelated fits but experiments with correlated fits gave consistent results.

Table 3 shows the unrenormalized matrix elements written in the traditional, physical basis

and in the chiral basis. For convenience we have converted the values into physical units and have

applied the Lellouch-Lüscher finite-volume correction of F = 23.96(61) to obtain infinite-volume

matrix elements with the operator conventions specified in Ref. [8].

9. Renormalization factors and Wilson coefficients

The MS-renormalized operators are computed by first converting to the RI/SMOM(/q,/q)

11
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i M
(i)
lat (GeV)3 M

′ (i)
lat (GeV)3

1 -0.247(62) -0.147(242)

2 0.266(72) -0.218(54)

3 -0.064(183) 0.295(59)

4 0.444(189) —

5 -0.601(146) -0.601(146)

6 -1.188(287) -1.188(287)

7 1.33(8) 1.33(8)

8 4.65(14) 4.65(15)

9 -0.345(97) —

10 0.176(100) —

i M
′ (i)
SMOM (GeV)3 M

(i)

MS
(GeV)3

1 -0.0675(1109)(128) -0.151(29)(36)

2 -0.156(27)(30) 0.169(42)(41)

3 0.212(52)(40) -0.0492(652)(118)

4 — 0.271(93)(65)

5 -0.193(62)(37) -0.191(48)(46)

6 -0.366(103)(70) -0.379(97)(91)

7 0.225(37)(43) 0.219(37)(53)

8 1.65(5)(31) 1.72(6)(41)

9 — -0.202(54)(49)

10 — 0.118(42)(28)

Table 3: Left: The unrenormalized matrix elements in the conventional ten-operator basis (second

column) and the seven-operator chiral basis (third column). Only statistical errors are shown.

Right: The renormalized matrix elements in the RI/SMOM(/q,/q) scheme and chiral basis (second

column) and resulting the MS matrix elements in the traditional 10-operator basis. The left error

shown is statistical and the right is systematic.

scheme [3] and then perturbatively matching to MS. The RI/SMOM schemes are defined in the

7-operator chiral basis, hence we must first perform a basis conversion (Table 3). These operators,

Q′
j, are then renormalized to RI/SMOM operators, QRI

k , by applying the 7×7 matrix with elements

Zlat→RI
jk . This matrix is computed by imposing the RI/SMOM(/q,/q) renormalization conditions on

amputated, Landau-gauge fixed Green’s functions of Q′
j with off-shell, external momenta specified

by the two momenta, p1 and p2. We use p1 =
2π
L
(0,4,4,0) and p2 =

2π
L
(4,4,0,0), which together

satisfy the symmetric momentum condition p2
1 = p2

2 = (p1− p2)
2 = (µ)2, where µ = 1.531 GeV is

the renormalization scale. As previously mentioned, the renormalization factors are computed on

our existing 323 × 64× 32 Shamir domain wall ensemble with the Iwasaki+DSDR gauge action.

The choice of renormalization scale, µ = 1.531 GeV, was dictated by the desire to avoid large

discretization effects on this coarse lattice and is lower than the O(3 GeV) scale at which this

procedure is typically applied, giving rise to a correspondingly larger systematic error.

The RI/SMOM(/q,/q) NPR matrix and the one-loop perturbative matching matrix converting

these to the MS are given in Ref. [2] (Supplementary Material), and the renormalized operators in

both schemes are given in Table 3.

The real and imaginary parts of A0 are obtained by multiplying the MS-renormalized matrix

elements by the appropriate Wilson coefficients and CKM matrix elements via Eq. 2.3. The Wilson

coefficients were computed at the renormalization scale of µ = 1.531 GeV from the equations given

in Ref. [30]. We use the two-loop beta function to obtain the three-flavor value of αS = 0.353388

at µ = 1.531 GeV. The values of the Wilson coefficients and the other phenomenological input

entering their determination are given in Ref. [2] (Supplementary Material). The final contributions

to Re(A0) and Im(A0) of each operator are given in Table 4, where the errors are statistical only.

10. Systematic errors

The systematic error budget for our calculation is given in Table 5. These errors are understood

to apply separately and equally to each of the 10 operator contributions, and are treated as uncor-

related when the sum of the contributions is performed: The systematic error on the sum is taken

as the largest of either the quadratic or linear combination of the individual error contributions.

Below we briefly describe how the systematic error estimates are determined, in order of

descending importance:
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i Re(A0)(GeV) Im(A0)(GeV)

1 1.02(0.20)(0.07)×10−7 0

2 3.63(0.91)(0.28)×10−7 0

3 −1.19(1.58)(1.12)×10−10 1.54(2.04)(1.45)×10−12

4 −1.86(0.63)(0.33)×10−9 1.82(0.62)(0.32)×10−11

5 −8.72(2.17)(1.80)×10−10 1.57(0.39)(0.32)×10−12

6 3.33(0.85)(0.22)×10−9 −3.57(0.91)(0.24)×10−11

7 2.40(0.41)(0.00)×10−11 8.55(1.45)(0.00)×10−14

8 −1.33(0.04)(0.00)×10−10 −1.71(0.05)(0.00)×10−12

9 −7.12(1.90)(0.46)×10−12 −2.43(0.65)(0.16)×10−12

10 7.57(2.72)(0.71)×10−12 −4.74(1.70)(0.44)×10−13

Tot 4.66(0.96)(0.27)×10−7 −1.90(1.19)(0.32)×10−11

Table 4: Contributions to A0 from the ten continuum, MS operators Qi(µ), for µ = 1.53 GeV. Two

statistical errors are shown: the first from the lattice matrix element and the second from the lattice

to MS conversion.

Description Error Description Error

Finite lattice spacing 12% Finite volume 7%

Wilson coefficients 12% Excited states ≤ 5%

Parametric errors 5% Operator renormalization 15%

Unphysical kinematics ≤ 3% Lellouch-Lüscher factor 11%

Total (added in quadrature) 27%

Table 5: Representative, fractional systematic errors for the individual operator contributions to

Re(A0) and Im(A0).

Operator renormalization: Alongside the RI/SMOM(/q,/q) we also computed renormalization

factors in the RI/SMOM(γµ ,γµ) scheme. We examine the full difference of the result for

each of the 10 operators and from these choose 15% as a representative number, which is

large due to the relatively small renormalization scale of 1.531 GeV.

Wilson coefficients: For the same reason the error on the Wilson coefficients is also large. This

is estimated conservatively by taking the full difference between the leading- and next-to-

leading order values using the procedure described in Ref. [8].

Finite lattice spacing: We estimate this error by comparing the three individual contributions to

A2 between the original determination [7, 8] on a lattice nearly identical to that used in this

work, and the continuum-limit contributions determined in Ref. [11]. The average of the

fractional changes was used for our final error.

Lellouch-Lüscher factor: As discussed above we use the full spread in values of the phase-shift

derivative to estimate this error.

Finite volume: We use the same estimate determined for A2 in Ref. [8], which was estimated using

SU(3) finite-volume chiral perturbation theory.

Parametric errors: These errors arise from the uncertainties on the inputs used in the determina-

tion of the amplitudes and is dominated by that of the ratio τ . We propagated the errors by

hand to determine the final number.

Excited states: Using our two-state fits to the ππ two-point function we estimate the relative con-

tribution of the excited-state to the amplitude at tππ − tQ = 4 (the lower bound on our three-

point function fit); the same fractional error is assigned to the three-point function.
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Unphysical kinematics: This error is associated with the slight mis-tuning between the kaon and

ππ energies. To estimate it we repeated our measurement on a subset of configurations using

a slightly larger strange quark mass. The fractional difference in central values between the

best-resolved matrix element, that of Q2, was scaled by the difference between our kaon and

ππ energies to obtain the quoted figure.

We note that as the error on this calculation is dominated by the statistics, these systematic

errors are not intended to be bounds but only reasonable estimates.

11. Results for A0 and ε ′

Adding the contributions to A0 given in Table 4 and the systematic errors from the previous

section, we find

Re(A0) = 4.66(1.00)(1.26)×10−7 GeV (11.1)

Im(A0) = −1.90(1.23)(1.08)×10−11 GeV (11.2)

where the errors are statistical and systematic, respectively. From these we obtain

Re

(

ε ′

ε

)

= Re

{

iωei(δ2−δ0)

√
2ε

[

ImA2

ReA2

− ImA0

ReA0

]

}

(11.3)

= 1.38(5.15)(4.59)×10−4, (11.4)

where we have used Im(A0) and δ0 values given above and our earlier results for Im(A2) and

δ2 [11]. We use the experimental values for Re(A0), Re(A2) and their ratio ω (since these are

accurately determined from the measured K → ππ decay rates) and the experimental value for ε .

12. Conclusions

In this document we have detailed the first determination of the direct CP violation parameter

ε ′ with controlled errors. Our result for Re(ε ′/ε) is broadly in agreement (2.1σ ) with the exper-

imental number but may, with continued effort, reveal a discrepancy indicating new physics. The

focus of the present discussion is the calculation of A0, for which we find the real part to be in

good agreement with the experimental number (as expected), serving as a test of the method and

demonstrating consistency with our earlier explanation of the ∆I = 1/2 rule [1] in which the large

ratio of Re(A0)/Re(A2) resulted from a significant cancellation between the two dominant terms

contributing to Re(A2), a cancellation which does not occur for Re(A0).

The errors are currently statistics-bound. This is particularly the case for Im(A0) where we

observe a strong cancellation between the contributions of the two dominant operators, Q4 and Q6,

resulting in a 63% statistical error on their sum despite having only 34% and 24% relative errors

on the two terms, respectively. More measurements are currently underway to reduce this error. Of

the systematic errors the dominant contribution is due to the truncation of the perturbative series

used to match the RI/SMOM renormalization scheme to MS, and also in the computation of the

Wilson coefficients. These errors are exacerbated by the low, 1.531 GeV renormalization scale and

we expect significant improvements through the use of step-scaling to a higher scale O(3 GeV),
a calculation which is also currently underway. Further study of the ππ phase shifts to determine

the origin of the observed discrepancy between our result and phenomenology will be required in

future, and also a study of the energy dependence of the phase shift to reduce the 11% error on the

Lellouch-Lüscher factor. Additional lattice spacings will be required to reduce the discretization

systematic. Ultimately we expect that within 5 years we will be able reduce the total relative error

on Re(ε ′/ε) to the level of 10%, and further refinemenrs will become possible with increased

computer power and the inclusion of electromagnetism and isospin-breaking effects.
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