
Standard Plane Localisation in 3D Fetal Ultrasound
Using Network with Geometric and Image Loss

Yuanwei Li1, Juan J. Cerrolaza1, Matthew Sinclair1, Benjamin Hou1, Amir Alansary1,
Bishesh Khanal2, Jacqueline Matthew2, Bernhard Kainz1, Daniel Rueckert1

1Imperial College London, 2Kings College London
yuanwei.li09@imperial.ac.uk

Abstract

Standard scan plane detection in 3D fetal brain ultrasound (US) is a crucial step
in the assessment of fetal brain development. We propose an automatic method
for the detection of standard planes in 3D volumes by utilising a convolutional
neural network (CNN) to learn the relationship between a 2D plane image and the
transformation parameters required to move that plane towards the corresponding
standard plane. In addition, we explore the effect of using two different training
loss functions which exploit the geometric information and the image data of the
extracted plane respectively. When evaluated on 72 subjects, our method achieves
a plane detection error of 3.45mm and 12.4◦.

1 Introduction

3D US imaging of the fetal brain enables clinicians to assess fetal brain development and detect
growth abnormalities. However, this requires the accurate extraction of 2D standard scan planes such
as the transventricular (TV) and transcerebellar (TC) plane that contain key anatomical structures [6].
This task is challenging, operator-dependent and time-consuming even for experienced sonographers.
Hence, there is a strong need to develop automatic methods for 2D standard plane extraction from 3D
volumes to improve clinical workflow efficiency.

Recently, several works have applied deep learning techniques to standard plane detection in fetal US
by treating it as an image classification problem [1, 2]. But these methods identify standard planes
from 2D US videos and are computationally infeasible for plane localisation in 3D volumes since
there are infinitely many ways to sample an arbitrary 2D plane in 3D space. To this end, we approach
the plane detection problem similar to the work of [5, 3] by using a CNN to predict the transformation
parameters that define the plane position and orientation. The CNN learns a mapping between a 2D
plane and the transformation required to move that plane towards the standard plane within a 3D
volume. Our approach is iterative which uses multiple passes of the CNN to predict a more accurate
plane location at each iteration during inference. In addition, we investigate the use of two training
loss functions: (1) A geometric loss that minimises the mean-square-error (MSE) of the geometric
transformations defining the planes [5] and (2) an image loss that minimises the MSE of the image
data extracted from the planes by using a spatial transformer network (STN) [4].

2 Method

Planes and Transformations: Any plane in 3D space can be defined by a rigid transformation with
respect to a reference plane. In Fig. 1a, we define an identity plane (black) with origin at the volume
centre. Tin and Tout are defined using the identity plane as the reference and they move the identity
plane to the blue plane and red plane respectively. Our CNN predicts ∆T which is defined using the
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Figure 1: (a) Composition of transformations. Black: Identity plane. Blue: Input plane. Red: Output
plane. (b) Overall framework of our proposed method for standard plane localisation.

blue plane as reference. We can compose transformations using Tout = Tin ⊕∆T where ⊕ is the
composition operator.

Localisation Network: The localisation network is a CNN that regresses the values of a 3D transfor-
mation ∆T given a 2D input image Xin. The network learns a mapping between the image extracted
at the current plane position and the transformation required to move the current plane to a new
position that is closer to the ground truth (GT) plane. Since we are predicting plane movement, the
transformation has to be rigid, comprising translation t and rotation represented by quaternions q:
∆T = (t, q).

Our localisation network comprises 5 convolution layers, each followed by max-pooling. After the
last pooling layer, the network splits into two branches, each comprising 2 fully-connected (FC)
layers followed by a regression output layer. One branch regresses 3 parameters for translation (t)
while the other branch regresses 4 parameters for quaternions (q). All convolution layers use 3x3
kernel with stride=1 and all pooling layers use 2x2 kernel with stride=2. ReLU activation function is
applied after all convolution and FC layers. Drop-out is also added after each FC layer.

Plane Extractor: The plane extractor is a module in our network pipeline that extracts any arbritrary
2D plane imageX from a 3D volume V . We denoteX = I(V, T, s) where I(·) is the plane extraction
function, T is a transformation applied to the identity plane and s is the length of a square plane. The
plane extractor does the following: (1) Initialise an identity plane of size s× s by creating a meshgrid
of points that slice through the volume centre. (2) Apply T to the meshgrid of points to update their
positions. (3) Sample the updated meshgrid from V using trilinear interpolation to obtain X . The
plane extractor is based on STN [4] which is differentiable and can be trained with backpropagation.
This allows the module to be incorporated into our network for end-to-end training.

Network Training: Network training is summarised in Fig. 1b. A training sample is represented by
(Xin,∆TGT , XGT ) where Xin is a plane image randomly sampled from V , ∆TGT is the transforma-
tion that will move the randomly sampled plane to the GT plane location, and XGT is the GT plane
image. First, we randomly sample a transformation Tin from which we extract the corresponding
plane image Xin = I1(V, Tin, s). Xin is then passed as input to the localisation network which
predicts a transformation ∆T . A geometric loss is then formulated as the MSE between the GT and

predicted transformation parameters: Lgeom = ‖∆TGT −∆T‖22 = ‖tGT − t‖22 +
∥∥∥qGT −

q
‖q‖
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2
.

The predicted transformation ∆T is relative to the Xin plane. We compose Tin and ∆T to obtain
Tout which defines the new plane location relative to the identity plane. We then extract the image at
the updated plane location Xout = I2(V, Tout, s). An image loss can subsequently be computed as
the MSE between the GT and predicted plane images: Limg = ‖XGT −Xout‖22. The combined loss

function is given by: L = α‖tGT − t‖22 + β
∥∥∥qGT −

q
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2

+ γ‖XGT −Xout‖22 where α, β and γ
are the loss weights.

Network Inference: During inference, our method adopts an iterative approach to find the standard
plane. First, a plane is randomly initialised X0 and passed as input to the localisation network which
predicts a transformation ∆T that moves the current plane at T0 to a new position T1. The image X1

extracted from the new plane location is then passed to the localisation network (blue arrow in Fig.
1b). This process is repeated for N iterations to give the final result as XN . For each volume, we
initialise 5 random planes and take their average as the final result.
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Table 1: Evaluation of the proposed method for standard plane detection with different training losses.
Results presented as (Mean ± Standard Deviation).

δx (mm) δθ (◦) PSNR SSIM
M1: Lgeom 6.51±4.86 14.1±8.2 15.6±2.0 0.393±0.082
M2: Limg 10.23±16.08 16.6±8.2 15.1±2.3 0.372±0.090
M3: Lgeom + Limg 5.85±3.95 12.9±7.0 15.7±2.1 0.400±0.101
M3+: Lgeom + Limg 3.45±1.73 12.4±12.8 16.5±1.9 0.418±0.080

GT Predicted GT Predicted GT Predicted

Patient 1 Patient 2 Patient 3

Figure 2: Visualisation of GT planes and planes predicted by M3+.

3 Experiments and Results

Data and Experiments: The proposed method is evaluated on 3D US volumes of fetal brain from
72 subjects for the detection of TV standard plane. A training/testing split of 70%/30% is used. All
volumes are processed to be isotropic with mean dimensions of 324×207×279 voxels. The method
is implemented using Tensorflow running on one NVIDIA Titan Xp GPU. We set s=225, N=10 and
loss weights α=γ=1e4, β=1. Each of these losses can be removed by setting its weight to zero. Batch
size is set to 8. Weights are initialised randomly from a distribution with zero mean and 0.1 standard
deviation. Optimisation is carried out for 200,000 iterations using the Adam algorithm with learning
rate=0.001, β1=0.9 and β2=0.999. The predicted plane is evaluated against the GT using distance
between the plane centres (δx) and rotation angle between the planes (δθ). Image similarity of the
planes is also measured using peak signal-to-noise ratio (PSNR) and structural similarity (SSIM).

Results: Table 1 compares the plane detection results of using different training losses for the
localisation network. Performance is improved when using both the geometric and image losses
which complement each other by providing geometric and image information respectively (M3). We
further improve our results by using three orthogonal plane images as network inputs as this provides
more information about the 3D volume (M3+). M3 and M3+ take 0.53s and 1.28s to predict one
plane per volume respectively. Fig. 2 shows a visual comparison between the GT planes and the
planes predicted by M3+.

Conclusion: We presented a new method for standard plane detection in 3D fetal US by using a
CNN to regress transformations iteratively. We use a combined training loss that accounts for both
geometric and image information to improve detection accuracy. As future work, we are exploring
other training loss functions and are extending the method to multiple planes detection.
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