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(Communicated by Palle E. T. Jorgensen)

ABSTRACT. An analogue to the Sz.-Nagy-Foias dilation theory is presented for
several commuting operators on a Hilbert space.

The dilation theory of Hilbert space contractions, a reference of which is
the excellent monograph [9], has not yet found a complete counterpart valid
for several (commuting) Hilbert space operators. Apart from the results of this
type already contained in [9] and other results of general character (i.e., Arve-
son’s or Stinespring’s extension theorem), there are not too many contributions
specialized to the multiparameter dilation theory. Among these contributions,
we quote the works [7, 3-5, 10], which are closer to our topics.

The aim of this paper is to analyse some positivity conditions for commut-
ing multioperators, which ensure the unitary equivalence of these objects to
some standard models consisting of backwards multishifts. We emphasize, in
particular, a situation that seems to satisfy the requirements of an appropriate
extension for the dilation theory of Hilbert space contractions and that exploits
the results already obtained in [4, 10].

Our finer methods also imply better statements of some assertions from [10]
and provide an answer to Question 4.5 from [5].

Let n > 1 be an integer, and let Z” be the set of all n-tuples of nonnegative
integers (i.e., the multi-indices of length n). If a = (o, ..., a,) € Z", we
set, as usual, |a| =a;+---+a, and o! = a;!---a,!. For a, f € Z" we write
at+pf=(ar+pi,...,an+ Pn),and a < B whenever o; < B; (i=1,...,n).

Let H be a Hilbert space, and let .#(H) be the algebra of all bounded
linear operators on H. An element T = (T, ..., T,) € Z(H)" such that
Ty, ..., T, mutually commute will be designated as a commuting multioperator
(briefly, a c.m.).

Let T € Z(H)" be a c.m. We define the operator M7: ¥ (H) — % (H) by
the formula

(1) Mr(X)=) T/XT,,  XeZ(H).
i=1
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Note that
S! *Q a
2) ;(X):ZJT XT*, s=0,1,2,....
a€Zl}
|a|=s

Here, as usual, 7* = T;"---T;" and T* = (T}, ..., T;). It is clear that
M3(X) > 0 whenever X >0.
We also define

(3) A = (1-Mp)™1), m=0,1,2,....

We have
A = 3= ("))
P J

!
4 AP = S (—el e,
4) = 2 Y ey

Lemma 1. Let T € £ (H)" be a commuting multioperator. Then A(;) >0 if
and only if |Mr|| <1.
Proof. If A(T” >0 (e, I7T1 +---+ T,;T, < 1), a direct estimate shows that

n

Y (XTix, Tiy)

i=1

" 12 /o, 1/2
< Xl (Z ”Tix||2> (Z IITinIZ) < XAy 1
i=1

i=1

n
{Mr(X)x, y)| = <IXIY - ITex | I Tyl

i=1

forall X € Z(H) and x,y € H. Hence ||M7||<1.
Conversely, if |Mr| <1, then ||M7(1)|| =|T;Ti+---+T,T,|| < 1, whence
T;Ti+- -+ T;T, < 1.

Lemma 2. Let T € Z(H)" be a c.m., and let m > 1 be an integer. The
following conditions are equivalent:

(a) sup, [|M5(1)|| < oo and AV > 0.

(b) AY >0 and Ay > 0.

(c) A(Tk)EOfor k=1,...,m.
Proof. The implication (¢) = (b) is clear and the implication (b) = (a) follows

from Lemma 1. We prove (a) = (c).
Suppose condition (a) is satisfied. We may assume m > 2. Let x € H. For

s=0,1,2,... let a; = (M}(A(T'"_”)x, x). We have

a5 — a1 = (M3(1 — M7)(AY )x, x) = (M3(A™)x, x) > 0
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STANDARD MODELS FOR SOME COMMUTING MULTIOPERATORS 981

as A(T'”) > 0. Thus a; is a nonincreasing sequence of real numbers. Further

N
S - M) ME(ATP)x, x)
s=0

=AY, x) — (MY (AT P)x, x)|

< (1 + stslpllM%(l)ll) 11 = M)™ 2] x> < oo

We conclude that a;, > 0 for every s. In particular, ag = (A(T""”x, x) >0,

hence AY"™" > 0.
The assertion (c) now follows by a simple induction.

Corollary 3. If T € Z(H)" is a c.m. such that A(Tl) >0 and A(T'") >0 for some
integer m> 1, then 0 <A <AV <...<AP <1,

Proof. For k = 1,2,...,m— 1, we have A% — A%*D — (1 — Mp)k(1) -
(1 — Mp)k+1(1) = M7(1 — Mr)*(1) > 0 as (1 —MT)"(I) "’ >0 by Lemma
2.

Lemmad. Let T € £ (H)" beacm., andlet m > 1, N > 1 be integers. Then

N m—1 .

s+m-—1 N+j ~
Py N A Gl
s=0 j=0
Proof. We prove the assertion by induction with respect to m. If m =1, we
have

N N
S MEAY =T ME(1 - Mp)(1) = 1 - MP*A(1).
s=0 s=0

Now suppose that the assertion holds for m — 1. Then

N s+m—1 s A(m)
Z m-—1 TAT

s=0
N
s+m—1 1

N
s+m— s+m-—2 _
=47 ”*Z[( ) ()
<N+m 1) MA+IAM=D
T
m
> )

N
s+ 2 m-1) _(N+m—1\ 1 niirim-1)
SE—(:)( m-2 JMrbr -( m—1 )MT+AT

m—1 .
> (V7 ),
I

by the induction hypothesis.
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982 V. MULLER AND F.-H. VASILESCU

Lemma5. Let T € Z(H)" be ac.m. such that A(T” >0 and A(T'”) > 0 for some
integer m > 1. Let also x € H.

(a) The limit limy_..o N*(M¥(A%))x, x) exists forall k=0, ..., m—1
and is null for 1 < k <max{l, m —1}.
(b) We have 22 sk=1(M5(A%)x, x) <00, k=1,...,m.

Proof. The assertions will be proved simultaneously by induction with respect
to k. Since A(T]) >0 and M}VA(T” > 0 for each integer N > 1, we have

(MF(1)x, x) = (M (D)x, x) = (MF(A7)x, x) 2 0.
Thus {(MY(1)x, x)}n is a nonincreasing sequence of nonnegative numbers,
and so the limit
(5) A}im (M¥(1)x, x)

exists. Hence (a) holds for k =0.
Note also that

[ N
D (MF(A)x, x) = lim Y (1 - Mr)M(1)x, x)
s=0 s=0

= lim (1= M{*)(1)x, x) = ]2 - lim (M7 (1)x, x) < 0,

where the limit exists by (5). Thus (b) holds for k = 1.

Let us prove now that if (b) holds for some k, 1 < k < max{l,m — 1},
and (a) holds for k — 1, then (a) also holds for k. Indeed, if we set a; =
(M%(A(Tk))x, x),we have a; >0 and a; —a,,| = (MT(A(Tk‘L”)x , x) >0 for all
s, since A(Tk) >0 and A(Tk+” >0 by Lemma 2. Thus {a;}, is a nonincreasing
sequence of nonnegative numbers satisfying > oo, s ~'a; < oo in virtue of the
induction assumption. By [8, Lemma 3.8] it follows that lim,_. ska, = 0,
which shows that (a) holds for k.

Conversely, if (a) holds for some k, 1 <k < max{l, m— 1}, and (b) holds
for k, then (b) also holds for k + 1. Indeed,

oo
S sk (M3AF ), x)

s=0
N
= li k(1 = M7 )MS(A%))x
) dim Szos (( r)M7 (A7) X, x)
N
= lim |35 - (s - DY (Mr(AF)x, x) = NE MY+ A )x, x)

N—o00
s=1

+((1 = Mr)(A¥)x, x).

As limy_o N*(MN*'(A%))x, x) = 0 by the induction hypothesis and s* —
(s — 1)* < ksk=' we infer from (6) that

3 S MEAFT)x, x) < o
s=0
via (b) for k, which finishes the proof of Lemma 5.
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Let m be a positive integer. We define the function p,,: Z" — Z, by the
formula
(m+|a) - 1)!

Am-1 * €L

Pm(a) =

Lemma 6. The numbers pn(a) satisfy the equation

) > ()P G mpm(a— £ =0, a0,
p<a

Proof. If A is a complex number such that |A| < |, then we have the following
well-known series expansion

®) a-pm=3 ("R,
k=0
Therefore, if z =(z,..., z,) € C" satisfies Z;;l |zj] < 1, we can write
"\ = k- k!
ORI EED o2 D o (R D OR- B SPMOR,
Jj=1 k=0 lyi<k Y 7>0
Note also that
- m!
(10) (I—Zz,-) = (—1)"”‘——72/j
2 o Bm 1B

By multiplying (9) and (10) we obtain the identity

Z Z l)l l |B|)|pM( ﬂ)za = l,

a>0 |BI<m
B<a

whence we easily derive (7).

Consider the Hilbert space /# = [2(Z" , H) consisting of all functions f: Z"
— H such that

(11) I =" 1f (@) < oo.

a€Z’]

Clearly, # has a Hilbert space structure with the norm given by (11). We
define on the space # the operators Sj(.'") by the formula

(12) (S 1)(@) = [pm(a+e)  pm(@)]'fla+e),  j=1,...,n,

where e¢; = (0,...,0,1,0,...,0) € Z} with 1 on the jth position and
m > 1 is a fixed integer. Then S™ = (S, ..., S'™) e Z(H)" is a c.m,,
which is called the backwards multishift of type (n, m).

It is easy to see that SJ("')* is given by

0 ifa; =0,

(m)* _
13 & f)(a)’{[pm(a)-'pmm—e;)]‘/zf(a—e» ifa,>1.
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984 V. MULLER AND F.-H. VASILESCU

Lemma 7. The backwards multishift S\"™) has the following properties:
(@) Al) > 0.
(b) Af 20.
(¢) limy_,oo M5, (1) = O in the strong operator topology.

Proof. For every h € H and o € Z} we denote by h, € Z the function
ho: Z7 — H defined by ho(a) = h, ho(B) =0 if B # . The finite sums of
elements from the set {h,, a € Z, h € H} form a linear subspace dense in
2.

Note that for all € H and o € Z/} we have

SmBp, = { E)pm(a)_l” m(a— ) Phep if f<a,

iffga
and, by (13),
-1 - pPh, ff<a
14 (B gmB Y — { pm(@) " (e = F)he <a,
(149 SRS 0 ifsa.
Therefore, using (14) for f=¢; (j=1,...,n),
A vha=ha— 3" pm(@) ™ pmlex — €))ha
15,'50n
a;#

n
a; m—1
=|1- e R - -
( ;|a|+m—l)ha |a|+m—lha’

whence we infer Ag(z,,, > 0, and so (a) holds.
To prove (b) we observe that if € H and a € Z", a #0, then

(m) p (m)*B g(m)B
Agimha wzgm( DA Iﬂl)'S Smep,
= _pe__m_ pmla—$), _
2 OV TR pia) =
B<a

by (14) and Lemma 6.
If a =0, then As(m)h = h, . Therefore A('(",,?, > 0, which establishes (b).
Let again h € H and a € Z} . If 5 > |a| and f € Z, |B| = s, then
B;j > a; forsome je{l,..., n}. Thus S(M*ES(mMEp, =0 by (14) and hence
M., (1) hy = 0 by (2). Therefore lim;_,cc Mg, (1)f = 0 for every linear
combination of elements of the form A, , which is a dense subspace of #Z . As
| M5, || < 1 forall s by Lemma 1, it follows that (c) also holds.

Let T € Z(H)" be a c.m. such that A(T]) >0 and A(Tm) > 0 for some integer
m > 1. We define an operator V: H — # by the relation

(15) (Vh)(a) = (pm(a)AY)2Th,  heH, acZl.
Notice that for all € H and o € Z/} we have
(VTih) () = (pm(a)AT") 2T+ h
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and

(S Vh)(@) = [pm(a+ €)™ pm(@)] 2 (pm(a + e)AT") 2T .
Hence
(16) VI =8"v, j=1,

Lemma 8. With the previous notation one has
IVAI* = ||a|? — lim (M7(1)h, h)

for every he H.
Proof. We have

VA2 =S pm(a) AT Th, Th)

a€Zl}
_ k+m—1 k! (m) o o
_z © O AT h, Th)
k=0 la|=k

_ (’”’” ) (MEA™)h by

k=0
N
Y k+m-1 K A(m)
= Jim 35 (") arfagn m
k=0
. N+ '
= - gim 5 (V1 M) apapon,

Jj=0
= ||A|I* = lim (MY (1)h, h)
N—-oo

by Lemmas 4 and 5.
Theorem 9. Let T € £ (H)" be a c.m., and let m > 1 be an integer. The
following conditions are equivalent:

(a) A(T') >0, A(T'”) > 0, and limy_., M3(1) = O in the strong operator
topology.

(b) T is unitarily equivalent to the restriction of SU™ to an invariant subspace.

Proof. (a) = (b) Consider the operator V: H — # defined by (15). It follows
from Lemma 8 that V' is an isometry. Moreover, the space V' H is invariant
under S by (16), and so (b) holds.

(b)= (a) Let K Cc # be a (closed, linear) subspace invariant under S .

If T, = S§'"’|K and x € K, it is easily checked that
APx, x) = (a8 x, x),  k=1,2,....

In particular, A(T” >0 and AT'") >0 by Lemma 7.
Moreover, if Px is the orthogonal projection of # onto K, as T** =
PgS™* for all a, we have

lim ||Mz(1)x|| = lim ||Pg Mg, (1)x]| < im || Mg, (1)x|| =0
§—00 §—00 §—00
again by Lemma 7. This establishes (a).

We recall thatac.m. T € Z(H)" is said to be spherical isometry if A(T” =0,
e, YTy +---+T;T, =1 (see[4]).
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986 V. MULLER AND F.-H. VASILESCU

Lemma 10. Let T € & (H)" be a c.m. satisfying A(T” > 0. Then there exists a
Hilbert space % , a spherical isometry W € £ (% )", and an operator Vy: H —
Z such that WWT; =WV, (j=1,...,n) and

1Vox|l? = lim (M3 (1)x, x)

forevery x € H.
Proof. We have 1 > Mr(1) > M2(1) > --- > 0, so that lim;_,o(M5(1)x, x)
exists for every x € H.

Define on H the seminorm

(17) Ix[I§ = lim (M3(1)x, x).

Let N ={x € H, |x|lo =0}, and let Z be the completion of the quotient
H/N with respect to the norm induced by (17), which is clearly a Hilbert space.
Letalso Vp: H — % begivenby Voh = h+N (h € H). Then ||[Vox|? = || x||3 =
limg_, oo (M3(1)x, x) .

Let Wy, ..., W, be the linear operators defined by
(18) Wi(h+ N)=Tih+ N, heH, j=1,
Since, by (2),

1Tk + NII§ = lim (M7(1)Tjh, T;h)
< lim Z (MF()Tich, Tih) = lim (MY ()h, by = |3,

It follows that each W is correctly defined and it can be continuously extended
to the whole space %7 ; this extension will also be denoted by W, . Note that
WT; = W;Vy, which follows from (18).

It remains to prove that W = (W, ..., W,) is a spherical isometry. Indeed,
for every h € H we have

n n
P LACERYIFE Zsliggo< +()T;h, T;h)
Jj=1 J

_Z (TEME()Tjh, hy = (M5 (1)h, h),

whence

ZII i(h+ N)IIg = IA15.

Theorem 11. Let T € £ (H)" be a c.m., and let m > 1 be an integer. The
following statements are equivalent:

(a) AY >0 and Ay > 0.

(b) T is unitarily equivalent to the restriction of S"™ @ W to an invariant
subspace, where W is a spherical isometry on some Hilbert space % .

(c) T is unitarily equivalent to the restriction of S ® N to an invariant
subspace, where N = (N, ..., N,) and Ny, ..., N, are commuting normal
operators on a Hilbert space %' satisfying Ny Ny +---+ N; = 1.
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Proof. (a)= (b) Let V: H — # be the operator defined by (15) and let
F,Vo: H—- X and W € Z(Z)" be given by Lemma 10. If we set Vih =
VheVyh foreach h € H,then Vi: K — Z &% is an isometry, which satisfies
i T2h = (St @ W)V h for all « € Z!' and h € H by (18) and Lemmas 8

and 10.

(b) = (c) By a result of Athavale [4], the spherical isometry W € Z(K)"
has an extension N = (N, --- , N,) € Z(Z")", where %" is a Hilbert space
containing .#', Ny, ..., N, are commuting normal operators on .#" satisfying

NNy +---+N;N,=1,and Nj|H=W; (j=1,...,n). This gives (c).

(c) = (a) We have Ag'(m) >0 and A(S'('f,,, >0 by Lemma 8. Further A%) =0,

and so Ay = (1 - My)""'AY = 0. Thus A, . >0 and Ay >0. As
these inequalities remain true for any restriction of S @ N to an invariant
subspace, (a) is established.
Remarks. 1°. The case m = n = 1. This is the classical Sz.-Nagy-Foiag
dilation theory [9]. In this case, A(Tl) = 1 - T;T; is the square of the de-
fect operator and A(T” > 0 holds if and only if ||77]] < 1. The condition
lim,_, o M3.(1)x = 0 for every x € H reduces in this case to the Cp condition
limg_.o, T{x =0 (x € H).

2°. The case n = 1, m > 2. This is the case of m-hypercontractions of
Agler [1] (cf. also [8]).

3°. The case n > 2, m = 1. This case has been studied by Drury [7] (see
also [5]).

4° . The case m = n. This case has been studied in [10], (see also [4]), and
is particularly interesting since one has the additional property Ag(z,). =0, ie,
S(* is a spherical isometry. Indeed, if # € H and o € Z", then, with the
notation of Lemma 8,

n n
smgmrp N~ p =h,,
; I pn (a + e] a

and so the same equality holds for all f € /# . By the above-mentioned result
of Athavale [4], it follows from Theorem 11 that every cm. T € Z(H)"
satisfying A(Tl) > 0 and A(T") > 0 has a spherical dilation, i.e., there exist a
Hilbert space K D H andacm. N = (Ny,..., N,) € Z(K)" consisting of
normal operators such that NfN,+---+ N;N, =1 on K and T* = PyN°*|H
for all « € Z7, where Py is the orthogonal projection of K onto H. So in
this case a complete analogy with the Sz.-Nagy-Foias theory might be developed
(see [10]).

In particular, for a cm. T € Z(H)" such that A(T') >0, A(T") > 0, and
lim;_o, M3(1)x = 0, x € H, we derive the existence of a contractive unital
algebra homomorphism ®r: H*(B) — £ (H) as in Theorem 4.20 from [10].

5°. If m = n + 1, then the multishift operator SJ(.'”)' (G=1,...,n) is
unitarily equivalent to the multiplication by the variables z; (j=1, ..., n) on
the Bergman space. The Bergman space consists of all analytic functions in the
open unit ball B of C", which lie in L?(B, dv), where v is the normalized
Lebesgue measure.
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Analogously, for m > n, SJ(-'")* (j=1,..., n) is unitarily equivalent to the
multiplication by z; in the weighted Bergman space, which consists of all ana-
lytic functions in B thatliein L%(B, du), where du = cn(1-|z|?)" "~ 'dv(z)
and ¢, is a normalization constant chosen such that u(B) =1 (see, e.g., [2,
5]).

6° . Condition A(Tl) > 0 is necessary but not sufficient to ensure the existence
of a spherical dilation fora c.m. 7T € Z(H)" if n > 2 (cf. also [7]). Indeed,
with K and N asin 4°, we have

n n n
Y AT Tjx, x) =Y (PuNjx, PuN;x) <> (Njx, Njx) = x|
j=1 j=1 j=0

for each x € H, ie., A > 0. Similarly, A"} > 0. On the other hand, if

1<m<n,with S h and h, asin Lemma 7, one deduces from (12) and
(13) that

1) |, = pmla) 2
(AS(m)'ha ) ha) - 1 = pm(a + e_]) “h”

n
aj+1 m-—n
= I_Z—j—— l|a))? = Wllhllz <0

if h# 0. Hence S™ cannot have a spherical dilation.
7°. If A(71) > 0, then the joint (Taylor) spectrum o(7) is contained in the
closed unit ball of B of C". To prove this, denote by

n
0.(T) = {,1 eC", inf{z I(T: = ADx|l, xe H, ||x| = 1} = 0}
i=1
the joint approximate point spectrum of 7 .

If A € 0,(T), then there exists a sequence {xix}x C H, |xx|| = 1 with
limy oo(Ti = A)xx = 0 (i = 1,...,n) and 1 = |Ix| > X0, I Tixl* —
% 14i*. So 0(T) C B and, by [6], o(T) C B (this is true for any rea-
sonable joint spectrum).
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