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STANDARD REALIZATIONS OF CRYSTAL LATTICES
VIA HARMONIC MAPS

MOTOKO KOTANI AND TOSHIKAZU SUNADA

Abstract. An Eells-Sampson type theorem for harmonic maps from a finite
weighted graph is employed to characterize the equilibrium configurations of
crystals. It is thus observed that the mimimum principle frames symmetry of
crystals.

1. Introduction

We shall start with the motivation behind the subject which we are concerned
within this paper. A simplified model of crystals is a system of springs which
connect masses distributed periodically in Euclidean space. The masses represent
atoms, and the springs represent symbolically the internal forces binding two atoms
in the crystal. A periodic structure of the system, which shows a peculiar feature
of crystals, is described as invariance of the system under the action of an additive
group of translations in the space. The smallest pattern unit of the crystal from
which the whole crystal can be built up by translations is called a primitive unit cell
of the system. The atoms in a real crystal are vibrating around their equilibrium
positions with thermal motion. The atoms are supposed to rest at the equilibrium
positions when the absolute temperature is zero.

The main problem considered in this paper is to find a geometric characterization
for the equilibrium configurations of the atoms in the crystal. For instance, we ask
why the crystal of diamond has such a beautiful configuration of the carbon atoms
which assures the rigid structure of diamond (Figure 1 in §3).

This rather fundamental and simple question seems to have not yet been an-
swered in full generality. The classical theory of crystallographic groups, a treat-
ment of crystals from the viewpoint of symmetries and having a long history since
1830, does not give any satisfactory answer to the question. We have a macroscopic
characterization of equilibrium shapes of crystals due to G.Wulff (1901), which also
fails to give any microscopic characterization for configurations of the atoms in
crystals.

An equilibrium configuration should satisfy the condition that the internal forces
in the crystal are in equilibrium; that is, the total force acting on any atom from
its nearest neighbors vanishes. This condition, however, is not enough to determine
the equilibrium configuration uniquely. Actually, as is easily seen, the equilibrium
of the internal forces is preserved by any affine transformation of the space.
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2 MOTOKO KOTANI AND TOSHIKAZU SUNADA

As a characterization of equilibrium configurations, we shall take up the “mini-
mum principle” for the potential energy per primitive unit cell with a fixed volume,
which seems natural from physical and mathematical points of view. Indeed, we
establish the following theorem.

Theorem 1. Among configurations of a given crystal having a primitive unit cell
with a fixed volume, there exists a configuration with the minimal potential energy
per primitive unit cell, and it is uniquely determined up to motions of the space.

The proof of the above theorem is effectively reduced to the theory of harmonic
maps from finite weighted graphs into flat tori, as will be explained in §3. In fact,
we shall prove the following theorem which is regarded as a geometric version of
the statement in Theorem 1.

Theorem 2. Let X0 be a finite connected weighted graph, T a torus, and C a
homotopy class of piecewise smooth maps from X0 into T such that a map in C
induces the surjective homomorphism of π1(X0) onto π1(T ). For a given positive
constant v0, there exists a pair (Φ0, g0), consisting of a harmonic map Φ0 ∈ C and
a flat metric g0 on T such that vol(T , g0) = v0, satisfying

E(Φ0, g0) ≤ E(Φ, g)(1)

for every Φ ∈ C and every flat metric g on T with vol(T , g) = v0, where E(Φ, g)
denotes the energy of the map Φ : X0 → (T , g). The pair (Φ0, g0) is determined
uniquely. More precisely, if E(Φ, g) = E(Φ0, g0), then g = g0 and Φ coincides with
a translation of Φ0.

The terminology used in the above theorem will be introduced in §2. In §4,
we characterize the pair (Φ0, g0) in terms of a graph-theoretical analogue of the
Albanese maps into Albanese tori, a concept originally introduced in algebraic ge-
ometry, and give a standard way to realize the configuration of the crystal satisfying
the minimum principle.

As will be seen in §5, the classical configurations for many crystals in two and
three dimension turn out to satisfy the minimum principle. The diamond crystal
illustrates this characterization.

It should be pointed out that one may establish an analogue of Theorem 2 for
harmonic maps from a compact Riemannian manifold into a flat torus.

Let us conclude this introduction by mentioning an unexpected relation of the
standard realization of a crystal lattice X to the asymptotic behavior of the tran-
sition probability of a random walk on X (see [8] for the details).

Theorem. Consider a reversible random walk on a crystal lattice X with an in-
variant measure m. We equip X with a canonical weighted structure. Let d(x, y) be
the distance on X induced from the Euclidean distance by the standard realization
of X in Rk. If X is not bipartite, then there exist positive constants C1, C2 such
that, for the n-step transition probability p(n, x, y),

lim
n↑∞

[
(4πn)k/2p(n, x, y)m(y)−1 − C1 exp(−C2

n
d(x, y)2)

]
= 0

uniformly for all x, y ∈ X.

Acknowledgement. The authors would like to thank H. Urakawa for informing them
of his and other recent works on harmonic maps between singular spaces.
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STANDARD REALIZATIONS OF CRYSTAL LATTICES 3

2. Harmonic maps of a weighted graph into a Riemanian manifold

The notion of harmonic maps was introduced by J. Eells and J.H. Sampson
in 1964 in their fundamantal paper [2] as a generalization of geodesics, harmonic
functions and holomorphic mappings between Kähler manifolds. As in the case
of ordinary harmonic maps of Riemannian manifolds, harmonic maps of a finite
weighted graph X into a Riemannian manifold Y are defined to be critical maps
for the energy functional E, where the graph X is regarded as a 1-dimensional
singular space, or precisely speaking, a 1-dimensional CW-complex, and maps are
always supposed to be piecewise smooth. We shall explain these notions in detail.

Let X = (V,E) be a connected locally finite graph with a set V of vertices and
a set E of all oriented edges. For an edge e ∈ E, we denote by o(e) and t(e) the
origin and the terminus of e repectively. The inverse edge of e will be denoted by
e. Consider positive valued functions mV on V and mE on E, where it is assumed
that mE(e) = mE(e) for every e ∈ E. The functions mV and mE are said to be
weight functions on V and E respectively. A graph with weight functions is called
a weighted graph.

We first fix a way to identify the graph X with a CW-complex. Take the disjoint
union V q (E × [0, 1]) and introduce the equivalence relation ∼ defined by

o(e) ∼ (e, 0),

t(e) ∼ (e, 1),

(e, t) ∼ (e, 1− t) for 0 ≤ t ≤ 1.
(2)

Then the CW-complex associated with the graph X is defined as the quotient space
V q(E×[0, 1])/ ∼ so that the unoriented edges (resp. vertices) are identified with 1-
cells (resp. 0-cells). The CW-complex X is considered as a one-dimensional singular
Riemanninan manifold with the metric ds2 = m2

E(e)dt2 on each edge e ∈ E.
Given a map Φ of X into a Riemannian manifold (Y, g), we put Φe(t) = Φ(e, t)

for e ∈ E and 0 ≤ t ≤ 1; this is considered as the restriction of Φ to the edge e.
The map Φ is said to be piecewise smooth if Φ is continuous and the curve Φe is
smooth in t for every e ∈ E.

For a piecewise smooth map Φ of a finite weighted graph X into (Y, g), define
the energy of Φ by

E(Φ) = E(Φ, g) =
1
2

∑
e∈E

mE(e)
∫ 1

0

‖dΦe
dt
‖2dt.(3)

We shall compute the first and the second variation formulae. Let Φ(u, ·) (|u| < ε)
be a smooth variation of of a map Φ = Φ(0, ·), and put

dΦe
dt

= Φ̇e,
∂Φe
∂u

(u, t) = We(t),
∂Φe
∂u

(u, 0) = W (x),(4)

where we abuse the notation and write Φe = Φe(u, t).
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4 MOTOKO KOTANI AND TOSHIKAZU SUNADA

Theorem 2.1 (The first and second variation formulae). At u = 0, we have

dE(Φ)
du

= −2
∑
x∈V
〈W (x),

∑
e∈Ex

mE(e)Φ̇e(0)〉

−
∑
e∈E

mE(e)
∫ 1

0

〈We(t),
D

dt
Φ̇e〉dt,

(5)

d2E(Φ)
du2

= −2
∑
x∈V
〈DWW (x),

∑
e∈Ex

mE(e)Φ̇e(0)〉

+
∑
e∈E

mE(e)
∫ 1

0

(
−〈DWeWe,

D

dt
Φ̇e〉

+ ‖DWe

dt
‖2 − 〈We, R(We, Φ̇e)Φ̇e〉

)
dt,

(6)

where Ex = {e ∈ E | o(e) = x} and R denotes the curvature tensor.

Proof. By routine computation, we have

dE(Φ)
du

=
∑
e∈E

mE(e)
(
〈∂Φe
∂u

,
∂Φe
∂t
〉
∣∣∣∣t=1

t=0

−
∫ 1

0

〈∂Φe
∂u

,
D

∂t

∂Φe
∂t
〉dt
)
.(7)

Since
∂Φe
∂u

(0, 1) =
∂Φe
∂u

(0, 0) = W (o(e)),
∂Φe
∂t

(0, 1) = −∂Φe
∂t

(0, 0) = −Φ̇e(0),(8)

(9)
∑
e∈E

mE(e)〈∂Φe
∂u

,
∂Φe
∂t
〉(0, 1)

=
∑
e∈E

mE(e)〈∂Φe
∂u

,
∂Φe
∂t
〉(0, 1) = −

∑
e∈E

mE(e)〈∂Φe
∂u

,
∂Φe
∂t
〉(0, 0),

we find that
dE(Φ)
du

(0) = −
∑
e∈E

mE(e)
(

2〈W (o(e)), Φ̇e(0)〉+
∫ 1

0

〈We,
D

dt
Φ̇e〉dt

)
,(10)

from which the first variation formula easily follows.
By a similar argument, we obtain the second variation formula

d2E(Φ)
du2

(0) =
∑
e∈E

mE(e)
(
〈DWeWe, Φ̇e〉

∣∣∣t=1

t=0
+
∫ 1

0

(
−〈DWeWe,

D

dt
Φ̇e〉

+ ‖DWe

dt
‖2 − 〈We, R(We, Φ̇e)Φ̇e〉

)
dt

)
= −2

∑
x∈V
〈DWW (x),

∑
e∈Ex

mE(e)Φ̇e〉

+
∑
e∈E

mE(e)
∫ 1

0

(
−〈DWeWe,

D

dt
Φ̇e〉

+ ‖DWe

dt
‖2 − 〈We, R(We, Φ̇e)Φ̇e〉

)
dt.

(11)
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STANDARD REALIZATIONS OF CRYSTAL LATTICES 5

Applying the first variation formula, we obtain

Theorem 2.2. A piecewise smooth map Φ is a critical map if and only if Φ is a
piecewise geodesic map, i.e. Φe is a geodesic for every edge e, and at each x ∈ V∑

e∈Ex

mE(e)Φ̇e(0) = 0.(12)

A piecewise geodesic map of a general weighted graph X into Y satisfying (12)
is called harmonic.

Remark. The energy of a piecewise geodesic map Φ is equal to

E(Φ) =
1
2

∑
e∈E

mE(e)`(e)2,(13)

where `(e) is the length of the geodesic Φe.

In the special case when the target manifold Y is the Euclidean space Rn, a
piecewise geodesic map Φ of X into Y is uniquely determined by its restriction to
the set of vertices, and the condition (12) is rewritten as∑

e∈Ex

mE(e)
(
Φ(t(e)) − Φ(o(e))

)
= 0,(14)

since Φ̇e(0) = Φ(t(e))− Φ(o(e)).
Define the discrete Laplacian ∆ acting on vector-valued functions on the set of

vertices by

∆f(x) = mV (x)−1
∑
e∈Ex

mE(e)
(
f(t(e))− f(o(e))

)
.(15)

With this terminology, (14) is rephrased as

∆Φ = 0.(16)

Namely, each component of the vector-valued function Φ is a harmonic function.
An easy remark is that, for a given affine map A : Rn → Rm and a function

Φ : X → Rn, we have ∆(AΦ) = A∆Φ, and hence if Φ is harmonic, then so is AΦ.
We may easily show that the maximum principle holds for the discrete Laplacian,

namely that a real-valued harmonic function which attains its maximum (or mini-
mum) is constant. In particular, real-valued harmonic functions on a finite weighted
graph are constant. We now establish the following fundamental theorem.

Theorem 2.3. Let X be a finite weighted graph, and let Y be a compact Riemann-
ian manifold. Then each homotopy class of maps of X into Y contains at least one
harmonic map.

Proof. Let C be a homotopy class of maps of X into Y . For each piecewise smooth
map Φ ∈ C, one can find a piecewise geodesic map Φ1 ∈ C with E(Φ1) ≤ E(Φ).
Indeed, it is enough to replace each Φe by the shortest geodesic homotopic to
Φe relative to the end points. We denote by C∗ the set of piecewise geodesic
maps in C, and on it we introduce the C1-topology so that the functional E is
continuous on C∗. It is straightforward to see that, for every a > 0, the sublevel
set {Φ ∈ C∗ | E(Φ) ≤ a} is compact. Therefore one can find a Φ0 ∈ C∗ such
that E(Φ0) ≤ E(Φ) for every Φ ∈ C∗. Since Φ0 is a critical map, it gives a desired
harmonic map.
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6 MOTOKO KOTANI AND TOSHIKAZU SUNADA

The following theorem asserts the uniqueness of harmonic maps in a fixed ho-
motopy class of maps into a flat torus.

Theorem 2.4. Let g1 and g2 be flat metrices on a torus T , and let X be a finite
weighted graph. If two harmonic maps Φ1 : X → (T , g1) and Φ2 : X → (T , g2) are
homotopic, then there exists an element a ∈ T such that Φ1 − Φ2 ≡ a.

Proof. Write T = Rn/Γ with a lattice subgroup Γ of Rn, and let Φ̃i : X̃ → Rn be
a lift of the harmonic map Φi to the universal covering graph X̃ = (Ṽ , Ẽ) of X for
i = 1, 2. Denote by ρ : π1(X) → Γ the homomorphism induced from the map Φi.
We find that

Φ̃i(σx̃) = Φ̃i(x̃) + ρ(σ)(17)

for x̃ ∈ X̃ and σ ∈ π1(X), and hence Φ̃1 − Φ̃2 is a π1(X)-invariant function on X̃.
The function Φ̃1 − Φ̃2 is harmonic because the condition for a map of X̃ into Rn
to be harmonic does not depend on the choice of flat metrices on Rn. Therefore
Φ̃1 − Φ̃2 is a lift of a harmonic function on X , and hence we conclude, in view of
the maximum principle, that there exists ã ∈ Rn such that Φ̃1 − Φ̃2 ≡ ã. This
completes the proof.

Theorem 2.5. Let Y be a compact Riemannian manifold with non-positive sec-
tional curvature, and let C be a homotopy class of maps from a finite weighted
graph X into Y . Then a map Φ ∈ C is harmonic if and only if Φ minimizes the
energy functional restricted to C. Furthermore, if Y has strictly negative sectional
curvature, and if a map in C induces a homomorphism of π1(X) into π1(Y ) whose
image is not cyclic, then C contains a unique harmonic map.

Proof. Let Φ0 and Φ1 be harmonic maps in C. One may choose lifts Φ̃0, Φ̃1 : X̃ → Ỹ
of Φ0, Φ1 to the universal covering spaces, respectively, satisfying

Φ̃i(σx̃) = ρ(σ)Φ̃i(x̃) ( σ ∈ π1(X); x̃ ∈ X̃ ; i = 0, 1)(18)

with the same induced homomorphism ρ : π1(X) → π1(Y ). Joining Φ̃0(x̃) and
Φ̃1(x̃) by a unique geodesic in Ỹ , one may define a piecewise smooth map Φ̃u :
X̃ → Ỹ for 0 ≤ u ≤ 1. It is easy to check that Φ̃u(σx̃) = ρ(σ)Φ̃u(x̃), so that one has
a piecewise smooth map Φu : X → Y in C whose lift is Φ̃u. Applying the second
variation formula, we observe that d2E(Φu)/du2 ≥ 0 for DWeWe = 0. Since

dE(Φu)
du

∣∣∣∣
u=0

=
dE(Φu)
du

∣∣∣∣
u=1

= 0,(19)

we find that dE(Φu)/du ≡ 0, and hence E(Φu) ≡ constant. This implies the first
assertion.

For the second assertion, we first observe from the second variation formula and
nonpositivity of the curvature that DWe/dt ≡ 0 and 〈R(We, Φ̇e(0))Φ̇e(0),We〉 ≡
0 since d2E(Φu)/du2 ≡ 0. From the assumption that the curvature is strictly
negative, it follows that W (x) = cΦ̇e(0) with some constant c. Since the image of ρ
is not cyclic, there exists a vertex x of X such that the dimension of the subspace
spanned by {Φ̇e(0) | e ∈ Ex} is greater than one. Indeed, if the dimension is one or
zero for every vertex, then the image of Φ lies in a circle in Y so that the image of
ρ is cyclic; this is a contradiction. Thus We ≡ 0 for e ∈ Ex, and hence for all e ∈ E
because DWe/dt ≡ 0. This implies that Φ1 = Φ2, as desired.
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STANDARD REALIZATIONS OF CRYSTAL LATTICES 7

Given an n-dimensional compact smooth manifold N , we consider a family G of
Riemannian metrices on N with a fixed volume. Take a homotopy class C of maps
of a finite weighted graph X into N , and consider the function E = E(Φ, g) on
C×G. Closely related to the subject in this paper is the following general problem.
Does the function E attain its minimum at some pair (Φ0, g0)? Actually the first
part of Theorem 2 says that this is the case when N is a torus, G is the family of
flat metrics on N , and maps in C induce a surjective homomorphism of π1(X) onto
π1(N). It is rather easy, in this special case, to show the existence of such a pair.
The core of our problem is to detect (Φ0, g0) in an explicit way.

It is interesting to investigate the case of a surfaceN with the family G of constant
negatively curved metrices, which is regarded as a non-Euclidean analogue of our
problem in dimension two.

Remark. Recently much attention has been paid to harmonic maps between sin-
gular metric spaces including graphs (see [4],[5],[6],[10],[12] for instance). Actually
the existence of energy minimizing harmonic maps of a finite weighted graph into
a fixed flat torus is a very special case of the results in more general situations [6].

We should also remark that in [3], Ejiri studied the index of compact minimal
surfaces in tori by looking at the variation of flat structures of tori.

3. Reduction to a geometric problem

We shall explain briefly how Theorem 1 is reduced to the problem in terms of
flat tori and weighted graphs as stated in Theorem 2.

With a system of springs in Rn, one may always associate a graph in such
a way that the springs correspond to unoriented edges and the points of masses
correspond to vertices, where the incidence of edges and vertices is defined in a
natural manner. The two atoms connected by a spring are supposed to interact
each other by the dynamical law of a harmonic oscillator. Regarding the masses
and the force constants as weights of vertices and edges respectively, we have a
weighted graph. Furthermore, joining two adjacent vertices by the line segment,
we have a piecewise geodesic map Φ from the graph into the Euclidean space, where
Φ(x) designates the position of a mass x. The force acting on the mass x generated
by the spring e with o(e) = x is given by mE(e)

(
Φ(t(e)) − Φ(o(e))

)
, where mE(e)

is the force constant of the spring e. By the principle of superposition, we conclude
that the total force acting on the mass x is given by∑

e∈Ex

mE(e)
(
Φ(t(e)) − Φ(o(e))

)
.(20)

Therefore, in view of (14), the internal forces in the system of springs is in equi-
librium if and only if Φ is harmonic. For a finite system of springs, E(Φ) coincides
with the potential energy of the system. It is worth mentioning that the vibration
of the system is described by Newton’s dynamical equation

d2Φ

dt2
= ∆Φ,(21)

which is regarded as a discrete analogue of the wave equation.
Consider the system of springs corresponding to a crystal in Rn, which need not

have the equilibrium configuration. The additive group Γ of translations acting
on the system is a lattice group, known as the Bravais lattice, namely a group
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8 MOTOKO KOTANI AND TOSHIKAZU SUNADA

consisting of vectors x represented as integral linear combinations of n linearly
independent vectors v1,v2, · · · ,vn:

Γ = {x =
n∑
i=1

kivi | ki integers}.

As a primitive unit cell of the crystal, we may take a fundamental parallelotope P
in the space for the action of Γ, that is,

P = {x =
n∑
i=1

aivi | 0 ≤ ai < 1}.

We identify P with the torus TΓ = Rn/Γ. The torus TΓ has the flat metric induced
from the one on the Euclidean space Rn. The volume of the primitive unit cell is
nothing but the volume vol(TΓ) of the flat torus TΓ as a Riemannian manifold. It
should be noted here that

vol(TΓ) = vol(P ) = (det(〈vi,vj〉))1/2.(22)

On the other hand, we identify two masses in the system if one of them is obtained
by translation in Γ from the other. We also identify two springs in the same way.
We thus have a finite system of springs, which is realized in the flat torus TΓ.

Applying the general recipe above to the system associated with a crystal, we
obtain two weighted graphs, one of which, denoted by X , corresponds to the crystal
itself and the other, denoted by X0, corresponds to the finite system realized in the
flat torus. The piecewise geodesic map Φ gives a configuration of the crystal. The
piecewise geodesic map Φ0 of X0 into TΓ is the one obtained by projecting down
the map Φ to X0. From the construction, it follows that Φ0 is harmonic if and only
if Φ is harmonic. Therefore the internal forces in the crystal are in equilibrium if
and only if the map Φ0 is harmonic. We define the potential energy per primitive
unit cell as the energy of Φ0.

The graphX is called the crystal lattice. The lattice group Γ acts onX as a graph
automorphism. In the context of graph theory, X0 is the quotient graph of X by the
action of Γ. From now on, we consider Γ as an abstract group acting on X . When
a configuration of the crystal varies, TΓ, the primitive unit cell, changes, although
its topological type does not. In other words, according as the piecewise geodesic
map Φ0 varies, the flat metirc g on the torus changes. Therefore we paraphrase
our problem with this terminology in the following way. Fix a topological torus T
and a homotopy class C of maps from X0 to T , and let v0 > 0. An equilibrium
configuration of the crystal is a lift of a pair (Φ0, g0) which minimizes the energy
E = E(Φ, g) under the condition that Φ0 ∈ C and vol(T , g) = v0, where, from its
nature, the homotopy class C is supposed to satisfy the condition that a map in
C induces the surjective homomorphism of π1(X0) onto π1(T ). We are thus led to
the setup described in Theorem 2. It should be noted that the masses of atoms do
not play any role as far as the static nature of crystals is concerned.

We shall illustrate the above discussion by taking a look at the diamond crystal.
For simplicity, the weights of vertices and edges are taken to be one. Let e1, e2, e3

be the standard basis of R3. We consider the lattice group Γ generated by the basis
v1 = e2 + e3 = (0, 1, 1), v2 = e3 + e1 = (1, 0, 1), v3 = e1 + e2 = (1, 1, 0). Γ is what
we call the face centered cubic lattice group. It is easy to check that vol(TΓ) = 2.
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STANDARD REALIZATIONS OF CRYSTAL LATTICES 9

X X0

Figure 1. The diamond lattice and its quotient graph

The sites of carbon atoms are divided into two kinds:
A = Γ = {(m2 +m3,m3 +m1,m1 +m2) | mi ∈ Z},
B = (1/2, 1/2, 1/2) + Γ

= {(n2 + n3 + 1/2, n3 + n1 + 1/2, n1 + n2 + 1/2) | ni ∈ Z}.
Two atoms at sites (m2 +m3,m3 +m1,m1 +m2), (n2 +n3 +1/2, n3 +n1 +1/2, n1 +
n2 + 1/2) are to be binded by an edge if and only if one of the followings holds:

m1 = n1, m2 = n2, m3 = n3,
m1 = n1 + 1, m2 = n2, m3 = n3,
m1 = n1, m2 = n2 + 1, m3 = n3,
m1 = n1, m2 = n2, m3 = n3 + 1,

In this way, we have a crystal lattice X for a diamond, which we call the diamond
lattice. It should be noted that the origin o is in A, and the vertices in the nearest
neighbor of o are

a1 = (1/2, 1/2, 1/2),

a2 = (1/2,−1/2,−1/2),

a3 = (−1/2, 1/2,−1/2),

a4 = (−1/2,−1/2, 1/2).

(23)

We observe that a1, a2, a3, a4 form the regular tetrahedron whose center of mass is
o. It is also easily checked that the quotient graph X0 is the graph with two vertices
joined by 3 multiple edges. The potential energy per primitive unit cell is equal to
3. We shall show in §5 that this configuration is the equilibrium configuration.

4. The standard realization of generalized crystal lattices

We shall set up the class of graphs which generalizes the notion of crystal lattices.
A locally finite connected weighted graph X = (V,E) with weight functions mV

and mE is said to be a generalized crystal lattice or Γ-crystal lattice if the following
conditions are satisfied.

1. There exists a free abelian automorphism group Γ of X which acts freely on
the set V and the set of unoriented edges.

2. The weight functions are Γ-invariant.
3. The quotient graph Γ\X = X0 is finite.

In other words, X is an abelian covering graph of a finite weighted graph X0 with
the covering transformation group Γ, and the weight functions on X are the lifts of
those on X0.

The weighted graph associated with a crystal which we considered in §3 is a
Γ-crystal lattice with the Bravais lattice Γ.
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10 MOTOKO KOTANI AND TOSHIKAZU SUNADA

Let X be a Γ-crystal lattice with the quotient graph X0 = Γ\X . Let ϕ : X → X0

be the covering map and let ϕab : Xab
0 → X0 be the maximal abelian covering map

with the covering transformation group H1(X0,Z), the 1-homology group with
coefficients in Z. Then there exists a covering map ϕ1 : Xab

0 → X such that
ϕ ◦ ϕ1 = ϕab.

We shall introduce several inner product spaces over R associated with the finite
weighted graph X0. We adopt the following convention throughout this section.
Given an inner product space V , the dual vector space and quotient vector spaces
of V are considered as inner product spaces with the canonical inner products
obtained from that of V .

We denote by Ci(X0,R) the i-th cochain group (i = 0, 1) of the finite graph
X0 = (V0, E0) with the following inner product:

〈f1, f2〉 =
∑
x∈V0

mV0(x)f1(x)f2(x) (f1, f2 ∈ C0(X0,R)),

〈ω1, ω2〉 =
1
2

∑
e∈E0

mE0(e)ω1(e)ω2(e) (ω1, ω2 ∈ C1(X0,R)).
(24)

The adjoint operator δ : C1(X0,R) → C0(X0,R) of the coboundary operator d :
C0(X0,R)→ C1(X0,R) is given by

(δω)(x) = −mV0(x)−1
∑

e∈(E0)x

ω(e)mE0(e).(25)

The operators d and δ extend to vector-valued cochains in a natural manner.
It should be noted that ∆ = −δd. Since (Image d)⊥ = Ker δ, we may iden-

tify the 1-cohomology group H1(X0,R), which is the quotient inner product space
C1(X0,R)/ Image d, with the subspace Ker δ of C1(X0,R), the space of “harmonic
1-forms”. Next we consider the i-th chain group Ci(X0,R), which is considered to
be the dual inner product space of Ci(X0,R). More explicitly, the inner product ·
on C1(X0,R) is given by

e · e′ =


mE0(e)−1, e = e′,

−mE0(e)−1, e = e′,

0, otherwise.
(26)

Let X be a Γ-crystal lattice with the quotient graph X0. We extend the homo-
morphism ρ : H1(X0,Z)→ Γ associated with the covering map ϕ : X → X0 to the
linear map ρR : H1(X0,R) = H1(X0,Z)⊗R→ Γ⊗R. Note that ρR(H1(X0,Z)) = Γ.
We regard Γ ⊗ R as a quotient inner product space of H1(X0,R) and denote the
inner product by 〈 , 〉alb . The flat metric on the torus Γ ⊗ R/Γ induced from
〈 , 〉alb is called the Albanese metric and is denoted by galb. We write AlbΓ for
(Γ⊗R/Γ, galb), and call it the Γ-Albanese torus. In the case of the maximal abelian
covering graph,

AlbΓ = Alb(X0) = H1(X0,R)/H1(X0,Z).(27)

The transpose ρ∗R of ρR is an injective map of Hom(Γ,R) = (Γ⊗R)∗ into H1(X0,R).
From now on, we consider Hom(Γ,R) as a subspace of H1(X0,R) via ρ∗R.
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We shall define a harmonic map ΦΓ : X0 → AlbΓ. For this, we first define
Φ̃Γ : V → Γ⊗ R by

Φ̃Γ(x)(ω) =
∫ x

x0

ω̃,(28)

where ω̃ is the lift of a harmonic 1-form ω ∈ Hom(Γ,R) ⊂ H1(X0,R) and the
integral in the right hand side is defined, for a path c = (e1, . . . , el) with o(c) =
x0, t(c) = x, by ∫ x

x0

ω̃ = ω̃(e1) + · · ·+ ω̃(el).(29)

It should be noted that Φ̃Γ(x)(ω) does not depend on the choice of a path c. Next
we put, for each e ∈ E,

Φ̃Γ
e (t) = Φ̃Γ(e, t) = (1− t)Φ̃Γ(o(e)) + tΦ̃Γ(t(e)).(30)

In this way, we have a piecewise geodesic map Φ̃Γ : X → Γ ⊗ R. Note that, for
σ ∈ Γ,

Φ̃Γ(σx) = Φ̃Γ(x) + σ,(31)

since
∫ σx0

x0
ω̃ = ω(σ), and for every ω ∈ Hom(Γ,R),∑
e∈Ex

mE(e)(Φ̃Γ(t(e))− Φ̃Γ(o(e)))(ω̃) =
∑
e∈Ex

mE(e)ω̃(e) = 0.(32)

We thus obtain a harmonic map ΦΓ : X0 → AlbΓ.
The map ΦΓ is an analogue of the Albanese maps, which were originally defined

in algebraic geometry and Riemannian geometry (see [9]). The image Φ̃Γ is called
the standard realization of the generalized crystal lattice X .

Let X be a Γ-crystal lattice with X0 as its quotient graph, and let τ : Γ → Γ1

be a surjective homomorphism onto a free abelian group Γ1. The quotient graph
Ker τ\X is a Γ1-crystal graph with X0 as its quotient graph. The inner product
space Γ1⊗R is a quotient inner product space of Γ⊗R via the linear map τR : Γ⊗R→
Γ1⊗R induced from τ . We thus obtain a Riemannian submersion τ∗ : AlbΓ → AlbΓ1

in a natural manner. We may easily check that τR◦Φ̃Γ = Φ̃Γ1 ◦ϕ1 and τ∗◦ΦΓ = ΦΓ1 ,
where ϕ1 : X → X1 denotes the canonical projection. In particular, applying this
discussion to the homomorphism ρ : H1(X0,Z) → Γ associated with the covering
map ϕ : X → X0, we find that the standard realization of X in Γ ⊗ R coincides
with the image of the standard realization for the maximal abelian covering Xab

0 in
H1(X0,R) by the orthogonal projection ρR : H1(X0,R)→ Γ⊗ R.

Next, we let Γ1 be a subgroup of Γ with finite index `. A Γ-crystal lattice X is
also considered as a Γ1-crystal lattice with the finite quotient graph X1 = Γ1\X .
The covering map ϕ : X → X0 is factored as

X
ϕ1−→ X1

ϕ0−→ X0,(33)

where ϕ0 is an `-fold covering map. Let ι : Γ1 → Γ be the inclusion map. We
observe that the linear map ιR : Γ1 ⊗ R→ Γ⊗ R satisfies

〈ιR(u), ιR(v)〉alb = `〈u,v〉alb,(34)

and induces a homothetic `-fold covering map ι∗ : AlbΓ1 → AlbΓ. From the con-
struction of Albanese maps, we find that ιR ◦ Φ̃Γ1 = Φ̃Γ and ι∗ ◦ ΦΓ1 = ΦΓ ◦ ϕ0.
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12 MOTOKO KOTANI AND TOSHIKAZU SUNADA

This implies that the standard realization of the crystal lattice X up to homothety
depends only on the commensurable class of groups Γ. It is easily checked that
vol(AlbΓ) = `k/2−1 vol(AlbΓ1 ), where k = rank Γ = rank Γ1.

We shall now see that the Albanese map ΦΓ : X0 → AlbΓ is characterized as a
map with minimal energy among piecewise smooth maps, which is homotopic to
ΦΓ, of X0 into the torus Γ ⊗ R/Γ with a flat metric whose volume is the same as
vol(AlbΓ).

Theorem 4.1. Let g be a flat metric on the torus T = Γ ⊗ R/Γ with the same
volume as galb, and let Φ be a piecewise smooth map from X0 to (T , g). If Φ is
homotopic to ΦΓ, then

E(ΦΓ, galb) ≤ E(Φ, g).

The equality holds if and only if (T , g) = (T , galb) = AlbΓ and Φ coincides with ΦΓ

up to a translation.

We preface the proof with two lemmas.
A path in a graph is a sequence c = (e1, . . . , el) with t(ei) = o(ei+1), i = 1, . . . ,

l − 1. We put o(c) = o(e1), t(c) = t(el). When o(c) = t(c), the path c is said to be
closed. A closed path without self-intersections is called a circuit.

Given a circuit c = (e1, . . . , el) in X0, we define a cochain ωc by

ωc(e) =


mE0(ei)−1, e = ei,

−mE0(ei)−1, e = ei,

0, otherwise.
(35)

We observe that ωc is a harmonic 1-form and

〈ωc1 , ωc2〉 = ωc1(c2) = c1 · c2.(36)

An orientation of X0 is given by a subset Eo0 of E0 such that E0 = Eo0 q Eo0 ,
where Eo0 = {e | e ∈ Eo0}. Let N be the number of vertices and M the number of
unoriented edges of X0.

Lemma 4.2. There exists a Z-basis c1, . . . , cn of the 1-homology group H1(X0,Z)
(n = rankH1(X0,Z)) consisting of circuits.

Proof. Take a maximal (spanning) tree T = (VT , ET ) of X0, a maximal element
among subtrees ordered by inclusion. The tree T contains all vertices of X0, and
the number of the unoriented edges not contained in T is equal to n. Give an
orientation Eo0 = {e1, . . . , eM} to the graph X0 such that

e1, . . . , en /∈ ET ,
en+1, . . . , eM ∈ ET .

(37)

For i with 1 ≤ i ≤ n, take the minimal path c′i in T such that o(c′i) = t(ei), t(c′i) =
o(ei), and put ci = eic

′
i. We easily find that the circuits c1, . . . , cn form a basis of

H1(X0,R).

Let c1, . . . , cn be a Z-basis of the 1-homology group H1(X0,Z) consisting of
circuits, and let u1, . . . , un ∈ H1(X0,R) be the dual basis, i.e. ui(cj) = δij . Put
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ωi = ωci. Then ω1, . . . , ωn form an R-basis of H1(X0,R). Therefore one can find
an n× n matrix U = (uij) such that

ui =
n∑
j=1

uijωj .(38)

Choose an orientation Eo0 = {e1, . . . .eM} of X0 and put W = diag(µ1, . . . , µM )
with µi = mE(ei)−1. Writing ci =

∑M
l=1 filel, we define an n×M matrix F = (fil).

It is easy to check

Lemma 4.3. Put Λ = (ci · cj). Then

Λ = U−1,(39)

Λ = FWF t.(40)

Proof. The first equality follows from

δij = ui(cj) =
n∑
h=1

uihωh(cj) =
n∑
h=1

uihΛhj.(41)

The second one is checked as

ci · cj =
( M∑
l=1

filel

)
·
( M∑
m=1

fjmem

)
=

M∑
l,m=1

filfjmel · em =
M∑
l=1

filµlfjl.

(42)

Now we are ready to prove Theorem 4.1.

Proof. We may assume Φ is harmonic because a harmonic map into a torus with a
fixed flat metric is energy minimizing (Theorem 2.5). Owing to Theorem 2.4, Φ is
equal to ΦΓ up to a translation as a map to T = Γ⊗R/Γ, and we only have to find
a flat metric g on T with a fixed volume which minimizes the energy E(ΦΓ, g). We
shall show that such a metric is homothetic to the Albanese metric. Without loss
of generality, we may assume that vol(T , g) = vol(T , galb).

Take a Z-basis σ1, . . . , σk of Γ, and let v1, . . . , vk ∈ Hom(Γ,R) be the dual basis
of σ1, . . . , σk, where k = rank Γ. Write

c′i = ρR(ci) =
k∑
j=1

rjiσj (rji ∈ Z; i = 1, . . . , n).(43)

Then we have vj = ρ∗R(vj) =
∑n

i=1 rjiui. Put S = (〈vi, vj〉) = RURt. Note that
S−1 = 〈σi, σj〉alb.

Regard Φ̃ (= Φ̃Γ) as a 0-cochain of X with values in the vector space Γ⊗ R. It
is obvious that dΦ̃ ∈ C1(X,Γ ⊗ R) satisfies dΦ̃(σe) = dΦ̃(e) for e ∈ E and σ ∈ Γ.
Therefore dΦ̃ is identified with a 1-cochain of X0 with values in Γ⊗ R.

Put

vi = dΦ̃(ei) for i = 1, . . . ,M.(44)
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14 MOTOKO KOTANI AND TOSHIKAZU SUNADA

Now, for ω ∈ Hom(Γ,R) ⊂ H1(X0,R), we have

ω(ei) =
∑
j

〈ω, uj〉uj(ei) =
∑
j

ω(cj)uj(ei) =
∑
j

(ρ∗Rω)(cj)uj(ei)

=
∑
j

ω(ρR(cj))uj(ei) =
∑
j

ω(c′j)uj(ei),
(45)

and vi(ω) = ω(ei). Therefore we have

vi =
n∑
j=1

uj(ei)c′j =
n∑
j=1

n∑
m=1

ujmωm(ei)c′j

=
n∑
j=1

n∑
m=1

ujmfmiµic
′
j =

n∑
j=1

n∑
m=1

k∑
l=1

ujmfmiµirljσl

=
k∑
l=1

(WF tURt)ilσl.

(46)

We put A = (〈σi, σj〉g). Since

vol(Γ⊗ R/Γ, galb) = (detS)−1/2,(47)

vol(Γ⊗ R/Γ, g) = (detA)1/2,(48)

we have det(SA) = 1.
The energy E(ΦΓ, g) is computed in the following way:

E(ΦΓ, g) =
M∑
i=1

mE(ei)‖vi‖2g =
M∑
i=1

k∑
j,h=1

µ−1
i (WF tURt)ij(WF tURt)ihAjh

= tr(F tURtA(WF tURt)t) = tr(RUFWF tURtA)

= tr(RUΛURtA) = tr(RURtA) = tr(SA).

(49)

Let
√
S be the positive square root of the positive definite symmetric matrix S.

Then we have

tr(SA) = tr(
√
SA
√
S) ≥ k det(

√
SA
√
S)1/k = k det(SA)1/k = k.(50)

The equality holds if and ony if SA = I, or equivalently

〈σi, σj〉g = 〈σi, σj〉alb,(51)

i.e. g = galb.

Since E(ΦΓ, cg) = cE(ΦΓ, g) and vol(cg) = ck/2 vol(g) for c > 0, the above proof
leads us to the following

Theorem 4.4. Let X be a k-dimensional crystal lattice with the Bravais lattice
group Γ, and let E0 be the potential energy per primitive unit cell with volume v0.
Then

E0v−2/k
0 ≥ k vol(AlbΓ)−2/k.(52)

The equality holds if and only if the configuration of X is in equilibrium.
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So far we have explained how the equilibrium configurations of crystal lattices
are described in terms of the Albanese maps into the Albanese tori. We are now in
position to prove Theorem 2, which is actually a disguised form of Theorem 4.1.

Let C be a homotopy class of maps from a finite weighted graph X0 into a
torus (T , g) which induces a surjective homomorphism η : π1(X0) → π1(T ). Put
Γ = π(X0)/Ker η and X = Ker η\X̃0, where X̃0 is the universal covering graph of
X0. Then X is a Γ-crystal lattice with X0 as its quotient graph.

Lemma 4.5. There exists an affine isomorphism α : Γ ⊗ R/Γ → T such that
α ◦ ΦΓ ∈ C.

Proof. Identify T with H1(T ,R)/H1(T ,Z) and let ρ : Γ → π(T ) = H1(T ,Z) be
the isomorphism induced from η. Extend ρ to the linear isomorphism ρR : Γ⊗R→
H1(T ,R) and get the affine isomorphism α : Γ⊗ R/Γ→ H1(T ,R)/H1(T ,Z) = T .
Since ρR ◦ Φ̃Γ is a lift of α ◦ ΦΓ and

ρR(Φ̃Γ(σx)) = ρR(Φ̃Γ(x)) + ρ(σ),(53)

we observe that α ◦ ΦΓ is in C.

Put Φ0 = α ◦ ΦΓ and g0 = c(α∗)−1galb, where c is a positive constant with
v0 = vol(cgalb). Then, for a piecewise smooth map Φ ∈ C and a flat metric g on T
with vol(g) = v0, we have

E(Φ, g) = E(α−1 ◦ Φ, α∗g)

≥ E(ΦΓ, α∗g) ≥ E(ΦΓ, cgalb) = E(Φ0, g0).
(54)

The equality holds if and ony if g = g0 and Φ is a translation of Φ0. This completes
the proof of Theorem 2, which is restated as follows:

Theorem 4.6. Let X0 be a finite connected weighted graph, T a torus, and C a
homotopy class of piecewise smooth maps from X0 into T such that a map in C
induces a surjective homomorphism η of π1(X0) onto π1(T ). For a given positive
constant v0, there exists a pair (Φ0, g0), consisting of a harmonic map Φ0 ∈ C and
a flat metric g0 on T such that vol(T , g0) = v0, satisfying

E(Φ0, g0) ≤ E(Φ, g)(55)

for every Φ ∈ C and every flat metric g on T with vol(T , g) = v0. The pair
(Φ0, g0) coincides essentially with the pair consisting of the Albanese map and the
Albanese metric associated with the Γ-crystal lattice X = Ker η\X̃0, where X̃0 is
the universal covering graph of X0.

Remark. It should be noted that the standard realization is not always a faithful
expression of a given crystal lattice, although many examples indicate that it usually
is, as will be seen in the next section. Actually if ω(e) = 0 for all ω ∈ H1(X0,R),
then the edge e degenerates in the standard realization of the maximal abelian
covering graph X of X0, and vice versa. We call such an edge degenerate. Observe
that an edge e is degenerate if and only if the graph obtained from X0 by removing
e is not connected. This follows from the fact that there is a circuit in X0 which
contains an edge e if and only if the graph obtained by removing e is connected.
The union of all the degenerate edges forms a forest, a disjoint union of trees, in X .
By collapsing each component of the complement of the forest in X0 to one point,
we have a tree.
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5. Examples

Let us take a look at some of the classically known examples of crystal lattices.
We shall see that the equilibrium configurations of those crystal lattices are just as
described in their figures (Figure 2, 3, 4, 5). To explain this, we keep the notation
in the previous section. We shall realize a crystal lattice X in the subspace Π =
(Ker ρ)⊥, which is identified with Γ ⊗ R, of the Euclidean space H1(X0,R) ∼= Rn.
Throughout this section we assume mV ≡ 1 and mE ≡ 1.

We shall first explain a general algorithm to realize a generalized lattice X in the
Euclidean space Π. For this, take a maximal tree T = (VT , ET ) of X0. Fix a base
point x0 ∈ T . Then one can equip an orientation Eo0 = {e1, . . . , en, t1, . . . , tN−1}
with

e1, . . . , en 6∈ ET ,
t1, . . . , tN−1 ∈ ET ,

(56)

such that, for every vertex x in X0, there exists a minimal path c = (ti1 , . . . , tia) in T
with o(c) = x0 and t(c) = x. Let c1, . . . , cn be the basis of H1(X0,R) constructed in
the proof of Lemma 4.2. Take a basis c1, . . . , cn of Rn such that 〈ci, cj〉Rn = Λij =
ci · cj . By identifying ci with ci, we have an isometry between Rn and H1(X0,R).
The vectors c′i are the orthogonal projections of ci to the k-dimensional subspace
Π (k = rank Γ). Put

bi =
n∑
l=1

ul(ti)c′l ∈ Π (i = 1, . . . , N − 1).(57)

Then we easily see that bi corresponds to dΦ̃Γ(ti) ∈ Γ ⊗ R through the isometry
between Π and Γ⊗ R.

Let T̃ ⊂ X be a lift of T , and let x̃0 ∈ T̃ be the vertex with ϕ(x̃0) = x0. Taking
the path c joining x0 and x = ϕ(x̃) as above, we find that

Φ̃Γ(x̃) =
a∑
s=1

bis (Φ̃Γ(x̃0) = o).(58)

In this way, we obtain the position vectors in Π corresponding to the vertices in T̃ .
We draw the line segments joining two points according to the incidence of vertices
and edges in T̃ .

Put

bN−1+i = c′i −
N−1∑
l=1

fi,n+lbl (i = 1, . . . , n),(59)

where we should recall that

ci = ei +
N−1∑
l=1

fi,n+ltl.(60)

Therefore bN−1+i gives the vector in Π corresponding to dΦ̃Γ(ei). Let ẽi be the
lift of ei with o(ẽi) ∈ T̃ . Then the figure consisting of the line segments joining
Φ̃Γ(o(ẽi)) and Φ̃Γ(o(ẽi)) + bN−1+i together with the above figure yields a building
block for the standard realizartion. Owing to the periodicity, the realization of X
is the union of its copies obtained by translations by Zc′1 + · · ·+ Zc′n.
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Example 5.1 (The standard lattice and the triangular lattice). The standard re-
alization of the standard lattice is the hypercubic lattice (Figure 2), and that of
the triangular lattice is the equilateral triangular lattice(Figure 3.a). Note that
Figure 3.b gives a crystal lattice whose internal force is in equilibrium but where
configuration is not.

Figure 2. The standard lattice and its quotient graph

a

b

Figure 3. The triangular lattice (with equilibrium configuration
and non equilibrium configuration)

Example 5.2 (The n-diamond lattice). Consider the maximal abelian covering
graph Xab

0 of the graph X0 with two vertices joined by n + 1 multiple edges
e1, . . . , en+1 (Figure 1). Put ci = eien+1 for i = 1, . . . , n, which forms a Z-basis of
H1(X0,Z). We have

F =


1 0 · · · 0 −1
0 1 · · · 0 −1
...

. . .
...

...
0 0 · · · 1 −1

 ,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



18 MOTOKO KOTANI AND TOSHIKAZU SUNADA

Λ =


2 1 · · · 1
1 2 · · · 1
...

. . .
...

1 1 · · · 2

 , U =
1

n+ 1


n −1 · · · −1
−1 n · · · −1
...

. . .
...

−1 −1 · · · n

 .

Therefore

bi = ci −
1

n+ 1

n∑
l=1

cl for i = 1, . . . , n,

bn+1 =
−1
n+ 1

n∑
l=1

cl.

(61)

Then we find that 〈bi,bj〉 = δij − 1
n+1 . The realization of Xab

0 is the figures
consisting of n + 1 vertices bi of an equilateral (n + 1)-simplex joined by line
segments with the center of mass at the origin and its copies obtained by translation
by
∑n

i=1 Zci. It is now easy to see that the n-diamond lattice graph is the hexagonal
lattice graph when n = 2 (Figure 4), and it gives the crystal structure of diamond
when n = 3.

b1

b2

e1 e2tb3

Figure 4. The hexagonal lattice and its quotient graph

Example 5.3 (The Kagome lattice). The Kagome lattice is the Z2-crystal lattice
with the quotient graph X0 which consists of three vertices joined by double edges
(see Figure 5). Put c1 = e1t1, c2 = e2t2, c3 = t1e3t2, c4 = t1e4t2, which form a
Z-basis of H1(X0,Z). Here we realize first the maximal abelian covering graph Xab

0

of X0 and then the Kagome lattice as the image of the orthogonal projection of the
realization of Xab

0 to the 2-dimensional subspace Π = Ker ρ⊥.
We have

F =


1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 0 1 −1
0 0 0 1 1 −1

 ,

Λ =


2 0 −1 −1
0 2 1 1
−1 1 3 2
−1 1 2 3

 , U =
1
6


4 −1 1 −1
−1 4 −1 −1

1 −1 4 −2
1 −1 −2 4

 .
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t1 t2
e1

b5

b6

b2
b3

b1
b4

e2

e3
e4

Figure 5. The Kagome lattice and its quotient graph

1) The maximal abelian covering graph Xab
0 (n = k = 4).

Let ci ∈ R4 be the vector corresponding to ci for i = 1, 2, 3, 4, so that
(〈ci, cj〉R4) = Λ. By simple computation, we have

b1 =
1
6

(−2c1 − c2 + c3 + c4),(62)

b2 =
1
6

(−c1 − 2c2 − c3 − c4),(63)

b3 =
1
6

(4c1 − c2 + c3 + c4),(64)

b4 =
1
6

(−c1 + 4c2 − c3 − c4).(65)

The building block of the realization of Xab
0 consists of the two triangles 4ob1b2

and 4ob3b4, and the realization of Xab
0 is the union of their copies obtained by

translatation by
∑
Zci.

2) The Kagome lattice (n = 4, k = 2).
A basis of Γ is given by ρ(c1) = σ1 and ρ(c2) = σ2. Since ρ(c4) = 0 and

ρ(c3) = σ2 − σ1, Ker ρ = Span{c4, c1 − c2 + c3}. The Kagome lattice is realized in
the subspace Π = Ker ρ⊥ ⊂ R4, and the action of Γ is generated by translation of
the orthogonal projection c′i of ci for i = 1, 2 to the subspace Π. The orthogonal
projection of bi in (1) to Π gives the realization of the vertices of the building block
of the Kagome lattice in Π, which we also denote by bi. They are given by

b1 = v1(t1)c′1 + v2(t1)c′2 = −1
2
c′1,(66)

b2 = v1(t2)c′1 + v2(t2)c′2 = −1
2
c′2,(67)

b3 = c′1 + Φ̃(p1)− Φ̃i(o) =
1
2
c′1,(68)

b4 = c′2 + Φ̃(p2)− Φ̃(o) =
1
2
c′2.(69)
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By using the relations

〈 , 〉 c4 c1 c2 c1 − c2 + c3
c4 3 -1 1 0
c1 -1 2 0 1
c2 1 0 2 -1

c1 − c2 + c3 0 1 -1 3

we have

c′1 = c1 −
1
3
〈c1, c1 − c2 + c3〉(c1 − c2 + c3)− 1

3
〈c1, c4〉c4

=
1
3

(2c1 + c2 − c3 + c4),
(70)

c′2 = c2 −
1
3
〈c2, c1 − c2 + c3〉(c1 − c2 + c3)− 1

3
〈c2, c4〉c4

=
1
3

(c1 + 2c2 + c3 − c4).
(71)

Notice that4oc′1c
′
2 forms an equilateral triangle with edges of length 2/

√
3. The

building block of the realization of the Kagome lattice consists of the two triangles
1
24oc′1c

′
2 and −1

2 4oc′1c
′
2, and the realization of the Kagome lattice is the union of

their copies obtained by translation by Zc′1 + Zc′2 in the subspace Π.
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Sendai 980-8578, Japan

E-mail address: kotani@math.tohoku.ac.jp

Mathematical Institute, Graduate School of Sciences, Tôhoku University, Aoba,
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