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STANDARD MODELS FOR SOME COMMUTING MULTIOPERATORS

V. MULLER AND F.-H. VASILESCU

(Communicated by Palle E. T. Jorgensen)

Abstract. An analogue to the Sz.-Nagy-Foias. dilation theory is presented for

several commuting operators on a Hilbert space.

The dilation theory of Hilbert space contractions, a reference of which is

the excellent monograph [9], has not yet found a complete counterpart valid

for several (commuting) Hilbert space operators. Apart from the results of this

type already contained in [9] and other results of general character (i.e., Arve-

son's or Stinespring's extension theorem), there are not too many contributions

specialized to the multiparameter dilation theory. Among these contributions,

we quote the works [7, 3-5, 10], which are closer to our topics.

The aim of this paper is to analyse some positivity conditions for commut-

ing multioperators, which ensure the unitary equivalence of these objects to

some standard models consisting of backwards multishifts. We emphasize, in

particular, a situation that seems to satisfy the requirements of an appropriate

extension for the dilation theory of Hilbert space contractions and that exploits

the results already obtained in [4, 10].

Our finer methods also imply better statements of some assertions from [ 10]

and provide an answer to Question 4.5 from [5].

Let n > 1 be an integer, and let Z" be the set of all n-tuples of nonnegative

integers (i.e., the multi-indices of length n). If a = (ax , ... , an) e Z" , we

set, as usual, \a\ = ax + ■ ■ ■ + an and a! = aj! • • • a„\. For a, fi e Z^ we write

a + B = (ax + Bx, ... , a„ + /?„), and a < ft whenever a, </?,(/= 1,...,«).

Let H be a Hilbert space, and let ■S'(II) be the algebra of all bounded
linear operators on H. An element T = (Tx, ... , T„) e ^f(H)" such that

Tx, ... ,T„ mutually commute will be designated as a commuting multioperator

(briefly, a cm.).
Let T e S?(H)n be a cm. We define the operator MT: ^f(H) -» 5f(H) by

the formula

n

(1) MT(X) = Y,T*XTj,        Xe^f(H).
;=i
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980 V. MULLER AND F.-H. VASILESCU

Note that

(2) MST(X)=  V  -.T*aXTa,        5 = 0,1,2,....
*—'   a!

a£Z"+

\a\=s

Here, as usual,   Ta = T?1 ■ ■ ■ T^  and  T* = (F, , ... , T*).   It is clear that

MST(X) > 0 whenever X > 0.

We also define

(3) A(rm) = (l-Mrr(l),        m = 0,1,2,....

We have

A^=^(-ivr)^(i)

and, by (2),

(4) A(rm) =  V (-1)'°'   „   W!,       T*aTa.
7 ^-^ a (m- a )

|a|<m V '    ''

Lemma 1. Let T e J?f(H)n be a commuting multioperator.  Then Aj/ > 0 if

and only if \\Mt\\ < 1 ■

Proof. If A^' > 0 (i.e., FfF, + • • • + F„*F„ < 1), a direct estimate shows that

n n

\(MT(X)x,y)\ = Y,(XT,x, Tty)  < \\X\\ £ \\TiX\\ \\Tiy\\
(=i i=i

/  n \ '/2  /  n \ 1/2

< \\x\\ \Y ll^ll2 j    (E H^ll2 j    $ H^ll H*H II^H

for all X e -?(//) andx,ye//. Hence ||Mr|| < 1 .
Conversely, if ||MT\\ < 1, then \\MT( 1)|| = || 7",* Tx + • • - + T* Tn \\ < 1, whence

TlTx + --- + T*T„< 1.

Lemma 2. Ler F e ^f(H)" be a cm., and let m > 1  be an integer.   The

following conditions are equivalent:

(a) sup, ||Aff (1)|| < oo and A(rm) > 0.

(b) A(j!} > 0 and A(rm) > 0.

(c) Af' > 0 for k = 1, ... , m.

Proof. The implication (c) =>■ (b) is clear and the implication (b) =► (a) follows

from Lemma 1. We prove (a) => (c).

Suppose condition (a) is satisfied. We may assume m>2. Let x e H. For

5 = 0,1,2,...  let as = (Aff (A(rm_1))x, x). We have

as-as+x = (MsT(l - MT)(A^~l))x, x) = (MsT(A^)x, x) > 0
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STANDARD MODELS FOR SOME COMMUTING MULTIOPERATORS 981

as Aj   > 0. Thus as is a nonincreasing sequence of real numbers. Further

N N

5>  =   Y,^1 ~ MT)MHATn~2))x, x)
s=0 s=0

= |(A(rm-2)x, jc) - (M^+x(ATn-2))x, x)\

< (l +suPp/f(l)||) ||(1 - A^7-)"-2|| ||jc||2 < oo.

We conclude that as > 0 for every s. In particular, a0 = (A(™-I)x, x) > 0,

hence A(rm_1)>0.

The assertion (c) now follows by a simple induction.

Corollary 3. If T e 5f(H)n is a cm. such that AT] > 0 and A(rm) > 0 for some

integer m>l, then 0 < A(rm) < Af'l) < ■ • • < A^ < 1.

Proof. For k = 1, 2, ..., m - 1, we have A^ - A(/+1) = (1 - MT)k(l) -

(1 - MT)k+x(l) = MT(1 - MT)k(l) > 0 as (l-MT)k(l)=Af >0 by Lemma

2.

Lemma 4. Let T e ^f(H)n be a cm., and let m > 1, N > 1 be integers. Then

£ ('«- 1 V^W' = 1-£ (^W-
i=0 v ' >=o v   J    '

Proof. We prove the assertion by induction with respect to m . If m = 1, we

have
JV JV

Y,MST4] = Y,MsT(l-MT)(l) = 1-M»+X(1).

s=0 s=0

Now suppose that the assertion holds for m - 1. Then

*=o v '

s=0   ^ '

^r^EtC^TO-C:-!2)]^'"""

i=0 v ' v '

y=0   V      y      '

by the induction hypothesis.
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982 V. MULLER AND F.-H. VASILESCU

Lemma 5. Let T e £f(H)n be a cm. such that A(*] > 0 and A(™} > 0 for some

integer m > 1. Let also x e H.

(a) The limit limN^oo Nk (Mj (A^^x, x) exists for all k = 0, ... , m - 1

and is null for 1 < k < max{ 1, m - 1}.

(b) We have £~0 sk~x (MST (A(/ ])x , jc) < oc, k = 1,..., m.

Proof. The assertions will be proved simultaneously by induction with respect

to k. Since A^' > 0 and MjA^j  > 0 for each integer N > 1, we have

(M?(l)x, x) - (M?+X(l)x,x) = (M^(A(j])x,x) > 0.

Thus {(Mj(l)x, x)}n is a nonincreasing sequence of nonnegative numbers,

and so the limit

(5) lim(M^(l)x,x)
JV—>oo

exists. Hence (a) holds for k = 0.

Note also that
oo N

E(Jlff(A*!')*, x) = lim E((l - MT)MsT(l)x,x)
*—* JV—*oo *—*
S=0 5=0

= lim ((l-MTJ+x)(l)x,x) = \\x\\2- lim (M^+1(l)x,x)<oo,
JV—*oo JV—*oo

where the limit exists by (5). Thus (b) holds for k = 1 .
Let us prove now that if (b) holds for some k, 1 < k < max{ 1, m - 1},

and (a) holds for k - 1, then (a) also holds for k. Indeed, if we set as =

(MsT(Ap)x, x), we have as > 0 and as - as+x = (MT(A(j+l))x, x) > 0 for all

5, since A(r' > 0 and A(r+1) > 0 by Lemma 2. Thus {as}s is a nonincreasing

sequence of nonnegative numbers satisfying X^o5^-'^ < °° m virtue of the

induction assumption. By [8, Lemma 3.8] it follows that lim^ooS^ = 0,

which shows that (a) holds for k .

Conversely, if (a) holds for some k , 1 < k < max{ 1, m — 1}, and (b) holds

for k , then (b) also holds for k + 1 . Indeed,
oo

J2sk(MHA«+l))x,x)
j=0

N

= lim £V((1 - Mt)Mt(A(t])x , x)
(6) N^°° s=0

■ N

= lim    YV-(5- l)k)(MT(A{^)x, x) - Nk(M^+x(A{j])x, x)
JV—►oo     '    '

.5=1

+ ((l-yV/r)(A(/))x,x).

As lim/v_oo Nk(Mj+1(A<7-^x, x) = 0 by the induction hypothesis and sk -

(s — l)k < ksk~x , we infer from (6) that

oo

E^(A/f(A(/+1))x,jf)<oo
j=0

via (b) for k , which finishes the proof of Lemma 5.
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Let m be a positive integer. We define the function pm: 7/\_ -> Z+ by the

formula
(m + \a\- 1)!

^(Q)=    »!(„,-!)!    '        a € Z" '

Lemma 6. The numbers pm(a) satisfy the equation

(7) E(-nl'l«?7^WMa-/») = 0,        a*0.
|/?|<m ^'v '^|y'

Froo/. If A is a complex number such that |A| < 1, then we have the following

well-known series expansion

(8) (i-*r"=i;(m+£~iy.
Jfc=0 ̂ '

Therefore, if z = (zi,... , z„) G C satisfies Y%=\ \zj\ < Uwe can write

\ 7 = 1      / k=0  V 7  |y|<fc '' }>>0

Note also that

<10> (l-t') -Ei-ir*vl£m''-

By multiplying (9) and (10) we obtain the identity

a>0 |/?|<m H v IK|;

/}<a

whence we easily derive (7).

Consider the Hilbert space %" = l2CL\ , H) consisting of all functions /: Z£

->// such that

(ii) n/u2 = Ei^Q)i2<o°-

Clearly, ^ has a Hilbert space structure with the norm given by (11).   We

define on the space %* the operators Sj     by the formula

(12) (S{jm)f)(a) = [pm(a + eJ)-lpm(a)]x'2f(a + eJ), j=l,...,n,

where ej = (0, ... , 0, 1, 0, ... , 0) e Z"   with 1 on the yth position and

m > 1 is a fixed integer. Then 5(m) = (S\m), ... , S<m)) e S?{H)n is a cm.,

which is called the backwards multishift of type (n, m).

It is easy to see that 5Jm)* is given by

,„,, f 0 if a, = 0,
(13) (Sm)*f)(a) = \  .,,_,. ,11/2,. , ..   '        '

; i[Pm(a)   xpm(a-eJ)]xl1f(a-ej) if a, > 1 .
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984 V. MULLER AND F.-H. VASILESCU

Lemma 7. The backwards multishift 5(m) has the following properties:

(a) A$>0.

(b) Aja>0.
(c) lim^^oo Af|(m) (1) = 0 in ?/ze strong operator topology.

Proof. For every h e H and a e Z" we denote by ha e %? the function

ha: Z\ —► // defined by na(a) = « , ha(fi) = 0 if fi ^ a. The finite sums of
elements from the set {ha , a e Z\, h e H} form a linear subspace dense in

&.

Note that for all h e H and a e Z"  we have

c(«)/»A   ._([Pm(a)-lpm(a-p)]x'2ha^     if fi< a,

"      I 0 if £ £ a

and, by (13),

(14) S(m)*flS(m)l3na=\Pr»((*)~lPm(a-P)ha       if B < a,

\ 0 if /3 ̂  a.

Therefore, using (14) for fi = ej (j = 1,..., n),

&sl)ha = ha -   £  pm(a)~xpm(a - ef)ha
i<;<«

= fi-E. i aj   .)*.= , ,m~1 A.

whence we infer A^, > 0, and so (a) holds.

To prove (b) we observe that if h e H and a e Z" , a ^ 0, then

A{m)h   =   V (-nl"l_—_slm)*pS{m)Ph

\0\<m H'X iHU'

- v f-nw_w!      Pm(q-fi)h _0
~ |/fen W*-|*l)!    />*(a)    *a     U'

/3<a

by (14) and Lemma 6.

If a = 0, then A{™^ha = ha . Therefore A^J, > 0, which establishes (b).

Let again h e H and a e Z\. If s > \a\ and fi eZ\, \fi\ = s, then
fij > aj for some / e {1,...,«}. Thus S^*^S^m^ha = 0 by (14) and hence
Mglm) (1) ha — 0 by (2). Therefore limJ_00 Af|(m)(l)/ = 0 for every linear

combination of elements of the form ha , which is a dense subspace of W. As

ll-WJ(m)ll < 1 for aH 5 by Lemma 1, it follows that (c) also holds.

Let T e J?(H)" be a cm. such that A^' > 0 and A(™> > 0 for some integer

m > 1. We define an operator V: H -* %? by the relation

(15) (Vh)(a) = (pm(a)ATn])x'2Tah, heH,  aeZ"+.

Notice that for all heH and a e Z"  we have

(VTjh)(a) = (pm(a)A(rw))1/2FQ+^rt
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and

(S]m)Vh)(a) = [pm(a + ej)-xpm(a)]x'2(pm(a + ej)A{f)x/2Ta+e>h.

Hence

(16) VTj = Sjm)V,        j = l,...,n.

Lemma 8.  With the previous notation one has

||Fn||2 = ||«||2- lim(MsT(l)h,h)
s—VOO

for every heH.

Proof. We have

||F«||2=  ^2pm(a)(A{^Tah,Tah)

a€Z%

^   k\(m - 1)!   ^ a\    l
k=o        y '     \a\=k

= ±(k+mm\x)^M?)>>.k>
k=o v y

= ̂eC:™;1)^^'*-*'
£=0 v '

m—\   / xt        \

= \\h\\2- lim E       /;)(^+1(A^)A,A)

= ||/z||2- lim (M?+X(l)h,h)
JV—»oo

by Lemmas 4 and 5.

Theorem 9. Ler F e Sf(H)n be a cm., and let m > 1 be an integer. The

following conditions are equivalent:

(a) A^ > 0,  A(j] > 0, and lim^oo A/f(l) = 0 in the strong operator

topology.
(b) T is unitarily equivalent to the restriction of S^ to an invariant subspace.

Proof, (a) =*• (b) Consider the operator V: H —> %? defined by (15). It follows
from Lemma 8 that V is an isometry. Moreover, the space VH is invariant

under S™ by (16), and so (b) holds.
(b) => (a) Let K c %? be a (closed, linear) subspace invariant under 5(m).

If Tj = Sf"]\K and x e K, it is easily checked that

(4)x,x) = (A{skl)x,x),        k=l,2,....

In particular, A^ > 0 and A^ > 0 by Lemma 7.
Moreover, if Pn  is the orthogonal projection of M? onto K, as  T*a =

PKSlm)*a for all a, we have

lim ||Mf(l)x|| = lim \\PKMss{m)(l)x\\ < lim ||^(m)(l)x|| = 0,
S—>00 J—>00 5—'OO °

again by Lemma 7. This establishes (a).

We recall that a cm.  F e Jzf(H)" is said to be spherical isometry if A1^' = 0,

i.e., T*Tx+--- + T*nTn = l  (see [4]).
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986 V. MULLER AND F.-H. VASILESCU

Lemma 10. Let T e 2C(H)n be a cm. satisfying A^' > 0. Then there exists a

Hilbert space f%, a spherical isometry W e ^(JSf)" , and an operator Vo: H —►

3? such that V0Tj = WjV0(j=l,...,n) and

\\V0x\\2= lim(MT(l)x,x)
s—>ca

for every x e H.

Proof. We have 1 > MT(1) > Af£(l) > ••• > 0, so that limi_>00(Aff(l)x, x)
exists for every x e H.

Define on H the seminorm

(17) \\x\\2o=lim(MT(l)x,x).
s—»oo

Let N = {x e H, \\x\\o = 0}, and let 3H be the completion of the quotient
H/N with respect to the norm induced by (17), which is clearly a Hilbert space.

Let also V0: H -* JT be given by V0h = h + N (h e H). Then ||F0x||2 = ||x||2 =

lim^oo(Mf(l)x, x).
Let W\, ... ,Wn be the linear operators defined by

(18) Wj(h + N) = Tjh + N,        heH, j= l,...,n.

Since, by (2),

[\Tjh + N\\l= lim (MW)Tjh,Tjh)
S—*oo

n

< lim £(Mf(l)Ffcn, Tkh) = lim (MST+X(l)h, h) = ||n||2.
5—>00 *—• 5—>O0

k=\

It follows that each Wj is correctly defined and it can be continuously extended

to the whole space Jf; this extension will also be denoted by Wj . Note that

V0Tj = WjV0 , which follows from (18).
It remains to prove that W = (Wx, ... , Wn) is a spherical isometry. Indeed,

for every h e H we have

E II Wl(h + *)Ho = E}™m(l)Tjh, Tjh)

= J2(T*MsT(l)Tjh,h) = (MST+X(l)h,h),

y=i

whence

j=i

Theorem 11. Let T e 2C(H)n be a cm., and let m > 1 be an integer. The

following statements are equivalent:

(a) A(j!5 > 0 and A(rm) > 0.

(b) T is unitarily equivalent to the restriction of .S(m) © W to an invariant

subspace, where W is a spherical isometry on some Hilbert space J?.

(c) F is unitarily equivalent to the restriction of S^m) © jV to an invariant

subspace, where N = (N\, ... , N„) and Nx, ... , Nn are commuting normal

operators on a Hilbert space 3H' satisfying N*NX -\-h N* = 1.
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Proof. (a)=> (b) Let V: H -> %? be the operator defined by (15) and let
3F, V0: H -» 3t and We &(3F)n be given by Lemma 10. If we set Vxh =
Vh © V0h for each heH, then Vx: K —► SF®3F is an isometry, which satisfies
VxTah = (S^a © Wa)Vxh for all a e Z% and h e H by (18) and Lemmas 8

and 10.
(b) => (c) By a result of Athavale [4], the spherical isometry W e ^f(K)"

has an extension jV = (Nx, ■■■ , Nn) e J5f(JF')n , where JF' is a Hilbert space

containing 3F, Nx, ... , Nn are commuting normal operators on 3F' satisfying

N*NX + ■■■ + N*N„ = 1, and Nj\H = Wj (j = I, ... , n). This gives (c).

(c) => (a) We have A^'L, > 0 and AjJ, > 0 by Lemma 8. Further A^ = 0,

and so A(*> = (1 - MN)m-lAN] = 0. Thus A^m)@N > 0 and A™@N > 0. As

these inequalities remain true for any restriction of 5(m) © jV to an invariant

subspace, (a) is established.

Remarks. 1°. The case m = n = 1. This is the classical Sz.-Nagy-Foia§

dilation theory [9]. In this case, A^' = 1 - T*TX is the square of the de-

fect operator and A^ > 0 holds if and only if ||7i|| < 1. The condition

lim^oo Mj(l)x = 0 for every x e H reduces in this case to the Co condition

lim^oo Ff x = 0 (x e H).
2°. The case n = 1 , m > 2. This is the case of w-hypercontractions of

Agler [1] (cf. also [8]).
3°. The case n > 2, m — 1. This case has been studied by Drury [7] (see

also [5]).
4°. The case m = n . This case has been studied in [10], (see also [4]), and

is particularly interesting since one has the additional property A^(> = 0, i.e.,

S("]* is a spherical isometry. Indeed, if h e H and aeZJ, then, with the

notation of Lemma 8,

E^5fx = E-rrTT^= feffr1) *--*..j^  J    J j^p„(a + ej) \j^\a\ + nj

and so the same equality holds for all / e SF. By the above-mentioned result
of Athavale [4], it follows from Theorem 11 that every cm. T e £?(H)n

satisfying A^' > 0 and A^' > 0 has a spherical dilation, i.e., there exist a

Hilbert space K D H and a cm. N = (Nx, ... , N„) e Jzf(K)n consisting of

normal operators such that N*Nx + ■ ■ ■ + jV*jV„ = 1 on K and Ta = PHNa\H

for all a e Z" , where PH is the orthogonal projection of K onto H. So in

this case a complete analogy with the Sz.-Nagy-Foias theory might be developed

(see [10]).

In particular, for a cm. F e 5?(H)n such that A^] > 0, A(^ > 0, and

lim.s_,00Mj.(i)x = 0, x e H, we derive the existence of a contractive unital

algebra homomorphism <Pr: H°°(B) -> J?(H) as in Theorem 4.20 from [10].

5°. If m - n + 1, then the multishift operator 5,jm)* (j = I, ... , n) is

unitarily equivalent to the multiplication by the variables Zj (j = 1, ... , n) on

the Bergman space. The Bergman space consists of all analytic functions in the

open unit ball B of C, which lie in L2(B, dv), where v is the normalized

Lebesgue measure.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



988 V. MULLER AND F.-H. VASILESCU

Analogously, for m > n , 5Jm)* (j = I, ... , n) is unitarily equivalent to the

multiplication by Zj in the weighted Bergman space, which consists of all ana-

lytic functions in B that lie in L2(B, dp), where dp = cm(l-\z\2)m~n~xdv(z)

and cm is a normalization constant chosen such that p(B) = 1 (see, e.g., [2,

5]).

6°. Condition AXT' > 0 is necessary but not sufficient to ensure the existence

of a spherical dilation for a cm. T e ^f(H)" if n > 2 (cf. also [7]). Indeed,
with K and N as in 4°, we have

n n n

Y,(T*TjX,x) = Y,(PhNjX, P„NjX) < EW*. NjX) = ||x||2
7=1 j=\ 7=0

for each x e H, i.e., Aj] > 0. Similarly, A^i > 0. On the other hand, if

1 < m < n , with S(m), h , and hQ as in Lemma 7, one deduces from (12) and

(13)that

(A(1)   h    h)- I 1-V    /?m(Q)     I llnll2(As(m),na,na)- ii    2-,Pmfa + e.)J\W\

l        ^ m + \a\ J "   "        \a\ + m "

if n / 0. Hence S,(m) cannot have a spherical dilation.

7°. If A(r' > 0, then the joint (Taylor) spectrum o(T) is contained in the

closed unit ball of B of C" . To prove this, denote by

on(T) = IxeC, inf j E ll(F,-A,)x||, xeH,  ||x|| = lUo|

the joint approximate point spectrum of T.

If A € CTtj(F), then there exists a sequence {xk}k c H, \\xk\\ = 1 with

limt_oo(fl-- kt)xk = 0 (J = l,...,n) and 1 = ||xj| > £"=, ||F,xfc||2 -

E"=i l^/i2. So MF) c F and, by [6], a(T) c F (this is true for any rea-
sonable joint spectrum).
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