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ABSTRACT

Standard penetration tests (SPT) are used to approximate soil properties including the 

consistency, cohesion and the internal angle o f  friction. Due to the frequency o f cemented 

sands, gravel and clay in the Las Vegas Valley, the generally accepted SPT correlations vary 

from actual local conditions. The following discussion will present SPT correlations, based 

on field test data, for consistency, cohesion and the internal angle o f  friction, specifically for 

the Las Vegas Valley. The Las Vegas soil correlations are compared to general soil 

correlations.

Sampling methods other than the Standard Penetration Test are used to estimate soil 

characteristics. The STP uses a 1.375 inch inside diameter sampler with a 150# hammer 

dropped 30 inches. The driven sample method, often used in Las Vegas, utilizes a 2.625 inch 

inside diameter sampler with a 350# hammer dropped 30 inches. Correlations, relative to Las 

Vegas soils, between the two tests are discussed.
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CHAPTER 1

INTRODUCTION  

Purpose o f Discussion

The population in the Las Vegas Valley increased from approximately 275,000 inhabitants 

in 1970 to approximately 1,000,000 residents in 1995. The rapid population growth 

required additional development and infrastructure which, in turn, led to an increase o f the 

local engineering population. Needless to say, the majority o f the engineers arrived from 

outside the Las Vegas Valley.

In practice, the author encountered engineers who often use blow count values, N, to 

estimate local soil properties based on ranges displayed in generalized charts. The purpose 

o f  this discussion is to determine if  correlations are present between corrected blow count 

values, the internal angle o f friction and the cohesion for the different soil types and 

consistencies encountered in the Las Vegas Valley.



Objective

The objective o f this discussion is to compare the correlations derived for Las Vegas soils 

to general soil correlation tables.

Methodology

The following steps are taken in an effort to establish soil correlations for Las Vegas soils 

and to compare them to the general soil correlation tables:

Background

Discuss subsurface soil sampling 

Discuss Standard Penetration Test corrections 

Discuss existing general correlation tables 

Discussion o f Las Vegas Data Base

• Analysis o f Data

Discuss the chronology of analysis 

Analyze soil from two Las Vegas regions

• Conclusions



CHAPTER II

BACKGROUND

Subsurface Soil Sampling

Subsurface soil sampling is an integral step in any construction process requiring foundations 

or facilities in contact with soil. Soil sampling is used to provide insight to the following:

• How the soil reacts under stress and loading conditions.

The location o f the ground water table.

• Soil stratification.

• Provide material for laboratory testing.

Several methods for obtaining soil samples are commonly used including the Standard 

Penetration Test (SPT), Cone Penetration Test (CPT), Field Vane Testing (FVT), Bore hole 

Shear Test (BST) and the Pressuremeter Test (PMT). The standard penetration test is the 

most economical and widely used sampling method.
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The CPT pushes a cone into the soil at a constant rate. The resistance to the penetration and 

the frictional resistance o f  the casing to the soil surrounding it are measured. The CPT may 

be used for all soils except very course granular soils. Bore holes are not required for the 

test.

The VST is standardized as ASTM D 2573 and is used to determine the in-situ undrained 

shear strength o f clay soils. The VST is most effective in soft clays. The vanes o f the testing 

device are pushed into the soil at the bottom o f the bore hole and are then rotated. The 

torque can be related to the undrained strength o f  clayey soil.

The BST incorporates a device which expands against the sides o f  the bore hole. The 

incremental test results are used to plot M ohr diagrams for confined-drained tests. The BST 

is best utilized for silty soils.

The PMT, similar to the BST, utilizes a cylindrical device which incrementally applies 

pressure to the sides o f the bore hole. The PMT may be used for all soil types.

The following discussion will focus on the Standard Penetration Test and a similar split 

spoon method known as the Driven Sample Test (DS), with regard to Las Vegas Valley soils.
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Split Spoon Soil Sampling

Standard Penetration Test

The SPT, developed in 1927, was standardized in 1958 as ASTM  D 1586. Because o f  its 

simplicity, economy and the availability o f equipment necessary to perform the test, the SPT 

is used throughout the world and is the most commonly used sampling method in North and 

South America.

The SPT is conducted using a split-spoon sampler. The typical split-spoon sampler consists 

o f  a barrel shoe, or split barrel or tube, a solid sleeve and a coupling at the top. The coupling 

attaches the assembly to the drill rod o f the drilling rig or apparatus. When the sampler is 

removed from the bore hole, the halves o f the split barrel are separated and the soil sample 

is removed.

The sampling is conducted by driving the split barrel sampler into the ground with hammer 

blows on the top o f the drill rod. The Standard Penetration Test incorporates the following 

parameters:

• A 140 pound hammer dropped 30 inches.

A split barrel sampler with an inside diameter o f  1 3/8 inches and an outside diameter 

o f  2 inches.
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The num ber o f hammer blows for three (3) consecutive six inch intervals are 

recorded. The number o f blows required for the last 12 inches is referred to as the 

standard penetration number, N. The initial 6 inches are typically disregarded due 

to potentially disturbed conditions.

Uses o f  the Standard Penetration Test

The SPT is used to develop a variety o f correlations including; liquefaction assessment and 

susceptibility, bearing capacity, relative density, modulus o f elasticity and the settlement and 

end-bearing point and shaft resistance o f piles.

Driven Sample Test

Due to the frequency o f cemented soils in the Las Vegas Valley, split-spoon sampling 

incorporating a larger sampler and hammer with a greater mass is in common practice. The 

larger sampler also allows for better "undisturbed" samples o f cemented or very dense soils.

The DS method specifically discussed in this thesis incorporates a 340 pound hammer 

dropped 30 inches. The sampler has an outside diameter o f 3.25 inches and an inside 

diameter o f 2.625 inches. With regard to this discussion, the larger sampler and hammer 

were typically used with the same drilling rig which conducted the standard penetration tests.
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Standard Penetration Test Corrections

In the early years o f  penetration testing and even after the method was standardized, great 

discrepancies in the comparison o f N values between adjacent bore holes led to the analysis 

o f  the sampling process. The continuing problem o f  non-reproducibility o f  data provided 

further difficulties. The inconsistencies were discussed by Gibbs and Holts (1957) who 

hypothesized the difficulties were the effects o f overburden pressure and drill rod length. De 

M ello (1971) then provided the first comprehensive document discussing energy loss as a 

factor in sampling inconsistencies. Sampling inconsistencies are generally attributed to 

energy loss, effective overburden pressure, and site characteristics such a particle size, soil 

aging and overconsolidation.

Energy Loss

Input driving energy and its dissipation around the sampler into the surrounding soil is the 

principal factor in the wide range o f N values encountered while trying to reproduce 

sampling results (Bowles 1988). Total energy loss is attributed to the actual input energy 

dissipation before hammer contact in addition to the energy loss encountered after contact 

is made between the hammer and the drill rod.

In a effort to normalize SPT values, the actual input energy o f  various testing methods and 

equipm ent is used as a base for comparison. For world wide comparison purposes, the



commonly agreed upon input energy, Er, also referred to as the rod energy ratio or energy 

ratio, o f 60 % o f  free fall energy is typical. Almost all researchers and engineers agree that 

for comparison purposes, an input energy o f 60 %  o f the theoretical free fall energy, should 

be considered as a reference (DeCourt 1992). The corresponding blow count correction is 

symbolized by N 60. A higher value o f N 70 has been suggested by Riggs (1986) based on a 

focus on ASTM D 1586 standards and procedures with the use o f  a safety hammer in North 

America. Because o f equipment and testing method assumptions, the conservative approach 

o f  N 60 will be used for the duration o f this paper. A thorough discussion o f this topic has 

been provided by Decourt, Skempton and others as shown in Table 1.

Equipm ent type and method o f testing largely determine the actual input energy, which is 

symbolized as, Ea. Hammer type, either safety or donut, and the method o f  release, such as 

the auto-trip method or the rope-cathead method, may lead to differences between testing 

results. A safety hammer is a weighted cylinrical sleeve, enclosed at the top, which 

surrounds a guide rod. The guide rod then couples to the top o f the drill rod.

In North America, the most common sampling technique utilizes the rope-cathead method 

incorporating a safety hammer. This is the method used to conduct the borings discussed 

in this paper. Additional variable factors o f the rope-cathead method include; cathead 

diameter, type and condition o f the rope, and the number o f rope turns around the cathead. 

Correction factors for these discrepancies are presented in Table 2.
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Table 1, Author and subject reference list t

Overburden pressure and

Driving Energy

Length and W eight o f Drill Rod

Aging

Particle Size and Shape

Gibbs and Holtz (1957)
M eyerhof (1957)
D'Appolonia et al. (1968)
De Mello (1971)
Biegamousky and M orcuson (1976) 
Clayton (1985)
Skempton (1986)
Liao and Whitman (1986)
Leonards et al. (1980)
Schmertmann (1975)
Schmertmann and Palacios (1979) 
Kovacs and Salomone (1982)
Riggs et al. (1983, 1986)
Robertson et al. (1983)
Skempton (1986)
Gibbs and Holtz (1957)
Mclean et al. (1975)
Schmertmann and Palacios (1979) 
Seed (1985)
Skempton (1986)
DeCourt et el. (1992)
S eed (1979)
Mitchell and Solymar (1984) 
Skempton (1986)
Tokimatsu (1986)
DeCourt et al. (1992)
Gibbs and Holtz (1957)
De Mello ( 1971)
Holubec and D A ppolonia (1973)

t  Table derived from Skem pton (1986) and D eCourt (1992).
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Table 2, Standard Penetration Test Corrections t

Hammer Input Energy (Ea), %

Hammer Type: Donut Safety

Rope Cathead Auto Trip Rope Cathead Auto Trip

Country:

U SA /N .
America

45 60-80 80-100

Japan

UK

67 78

50 60

China 50 60

Hammer energy ratio correction. r | ) 
t | j = Er/Ea

Er = 60%

Rod Length Correction. t]2 
Length > 30 ft. r |2= 1.00

20-30 ft. = 0.95
10-20 ft. = 0.85
0-1 Oft. =0.75

Sampler correction. r |3 
Without Liner r |3= 1.05
With Liner

Dense Sand = 0.80
and Clay
Loose Sand = 0.90

Bore hole Correction,
Hole Diameter

2.5"-5" t]4= 1.00
5"-6" =1.05
6"-8"___________= 1.15____________________________

t  Table derived from  Skem pton (1986), Bowles (1988) and D eC ourt (1992).
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The correction for the energy ratio may be computed based on the following equation.

(Er)(N l) = (Ea)(N) (2-1)

N1 = ( t i 1)(N) 

r| | = Er/Ea

Er = Rod energy ratio o f 60 % , as discussed above 

Ea = Actual hammer energy o f sampler, from Table 2 

N1 = N 60 as discussed above 

N = Field determined N value

After the hammer makes contact with the drill rod, additional energy is dissipated into the 

sampler and the surrounding soil. The dissipation is the result o f  three main factors; rod 

length, bore hole diameter , and the use o f a liner in the sampler.

Rod length does not seem to have a significant effect if  the length o f  the rod is greater than 

30 feet and with N values greater then 30 (Bowles 1988). Corrections for rod length, r |2, are 

presented in Table 2.

Further energy is dissipated by the sampler at the bottom of the bore hole relative to the size 

o f the bore hole. SPT tests are typically conducted in 2 1/4 inch or 4 inch diameter bore 

holes, but in some areas bore holes with diameters up to 6  inches are used. In cohesive soils,
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lower N  values appear due to energy dissipation resulting from the particle displacement 

(Lake 1974). Bore hole corrections, r |4 , are also shown in Table 2.

The use o f  a liner inside the sampler leads to additional slide frictional losses. A sampler 

with a liner requires about 2 0 % more blows per foot penetration than does a sampler without 

a liner (Seed 1989). Liners have a greater effect in sands than in cohesive soils. Table 2 lists 

sampler corrections, r^.

Effective Overburden Pressure

As mentioned earlier, Gibbs and Holtz (1957) determined difficulties in reproducing data 

was related to overburden pressures. Overburden pressure has a greater effect on pure sands

than on cohesive soils. Typical N values should be normalized to N ,, which is relative to the

effective overburden pressure.

N , = C nN (2-2)

Several documents discuss methods for determining Cn and are detailed in Table 1. The 

most commonly used and simplest method is:

Cn = ( l / p ) 2  (2-3)

p = yH (tons/sf) (2-4)
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This correction is based on the assumption that the overlaying soil strata is o f a uniform 

relative density and grain size. This allows the overlying stratum to be treated as single unit.

Overconsolidation

Extensive study has been conducted to determine corrections for overburden pressure (see 

Table 1). For the most part, the sampling areas discussed in this document fall in the central 

and south-central portions o f the Las Vegas valley which are assumed to be normally 

consolidated.

Additional Corrections

Site characteristics such as aging, cementation, and particle size and shape also lead to 

variations in N values. Several relationships between site characteristics have been 

developed but typically correspond only to the locality for which they were derived.

Aging

In general, aging increases the consolidation pressure, shear strength and stiffness o f sands. 

Aging is an important factor for constructing on fill or reclaimed areas. A site that is deemed 

undisturbed for a period greater than 100 years is considered aged. Although the sites 

discussed in this document are not in their natural state, for the purpose o f  this paper, they 

are deemed aged. References for discussions o f aging are presented in Table 1.
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Particle Size and Shape

Extensive study has developed several relationships between blow counts and relative 

density based on particle size and shape (see Table 1). The equations are typically site 

specific and do not transfer well to other areas. The typical granular, angular shaped Las 

Vegas soils tend to exhibit an increase in the cohesion o f the cemented soils which leads to 

high typical N values. Specific site testing is needed to determine the effects o f  the particle 

size and shape for Las Vegas soils.

Determining Ncocorrcctcd

To correct the standard penetration value N, to N60corp the following equation may be used.

N 6ocoit = N x C n x r | 1 x r | 2 x r | 3 x r | 4  (derived from Bowles 1988) (2-5)

N = Field determined N value

Cn = Overburden correction

r| j = Energy ratio correction, from Table 2

r ) 2 = Rod length correction , from Table 2

r ) 3 = Sampler correction, from Table 2

t | 4  = Bore hole diameter correction, from Table 2
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Existing Correlations

As mentioned earlier, generalized tables correlating soil properties to soil consistencies are 

often used for Las Vegas soils. Tables 3 and 4 are typical examples o f  generalized tables and 

will be used for comparison purposes with Las Vegas soil correlations.

Table 3, Empirical values for granular soils for <|> and N60 based on the SPT at about 
20 ft depth and normally consolidated +

Description Medium Dense Dense Very Dense

s p t n 60
(blows/ft):

fine 8-18 19-35 >35

medium 9-23 25-47 >47

course 12-29 30-53 >53

<|> (degrees): fine 30-34 33-38

medium 32-36 36-42 >50

course 33-40 40-50
t  Table derived from Bow les (1988)

Table 4, Empirical values for clay soils for <(> and N60 based on the SPT t

n 60 4>

Soil description: (blows/ft) (degrees)

medium stiff 7-11 26-35

stiff 12-19 35-39

very stiff 19-37 39-42

hard >37 >42
t  Table derived from Das (1985) and Bowles (1988)



CHAPTER III

DISCUSSION OF LAS VEGAS DATA BASE  

Sam pling in Las Vegas

The Las Vegas Valley is bounded on each side by north-south oriented mountain ranges 

(Wyman et al. 1993). The bedrock in the ranges to the west and north o f the Valley is mainly 

sedimentary, while the ranges to the east and south are composed o f Tertiary volcanics 

(Cibor, 1983).

The Valley is comprised o f a variety o f sedimentary deposits resulting from alluvial deposits 

from Tertiary and Quaternary age sediments from the surrounding mountains (Cibor 1983). 

The geologic setting in the west and central portions o f the Valley contains clays and 

calcareous cemented deposits. The east side and southern ends o f the Valley consist o f  finer 

alluvial deposits o f sand, silt and clay as a result o f  their increasing distances from the 

alluvial source area (Cibor 1983).

16
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One hundred and fourteen soil samples were analyzed for this investigation. The borings 

generally indicated sands with fines and clays with the majority comprised o f dense, very 

dense, stiff, very stiff and hard consistencies. The boring locations were in the typically 

normally consolidated central and south-central portions o f the Las Vegas valley. Specific 

boring locations are discussed in the analysis portion o f this document. The boring data are 

attached in Appendix A.

Acquisition of Data

The following discussion and analysis is based on 114 samples from eleven sites throughout 

Southern Nevada. The data were extracted from the project files o f  Kleinfelder and 

Associates o f  Las Vegas, Nevada. Often, several samples were obtained at various depths 

from the same test bore hole. Information gathered from the borings includes:

• Test type, either standard penetration test or driven sample test.

• N, in blows per foot.

Soil description and classification.

• Soil consistency.

The inexact science o f geotechnical engineering leads to the use o f assumptions. Field 

testing methods and personnel differences may lead to great discrepancies in test data. The 

data collected for discussion and analysis were collected by a single local geotechnical firm.
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The majority o f the borings were conducted by two drill rigs using similar sampling devices 

for each test site between 1991 and 1993. The personnel conducting the field tests remained 

relatively consistent. Possible human errors in field testing include; consistent height o f the 

hammer drop, frequency o f hammer blows per minute, the placement o f the sampler in the 

bottom o f the bore hole and the visual classification o f the soils by the geotechnical engineer. 

Because o f the consistency o f the equipment and personnel used to conduct the field tests, 

it is assumed testing methods and soil classifications are consistent and constant.

Lab Test Data

Once the samples are collected in the field, they were transported to the laboratory for further 

analysis. Direct shear tests were conducted on each sample and the internal angle o f friction, 

<)>, was derived. The shear strength, x, was determined by placing a sample in a shear box 

which is split horizontally in two halves. A normal force, a , was applied to the top o f the 

shear box and a shear force was horizontally applied to the top half o f the box and increased 

until failure. The failure occurs along the horizontal plane at the split o f  the box.

Direct shear testing utilizes several assumptions. First, the sample is considered undisturbed. 

This is may lead to incorrect or questionable readings because the soil is not in its 

undisturbed state and encounters several opportunities to become disturbed including; the 

removal o f the soil from the sampler, the transportation o f the sample and the placement o f 

the sample in the shear box. Remolded samples were utilized in the testing, but were deleted



in the analysis o f the data. It is also assumed the sample shears at its strongest point rather 

than the plane o f the split o f  the shear box.

For soils obtained at a depth o f less than ten feet, shear tests were conducted with a normal 

forces o f 500 pounds, 1000 pounds and 2000 pounds. For samples gathered at a depth 

greater than ten feet, larger normal forces o f 1000 pounds, 2000 pounds and 3000 pounds 

were applied in the direct shear test. The soil was forced to split along the plane o f  the split 

o f  the box which may not necessarily be the weakest plane o f the sample.

After the completion o f the test, the shear values are plotted against the each o f the 

corresponding incremental normal loads as noted above. The internal angle o f  friction, <|>, 

is determined ffom the inverse tangent o f the shear force divided by the normal force. The 

cohesion, c, is determined by the Y intercept o f the plotted line. The equation for calculation 

o f the internal angle o f friction is:

<|) = tan '1( t/a )  (3-1)

Figure 1 demonstrates how the internal angle o f friction is derived. The internal angle of 

friction, <j>, is the angle between the plotted line and the horizontal axis. In this case, <j> is 

approximately 25 degrees.
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CHAPTER IV

ANALYSIS OF DATA  

Analysis o f the Numerical Data

Due to the frequency o f  cemented soils and the angular shape o f  Las Vegas soils, N values 

are relatively high compared to often used basic values. The judgem ent o f the geotechnical 

engineer is also a variable. The consistency o f a soil is a judgem ent call o f  the engineer. 

Even though the percent o f the sample passing the #200 sieve may be greater than fifty 

percent, because o f the cementation and in-situ conditions, the soil description may be 

classified as a sand or gravel.

A blow count test is considered rejected if the N count exceeds 50 blows for any six inch 

interval. The frequency o f  rejected blow count tests is higher relative to areas where 

cementation is less prevalent. DeCourt et al. (1992) provided an estimate o f 4N for any 

rejected value. If this were used for rejected tests for cemented Las Vegas soils, N values 

o f 150 or greater would be common. This is not a realistic. Initially, the author analyzed 

the blow counts using the assumption o f N = 100 for borings with rejected values o f  50 for
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an interval o f  seven inches or less. This led to correlations which were unproportionately 

skewed toward the higher N values. In the final analyses and conclusions o f this discussion, 

the rejected values were not used.

Chronology of Analysis

Soil Consistency

The following charts and tables are the result o f several derivations o f analysis o f  the soil 

boring data. The initial analysis o f the data separated the boring samples by soil consistency 

(i.e. dense, very stiff). A broad range o f soil types occurred in each consistency category. 

Correlations between the corrected blow counts, N 50corp and the cohesion, c, and between 

N 60corr and the internal angle o f friction, <j>, were scattered at best. A typical plot o f  the 

cohesion versus the N values for a specific soil consistency, medium dense sands and gravels 

in this case, is shown in Figure 2.

Test Type

The second phase o f the analysis sorted the boring information by test type, either the 

Standard Penetration Test or the Driven Sample Test. This was an attempt to determine a 

relationship between N60corr values for the two test types. Again, N 60corr was plotted 

versus both c, and <j>, for various soil consistencies. No correlations appeared. Figure 3
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displays a typical scatter plot o f  the cohesion versus the N values for both the SPT and the 

DS test.

Soil Type

Sorting the boring data by soil type, (i.e. sands with fines, clays), shows correlations with 

generally increasing <j> values when plotted against N 60corr Plotting N60corr against c started 

to show very general trends.

Region

The literature review conducted prior to the analysis o f the boring data typically developed 

correlations for regions with generally uniform soil conditions. This led to the initial 

assumption that the soils consistencies for different soil classifications in the Las Vegas 

Valley were consistent independent o f geographic location. The assumption proved to be 

incorrect. Further study o f  the boring data led to the discovery that borings in certain regions 

correlated with each other. This fits well with experience that demonstrates Las Vegas soils 

can vary tremendously between sites within short distances o f  each other.

O f the boring data initially gathered from 11 sites, seven sites were selected for further 

analysis based on relative geographic proximity and soil type. The seven sites selected are 

geographically separated into two areas as shown in Figure 4. Area "A" consists o f  four
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boring groups with a total o f 44 samples. Area "B" consists o f three soil boring groups with 

a total o f 26 borings.

Graphs plotting the corrected N 60 values against both the soil cohesion, c, and the internal 

angle o f friction, <j), are shown for specific soil categories for both Area "A" and Area "B". 

General ranges derived for N60corr, c and <j>, based on soil consistencies for each region, are 

shown in tables 5 through 12. It is imperative to note that the ranges portrayed in the tables 

are general approximations based on several assumptions and should not be used for design 

values. Specific testing should be conducted to determine if  any site is appropriate for 

known design criteria.

Statistical Analysis

Linear regression was used to calculate the coefficient o f determination, r2, for data analyzed 

in each category. The coefficient o f determination is used to determine the strength o f  the 

relationship between two independent variables. The r2 values range between 0 and 1. The 

closer the value is to 1, the stronger the relationship is between the variables. If  the r2 value 

is close to 0, little or no correlation exists between the two independent variables. A brief 

discussion o f the coefficient o f determination is presented in Appendix II.
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Analysis of Area "A"

Area "A" is generally located in the proximity o f  the intersection Desert Inn Road and US 

1-15 (Fig. 4). The soils in Area "A" consist o f a variety o f sands, gravels and clays. The 

m ajority o f the boring soil samples consisted o f  sands with fines, with 24 samples, and 

clays, with eight samples. Borings, which were rejected by encountering greater than 50 

blows for any six inch interval, were eliminated from the analysis due the generated bias 

toward high N values. Outliers from the specific sites within a test group were also removed 

from the analysis. The boring samples were then segregated by soil type starting with a 

broad categorization then broken into individual soil types.

All Area "A" Soils

To provide an overall picture o f Area "A", the c and <|> values are plotted against the N 60corr 

values for all the samples located in the region and are shown in Figure 5 and Figure 6. The 

c values do not correspond to the increasing N60corT values. The coefficient o f determination

'y
value, r , o f  0.0055 further demonstrates that little or no correlation exists. In Figure 5, it 

appears the <j) values increase relative to increasing N 60corr values. The r~ value o f  0.2037 

shows a slight relationship between the <j> and N 60corr values. As can be seen later in the 

analysis, this is mainly associated to the clay soils.

General ranges for the N 60corr, c and <)> values are shown for different soil consistencies in 

Table 5. A review of Table 5 shows little or no correlation between the soil properties and
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the soil consistencies. The significance o f this will be discussed in the analysis and 

conclusion .

Table 5, Area "A", All Soils, correlations between consistency, N60corr, c and (j)

^60corr c <t>

(blows/ft) (psf) (degrees)

Consistency: # o f

samples

Ave Range Ave Range Ave Range

ALL SOILS 44 30 4-73 523 60-2100 29 12-42

SANDS AND

GRAVELS

M edium dense 12 22 4-38 479 93-940 31 17-42

Dense 9 32 9-73 462 193-1070 30 20-40

Very dense 14 38 7-63 388 63-680 29 18-40

CLAYS

M edium stiff 4 27 6-35 917 400-2100 30 12-40

to stiff

Very stiff 3 15 10-24 853 470-1300 21 14-27

Hard 2 38 37-40 717 680-760 23 17-28
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Sands with Fines

The first category segregated from Area "A" is sands with fines. Sands with fines consists 

o f  silty sands and clayey sands as defined by the Unified Classification System (ASTM 

designation D-2487). Sands with fines are part o f the larger categorization o f Coarse-grained 

soils which consists o f  soils with more than 50 %  o f  the sample retained on the No. 200 

sieve. Area "A" yielded 24 samples falling into the sands with fines category.

Corrected N values for the sands with fines are plotted against both the cohesion, c, and the 

internal angle o f friction, <j>. Figure 7 and the corresponding r~ value o f 0.0055 demonstrates 

that little or no correlation exists between the N 60corp and c values. Figure 8 demonstrates 

that <j> falls in a consistent range but is not necessarily relative to increasing N 60corr values. 

The r2 value o f 0.0018 for the relationship between the <)> and N60corr values again 

demonstrates the lack o f any correlation. The two graphs further emphasize that specific 

testing is required dependent upon design requirements.

Table 6 shows general correlations between soil consistency, N60corr, c and (f> for sands with 

fines for Area "A". The N 60corT ranges increase relative to increasing soil consistency. The 

c values and <J) values for the medium dense sands with fines do not correspond to the dense 

and very dense soils. O f the seven samples in the medium dense category, five o f the 

samples are from a single test group. The high c and <)> values for the sample group
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containing the five subject samples o f  the medium-dense category, further demonstrate the 

differing soil properties in the same general geographic proximity.

Table 6, Area "A", Sands with Fines, correlations between consistency, N60corr, c and

N,60corr c <f>
(blows/ft) (psf) (degrees)

Consistency: # o f
samples

Ave Range Ave Range Ave Range

Medium dense 7 23 12-39 401 150-700 32 25-40

Dense 7 27 11-40 406 200-680 31 25-40

Very dense 10 32 20-60 435 165-680 28 25-35

The sands with fines classification is further divided, separating the clayey sands and the 

silty sands. The N 60corr values are plotted against C and <j) for both the clayey sands and the 

silty sands, as shown in Figures 9 through 12.

Clayey Sands

Figure 9 and the relative r2 value o f 0.0018 shows little or no correlation between increasing 

c values and increasing N60corr values for the clayey sands samples. O f the 13 samples 

included in the clayey sand category, nine are from the same test group. It would seem that 

w ithin the same test group, c values should increase with increasing N 60corr values, but 

Figure 9 shows that is not the case. Figure 10 demonstrates that the <|> values fall in a
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consistent range, but do not correspond to increasing N60corr values. The r2 value o f 0.1348, 

which corresponds to Figure 10, illustrates a slight relationship.

Table 7 portrays general correlations between the soil consistency and N60corr, c, and <)> 

values for the clayey sand classification. The clayey sand category, SC, is comprised o f 13 

samples from three test groups.. As with the sands with fines, the medium dense values 

portray high c and <}> values relative to the dense and very dense soils. O f the four samples 

in the medium dense range, three are from a single test group. One o f the test groups places 

a single sample in the SC category. This single sample falls in the dense category and has 

a c value o f  813 psf which causes a high c average for the three total samples in the dense 

category. As the number o f available samples for each soil classification decreases, the 

correlations between the soil consistencies and the measured values become more random. 

Again, this demonstrates the need for site specific testing for known design requirements.

Table 7, Area "A", Clayey Sands, correlations between consistency, N60corr, c and <j>

^60corr c <t>
(blows/ft) (psf) (degrees)

Consistency: # o f
samples

Ave Range Ave Range Ave Range

Medium dense 4 25 12-39 462 200-600 33 21-42

Dense 3 31 10-60 458 265-800 29 20-40

Very dense 6 27 8-55 395 65-580 28 24-31
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Silty Sands

Figures 11 and 12 correspond to the Area "A" silty sands. Eleven total samples from five 

test groups from area "A" portray silty sand soils. Consistent with the clayey sands and 

sands with fines from Area "A", the <|> values fall in a consistent range, but do not

correspond to increasing N 60corr values. The slight relationship between the <(> and N 60corr

• 0 * values is illustrated by the r value o f  0.1926.

The soil consistency correlations shown in Table 8 demonstrate the logical trend o f 

increasing N60corr, c and <j> values relative to increasing soil density.

T able  8, Area "A", Silty Sands, correlations between consistency, N60corr, c and <(»

N,60corr c <t>

(blows/ft) (psf) (degrees)

Consistency: # o f

samples

Ave Range Ave Range Ave Range

Medium dense 3 20 12-33 320 90-717 31 26-36

Dense 4 23 11-36 370 200-675 31 30-32

Very dense 4 36 24-60 542 440-680 29 18-30
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Clays

Eight Samples from six test groups from Area "A" consisted o f  clays. Figures 13 and 14 

show the most consistent trend o f increasing c and <j> values relative to increasing N 60corr 

values for Area "A" soils. The r value o f 0.4399 describes the noticeable relationship 

between the tj> and N 60corr values. The eight clay samples portray medium stiff to hard soil 

consistencies, which are shown in Table 9 relative to N60corp <j> and c. The high c values o f 

the medium stiff to very stiff samples are the result o f a single sample with a c value o f 2100 

psf.

T ab le  9, Area "A",

Consistency: # o f

samples 

M edium stiff 3

to stiff

Very stiff to 5

hard

lays, correlations

^ 6 0 c o rr

(blows/ft)

Ave Range

25 5-35

24 10-41

between consistency, 

c

(psf)

Ave Range

1089 500-2100

799 470-1300

^60corr ’ ^  ^ n d  <j)

<i>

(degrees) 

Ave Range

26 12-34

22 14-28
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The consistent correlations for the clays are probably due to the cohesive forces o f the clay 

material and the scattered results o f the sands with fines may be due to the cementation and 

varying particle size and shape.

Analysis o f Area "B" Data

Area "B" is bordered by Warm Springs Road to the south, Sunset Road to the north, Las 

Vegas Boulevard to the west and Eastern Avenue to the east ( Fig. 4). After the borings 

which were rejected were removed form the Area "B" data, 25 samples from five different 

boring groups remained. The Area "B" soils consist o f  sands with fines and clays.

All Area "B" Soils

A broad overview of all the samples in Area "B" is provided by Figure 15, which plots the 

c values against the N60corr values and by Figure 16 which plots the <j> values vs the N60corr

•y
values. Figure 15 and a near zero r value shows no correlation between increasing N 60corr 

values and increasing c values. As with Area "A", Figure 16 appears to portray a  slight 

correlation between increasing <(> values and increasing N 60corr values. The corresponding 

r2 value is 0.1217. Also, as with Area "A", this is due to the clay soils. This will be 

demonstrated in the analysis o f the clay soils o f Area "B".
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General ranges for N60corr, c and <)> are provided for various soil consistencies for all o f  the 

Area "B" samples and are shown in Table 10. The broad ranges demonstrate the large 

variations o f similar soils located in a relatively small geographic region. An in depth 

analysis o f specific soil types follows.

Table 10, Area "B", All Soils, correlations between consistency, N60corr, c and <)>

^ 60 c o i t

(blows/ft)
c

(psf)
<l>

(degrees)

Consistency: # o f
samples

Ave Range Ave Range Ave Range

ALL SOILS 26 32 6-69 956 95-3050 28 11-39

SANDS AND 
GRAVELS

Medium dense 
to dense

12 36 14-69 631 95-1660 31 19-39

Very dense 3 38 30-60 388 470-1630 33 32-34

CLAYS

Stiff to Very 
Stiff

6 22 6-37 982 105-1400 21 11-28

Hard 5 25 22-29 1530 500-3050 27 24-31

Sands with Fines

The sands with fines category consists o f 14 samples from four boring groups with ten 

samples originating form a single boring group. Four Outliers with c values greater than 

1400 psf were removed from the analysis. Again, this demonstrates the broad range o f soil
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properties in a specific area. The remaining ten c values plot in a consistent range but do 

correspond to increasing N60corr values. The N60corr values for the sands with fines for Area 

"B" are plotted against both c and (j) and are shown in figures 17 and 18. The <J> values fall 

in a broad range when plotted versus the N 60corr values. The respective r values o f  0.0921 

and 0.0001 further demonstrate the lack o f any relationships.

All o f  the sands with fines samples fall in the dense to very dense consistency category. 

Table 11 displays general ranges o f N 60corr, c and <j> values relative to the soil consistencies. 

As would be expected, the three samples portraying a very dense consistency have higher 

NfiOcorr c> and <i> values than the 11 samples with a dense consistency.

T ab le  11, Area "B", Sands with Fines, correlations between consistency, N60corr, c

and <|)

N 60 c o r r  c  <t>

(blows/ft) (psf) (degrees)

Consistency: # o f Ave Range Ave Range Ave Range

samples

Dense 11 33 14-46 560 95-1660 29 19-39

Very dense 3 30 30-57 1170 475-1630 32 29-34
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Clays

Area "B" contains ten clay samples from four boring groups. As with the clays from Area 

"A", the Area "B" clays demonstrate trends o f increasing c and <|> values relative to 

increasing N 60corr values. The r2 value is 0.1318 for the relationship between the c and 

N60corr values. The correlation between the <j> and N60corr values is described by the r  value 

o f  0.1261. Figures 19 and 20 portray this information.

Correlations between N60corp c and <|>, relative to soil consistencies for Area "B", are shown 

in Table 12. As the soil consistency increases from stiff/very stiff to hard, the N60corr, c and 

tj) ranges increase.

T able  12, Area "B", Clays, correlations between consistency, N60corr, c and <j>

^60corr ^  't1

(blows/ft) (psf) (degrees)

Consistency: # o f Ave Range Ave Range Ave Range

samples

Stiff to very 6 24 16-37 1009 100-1400 21 11-28

stiff

Hard 4 25 22-29 1151 500-1790 28 26-31
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In
te

rn
al

 A
ng

le
 

of 
Fr

ic
tio

n,
 P

hi
54

A r e a  "B", C la y s , P h i v s  N 6 0 c o r r

35 -  

30 -  

25 -  

20  -  

15 -  

10 -  

5 -  

0 • -

0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00

N60corr (blows/ft)

■ SPT  

* DS

Figure 20, Area "B", Clays, <)> vs N60corr



55

As with Area "A", the consistent correlations o f the clays are presumably the result o f  the 

cohesive forces o f the clay and the varying data for the sands with fines is most likely the 

result o f  the cementation and the size and shape o f  the angular particles.

Driven Sample Test vs Standard Penetration Test

At the inception o f this discussion, an attempt was made to determine a relationship between 

DS N 60corr values and the SPT N60corr values. As the analysis o f each test area's borings 

progressed, not enough samples with similar soil types and consistencies from each area 

remained to provide for an extensive analysis. In 12 instances, SP tests were conducted 12 

inches below a DS test in the same bore hole. O f the 12 comparable tests, three encountered 

different soil strata between the tests, which leads to inaccurate comparisons. In four o f  the 

remaining nine potential comparable test pairs, one o f the tests reached rejection which 

would exclude the values from analysis. Table 13 shows the remaining five sample pairs.

Three o f the five samples show N60corr values within 15% o f each other for the two 

comparable samples. The remaining two tests demonstrate differences o f 62% and 103%. 

Once again, this shows that the SPT and DS test values are subject to a large number o f 

variables which may greatly alter results. Although it appears the DS test generally 

corresponds to the Standard Penetration Test, not enough useful data is available to 

determine conclusive results.
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Table 13, DS vs SPT Correlations

Group Boring Test Depth
(ft)

Soil
type

Consist. N
(blows/ft)

^ 6 0 c o rr A A
%

II b-41 DS 10 GM dense to 50/12 56 8 -15
very

dense

SPT 11 45/12 48

II b-41 DS 36 SM dense to 40/12 24 22 62
very

dense

b-41 SPT 37 78/12 46

II b-44 DS 10 GM dense to 60/12 68 5 7
very

dense

b-44 SPT 11 68/12 73

II b-44 DS 80 SC very 18/12 7 15 103
dense

B-44 SPT 81 57/12 22

III w-6 DS 35 CL hard 35/12 26 3 12

SPT 36 36/12 23



CHAPTER V

CONCLUSIONS

Conclusions

Soil samples from two regions in the Las Vegas Valley are analyzed in an attempt to 

determine correlations between corrected blow count values, N 60corp the internal angle o f 

friction, <)> , and the cohesion, c. In both regions, the cohesion o f the sands with fines 

showed little or no correlation to increasing N 60coit values. The <j) values for the sands with 

fines fall in consistent ranges between 19 and 40, but do not increase with increasing N 60corr 

values. The clays in both regions demonstrate increasing c and <J> values relative to 

increasing N 60corr values. The variety o f results demonstrates the need for specific site 

testing for any Las Vegas valley construction project dependent upon design values.

Comparisons between the generalized ranges portrayed in Table 3 and Table 4 and the ranges 

established for the two Las Vegas regions display discrepancies. The sands with fines for 

both Area "A" and Area "B" display ranges between 19 and 40 and do not increase relative 

to increasing soil consistency and N60corr values. The <j) and N 60corr values demonstrated in
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the generalized tables increase with increasing soil consistency. The N60corr values for the 

sands with fines for both Las Vegas regions portray broader ranges with higher top end 

values than the ranges shown in the generalized Table 3.

The values for the Las Vegas clay soils differ from the clay values portrayed in the 

generalized Table 4. The N 60corr values for Area "A" and Area "B" demonstrate broad ranges 

which do not correspond the limited ranges shown in Table 4. The <J> ranges for both Las 

Vegas regions have lower average values, as well as lower top end (j> values, relative to the 

soil consistencies when compared to c() values shown in Table 4

Because o f the differences between the soil properties for the Las Vegas soils and the values 

demonstrated in the Tables 3 and 4, generalized tables portraying correlations between N 

values and soils properties developed for areas other than the Las Vegas should be used with 

great care when applied to Las Vegas soils. Hence, based upon this investigation, the 

properties c and <)> can not be realistically correlated to N 60corr
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APPENDIX II

The coefficient o f determination , r2, is an indicator o f how well the equation resulting from 

the regression analysis explains the relationship among the variables. The sum o f the 

squared differences between the y -value estimated for a point and its actual y -value is called 

the residual sum o f squares. The total sum o f squares is the sum o f  the squared differences 

between the actual y-values and the average o f the y-values. The smaller the residual sum 

o f squares is compared with the total sum o f squares, the larger the value o f the coefficient 

o f  determination. The r2 value can be interpreted as the proportion o f  the variance in y  

attributable to the variance in x.
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