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Standardization and Control for
Confounding in Observational Studies:
A Historical Perspective
Niels Keiding and David Clayton

Abstract. Control for confounders in observational studies was generally
handled through stratification and standardization until the 1960s. Standard-
ization typically reweights the stratum-specific rates so that exposure cat-
egories become comparable. With the development first of loglinear mod-
els, soon also of nonlinear regression techniques (logistic regression, fail-
ure time regression) that the emerging computers could handle, regression
modelling became the preferred approach, just as was already the case with
multiple regression analysis for continuous outcomes. Since the mid 1990s it
has become increasingly obvious that weighting methods are still often use-
ful, sometimes even necessary. On this background we aim at describing the
emergence of the modelling approach and the refinement of the weighting
approach for confounder control.
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epidemiology, expected number of deaths, log-linear model, marginal struc-
tural model, National Halothane Study, odds ratio, rate ratio, transportability,
H. Westergaard, G. U. Yule.

1. INTRODUCTION: CONFOUNDING AND
STANDARDIZATION

In this paper we survey the development of mod-
ern methods for controlling for confounding in obser-
vational studies, with a primary focus on discrete re-
sponses in demography, epidemiology and social sci-
ence. The forerunners of these methods are the meth-
ods of standardization of rates, which go back at least
to the 18th century [see Keiding (1987) for a review].
These methods tackle the problem of comparing rates
between populations with different age structures by
applying age-specific rates to a single “target” age
structure and, thereafter, comparing predicted marginal
summaries in this target population. However, over the
20th century, the methodological focus swung toward
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indices which summarize comparisons of conditional
(covariate-specific) rates. This difference of approach
has, at its heart, the distinction between, for example,
a ratio of averages and an average of ratios—a dis-
tinction discussed at some length in the important pa-
pers by Yule (1934) and Kitagawa (1964), which we
shall discuss in Section 4. The change of emphasis
from a marginal to conditional focus led eventually to
the modern dominance of the regression modelling ap-
proach in these fields. Clayton and Hills [(1993), page
135] likened the two approaches to the two paradigms
for dealing with extraneous variables in experimen-
tal science, namely, (a) to make a marginal compari-
son after ensuring, by randomization, that the distri-
butions of such variables are equal, and (b) to fix, or
control, such influences and make comparisons condi-
tional upon these fixed values. In sections following,
we shall chart how, in observational studies, statisti-
cal approaches swung from the former to the latter.
Finally, we note that some recent methodological de-
velopments have required a movement in the reverse
direction.
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TABLE 1
Age standardization: some notation

Study population Standard population

No. of individuals A1 · · ·Ak S1 · · ·Sk

Age distribution a1 · · ·ak,
∑

ai = 1 s1 · · · sk,∑
si = 1

Death rates α1 · · ·αk λ1 · · ·λk

Actual no. of deaths
∑

Aiαi
∑

Siλi

Crude death rate
∑

Aiαi/
∑

Ai
∑

Siλi/
∑

Si

We shall start by recalling the basic concepts of di-
rect and indirect standardization in the simplest case
where a study population is to be compared to a stan-
dard population. Table 1 introduces some notation,
where there are k age groups. In indirect standardiza-
tion, we apply the age-specific death rates for the stan-
dard population to the age distribution of the study,
yielding the counterfactual number of deaths in the
study population if the rates had been the same as
the standard rates. The Standardized Mortality Ratio
(SMR) is the ratio between the observed number of
deaths in the study population to this “expected” num-
ber:

SMR = ∑
Aiαi

/∑
Aiλi.

Note that the numerator does not require knowledge of
the age distribution of deaths in the study group. This
property has often been useful.

In direct standardization one calculates what the
marginal death rate would have been in the study pop-
ulation if its age distribution had been the same as in
the standard population:

(Direct) standardized rate = ∑
siαi

= ∑
Siαi

/∑
Si.

This is sometimes expressed relative to the marginal
rate in the standard population—the Comparative Mor-
tality Figure (CMF):

CMF = ∑
Siαi

/∑
Siλi.

Sato and Matsuyama (2003) and Hernán and Robins
(2006) gave concise and readable accounts of the con-
nection of standardization to modern causal analysis.
Assume that, as in the above simple situation, outcome
is binary (death) and exposure is binary—individuals
are either exposed (study population) or unexposed
(standard population). Each individual may be thought
of as having a different risk for each exposure state,

even though only one state can be observed in prac-
tice. In addition to depending on exposure, risks de-
pend on a discrete confounder (age group). The causal
effect of the exposure can be defined as the ratio of the
marginal risk in a population of individuals had they
been exposed to the risk for the same individuals had
they not been exposed. Conditional exchangeability is
assumed; for a given value of the confounder (in the
present case, within each age group), the counterfactual
risks for each individual do not depend on the actual
exposure status. Then the marginal death rate in the un-
exposed (standard) population of individuals had they
been exposed is estimated by the directly standardized
rate, so that the causal risk ratio for the unexposed pop-
ulation is estimated by the CMF. Similarly, the causal
risk ratio for the exposed population is estimated by the
SMR. We may estimate the death rate of the exposed
population had they not been exposed by the indirectly
standardized death rate, obtained by multiplying the
crude rate in the standard population by the SMR:

Indirect standardized rate =
∑

Siλi∑
Si

×
∑

Aiαi∑
Aiλi

.

Both direct and indirect approaches are based on com-
parison of marginal risks, although, as pointed out
by Miettinen (1972b), they focus on different “target”
populations; indirect standardization may be said to
have the study population as its target, while direct
standardization has the standard population as its tar-
get. Indeed, the CMF is identical to the (reciprocal of)
the SMR if “study” and “standard” populations are in-
terchanged.

In many epidemiological and biostatistical contexts
it is natural to use the total population (exposed +
unexposed) as basis for statements about causal risk
ratios. With Ni = Ai + Si , the total population size in
age group i, the causal risk ratio in the total population
will be ∑

Niαi∑
Niλi

=
∑

Ai(Ni/Ai)αi∑
Si(Ni/Si)λi

.

This rearrangement of the formula shows that we may
interpret standardization with the total population as
target as an inverse probability weighting method in
which the weighting compensates for nonobservation
of the counterfactual exposure state for each subject.
In the numerator, the contributions of the Ai exposed
subjects are inversely weighted by Ai/Ni , which es-
timates the probability that a subject in age group i of
the total study was observed in the exposed state. Simi-
larly, in the denominator, the Si unexposed subjects are
inversely weighted by the probability that a subject was
observed in the unexposed state. The method of inverse
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probability weighting is an important tool in marginal
structural models and other methods in modern causal
analysis.

Thus, while there are obvious similarities between
direct and indirect standardization, there are also im-
portant differences. In particular, when the aim is to
compare rates in several study populations, reversal of
the roles of study and standard population is no longer
possible and Yule (1934) pointed out important faults
with the indirect approach in this context. Such con-
siderations will lead us, eventually, to see indirect stan-
dardization as dependent on an implicit model and,
therefore, as a forerunner of the modern conditional
modelling approach.

The plan of this paper is to present selected high-
lights from the historical development of confounder
control with focus on the interplay between marginal or
conditional choice of target, on the one hand, and the
role of (parametric or nonparametric) statistical mod-
els on the other. Section 2 recalls the development
of standardization techniques during the 19th century.
Section 3 deals with early 20th century approaches to
the problem of causal inference, focusing particularly
on the contributions of Yule and Pearson. Section 4
records highlights from the parallel development in the
social sciences, focusing on the further development of
standardization methods in the 20th century—largely
in the social sciences. Section 5 deals with the impor-
tant developments in the 1950s and early 1960s sur-
rounding the analysis of the 2 × 2 × K contingency ta-
ble, and Section 6 briefly summarizes the subsequent
rise and dominance of regression models. Section 7
points out that the values of parameters in (conditional)
probability models are not always the only focus of
analysis, that marginal predictions in different target
populations are often important, and that such predic-
tions require careful examination of our assumptions.
Finally, Section 8 contains a brief concluding sum-
mary.

Here we have used the word “rate” as a synonym for
“proportion”, reflecting usage at the time. It was later
recognized that a distinction should properly be made
(Elandt-Johnson, 1975, Miettinen, 1976a) and modern
usage reflects this. However, for this historical review
it has been more convenient to follow the older termi-
nology.

2. STANDARDIZATION OF MORTALITY RATES IN
THE 19TH CENTURY

Neison’s Sanatory Comparison of Districts

It is fair to start the description of direct and indi-
rect standardization with the paper by Neison (1844),

read to the Statistical Society of London on 15 January
1844, responding to claims made at the previous meet-
ing (18 December 1843) of the Society by Chadwick
(1844) about “representing the duration of life”.

Chadwick was concerned with comparing mortal-
ity “amongst different classes of the community, and
amongst the populations of different districts and coun-
tries”. He began his article by quoting the 18th cen-
tury practice of using “proportions of death” (what we
would now call the crude death rate): the simple ratio
of number of deaths in a year to the size of the popu-
lation that year. Under the Enlightenment age assump-
tion of stationary population, it is an elementary demo-
graphic fact that the crude death rate is the inverse of
the average life time in the population, but as Chad-
wick pointed out, the stationarity assumption was not
valid in England at the time. Instead, Chadwick pro-
posed the average age of death (i.e., among those dying
in the year studied). Neison responded:

That the average age of those who die in one
community cannot be taken as a test of the
value of life when compared with that in an-
other district is evident from the fact that no
two districts or places are under the same
distribution of population as to ages.

To remedy this, Neison proposed to not only calcu-
late the average age at death in each district, but

also what would have been the average age
at death if placed under the same population
as the metropolis.

This is what we now call direct standardization, re-
ferring the age-specific mortality rates in the various
districts to the same age distribution. A little later Nei-
son remarked that

Another method of viewing this question
would be to apply the same rate of mortality
to different populations,

what we today call indirect standardization.
Keiding (1987) described the prehistory of indirect

standardization in 18th century actuarial contexts; al-
though Neison was himself an actuary, we have found
no evidence that this literature was known to Neison,
who apparently developed direct as well as indirect
standardization over Christmas 1843. Schweber (2001,
2006) [cf. Bellhouse (2008)] attempted a historical–
sociological discussion of the debate between Chad-
wick and Neison.
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A few years later Neison (1851) published an elab-
orate survey “On the rate of mortality among persons
of intemperate habits” in which he wrote in the typical
style of the time:

From the rate of sixteen upwards, it will
be seen that the rate of mortality exceeds
that of the general population of England
and Wales. In the 6111.5 years of life to
which the observations extend, 357 deaths
have taken place; but if these lives had been
subject to the same rate of mortality as the
population generally, the number of deaths
would only have been 110, showing a dif-
ference of 3.25 times. . . . If there be any-
thing, therefore, in the usages of society cal-
culated to destroy life, the most powerful is
certainly the use of strong drink.

In other words, an SMR of 3.25.
Expected numbers of deaths (indirect standardiza-

tion) were calculated in the English official statistical
literature, particularly by W. Farr, for example, Farr
(1859), who chose the standard mortality rates as the
annual age-specific death rates for 1849–1853 in the
“healthy districts”, defined as those with average crude
mortality rates of at most 17/1000 [see Keiding (1987)
for an example]. W. Ogle initiated routine use of (di-
rect) standardization in the Registrar-General’s report
of 1883, using the 1881 population census of England
and Wales as the standard. In 1883, direct standard-
ization of official mortality statistics was also started
in Hamburg by G. Koch. Elaborate discussions on the
best choice of an international standard age distribution
took place over several biennial sessions of the Inter-
national Statistical Institute; cf. Körösi (1892–1893),
Ogle (1892) and von Bortkiewicz (1904).

Westergaard and Indirect Standardization

Little methodological refinement of the standardiza-
tion methods seems to have taken place in the 19th
century. One exception is the work by the Danish
economist and statistician H. Westergaard, who already
in his first major publication, Westergaard (1882) (an
extension, in German, of a prize paper that he had sub-
mitted to the University of Copenhagen the year be-
fore), carefully described what he called die Methode
der erwartungsmässig Gestorbenen (the method of ex-
pected deaths), that is, indirect standardization. He was
well aware of the danger that other factors could dis-
tort the result from a standardization by age alone and
illustrated in a small introductory example the impor-
tance of what we would nowadays call confounder con-
trol, and how the method of expected number of deaths
could be used in this connection.

Table 2 shows that when comparing the mortality of
medical doctors with that of the general population, it
makes a big difference whether the calculation of ex-
pected number of deaths is performed for the country
as a whole or specifically (we would say “condition-
ally”) for each urbanization stratum. In Westergaard’s
words, our English translation:

It is seen from this how difficult it is to
conduct a scientific statistical calculation.
The two methods both look correct, and
still yield very different results. According
to one method one would conclude that the
medical professionals live under very un-
healthy conditions, according to the other,
that their health is relatively good.
The difficulty derives from the fact that
there exist two causes: the medical profes-
sion and the place of residence; both causes
have to be taken into account, and if one ne-
glects one of them, the place of residence,

TABLE 2
Distribution of deaths of Danish medical doctors 1815–1870, as well as the expected number of deaths if the doctors had been subjected to

the mortality of the general (male) population, based on age-specific mortality rates for Denmark as a whole as well as on age-specific
mortality rates separately for each of the three districts Copenhagen, Provincial Towns, Rural Districts [Westergaard (1882), page 40]

Expected number of deaths according to

Years at risk Dead three special districts whole country

Copenhagen 7127 108 156 98
Provincial towns 9556.5 159 183 143
Rural districts 4213.5 74 53 60

Whole country 20,897.0 341 392 301
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and only with the help of the general life ta-
ble considers the influence of the other, one
will make an erroneous conclusion.
The safest is to continue the stratification
of the material until no further disruptive
causes exist; if one has no other proof, then
a safe sign that this has been achieved,
is that further stratification of the material
does not change the results.

This general strategy of stratifying until the theoret-
ical variance had been achieved, eliminating any resid-
ual heterogeneity beyond the basic binomial variation,
was heavily influenced by the then current attempts by
Quetelet and Lexis in identifying homogeneous sub-
groups in data from social statistics, for which the nor-
mal distribution could be used, preferably with the in-
terpretation of an approximation to the binomial [see
Stigler (1986) for an exposition on Quetelet and Lexis].
In his review of the book, Thiele (1881) criticized
Westergaard’s account for overinterpreting the role of
mathematical results such as the law of large numbers
(as the central limit theorem was then termed) in em-
pirical sciences. As we shall see, however, Westergaard
remained fascinated by the occurrence of binomially
distributed data in social statistics.

Westergaard also outlined a derivation of the stan-
dard error of the expected number of deaths, using
what we would call a Poisson approximation argument
similar to the famous approximation by Yule (1934)
fifty years later for the standard error of the SMR. We
shall see later that Kilpatrick (1962) had the last word
on this matter by justifying Yule’s approximation in the
framework of maximum likelihood estimation in a pro-
portional hazards model.

Standard error considerations accompany the many
concrete calculations on human mortality throughout
Westergaard’s book from 1882, which in our view is
original in its efforts to integrate statistical considera-
tions of uncertainty into mortality analysis, with indi-
rect standardization as the central tool. In the second
edition of the book, Westergaard [(1901), page 25] ex-
plained that the method of expected number of deaths
has (our translation)

the advantage of summarizing many small
series of observations with all their ran-
dom differences without having to abandon
the classification according to age or other
groupings (e.g., occupation, residence etc.),
in other words obtaining the advantage of an
extensive material, without having to fear its
disadvantages.

When Westergaard (1916) finally presented his
views on statistics in English, the printed comments
in what we now call JASA were supplemented by a de-
tailed review by Edgeworth (1917) for the Royal Statis-
tical Society. Westergaard [(1916), page 246] had gone
as far as to write:

In vital or economic statistics most num-
bers have a much wider margin of devia-
tion than is experienced in games. Thus the
death rate, the birth rate, the marriage rate,
or the relative frequency of suicide fluctu-
ates within wide limits. But it can be proved
that, by dividing the observations, sooner
or later a marked tendency to the binomial
law is revealed in some parts of the obser-
vations. Thus, the birth rate varies greatly
from year to year; but every year nearly the
same ratio between boys and girls, and the
same proportions of stillbirths, and of twins
are observed . . .

and (page 248)

. . . there is no difficulty in getting several
important results concerning relative num-
bers. The level of mortality may be very dif-
ferent from year to year, but we can perceive
a tendency to the binomial law in the rel-
ative numbers, the death rates by age, sex,
occupation etc.

Edgeworth questioned that “Westergaard’s panacea”
would work as a general remedy in all situations, and
continued:

It never seems to have occurred to him that
the “physical” as distinguished from the
“combinatorial” distribution, to use Lexis’
distinction, may be treated by the law of er-
ror [the normal distribution].

Edgeworth here referred to the empirical (physical)
variance as opposed to the binomial (combinatorial).
Lexis (1876), in the context of time series of rates, had
defined what we now call the overdispersion ratio be-
tween these two.

Indirect standardization does not require the age
distribution of the cases. Regarding standardization,
Westergaard [(1916), page 261 ff.] explained and ex-
emplified the method of expected number of deaths, as
usual without quoting Neison or other earlier users of
that method, such as Farr, and went on:
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English statisticians often use a modifica-
tion of the method just described of calcu-
lating expected deaths; viz., the method of
“standards” (in fact the method of expected
deaths can quite as well claim the name of a
“standard” method),

and after having outlined direct standardization con-
cluded,

In the present case the two forms of compar-
ison lead to nearly the same result, and this
will generally be the case, if the age distri-
bution in the special group is not much dif-
ferent from that of the general population.
But on the whole the method described last
is a little more complicated than the calcu-
lation of expected deaths, and in particular
not applicable, if the age distribution of the
deaths of the barristers and solicitors is un-
known.

This last point (that indirect standardization does not
require the breakdown of cases in the study population
by age) has often been emphasized as an important ad-
vantage of indirect standardization. An interesting ap-
plication was the study of the emerging fall of the birth
rate read to the Royal Statistical Society in December
1905 by Newsholme and Stevenson (1906) and Yule
(1906). [Yule (1920) later presented a concise popu-
lar version of the main findings to the Cambridge Eu-
genics Society, still interesting reading.] The problem
was that English birth statistics did not include the age
distribution of the mother, and it was therefore recom-
mended to use some standard age-specific birth rates
(here: those of Sweden for 1891) and then indirect stan-
dardization.

Westergaard and an Early Randomised Clinical
Trial

Westergaard (1918) published a lengthy rebuttal
(“On the future of statistics”) to Edgeworth’s cri-
tique. Westergaard was here mainly concerned with the
statistician’s overall ambition of contributing to “find
the causality”, and with a main point being his crit-
icism of “correlation based on Bravais’s formula” as
not indicating causality. However, he also had an in-
teresting, albeit somewhat cryptic, reference to a topic
that was to become absolutely central in the coming
years: that simple binomial variation is justified under
random sampling. In his 1916 paper, he had advocated
(page 238) that

in many cases it will be practically impossi-
ble to do without representative statistics.

[Edgeworth (1917) taught Westergaard that the cor-
rect phrase was “sampling”, and Westergaard replied
that English was for him a foreign language.] To illus-
trate this, Westergaard [(1916), page 245] wrote:

The same formula in a little more com-
plicated form can be applied to the chief
problem in medical statistics; viz., to find
whether a particular method of treatment
of disease is effective. Let the mortality
of patients suffering from the disease be
p2, when treated with a serum, p1, when
treated without it, and let the numbers in
each case be n2 and n1. Then the mean er-
ror of the difference between the frequen-
cies of dying in the two groups will be√

p1q1/n1 + p2q2/n2 and we can get an
approximation by putting the observed rela-
tive values instead of p1 and p2.

In his rebuttal, Westergaard [(1918), page 508] re-
vealed that this was not just a hypothetical example:

A very interesting method of sampling was
tried several years ago in a Danish hospital
for epidemic diseases in order to test the in-
fluence of serum on patients suffering from
diphtheria. Patients brought into the hospi-
tal one day were treated with serum, the
next day’s patients got no injection, and so
on alternately. Here in all probability the
two series of observations were homoge-
neous.

Westergaard here referred to the experiment by
Fibiger (1898), discussed by Hrobjartsson, Gøtzsche
and Gluud (1998), as “the first randomized clini-
cal trial” and further documented in the James Lind
Library: http://www.jameslindlibrary.org/illustrating/
records/om-serumbehandling-af-difteri-on-treatment-
of-diphtheria-with-s/key_passages.

3. ASSOCIATION, AND CAUSALITY: YULE,
PEARSON AND FOLLOWING

The topic of causality in the early statistical litera-
ture is particularly associated with Yule and with Pear-
son, although they were far from the first to grapple
with the problem. Yule considered the topic mainly in
the context of discrete data, while Pearson considered
mainly continuous variables. It is perhaps this which

http://www.jameslindlibrary.org/illustrating/records/om-serumbehandling-af-difteri-on-treatment-of-diphtheria-with-s/key_passages
http://www.jameslindlibrary.org/illustrating/records/om-serumbehandling-af-difteri-on-treatment-of-diphtheria-with-s/key_passages
http://www.jameslindlibrary.org/illustrating/records/om-serumbehandling-af-difteri-on-treatment-of-diphtheria-with-s/key_passages
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led to some dispute between them, particularly in re-
gard to measures of association. For a detailed review
of their differences, see Aldrich (1995).

Yule’s Measures of Association and Partial
Association

For a 2 × 2 table with entries a, b, c, d , Yule (1900)
defined the association measure Q = (ad − bc)/(ad +
bc), noting that it equals 0 under independence and
1 or −1 under complete association. There are of
course many choices of association measure that ful-
fil these conditions. Pearson [(1900), pages 14–18] im-
mediately made strong objections to Yule’s choice; he
wanted a parameter that agreed well with the correla-
tion if the 2×2 table was generated from an underlying
bivariate normal distribution. The discussion between
Yule and Pearson and their camps went on for more
than a decade. It was chronicled from a historical–
sociological viewpoint by MacKenzie (MacKenzie,
1978, 1981).

That he regarded the concrete values of Q meaning-
ful outside of 0 or 1 is illustrated by his analysis of
the association between smallpox vaccination and at-
tack, as measured by Q, in several towns (Table 3).
The values of Q were much higher for young children
than for older people, but did not vary markedly be-
tween different towns, despite considerable variation in
attack rates. This use of Q is different from an immedi-
ately interpretable population summary measure and it
is closer to how we use models and parameters today.
Indeed, since Q is a simple transformation of the odds
ratio, (ad)/(bc), Yule’s analyses of association antic-
ipate modern orthodoxy (Q = 0.9 corresponds to an
odds ratio of 19, and Q = 0.5 to an odds ratio of 3).

Yule’s view on causal association was largely ex-
pounded by consideration of its antithesis, which he
termed “illusory” or “misleading” association. Chief
amongst the reasons for such noncausal association he

identified as that due to the direct effect of a third vari-
able on outcome. His discussion of this phenomenon
in Yule (1903) (under the heading “On the fallacies
that may be caused by the mixing of distinct records”)
and, later, in his 1911 book (Yule, 1911) came to be
termed “Yule’s paradox”, describing the situation in
which two variables are marginally associated but not
associated when examined in subgroups in which the
third, causal, variable is held constant. The idea of
measuring the strength of association holding further
variables constant, which Yule termed “partial” asso-
ciation, was thus identified as an important protection
against fallacious causal explanations. However, he did
not formally consider modelling these partial associa-
tions. Indeed, he commented (Yule, 1900):

The number of possible partial coefficients
becomes very high as soon as we go beyond
four or five variables.

Yule did not discuss more parsimonious definitions
of partial association, although clearly he regarded the
empirical stability of Q over different subgroups of
data as a strong point in its favour. Commenting on
some data on recovery from smallpox, in Yule (1912),
he later wrote:

This, as it seems to me, is a most impor-
tant property . . . If you told any man of or-
dinary intelligence that the association be-
tween treatment and recovery was low at
the beginning of the experiment, reached a
maximum when 50 per cent. of the cases
were treated and then fell off again as the
proportion of cases treated was further in-
creased, he would, I think, be legitimately
puzzled, and would require a good deal of
explanation as to what you meant by as-
sociation. . . . The association coefficient Q

TABLE 3
Yule’s analysis of the association between smallpox vaccination and attack rates (defined as percentage contracting the disease in

“invaded household”)

Attack rate under 10 Attack rate over 10 Yule’s Q

Town Date Vaccinated Unvaccinated Vaccinated Unvaccinated <10 >10

Sheffield 1887–1888 7.9 67.6 28.3 53.6 0.92 0.49
Warrington 1892–1893 4.4 54.5 29.9 57.6 0.93 0.52
Dewsbury 1891–1892 10.2 50.8 27.7 53.4 0.80 0.50
Leicester 1892–1893 2.5 35.3 22.2 47.0 0.91 0.51
Gloucester 1895–1896 8.8 46.3 32.2 50.0 0.80 0.36
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keeps the same value throughout, quite un-
affected by the ratio of cases treated to cases
untreated.

Pearson and Tocher’s Test for Identity of Two
Mortality Distributions

Pearson regarded the theory of correlation as of fun-
damental importance, even to the extent of replacing
“the old idea of causality” (Pearson, 1910). Neverthe-
less, he recognised the existence of “spurious” correla-
tions due to incorrect use of indices or, later, due to a
third variable such as race (Pearson, Lee and Bramley-
Moore, 1899).

Although most of Pearson’s work concerned corre-
lation between continuous variables, perhaps the most
relevant to our present discussion is his work, with J. F.
Tocher, on comparing mortality distributions. Pearson
and Tocher (1915) posed the question of finding a
proper test for comparing two mortality distributions.
Having pointed out the problems of comparing crude
mortality rates, they considered comparison of stan-
dardized rates (or, rather, proportions). In their nota-
tion, if we denote the number of deaths in age group
s (= 1, . . . , S) in the two samples to be compared by
ds, d

′
s and the corresponding numbers of persons at risk

by as, a
′
s , then two age-standardized rates can be cal-

culated as

M = 1

A

∑
As

ds

as

and M ′ = 1

A

∑
As

d ′
s

a′
s

,

where As represent the standard population in age
group s and A = ∑

As . Noting that the difference
between standardized rates can be expressed as a
weighted mean of the differences between age-specific
rates,

M ′ − M = ∑ As

A

(
ds

as

− d ′
s

a′
s

)
,

they showed that, under the null hypothesis that the true
rates are equal for the two groups to be compared,

Var
(
M ′ − M

) = ∑(
As

A

)2

ps(1 − ps)

(
1

as

+ 1

a′
s

)
,

where ps denote the (common) age-specific binomial
probabilities. Finally, for large studies, they advocated
estimation of ps by (ds + d ′

s)/(as + a′
s) and treating

(M ′ − M) as approximately normally distributed or,
equivalently,

Q2 = (M ′ − M)2

V̂ar(M ′ − M)

as a chi-squared variate on one degree of freedom (note
that their Q2 is not directly related to Yule’s Q). How-
ever, they pointed out a major problem with this ap-
proach; that different choices of standard population
lead to different answers, and that there would usu-
ally be objections to any one choice. In an attempt
to resolve this difficulty, they proposed choosing the
weights As/A to maximise the test statistic and showed
that the resulting Q2 is a χ2 test on S degrees of free-
dom. This is because, as Fisher (1922) remarked, each
age-specific 2 × 2-table of districts vs. survival con-
tributes an independent degree of freedom to the χ2

test.
Pearson and Tocher’s derivation of this test antici-

pates the much later, and more general, derivation of
the score test as a “Lagrange multiplier test”. However,
the maximized test statistic could sometimes involve
negative weights, As , which they described as “irra-
tional”. This feature of the test makes it sensitive to
differences in mortality in different directions at differ-
ent ages. They discussed the desirability of this feature
and noted that it should be possible to carry out the
maximisation subject to the weights being positive but
“could not see how” to do this (the derivation of a test
designed to detect differences in the same direction in
all age groups was not to be proposed until the work of
Cochran, nearly forty years later—see our discussion
of the 2×2×K below). However, they argued that the
sensitivity of their test to differences in death rates in
different directions in different age groups in fact rep-
resented an improvement over the comparison of cor-
rected, or standardized, rates since “that idea is essen-
tially imperfect and does not really distinguish between
differences in the manner of dying”.

Further Application of the Method of Expected
Numbers of Deaths

As described in Section 2, Westergaard (1882) from
the very beginning emphasised that expected numbers
of death could be calculated according to any stratifica-
tion, not just age. Encouraged by Westergaard’s (1916)
survey in English, Woodbury (1922) demonstrated this
through the example of infant mortality as related to
mother’s age, parity (called here order of birth), earn-
ings of father and plural births. For example, the crude
death rates by order of births form a clear J-shaped pat-
tern with nadir at third birth; assuming that only age of
the mother was a determinant, one can calculate the ex-
pected rates for each order of birth, and one gets still
a J, though somewhat attenuated, showing that a bit of
the effect of birth order is explained by mother’s age.
Woodbury did not forget to warn:
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Since it is an averaging process the method
will yield satisfactory results only when an
average is appropriate.

Stouffer and Tibbitts (1933) followed up by pointing
out that in many situations the calculations of expected
numbers for χ2 tests would coincide with the “Wester-
gaard method”.

4. STANDARDIZATION IN THE 20TH CENTURY

Although, as we have seen, standardisation methods
were widely used in the 19th century, it was in the 20th
century that a more careful examination of the proper-
ties of these methods was made. Particularly important
are the authoritative reviews by Yule (1934) and, thirty
years later, by Kitagawa (Kitagawa, 1964, 1966). Both
these authors saw the primary aim as being the con-
struction of what Yule termed “an average ratio of mor-
talities”, although Yule went on to remark:

in Annual Reports and Statistical Reviews
the process is always carried a stage further,
viz. to the calculation of a “standardized
death-rate”. This extension is really super-
fluous, though it may have its conveniences

(the standardized rate in the study population being
constructed by multiplying the crude rate in the stan-
dard population by the standardized ratio of rates for
the study population versus the standard population).

Ratio of Averages or Average of Ratios?

Both Yule and Kitagawa noted that central to the
discussion was the consideration of two sorts of in-
dices. The first of these, termed a “ratio of averages” by
Yule, has the form

∑
wixi/

∑
wiyi , while the second,

which he termed an “average of ratios”, has the form∑
w∗

i (xi/yi)/
∑

w∗
i . Kitagawa noted that economists

would describe the former as an “aggregative index”
and the latter as an “average of relatives”.

Both authors pointed out that, although the two types
of indexes seem to be doing rather different things,
it is somewhat puzzling that they are algebraically
equivalent—we only have to write w∗

i = wiyi . It is
important to note, however, that the algebraic equiv-
alence does not mean that a given index is equally in-
terpretable in either sense. Thus, for the index to be in-
terpretable as a ratio of averages, the weights wi must
reflect some population distribution so that numera-
tor and denominator of the index represent marginal
expectations in the same population. Alternatively, to
present the average of the age-specific ratios, xi/yi , as

a single measure of the age-specific effect would be
misleading if they were not reasonably homogeneous.
Kitagawa concluded:

the choice between an aggregative index
and an average of relatives in a mortality
analysis, for example, should be made on
the basis of whether the researcher wants
to compare two schedules of death rates in
terms of the total number of deaths they
would yield in a standard population or in
terms of the relative (proportionate) differ-
ences between corresponding specific rates
in the two schedules. Both types of index
can be useful when correctly applied and in-
terpreted.

Here Kitagawa very clearly defined the distinction
between what we, in the Introduction, termed the
marginal and the conditional targets. Immediately after
this definition, she hastened to point out that:

It must be recognized at the outset, how-
ever, that no single summary statistic can be
a substitute for a detailed comparison of the
specific rates in two or more schedules of
rates.

On the matter of averaging different ratios, Yule
(1934) started his paper with the example of compar-
ing the death rates for England and Wales for 1901 and
1931. His Table I contains these for both sexes in 5-
year age groups and he commented:

. . . the rates have fallen at all ages up to 75
for males and 85 for females. At the same
time the amount of the fall is very different
at different ages, apart even from the actual
rise in old age. The problem is simply to ob-
tain some satisfactory form of average of all
the ratios shown in columns 4 and 7, an av-
erage which will measure in summary form
the general fall in mortality between the two
epochs, just as an index-number measures
the general fall or rise in prices.

So far, there is no requirement for these ratios to be
similar. However, when describing indirect standardis-
ation, Yule [(1934), page 12] pointed out that

if . . . all the ratios of sub-rates are the same,
no variation of weighting can make any dif-
ference,

and warned (page 13),
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and perhaps it may be remarked that . . . if
the ratios mur/msr are very different in dif-
ferent age groups, any comparative mortal-
ity figure becomes of questionable value.

The issue of constancy of ratios was picked up in the
printed discussion of the paper [Yule, 1934, page 76]
by Percy Stokes, seconder of vote of thanks:

Those of us who have taught these methods
to students have been accustomed to point
out that they lead to identical results when
the local rates bear to the standard rates the
same proportion at every age.

Comparability of Mortality Ratios

Yule noted that, particularly in official mortality
statistics, standardisation is applied to many different
study populations so that, as well as the standardized
ratio of mortality in each study population to the stan-
dard population being meaningful in its own right, the
comparison of the indices for two study populations
should also be meaningful. He drew attention to the
fact that the ratio of two seemingly legitimate indices is
not necessarily itself a legitimate index. He concluded
that either type of index could legitimately be used ei-
ther if the same weights wi are used across study pop-
ulations (for ratios of averages) or if the same w∗

i are
used (for averages of ratios).

Denoting a standardized ratio for comparing study
groups A and B with standard by sRa and sRb, respec-
tively, Yule suggested that sRa/sRb should be a legit-
imate index of the ratio of mortalities in population A
to that in population B. He also suggested that, ideally,
aRb = sRa/sRb but noted that, whereas the CMF of
direct standardisation fulfills the former criterion, no
method of standardisation hitherto suggested fulfilled
this more stringent criterion. Indirect standardisation
fulfils neither criterion and Yule judged it to be “hardly
a method of standardisation at all”.

Yule’s paper is also famous for its derivation of stan-
dard errors of comparative mortality figures; for the
particular case of the SMR, we have

SMR = Observed/Expected, O/E

and

S.E.(SMR) ≈ √
O/E.

As noted earlier, this was already derived by Wester-
gaard (1882), although this was apparently not gener-
ally known.

A final matter occupying no less than twelve pages
of Yule (1934) is the discussion of a context-free aver-
age, termed by Yule his C3 method or the equivalent
average death rate, which is just the simple average
of all age-specific death rates. This quantity could also
be explained as the death rate standardized to a pop-
ulation with equal numbers in each age group. As we
shall see below, it was further discussed by Kilpatrick
(1962) and rediscovered by Day (1976) in an applica-
tion to cancer epidemiology. In modern survival analy-
sis it is called the cumulative hazard and estimated non-
parametrically by the Nelson–Aalen estimator (Nelson,
1972, Aalen, 1978, Andersen et al., 1993).

Elaboration: Rosenberg’s Test Factor
Standardisation

During World War II, the United States Army es-
tablished a Research Branch to investigate problems
of morale, soldier preferences and other issues to pro-
vide information that would allow the military to make
sensible decisions on practical issues involved in army
life. To formalize some of the tools used in that gen-
erally rather practical research, illustrated with con-
crete examples from that work, Kendall and Lazars-
feld (1950) introduced and discussed the terminology
of elaboration: A statistical relation has been estab-
lished between two variables, one of which is assumed
to be the cause, the other to be the effect. The aim
is to further understand that relation by introducing a
third variable (called test factor) related to the “cause”
as well as the “effect”. Kendall and Lazarsfeld care-
fully distinguished between antecedent and interven-
ing test variables, depending on the temporal order of
the “cause” and the test variables. If the population is
stratified according to an antecedent test factor, and the
partial relationships between the two original variables
then vanish, the relation between “cause” and “effect”
has been explained through their relations to the test
variable, which is then termed spurious. If the associ-
ation between cause and effect disappears (is reduced)
by controlling on the intervening variable, Kendall and
Lazarsfeld talk about complete (partial) interpretation
of the original two-factor relationship.

We note that interpretation has gone out of use at
least in epidemiological applications and in most of
modern causal inference where the focus is on ob-
taining an undiluted measure of the causal effect of
the “cause”, not diluting this effect by conditioning on
variables on the causal pathway from cause to effect
[see Pearl (2001) or Petersen, Sinisi and van der Laan
(2006)]. Instead, a general area of Mediation Analysis



STANDARDIZATION: A HISTORICAL PERSPECTIVE 539

has grown up; see MacKinnon (2008), Section 1.8, for
a useful historical survey.

Rosenberg (1962) used standardization to obtain a
single summary measure from all the partial (i.e., con-
ditional) associations resulting from the stratification
in an elaboration. Rosenberg’s famous example was a
study of the possible association between religious af-
filiation and self-esteem for high school students, con-
trolling for (all combinations of) father’s education, so-
cial class identification and high school grades. Thus,
this is an example of interpretation by conditioning on
variables that might mediate an effect of religious af-
filiation on sons’ self-esteem. The crude association
showed higher self-esteem for Jews than for Catholics
and Protestants; by standardizing on the joint distribu-
tion of the three covariates in the total population this
difference was halved.

Rosenberg emphasized that in survey research the
end product of the standardisation exercise is not a sin-
gle rate as in demography, but:

In survey research, however, we are inter-
ested in total distributions. Thus, if we ex-
amine the association between X and Y

standardizing on Z, we must emerge with a
standardised table (of the joint distribution
of X and Y ) which contains all the cells of
the original table.

Rosenberg indicated shortcuts to avoid repeating the
same calculations when calculating the entries of this
table.

The Peters–Belson Approach

This technique (Peters, 1941, Belson, 1956) was de-
veloped for comparing an experimental group with a
control group in an observational study on some con-
tinuous outcome. The proposal is to regress the out-
come on covariates only in the control group and use
the resulting regression equation to predict the results
for the experimental group under the assumption of
no difference between the groups. A simple test of
no differences concludes the analysis. Cochran (1969)
showed that under some assumptions of (much) larger
variance in the experimental group than the control
group this technique might yield stronger inference
than standard analysis of covariance, and that it will
also be robust to certain types of effect modification.
The technique has recently been revived by Graubard,
Rao and Gastwirth (2005).

Decomposition of Crude Rate Differences and
Ratios

Several authors have suggested a decomposition of
a contrast between two crude rates into a component
due to differences between the age-specific rates and a
component due to differences between the age struc-
tures of the two populations.

Kitagawa (1955) proposed an additive decomposi-
tion in which the difference in crude rates is expressed
as a sum of (a) the difference between the (direct) stan-
dardized rates, and (b) a residual due to the difference
in age structure. Rather than treating one population
as the standard population and the second as the study
population, she treated them symmetrically, standar-
dising both to the mean of the two populations’ age
structures:

Crude rate (study) − Crude rate (standard)

= ∑
aiαi − ∑

siλi

= ∑
(αi − λi)

ai + si

2
+ ∑

(ai − si)
αi + λi

2
.

The first term contrasts the standardized rates while the
second contrasts the age structures.

However, ratio comparisons are more frequently em-
ployed when contrasting rates and several authors have
considered a multiplicative decomposition in which the
ratio of crude rates is expressed as the product of a stan-
dardized rate ratio and a factor reflecting the effect of
the different age structures. Such a decomposition, in
which the age-standardized measure is the SMR, was
proposed by Miettinen (1972b):

Crude rate (study)

Crude rate (standard)
=

∑
aiαi∑
siλi

=
∑

aiαi∑
aiλi

×
∑

aiλi∑
siλi

.

The first term is the SMR and the second, which re-
flects the effect of the differing age structures, Mietti-
nen termed the “confounding risk ratio”.

Kitagawa (1964) had also proposed a multiplicative
decomposition which, as in her additive decomposi-
tion, treated the two populations symmetrically. Here,
the standardized ratio measure was inspired by the lit-
erature on price indices in economics. If, in a “base”
year, the price of commodity i is p0i and the quantity
purchased is q0i and, in year t the equivalent values are
pti and qti , then an overall comparison of prices re-
quires adjustment for differing consumption patterns.
Simple relative indices can be constructed by fixing
consumption at base or at t . The former is Laspeyres’s
index,

∑
ptiq0i/

∑
p0iq0i , and the latter is Paasche’s

index,
∑

piqti/
∑

p0iqti . These are asymmetric with
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respect to the two time points and this asymmetry is
addressed in Fisher’s “ideal” index, defined as the ge-
ometric mean of Laspeyres’s and Paasche’s indices.
Kitagawa noted that Laspeyres’s and Paasche’s indices
are directly analogous to the CMF and SMR, respec-
tively, and, in her symmetric decomposition,∑

aiαi∑
siλi

=
√∑

siαi∑
siλi

×
∑

aiαi∑
aiλi

×
√∑

λiai∑
λisi

×
∑

αiai∑
αisi

,

the first term is an “ideal” index formed by the geomet-
ric mean of the CMF and SMR, and the second term is:

the geometric mean of two indexes sum-
marizing differences in I -composition; one
an aggregative index using the I -specific
rates of the base population as weights, and
the second an aggregative index using the
I -specific rates of the given population as
weights.

The paper by Kitagawa (1955) concluded with a de-
tailed comparison to the “Westergaard method” as doc-
umented by Woodbury (1922). Woodbury’s paper had
also inspired Kitagawa’s contemporary R. H. Turner,
also a Ph.D. from the University of Chicago, to de-
velop an approach to additive decomposition accord-
ing to several covariates (Turner, 1949), showing how
the “nonwhite–white” differential in labour force par-
ticipation is associated with marital status, household
relationship and age. Kitagawa’s decomposition paper
continues to be frequently cited and the technique is
still included in current textbooks in demography [e.g.,
Preston, Heuveline and Guillot (2001)]. There has been
a considerable further development of additive de-
composition ideas; for recent reviews see Chevan and
Sutherland (2009) for the development in demography
and Powers and Yun (2009) for decomposition of haz-
ard rate models and some references to developments
in econometrics and to some extent in sociology. We
return in Section 6 to the connection with the method
of “purging” suggested by C. C. Clogg.

5. ODDS RATIOS AND THE 2 × 2 × K
CONTINGENCY TABLE

Case–Control Studies and the Odds Ratio

Although the case-control study has a long history,
its use to provide quantitative measures of the strength
of association is more recent, generally being attributed
to Cornfield (1951). Table 4 sets out results from a hy-
pothetical case–control study comparing some expo-
sure in cases of a disease with that in a control group of

TABLE 4
Frequencies in a 2 × 2 contingency table derived from a

case–control study

Cases Controls

Exposed A B

Not exposed C D

N = A + B + C + D

individuals free of the disease. In this work, he demon-
strated that, if the disease is rare, that is, prevalence
of disease in the population, X, is near zero and the
proportion of cases and controls exposed are p1 and
p0, respectively, then the prevalence of disease in ex-
posed subjects is, to a close approximation, Xp1/p0,
and X(1−p1)/(1−p0) in subjects not exposed. Thus,
the ratio of prevalences is approximated by the odds
ratio

p1

1 − p1

/ p0

1 − p0
,

which can be estimated by (AD)/(BC).
In this work, Cornfield discussed the problem of bias

due to poor control selection, but did not explicitly ad-
dress the problem of confounding by a third factor. In
later work Cornfield (1956) did consider the case of the
2 × 2 × K table in which the K strata were different
case–control studies. However, his analysis focussed
on the consistency of the stratum-specific odds ratios;
having excluded outlying studies, he, at this stage, ig-
nored Yule’s paradox, simply summing over the re-
maining studies and calculating the odds ratio in the
marginal 2 × 2 table.

Interaction and “Simpson’s Paradox”

Bartlett (1935) linked consistency of odds ratios in
contingency tables with the concept of “interaction”.
Specifically, he defined zero second order interaction
in the 2×2×2 contingency table of variables X, Y and
Z as occurring when the odds ratios between X and Y

conditional upon the level of Z are stable across levels
of Z. (Because of the symmetry of the odds ratio mea-
sure, the roles of the three variables are interchange-
able.) In an important and much cited paper, Simpson
(1951) discussed interpretation of no interaction in the
2×2×2 table, noting that “there is considerable scope
for paradox”.

If one were to read only the abstract of Simpson’s
paper, one could be forgiven for believing that he had
simply restated Yule’s paradox in this rather special
case:
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it is shown by an example that vanishing of
this second order interaction does not nec-
essarily justify the mechanical procedure of
forming the three component 2 × 2 tables
and testing each of these for significance by
standard methods

(by “component” tables, he meant the marginal ta-
bles). Thus, “Simpson’s paradox” is often identified
with Yule’s paradox, sometimes being referred to as the
Yule–Simpson paradox. However, the body of Simp-
son’s paper contains a much more subtle point about
the nature of confounding.

Simpson’s example is a table in which X and Y are
both associated with Z, in which there is no second or-
der interaction, and the conditional odds ratios for X

versus Y are 1.2 while the marginal odds ratio is 1.0.
He pointed out that if X is a medical treatment, Y an
outcome and Z sex, then there is clearly a treatment
effect—the conditional odds ratio provides the “right”
answer, the treatment effect having been destroyed in
the margin by negative confounding by sex. Simpson
compared this with an imaginary experiment concern-
ing a pack of playing cards which have been played
with by a baby in such a way that red cards and court
cards, being more attractive, have become dirtier. Vari-
ables X and Y now denote red/black and court/plain
and Z denotes the cleanliness of the cards. In this
case, Simpson pointed out that the marginal table of
X versus Y , “provides what we would call the sensi-
ble answer, that there is no such association”. This is,
perhaps, the real Simpson’s paradox—the same table
demonstrates Yule’s paradox when labelled one way
but does not when it is labelled another way. Simpson’s
paper pointed out that the causal status of variables
is central; one can condition on causes when forming
conditional estimates of treatment effects, but not upon
effects. As we shall see in the next section, this point
is central to the problem of time-dependent confound-
ing which has inspired much recent methodological ad-
vance. A closely related issue is the phenomenon of se-
lection bias, famously discussed by Berkson (1946) in
relation to hospital-based studies. There X and Y are
observed only when an effect, Z (e.g., attending hospi-
tal), takes on a specific value.

A further contribution of Simpson’s paper was to
point out the “noncollapsibility” of the odds ratio
measure in this zero interaction case; the conditional
and marginal odds ratios between X and Y are only
the same if either X is conditionally independent of
Z given Y , or Y is conditionally independent of Z

given X. Note that these conditions may not be satis-
fied even in randomised studies—another of the para-
doxes to which Simpson drew attention. For a more de-
tailed discussion of Simpson’s paper see Hernán, Clay-
ton and Keiding (2011).

Cochran’s Analyses of the 2 × 2 × K Table

In his important paper on “methods for strengthen-
ing the common χ2 test”, Cochran (1954) proposed a
“combined test of significance of the difference in oc-
currence rates in the two samples” when “the whole
procedure is repeated a number of times under some-
what differing environmental conditions”. He pointed
out that carrying out the χ2 test in the marginal table

is legitimate only if the probability p of an
occurrence (on the null hypothesis) can be
assumed to be the same in all the individual
2 × 2 tables.

(He did not further qualify this statement in the light of
Simpson’s insight discussed above.) He proposed three
alternative analyses. The first of these was to add up the
χ2 test statistics from each table and to compare the
result with the χ2 distribution on K degrees of free-
dom. This, as already noted, is equivalent to Pearson
and Tocher’s earlier proposal, but Cochran judged it a
poor method since

It takes no account of the signs of the dif-
ferences (p1 − p0) in the two samples, and
consequently lacks power in detecting a dif-
ference that shows up consistently in the
same direction in all or most of the individ-
ual tables.

The second alternative he considered was to calcu-
late the “χ” value for each table—the square roots of
the χ2 statistics, with signs equal to those of the cor-
responding (p1 − p0)’s—and to compare the sum of
these values with the normal distribution with mean
zero and variance K . He noted, however, that this
method would not be appropriate if the sample sizes
(the “N ′s”) vary substantially between tables, since

Tables that have very small N ’s cannot be
expected to be of much use in detecting a
difference, yet they receive the same weight
as tables with large N ′s.

He also noted that variation of the probabilities of
outcome between tables would also adversely affect
the power of this method:
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Further, if the p’s vary from say 0 to 50%,
the difference that we are trying to detect,
if present, is unlikely to be constant at all
levels of p. A large amount of experience
suggests that the difference is more likely to
be constant on the probit or logit scale.

It is clear, therefore, that Cochran considered the
ideal analysis to be based on a model of “constant ef-
fect” across the tables. Indeed, when the data were suf-
ficiently extensive, he advocated use of empirical logit
or probit transformation of the observed proportions
followed by model fitting by weighted least squares.
Such an approach, based on fitting a formal model to
a table of proportions, had already been pioneered by
Dyke and Patterson (1952), and will be discussed in
Section 6.

In situations in which the data were not suffi-
ciently extensive to allow an approach based on em-
pirical transforms, Cochran proposed an alternative
test “in the original scale”. This involved calculating
a weighted mean of the differences d = (p1 −p0) over
tables. In our notation, comparing the prevalence of
exposure between cases and controls,

di = Ai

Ai + Ci

− Bi

Bi + Di

,

wi =
(

1

Ai + Ci

+ 1

Bi + Di

)−1

,

d = ∑
widi

/∑
wi.

In calculating the variance of d , he estimated the vari-
ance of the di ’s under a binomial model using a plug-in
estimate for the expected values of p1i , p0i under the
null hypothesis: (Ai + Bi)/Ni . Cochran described the
resulting test as performing well “under a wide range
of variations in the N ’s and p’s from table to table”.

A point of some interest is Cochran’s choice of
weights which, as pointed out by Birch (1964), was
“rather heuristic”. If this procedure had truly been,
as Cochran described it, an analysis “in the original
scale”, one would naturally have weighted the differ-
ences inversely by their variance. But this does not lead
to Cochran’s weights, and he provided no justification
for his alternative choice. A likely possibility is that
he noted that weighting inversely by precision leads to
two different tests according to whether we choose to
compare the proportions exposed between cases and
control or the proportions of cases between exposed
and unexposed groups. Cochran’s choice of weights
avoided this embarrassment.

Mantel and Haenszel

Seemingly unaware of Cochran’s work, Mantel and
Haenszel (1959) considered the analysis of the 2 × 2 ×
K contingency table. This paper explicitly related the
discussion to control for confounding in case–control
studies. Before discussing this famous paper, however,
it is interesting that the same authors had suggested an
alternative approach a year earlier (Haenszel, Shimkin
and Mantel, 1958).

As in Cochran’s analysis, the idea was based on post-
stratification of cases and controls into strata which
are as homogeneous as possible. Arguing by analogy
with the method of indirect standardisation of rates,
they suggested that the influence of confounding on
the odds ratio could be assessed by calculating, for
each stratum, s, the “expected” frequencies in the 2×2
table under the assumption of no partial association
within strata and calculating the marginal odds ratio
under this assumption. The observed marginal odds
ratio was then adjusted by this factor. Thus, denot-
ing the expected frequencies by ai, bi, ci and di where
ai = (Ai + Bi)(Ai + Ci)/Ni etc., their proposed index
was ∑

Ai

∑
Di∑

Bi

∑
Ci

/∑
ai

∑
di∑

bi

∑
ci

.

The use of the stratum-specific expected frequencies
in this way can be regarded as an early attempt, in
the case–control setting, to estimate what later became
known as the “confounding risk ratio” and which we
described in Section 4.

In their later paper, Mantel and Haenszel (1959)
themselves criticized this adjusted index which, they
stated, “can be seen to have a bias toward unity”
and does “not yield an appropriate adjusted relative
risk”. (Somewhat unconvincingly, they claimed that
they had used the index fully realizing its deficien-
cies “to present results more nearly comparable with
those reported by other investigators using similarly
biased estimators”!) These statements were not for-
mally justified and beg the question as to what, pre-
cisely, is the estimand? One can only assume that
they were referring to the case in which the stratum-
specific odds ratios are equal and provide a single es-
timand. This is the case in which Yule’s Q is stable
across subgroups. The alternative estimator they pro-
posed: ∑

AiDi/Ni∑
BiCi/Ni
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is a consistent estimator of the stratum-specific odds
ratio in this circumstance. They also proposed a test
for association between exposure and disease within
strata. The test statistic is the sum, across strata, of the
differences between observed and “expected” frequen-
cies in one cell of each table:∑

(Ai − ai) = ∑
Ai − (Ai + Bi)(Ai + Ci)

Ni

= ∑ 1

Ni

(AiDi − BiCi),

and its variance under the null hypothesis is∑ (Ai + Bi)(Ci + Di)(Ai + Ci)(Bi + Di)

N2
i (Ni − 1)

.

Some algebra shows that the Mantel–Haenszel test
statistic is identical to Cochran’s

∑
widi . There is

a slight difference between the two procedures in
that, in calculating the variance, Mantel and Haen-
szel used a hypergeometric assumption to avoid the
need to estimate a nuisance parameter in each stra-
tum in the “two binomials” formulation. This results
in the (Ni − 1) term in the above variance formula in-
stead of Ni—a distinction which can become important
when there are a large number of sparsely populated
strata.

Whereas considerations of bias and, as later shown,
optimal properties of their proposed test depend on
the assumption of constancy of the odds ratio across
strata, Mantel and Haenszel were at pains to disown
such a model. They proposed that any standardized,
or corrected, summary odds ratio would be some sort
of weighted average of the stratum-specific odds ratios
and identified that one might choose weights either by
precision or by importance. On the former:

If one could assume that the increased rel-
ative risk associated with a factor was con-
stant over all subclassifications, the estima-
tion problem would reduce to weighting the
several subclassification estimates accord-
ing to their relative precisions. The complex
maximum likelihood iterative procedure
necessary for obtaining such a weighted es-
timate would seem to be unjustified, since
the assumption of a constant relative risk
can be discarded as usually untenable.

They described the weighting scheme used in the
Mantel–Haenszel estimator as approximately weight-
ing by precision. Indeed, it turns out that these weights

correspond to optimal weighting by precision for odds
ratios close to 1.0.

An alternative standardized odds ratio estimate, in
the spirit of weighting and mirroring direct standardis-
ation, was proposed by Miettinen (1972a). This is∑

WiAi/Bi∑
WiCi/Di

,

where the weights reflect the population distribution
of the stratifying variable. This index can be unstable
when strata are sparse, but Greenland (1982) pointed
out that it has clear advantages over the Mantel–
Haenszel estimate when the odds ratios differ between
strata. This follows from our earlier discussion (Sec-
tion 4) of the distinction between a ratio of averages
and an average of ratios. Since the numerator and de-
nominator of the Mantel–Haenszel estimator do not
have an interpretation in terms of the population aver-
age of a meaningful quantity, the index must be inter-
preted as an average of ratios, despite its usual alge-
braic representation. Thus, despite the protestations of
Mantel and Haenszel to the contrary, its usefulness de-
pends on approximate stability of the stratum-specific
odds ratios. Greenland pointed out that Miettinen’s in-
dex has an interpretation as a ratio of marginal expecta-
tions of epidemiologically meaningful quantities and,
therefore, may be useful even when odds ratios are
heterogeneous. He went on to propose some improve-
ments to address its instability.

As was noted earlier, there was a widespread belief
that controlling for confounding in case-control studies
was largely a matter to be dealt with at the design stage,
by appropriate “cross-matching” of controls to cases.
Mantel and Haenszel, however, pointed out that such
matching nevertheless needed to be taken account of in
the analysis:

when matching is made on a large num-
ber of factors, not even the fiction of a ran-
dom sampling of control individuals can be
maintained.

They showed that the test and estimate they had
proposed were still correct in the setting of closely
matched studies. Despite this, misconceptions about
matching persisted for more than a decade.

6. THE EMERGENCE OF FORMAL MODELS

Except for linear regression analysis for quantitative
data, proper statistical models, in the sense we know
today, were slow to appear for the purpose of what we
now call confounder control.
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We begin this section with the early multiplica-
tive intensity age-cohort model for death rates by
Kermack, McKendrick and McKinlay (1934a, 1934b),
even though it was strangely isolated as a statistical in-
novation: no one outside of a narrow circle of cohort
analysts seems to have quoted it before 1976. First, we
must mention two precursors from the actuarial envi-
ronment.

Actuarial Analyses of Cohort Life Tables

Two papers were read to audiences of actuaries on
the same evening: 31 January 1927. Derrick (1927), in
the Institute of Actuaries in London, studied mortal-
ity in England and Wales 1841–1925, omitting the war
(and pandemic) years 1915–1920. On a clever graph of
age-specific mortality (on a logarithmic scale) against
year of birth he generalized the parallelism of these
curves to a hypothesis that mortality was given by a
constant age structure, a decreasing multiplicative gen-
eration effect and no period effect, and even ventured
to extrapolate the mortality for existing cohorts into the
future.

Davidson and Reid, in the Faculty of Actuaries in
Edinburgh, first gave an exposition of estimating mor-
tality rates in a Bayesian framework (posterior mode),
including the maximum likelihood estimator interpre-
tation of the empirical mortality obtained from an unin-
formative prior (Davidson and Reid, 1926–1927). They
proceeded to discuss how the mortality variation force
might possibly depend on age and calendar year and
arrived at a discussion on how to predict future mortal-
ity, where they remarked (page 195) that this would be
much easier if

there is in existence a law of mortality
which, when applied to consecutive human
life—that is, when applied to trace indi-
viduals born in a particular calendar year
throughout the rest of their lives—gives sat-
isfactory results

or, as we would say, if the cohort life table could
be modelled. Davidson and Reid also explained their
idea through a well-chosen, though purely theoretical,
graph.

The Multiplicative Model of Kermack, McKendrick
and McKinley

Kermack, McKendrick and McKinley published an
analysis of death-rates in England and Wales since
1845, in Scotland since 1860 and in Sweden since 1751

in two companion papers. In the substantive presenta-
tion in The Lancet (Kermack, McKendrick and McKin-
lay, 1934a)—republished by International Journal of
Epidemiology (2001) with discussion of the epidemio-
logical cohort analysis aspects—they observed and dis-
cussed a clear pattern in these rates as a product of a
factor only depending on age and a factor only depend-
ing on year of birth.

The technical elaboration in the Journal of Hygiene
(Kermack, McKendrick and McKinlay, 1934b) started
from the partial differential equation describing age-
time dependent population growth with νt,ada denot-
ing the number of persons at time t with age between
a and a + da, giving the death rate at time t and age a

− 1

νt,a

(
∂νt,a

∂t
+ ∂νt,a

∂a

)
= f (t, a),

here quoted from McKendrick (1925–1926) [cf.
Keiding (2011) for comments on the history of this
equation], and postulate at once the multiplicative
model for

f (t, a) = α(t − a)βa.

The paper is largely concerned with estimation of the
parameters and of the standard errors of these esti-
mates; some attention is also given to the possibility
of fitting the age effect βa to the Gompertz–Makeham
distribution.

This fine statistical paper was quoted very little in the
following 45 years and thus does not seem to have in-
fluenced the further developments of statistical models
in the area. One cannot avoid speculating what would
have happened if this paper had appeared in a statistical
journal rather than in the Journal of Hygiene. 1934 was
the year when Yule had his major discussion paper on
standardisation in the Royal Statistical Society. In all
fairness, it should, on the other hand, be emphasised
that Kermack et al. did not connect to the then current
discussions of general issues of standardisation.

The SMR as Maximum Likelihood Estimator

Kilpatrick (1962), in a paper based on his Ph.D. at
Queen’s University at Belfast, specified for the first
time a mortality index as an estimator of a parameter
in a well-specified statistical model—that in which the
age-specific relative death rate in each age group esti-
mates a constant, and only differs from it by random
variation. Kilpatrick’s introduction is a good example
of a statistical view on standardization, in some ways
rather reminiscent of Westergaard:
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The mortality experienced by different
groups of individuals is best compared, us-
ing specific death rates of sub-groups alike
in every respect, apart from the single fac-
tor by which the total population is divided.
This situation is rarely, if ever, realized
and we have to be satisfied with mortality
comparisons between groups of individuals
alike with regard to two, three or four major
factors known to affect the risk of death.
In this paper groups are defined as aggre-
gates of occupations (social classes). It is
assumed that age is the only factor related
to an individual’s mortality within a group.
This example may readily be extended to
other factors such as sex, marital status, res-
idence, etc. Although the association of so-
cial class and age-specific mortality may be
evaluated by comparisons between social
classes, specific death rates of a social class
are more frequently compared with the cor-
responding rates of the total population. It is
this type of comparison which is considered
here.

Kilpatrick then narrowed the focus to developing an
index Ius which

should represent the “average” excess or
deficit mortality in group u compared with
the standard s,

and noted that, with θx representing the ratio between
the mortality rates in age group x in the study group
and the total population,

Recent authors . . . have shown that the SMR
can be misleading if there is much varia-
tion in θx over the age range considered.
It would, therefore, seem desirable to test
the significance of this variation in θx be-
fore placing confidence on the results of the
SMR or any other index. . . . This paper pro-
poses a simple test for heterogeneity in θx

and shows that the SMR is equivalent to the
maximum likelihood estimate of a common
θ when the θx do not differ significantly. It
follows therefore that the SMR has a mini-
mum standard error.

Formally, Kilpatrick assumed the observed age-
specific rates in the study group to follow Poisson dis-
tributions with rate parameters θλi . The λi’s and the

denominators, Ai , were treated as deterministic con-
stants, and the mortality ratio, θ , as a parameter to be
estimated.

We note that the view of standardisation as an es-
timation problem in a well-specified statistical model
was principally different from earlier authors. One
could refer to the paper by Kermack, McKendrick and
McKinlay (1934b) discussed above (which specifies
a similar model), but they did not explicitly see their
model as being related to standardisation; their paper
has been quoted rarely and it seems that Kilpatrick was
unaware of it.

Once standardisation is formulated as an estimation
problem, the obvious question is to find an optimal es-
timator, and Kilpatrick showed that the standardized
mortality ratio (SMR)

θ̂ = Observed number of deaths in the study population

Expected number of deaths in the study population

has minimum variance among all indices, and that it is
the maximum likelihood estimator in the model spec-
ified by deterministic standard age-specific death rates
and a constant age-specific rate ratio.

Kilpatrick noted that while the SMR is, in a sense,
optimal for comparing one study group to a standard,
the weights change from one study group to the next
so that it cannot be directly used for comparing several
groups. As we have seen, this point had been made of-
ten before, particularly forcefully by Yule (1934). Kil-
patrick compared the SMR to the comparative mor-
tality index (CMF) obtained from direct standardiza-
tion and to Yule’s index (the ratio of “equivalent death
rates”, that is, direct standardization using equally large
age groups). He concluded:

Where appropriate and possible, a test of
heterogeneity on age-specific mortality ra-
tios should precede the use of an index.
When there is insufficient information to
conduct the test of heterogeneity, conclu-
sions based solely on the index value may
apply to none of the individuals studied.
Caution is strongly urged in the interpreta-
tion of mortality indices.

Kalton—Statistical View of Standardisation in
Survey Research

Kalton (1968) surveyed, from a rather mainstream
statistical view, standardisation as a technique for esti-
mating the contrast between two groups and to test the
hypothesis that this contrast vanishes. Kalton empha-
sized that
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. . . if the estimate is to be meaningful, there
must be virtually no “interaction” effect in
the variable under study between the groups
and the control variable (i.e., there must be
a constant difference in the group means of
the variable under study for all levels of the
control variable), but this requirement may
be somewhat relaxed for the significance
test.

This distinction implies that the optimal weights are
not the same for the estimation problem and the testing
problem. Without commenting on the causal structure
of “elaboration” Kalton (1968) also gave further in-
sightful technical statistical comments to Rosenberg’s
example (see above) and the use of optimum weights
for testing no effect of religious group.

Kalton seems to have been unaware of Kilpatrick’s
paper six years earlier, but took a similar mainstream
statistical view of standardisation: that presentation of
a single summary measure of the within-stratum effect
of the study variable implies a model of no interaction
between stratum and study variable.

Indirect Standardisation without External Standard

Kilpatrick had opened the way to a fully model-
based analysis of rates in lieu of indirect standardis-
ation, and authoritative surveys based on this approach
were indeed published by Holford (1980), Hobcraft,
Menken and Preston (1982), Breslow et al. (1983),
Borgan (1984) and Hoem (1987). Still, modified ver-
sions of the old technique of indirect standardization
remained part of the tool kit for many years.

An interesting example is the attempt by Mantel
and Stark (1968) to standardize the incidence of mon-
golism for both birth order and maternal age. Stan-
dardized for one of these factors, the incidence still in-
creased as function of the other, but the authors felt it

desirable to obtain some simple descriptive
statistics by which the reader could judge
for himself what the data showed. . . . What
was required was that we determine simul-
taneously a set of birth-order category rates
which when used as a standard set gave a set
of indirect-adjusted maternal-age category
rates which in turn, when used as a standard
set, implied the original set of birth-order
category rates.

The authors achieved that through an iterative pro-
cedure, which always converged to “indirect, uncon-

founded” adjusted rates, where the convergent solu-
tions varied with the initial set of standard rates, al-
though they all preserved the ratios of the various
birth-order category-adjusted rates and the ratios of the
various maternal-age category-adjusted rates. Osborn
(1975) and Breslow and Day (1975) formulated mul-
tiplicative models for the rates and used the same it-
erative indirect standardisation algorithm for the pa-
rameters. Generalizing Kilpatrick’s model to multiple
study groups, the age-specific rate in age group i and
study group j is assumed to be θjλi . Treating λi ’s as
known, the θj ’s can be estimated by SMRs; the θj ’s
can then be treated as known and the λi ’s estimated by
SMRs (although the indeterminacy identified by Man-
tel and Stark must be resolved, e.g., by normalization
of one set of parameters). See Holford (1980) for the
relation of this algorithm to iterative proportional fit-
ting of log-linear models in contingency tables. Neither
Mantel and Stark, Osborn, nor Breslow and Day cited
Kilpatrick or Kermack, McKendrick and McKinlay.

Logistic Models for Tables of Proportions

We have seen that Cochran (1954) had suggested that
analysis of the comparison of two groups with respect
to a binary response in the presence of a confounding
factor (an analysis of a 2 × 2 × K contingency table)
could be approached by fitting formal models to the
2×K table of proportions, using a transformation such
as the logit or probit transformation. But such analyses,
given computational resources available at that time,
were extremely laborious. Cochran cited the pioneer-
ing work of Dyke and Patterson (1952) who developed
a method for fitting the logit regression model to fitted
probabilities of response, πijk..., in a table:

log
πijk...

1 − πijk...

= μ + αi + βj + γk + · · ·

by maximum likelihood, illustrating this technique
with an analysis estimating the independent contribu-
tions of newspapers, radio, “solid” reading and lec-
tures upon knowledge of cancer. Initially they applied
an empirical logit transformation to the observed pro-
portions, pijk..., and fitted a linear model by weighted
least squares. They then developed an algorithm to re-
fine this solution to the true maximum likelihood, an
algorithm which was later generalized by Nelder and
Wedderburn (1972) to the wider class of generalized
linear models—the now familiar iteratively reweighted
least squares (IRLS) algorithm. Since, in their exam-
ple, the initial fit to the empirical data provided a
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good approximation to the maximum likelihood so-
lution, only one or two steps of the IRLS algorithm
were necessary—perhaps fortunate since the calcula-
tions were performed without recourse to a computer.

Although, in its title, Dyke and Patterson referred
to their paper as concerning “factorial arrangements”,
they explicitly drew attention to its uses in dealing with
confounding in observational studies:

It is important to realise that with this type
of data there are likely to be a number of
factors which may influence our estimate of
the effect of say, solid reading but which
have not been taken into account. The point
does not arise in the case of well conducted
experiments but is common in survey work.

Log-Linear Models and the National Halothane
Study

Systematic theoretical studies of multiple cross-
classifications of discrete data date back at least to Yule
(1900), quoted above. For three-way tables, Bartlett
(1935) discussed estimation and hypothesis testing re-
garding the second-order interaction, forcefully fol-
lowed up by Birch (1963) in his study of maximum
likelihood estimation in the three-way table.

However, as will be exemplified below in the context
of The National Halothane Study, the real practical de-
velopment in the analysis of large contingency tables
needed large computers for the necessary calculations.
This development largely happened around 1970 (with
many contributions from L. A. Goodman in addition to
those already mentioned), and the dominating method
was straightforward maximum likelihood. Particularly
influential were the dissertation by Haberman (1974),
which also included important software, and the au-
thoritative monograph by Bishop, Fienberg and Hol-
land (1975).

The National Halothane Study. Halothane is an
anaesthetic which around 1960 was suspected in the
U.S. for causing increased rates of hepatic necrosis,
sometimes fatal. A subcommittee under the U.S. Na-
tional Academy of Sciences recommended that a large
cooperative study be performed, and this was started
in July 1963. We shall here focus on the study of
“surgical deaths”, that is, deaths during the first 6
weeks after surgery. The study was based on retrospec-
tive information from 34 participating medical cen-
tres, who reported all surgical deaths during the four
years 1959–1962 as well as provided information on
a random sample of about 38,000 from the total of

about 856,000 operations at these centres during the
four years. The study was designed and analysed in
a collaborative effort between leading biostatisticians
at Stanford University, Harvard University and Prince-
ton University/Bell Labs and the report (Bunker et al.,
1969) is unusually rich in explicit discussions about
how to handle the adjustment problem with the many
variables registered for the patients and the correspond-
ing “thin” cross-classifications. For a very detailed and
informative review, see Stone (1970). The main prob-
lem in the statistical analysis was whether the different
anaesthetics were associated with different death rates,
after adjusting for a range of possible confounders,
as we would say today. In a still very readable in-
troduction by B. W. Brown et al. it was emphasized
(page 185) that

the analysis of rates and counts associated
with many background variables is a recur-
ring and very awkward problem. . . . It is ap-
propriate to create new methods for han-
dling this nearly universal problem at just
this time. High-speed computers and expe-
rience with them have now developed to
such a stage that we can afford to execute
extensive manipulations repeatedly on large
bodies of data with many control variables,
whereas previously such heavy arithmetic
work was impossible. The presence of the
large sample from the National Halothane
Study has encouraged the investigation and
development of flexible methods of adjust-
ing for several background variables. Al-
though this adjustment problem is not to-
tally solved by the work in this Study, sub-
stantial advances have been made and di-
rections for further profitable research are
clearly marked.

The authors here go on to emphasise that the need for
adjustment is not restricted to “nonrandomised” stud-
ies.

Pure or complete randomization does not
produce either equal or conveniently pro-
portional numbers of patients in each class;
attempts at deep post-stratification are
doomed to failure because for several vari-
ables the number of possible strata quickly
climbs beyond the thousands. . . . Insofar as
we want rates for special groups, we need
some method of estimation that borrows
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strength from the general pattern of the vari-
ables. Such a method is likely to be simi-
lar, at least in spirit, to some of those that
were developed and applied in this Study.
At some stage in nearly every large-scale,
randomized field study (a large, randomized
prospective study of postoperative deaths
would be no exception), the question arises
whether the randomization has been exe-
cuted according to plan. Inevitably, adjust-
ments are required to see what the effects
of the possible failure of the randomization
might be. Again, the desired adjustments
would ordinarily be among the sorts that we
discuss.

The National Halothane Study has perhaps become
particularly famous among statisticians for the early
multi-way contingency table analyses done by Yvonne
M. M. Bishop supervised by F. Mosteller. This ap-
proach is here termed “smoothed contingency-table
analysis”, reflecting the above-mentioned recognized
need for the analysis to “borrow strength from the
general pattern”. Bishop did her Ph.D. thesis in this
area; cf. the journal publications (Bishop, 1969, 1971)
and combined efforts with S. E. Fienberg and P. Hol-
land in their very influential monograph on “Discrete
Multivariate Analysis” (Bishop, Fienberg and Holland,
1975). But the various versions of data-analytic (i.e.,
model-free) generalizations of standardisation are also
of interest, at least as showing how broadly these statis-
ticians struggled with their task: to adjust discrete data
for many covariates in the computer age.

The analysis began with classical standardization
techniques (L. Moses), which were soon overwhelmed
by the difficulty in adjusting for more than one vari-
able at a time. Most of the subsequent approaches use
a rather special form of stratification where the huge,
sparse multidimensional contingency table generated
by cross-classification of covariates other than the pri-
mary exposure variables (the anaesthetic agents) are
aggregated to yield “strata” with homogeneous death
rates, the agents subsequently compared by standard-
izing across these strata. Several detailed techniques
were developed for this purpose by J. W. Tukey and
colleagues, elaborately documented in the report and
briefly quoted by Tukey (1979, 1991); however, criti-
cisms were also raised (Stone, 1970; Scott, 1978) and
the ideas do not seem to have caught on.

Clogg’s “Purging” of Contingency Tables

Clifford Clogg was a Ph.D. student of Hauser, Good-
man and Kitagawa at the University of Chicago, writ-
ing his dissertation in 1977 on Hauser’s theme of using
a broader measure of underemployment (as opposed
to just unemployment) as social indicator, in the cli-
mate of Goodman’s massive recent efforts on loglin-
ear modelling and Kitagawa’s strong tradition in stan-
dardisation. We shall briefly present Clogg’s attempts
at combining the latter two worlds in the purging tech-
niques [Clogg (1978), Clogg and Eliason (1988) and
many other articles]. A useful concise summary was
provided by Sobel [(1996), pages 11–14] in his trib-
ute to Clogg after Clogg’s early death, and a recent
important discussion and generalization was given by
Yamaguchi (2011).

Clogg considered a composition variable C with cat-
egories i = 1, . . . , I , a group variable G with cate-
gories j = 1, . . . , J , and a dependent variable D with
categories k = 1, . . . ,K . The composition variable
may itself have been generated by cross-classification
of several composition variables. The object is to assess
the possible association of D with G adjusted for dif-
ferences in the compositions across the groups. Clogg
assumed that the three-way C × G × D classification
has already been modelled by a loglinear model, and
the purging technique was primarily promoted as a tool
for increased accessibility of the results of that analy-
sis. Most of the time the saturated model is assumed,
although in our view the purging idea is much easier to
assimilate when there is no three-factor interaction.

A brief version of Clogg’s explanation is as follows.
The I × J × K table is modelled by the saturated log-
linear model

πijk = ητC
i τG

j τD
k τCG

ij τCD
ik τGD

jk τCGD
ijk

where the disturbing interaction is τCG
ij ; the

composition-specific rate

rij (k) = πijk

/∑
k

πijk = πijk/πij ·

is independent of τCG
ij , but the overall rate of occur-

rence

r·j (k) = ∑
i

πijk

/∑
i,k

πijk = π·jk/π·j ·

does depend on τCG
ij .

Now purge πijk of the cumbersome interaction by
defining purged proportions proportional to

π∗∗
ijk = πijk/τ

CG
ij

(
i.e., π∗

ijk = π∗∗
ijk/π

∗∗···
)
.
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Actually,

π∗
ijk = η∗τC

i τG
j τD

k τCD
ik τGD

jk τCGD
ijk , η∗ = η/π∗∗···

that is, the π∗
ijk specify a model with all the same pa-

rameters as before except that τCG
ij has been replaced

by 1.
Rates calculated from these adjusted proportions are

now purged of the C × G interaction but all other pa-
rameters are as before. Clogg noted the fact that this
procedure is not the same as direct standardisation
and defined a variant, marginal CG-purging, which is
equivalent to direct standardisation.

Purging was combined with further developments
of additive decomposition methods by Xie (1989) and
Liao (1989) and was still mentioned in the textbook by
Powers and Xie (2008), Section 4.6, but seems other-
wise to have played a modest part in recent decades.
A very interesting recent application is by Yamaguchi
(2011), who used purging in counterfactual modelling
of the mediation of the salary gap between Japanese
males and females by factors such as differential edu-
cational attainment, use of part-time jobs and occupa-
tional segregation.

Multiple Regression in Epidemiology

By the early 1960s epidemiologists, in particular,
cardiovascular epidemiologists, were wrestling with
the problem of multiple causes. It was clear that meth-
ods based solely on cross-classification would have
limited usefulness. As put by Truett, Cornfield and
Kannel (1967):

Thus, if 10 variables are under considera-
tion, and each variable is to be studied at
only three levels, . . . there would be 59,049
cells in the multiple cross-classification.

Cornfield (1962) suggested the use of Fisher’s dis-
criminant analysis to deal with such problems. Al-
though initially he considered only two variables, he
set out the idea more generally. This model assumes
that the vector of risk factor values is distributed, in (in-
cident) cases of a disease and in subjects who remain
disease free, as multivariate normal variates with dif-
ferent means but equal variance–covariance matrices.
Reversing the conditioning by Bayes theorem shows
that the probability of disease given risk factors is then
given by the multiple logistic function. The idea was
investigated in more detail and for more risk factors by
Truett, Cornfield and Kannel (1967) using data from
the 12-year follow-up of subjects in the Framingham

study. A clear concern was that the multivariate nor-
mal assumption was clearly wrong in the situations
they were considering, which involved a mixture of
continuous and discrete risk factors. Despite this they
demonstrated that there was good correspondence be-
tween observed and expected risks when subjects were
classified according to deciles of the discriminant func-
tion.

Truett et al. discussed the interpretation of the regres-
sion coefficients, at some length, but did not remark
on the connection with multiplicative models and odds
ratios, although Cornfield had, 15 years previously,
established the approximate equivalence between the
odds ratio and a ratio of rates (see Section 5). They did
note that the model is not additive:

The relation between logit of risk and risk is
illustrated in Figure 1 . . . a constant increase
in the logit of risk does not imply a constant
increase in risk,

and preferred to present the coefficients of the multi-
ple logistic function as multiples of the standard devia-
tion of the corresponding variable. They did, however,
make it clear that these coefficients represented an es-
timate of the effect of each risk factor after holding all
others constant. They singled out the effect of weight
in this discussion:

The relative unimportance of weight as a
risk factor . . . when all other risk factors
are simultaneously considered is notewor-
thy. This is not inconsistent with the pos-
sibility that a reduction in weight would, by
virtues of its effect on other risk factors, for
example, cholesterol, have important effects
on the risk of CHD.

Finally, they noted that the model assumes the effect
of each risk factor to be independent of the levels of
other risk factors, and noted that first order interactions
could be studied by relaxing the assumption of equality
of the variance–covariance matrices.

The avoidance of the assumption of multivariate nor-
mality in the logistic model was achieved by use of the
method of maximum likelihood. In the epidemiolog-
ical literature, this is usually credited to Walker and
Duncan (1967) who used a likelihood based on con-
ditioning on the values, x, of the risk factors, and com-
puting maximum likelihood estimates using the same
iteratively reweighted least squares algorithm proposed
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by Dyke and Patterson (1952). However, use of max-
imum likelihood in such models had also been antici-
pated by Cox (1958), although he had advocated condi-
tioning both on the observed set of risk factors, x, and
on the observed values of the disease status indicators,
y. This is the method, now known as “conditional” lo-
gistic regression, which is important in the analysis of
closely matched case–control studies. Like Truett et al.,
Walker and Duncan gave little attention to interpreta-
tion of the regression coefficients, save for advocating
standardization to SD units in an attempt to demon-
strate the relative importance of different factors. The
main focus seems to have been in risk prediction given
multiple risk factors. Cox (1958), however, discussed
the interpretation of the regression coefficient of a di-
chomotous variable as a log odds ratio, even applying
this to an example, cited by Cornfield (1956), concern-
ing smoking and lung cancer in a survey of physicians.

A limitation of logistic regression for the analysis
of follow-up studies is the necessity to consider, as
did Truett, Cornfield and Kannel (1967), a fixed pe-
riod of follow-up. A further rationalization of analyt-
ical methods in epidemiology followed from the real-
ization that such studies generate right-censored, and
left-truncated, survival data. Mantel (1966) pioneered
the modern approach to such problems, noting that
such data can be treated as if each subject undergoes
a series of Bernoulli trials (of very short duration). He
suggested, therefore, that the comparison of survival
between two groups could be treated as an analysis of
a 2 × 2 × K table in which the K “trials” are defined
by the time points at which deaths occurred in the study
(other time points being uninformative). In his famous
paper, Cox (1972), described a regression generaliza-
tion of this idea, in which the instantaneous risk, or
“hazard”, is predicted by a log-linear regression model
so that effects of each risk factor may be expressed as
hazard ratios. Over subsequent decades this theory was
further extended to encompass many types of event his-
tory data. See Andersen et al. (1993) for a comprehen-
sive review.

Confounder Scores and Propensity Scores

Miettinen (1976b) put forward an alternative pro-
posal for dealing with multiple confounders. It was mo-
tivated by three shortcomings he identified in the mul-
tivariate methods then available:

1. they (discriminant analysis in particular) relied on
very dubious assumptions,

2. they (logistic regression) were computationally
demanding by the standards then applying, and

3. they were poorly understood by substantive sci-
entists.

His proposal was to carry out a preliminary, perhaps
crude, multivariate analysis from which could be com-
puted a “confounder score”. This score could then
be treated as a single confounder and dealt with by
conventional stratification methods. He suggested two
ways of computing the confounder score. An outcome
function was computed by an initial regression (or dis-
criminant function) analysis of the disease outcome
variable on all of the confounders plus the exposure
variable of interest, then calculating the score for a
fixed value of exposure so that it depended solely on
confounders. Alternatively, an exposure function could
be computed by interchanging the roles of outcome
and exposure variables, regressing exposure on con-
founders plus outcome.

Rosenbaum and Rubin (1983) later put forward a su-
perficially similar proposal to the use of Miettinen’s ex-
posure function. By analogy with randomized exper-
iments, they defined a balancing score as a function
of potential confounders such that exposure and con-
founders are conditionally independent given the bal-
ancing score. Stratification by such a score would then
simulate a randomized experiment within each stra-
tum. They further demonstrated, for a binary exposure,
that the coarsest possible balancing score is the propen-
sity score, the probability of exposure conditional upon
confounders, which can be estimated by logistic re-
gression. Note that, unlike Miettinen’s exposure score,
the outcome variable is not included in this regression.
The impact of estimation of the nuisance parameters
of the propensity score upon the test of exposure ef-
fect was later explored by Rosenbaum (1984). Hansen
(2008) later showed that a balancing score is also pro-
vided by the “prognostic analogue” to the propensity
score which is to Miettinen’s outcome function as the
propensity score is to his exposure function, that is, the
exposure variable is omitted when calculating the prog-
nostic score.

Given this later work on balancing scores, it is inter-
esting to note that Miettinen discussed at some length
why he believed it necessary to include the “condi-
tioning variable” (either the exposure of interest or
the outcome variable) when computing the coefficients
of the confounder score, noting that the need for this
was “puzzling to some epidemiologists”. His argument
comes down to the requirement to obtain an (approxi-
mately) unbiased estimate of the conditional odds ratio
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for exposure versus outcome; omission of the condi-
tioning variable means that the confounder score po-
tentially contains a component related to only one of
the two variables of interest and, owing to noncollapsi-
bility of the odds ratio, this leads to a biased estimate of
the conditional effect. Unfortunately, as demonstrated
by Pike, Anderson and Day (1979), Miettinen’s pro-
posal for correcting this bias comes at the cost of infla-
tion of the type 1 error rate for the hypothesis test for an
exposure effect. To demonstrate this, consider a logistic
regression of an outcome, y, on an exposure of interest,
x, and multiple confounders, z. Miettinen proposed to
first compute a confounder score s = γ̂ T z, where γ̂ are
the coefficients of z in the logistic regression of x on y

and z, and then to fit the logistic regression of y on x

and s. While this regression yields an identical coeffi-
cient for x as the full logistic regression of y on x and
z, and has the same maximized likelihood, in the test
for exposure effect this likelihood is compared with the
likelihood for the regression of y on s which, in gen-
eral, will be rather less than that for y on z—the correct
comparison point. Thus, the likelihood ratio test in Mi-
ettinen’s procedure will be inflated.

Rosenbaum and Rubin circumvented the estimation
problem posed by omission of the conditioning vari-
able when calculating balancing scores by estimating
a marginal causal effect using direct standardization
with appropriate population weights. Equivalently, in-
verse probability weights based on the propensity score
can be used.

Owing to the focus on conditional measures of ef-
fect, the propensity score approach was little used in
epidemiology during the latter part of the 20th century.
However, the method has gained considerably in pop-
ularity over the last decade. For a recent case study of
treatment effect estimation using propensity score and
regression methods, see Kurth et al. (2006). They em-
phasised that, as in classical direct standardization, pre-
cise identification of the target population is important
when treatment effects are nonuniform.

Time-Dependent Confounding

Cox’s life table regression model provided an ex-
ceedingly general approach to modelling the proba-
bility of a failure event conditional upon exposure or
treatment variables and upon extraneous covariates or
confounders, the mathematical development extend-
ing quite naturally to allow for variation of such vari-
ables over time. However, shortly after its publica-
tion, Kalbfleisch and Prentice (1980), pages 124–126,

pointed out a serious difficulty in dealing with “inter-
nal” (endogenous) time-dependent covariates. Refer-
ring to the role of variables such as the general con-
dition of patients in therapeutic trials which may lie on
the causal path between earlier treatment and later out-
come and, therefore, carry part of the causal treatment
effect, they wrote:

A censoring scheme that depends on the
level of a time dependent covariate z(t)

(e.g., general condition) is . . . not indepen-
dent if z(t) is not included in the model. One
way to circumvent this is to include z(t) in
the model, but this may mask treatment dif-
ferences of interest.

Put another way, to ignore such a variable in the anal-
ysis is to disregard its confounding effect, but its inclu-
sion in the conditional probability model could obscure
some of the true causal effect of treatment.

While Kalbfleisch and Prentice had identified a fun-
damental problem with the conditional approach to
confounder adjustment, they offered no convincing
remedy. This was left to Robins (1986). In this and later
papers Robins addressed the “healthy worker” effect
in epidemiology–essentially the same problem identi-
fied by Kalbfleisch and Prentice. Robins proposed two
lines of attack which we may classify as “marginal”
and “conditional” in keeping with a distinction that has
come up throughout our exposition. The original ap-
proach was “g-computation”, which may be loosely
conceived as sequential prediction of “what would
have happened” under various specified externally im-
posed “treatments” and thus generalizes (direct) stan-
dardisation, basically a marginal approach. A further
development in this direction was inverse probability
weighting of marginal structural models, that is, mod-
els for the counterfactual outcomes (Robins, Hernán
and Brumback, 2000). Here, the essential idea is to
estimate a marginal treatment effect in a population
in which the association between treatment (exposure)
and the time-dependent covariate is removed. Sato
and Matsuyama (2003) and Vansteelandt and Keid-
ing (2011) gave brief discussions of the relationship
between g-computation, inverse probability weighting
and classical standardisation in the simplest (nonlon-
gitudinal) situation. On the other hand, the approach
via structural nested models [e.g., Robins and Tsiatis
(1992), Robins et al. (1992)] focusses on the effect
of a “blip” of exposure at time t conditional on treat-
ments and covariate values before t . In the latter mod-
els, time-varying effect modification may be studied.
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See the recent tutorial surveys by Robins and Hernán
(2009) or Daniel et al. (2013) for details.

7. PREDICTION AND TRANSPORTABILITY

We saw that in the National Halothane Study stan-
dardisation methods were used analytically, in order
to control for confounders strictly within the frame of
the concrete study. The general verdict in the emerg-
ing computer age regarding this use of standardisation
was negative, as formulated by Fienberg (1975), in a
discussion of a careful and detailed survey on observa-
tional studies by McKinlay (1975):

The reader should be aware that standard-
ization is basically a descriptive technique
that has been made obsolete, for most of
the purposes to which it has traditionally
been put, by the ready availability of com-
puter programs for loglinear model analysis
of multidimensional contingency tables.

However, the original use of standardization not only
had this analytical ambition, it also aimed at obtain-
ing meaningful generalizations to other populations—
or other circumstances in the original population. Be-
fore we sketch the recovery since the early 1980s of
this aspect of standardization, it is useful to record the
attitude to generalization by influential epidemiologists
back then. Miettinen [(1985), page 47] in his long-
awaited text-book, wrote:

In science the generalization from the actual
study experience is not made to a population
of which the study experience is a sample
in a technical sense of probability sampling
. . . In science the generalization is from the
actual study experience to the abstract, with
no referent in place or time,

and thus did not focus on specific recommendations
as to how to predict precisely what might happen un-
der different concrete circumstances. A similar atti-
tude was voiced by Rothman [(1986), page 95] in the
first edition of Modern Epidemiology, and essentially
repeated in the following editions of this central ref-
erence work [Rothman and Greenland (1998), pages
133–134, Rothman, Greenland and Lash (2008), pages
146–147]. The immediate consequence of this attitude
would be that all that we need are the parameters in
the fitted statistical model and assurance that no bias is
present in the genesis of the concretely analyzed data.

However, as we have seen, Clogg (1978) (and later)
had felt a need for interpreting the log-linear models

in terms of their consequences for summary tables.
Freeman and Holford (1980) wrote a useful guide to
the new situation for survey analysis where the col-
lected data had been analyzed using the new statisti-
cal models. They concluded that much favoured keep-
ing the reporting to the model parameters: these would
then be available to other analysts for comparative pur-
poses, the model fit was necessary to check for inter-
actions (including possibly identifying a model where
there is no interaction). But,

in many settings these advantages are over-
shadowed by the dual requirements for sim-
plicity of presentation and immediacy of in-
terpretation,

and Freeman and Holford (1980) therefore gave spe-
cific instructions on how to calculate “summary rates”
for the total population or other populations. The main
requirement for validity of such calculations is that
there is no interaction between population and com-
position.

Interestingly, an influential contribution in 1982
came from a rather different research environment: the
well-established agricultural statisticians P. W. Lane
and J. A. Nelder (Lane and Nelder, 1982). In a spe-
cial issue of Biometrics on the theme “the analysis of
covariance”, they wrote a short note containing sev-
eral germs of the later so important potential outcome
view underlying modern causal inference, and placed
the good old (direct) standardisation technique right in
the middle of it.

Their view was that the purpose of a statistical anal-
ysis such as analysis of covariance is not only to es-
timate parameters, but also to make what they called
predictions:

An essential feature is the division into ef-
fects of interest and effects for which adjust-
ment is required. . . . For example, a typical
prediction from a variety trial is the yield
that would have been obtained from a par-
ticular variety if it had been grown over the
whole experimental area. When a covariate
exists the adjusted treatment mean can be
thought of as the prediction of the yield of
that variety grown over the whole experi-
mental area with the covariate fixed at its
mean value. . . . The predictions here are not
of future events but rather of what would
have happened in the experiment if other
conditions had prevailed. In fact no vari-
ety would have been grown over the whole
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experimental area nor would the covariate
have been constant.

Lane and Nelder proposed to use the term predic-
tive margin for such means, avoiding the term “popu-
lation treatment mean” suggested by Searle, Speed and
Milliken (1980) to replace the cryptic SAS-output term
“least square means”. Lane and Nelder emphasised that
these means might either be

conditional on the value we take as standard
for the covariate

or

marginal to the observed distribution of co-
variate values,

and Lane and Nelder went on to explain to this new
audience (including agricultural statisticians) that there
exist many other possibilities for choice of standard.

We find it interesting that Lane and Nelder used the
occasion of the special issue of Biometrics on analysis
of covariance to point out the similarities to standardi-
sation, and to phrase their “prediction” in much similar
terms as the later causal analysis would do. Of course,
it should be remembered that Lane and Nelder ma-
noeuvered within the comfortable framework of ran-
domised field trials. Rothman, Greenland and Lash
[(2008), page 386 ff.] described how these ideas have
developed into what is now termed regression stan-
dardisation.

An Example: Cancer Trends

A severe practical limitation of the modelling ap-
proach is that the model must encompass all the data
to be compared. However, many official statistics are
published explicitly to allow comparisons with other
published series. Even within a single publication it
may be inappropriate to fit a single large and complex
model across the entire data set.

An example of the latter situation is the I.A.R.C.
monograph on Trends in Cancer Incidence and Mor-
tality (Coleman et al., 1993). The primary aim of
this monograph was to estimate cancer trends across
the population-based cancer registries throughout the
world and this was addressed by fitting age-period-
cohort models to the data from each registry. But com-
parisons of rates between registries at specific time
points were also required and, since the age structures
of different registries differed markedly, direct stan-
dardisation to the world population, ages 30–74, was
used. However, some of the cancers considered were

rare and this exposes a problem with the method of
direct standardization—that it can be very inefficient
when the standard population differs markedly from
that of the test group. The authors therefore chose to
apply direct standardisation to the fitted rates from the
age-period-cohort models.

Transportability Across Studies

Pearl and Barenboim (2012) noted that precise con-
ditions for applying concrete results obtained in a study
environment to another “target” environment,

remarkably. . . have not received system-
atic formal treatment. . . The standard liter-
ature on this topic . . . consists primarily of
“threats”, namely verbal narratives of what
can go wrong when we try to transport re-
sults from one study to another. . . Rarely do
we find an analysis of “licensing assump-
tions”, namely, formal and transparent con-
ditions under which the transport of results
across differing environments or popula-
tions is licensed from first principles.

After further outlining the strong odds against any-
one who dares formulate such conditions, Pearl and
Barenboim then set out to propose one such formal-
ism, based on the causal diagrams developed by Pearl
and colleagues over the last decades; cf. Pearl (2009).

In the terminology of Pearl and Barenboim, the
method of direct standardisation, together with the
“predictions” of Lane and Nelder, is a transport for-
mula and, as they state,

the choice of the proper transport formula
depends on the causal context in which pop-
ulation differences are embedded.

Although a formal treatment of these issues is over-
due, it has been recognized in epidemiology for many
years that the concept of confounding cannot be de-
fined solely in terms of a third variable being related
to both outcome and exposure of interest. A landmark
paper was that of Simpson (1951) which dealt with
the problem of interpreting associations in three-way
contingency tables. As we saw in Section 3, although
“Simpson’s paradox” is widely regarded as synony-
mous with Yule’s paradox, Simpson’s primary concern
was the role of the causal context in deciding whether
the conditional or marginal association between two of
the three factors in a table is of primary interest. The
point has been understood by many (if not all) epi-
demiologists writing in the second half of the 20th cen-
tury as, for example, is demonstrated by the remark
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of Truett, Cornfield and Kannel (1967), cited in Sec-
tion 6, concerning interpretation of the coefficient of
body weight in their regression equation for coronary
disease incidence. However, as far as we can tell, the
issue does not seem to have concerned 19th century
writers; for example, no consideration seems to have
been given to the possibility that age differences be-
tween populations could, in part, be a consequence of
differences in “the force of mortality” and, if so, the
implication for age standardization.

8. CONCLUSION

In the fields of scientific enquiry with which we are
concerned here, the causal effect of a treatment, or ex-
posure, cannot be observed at the individual level. In-
stead, the effect measures we use contrast the distribu-
tions of responses in populations with differing expo-
sures, but in which the distributions of other factors do
not differ. In randomized studies, this equality of distri-
bution of extraneous factors is guaranteed by randomi-
sation and causal effects are simply measured. In ob-
servational studies, however, differences between the
distributions of relevant extraneous factors between ex-
posure groups (what epidemiologists call “confound-
ing”) is ubiquitous and we must rely on the assumption
of “no unmeasured confounders” to allow us to esti-
mate the causal effect.

In much recent work, the problem is approached by
postulating that each individual has a number of poten-
tial responses, one for each possible exposure; only one
of these is observed, the other counterfactual responses
being assumed to be “missing at random” given mea-
sured confounders. Alternatively, we can restrict our-
selves to dealing with observed outcomes, assuming
that the mechanism by which exposure was allocated
in the experiment of nature we have observed did not
depend on unmeasured confounders. The choice be-
tween these positions is philosophical and, to the ap-
plied statistician, largely a matter of convenience. The
more serious concern, with which we have been largely
concerned in this review, is the choice of effect mea-
sure; we can choose to contrast the marginal distribu-
tion of responses under equality of distribution of ex-
traneous factors or to contrast response distributions
which condition on the values of these factors.

Standardisation grew up in response to obvious prob-
lems of age-confounding in actuarial (18th century)
and demographic (19th century) comparative studies
of mortality. The simple intuitive calculations consid-
ered scenarios in which either the age distributions

did not differ (“direct” standardisation) or age-specific
rates did not differ (“indirect” standardisation) between
study groups. However, formal consideration of such
indices as effect measures came later, the contribution
of Yule (1934) being noteworthy.

There would probably be widespread agreement that
describing causal effects in relation to all potential
causes, as in the conditional approach, must represent
the most complete analysis of a data set and we have
described how this approach developed throughout the
20th century, starting with the influential paper of Yule
(1900). This impressive paper clearly described the
proliferation of “partial” association measures intro-
duced by the conditional approach, and drew attention
to the consequent need to use measures which remain
relatively stable across subgroups. In later work Yule
(1934) revisited classical standardisation in terms of
an average of conditional (i.e., stratum-specific) mea-
sures. Such early work sowed the seeds of the “sta-
tistical” approach based on formal probability models,
leading eventually to the widespread use of logistic re-
gression and proportional hazard (multiplicative inten-
sity) models, the contributions of Cochran (1954) and
Mantel and Haenszel (1959) providing important stag-
ing posts along the way (even though the latter authors
explicitly denied any reliance on a model). By the end
of the century such approaches dominated epidemiol-
ogy and biostatistics.

Toward the end of the 20th century, the use of
marginal measures of causal effects emerged from the
counterfactual approach to causal analysis in the social
sciences, the idea of propensity scores (Rosenbaum
and Rubin, 1983) being particularly influential. How-
ever, these methods only found their way into main-
stream biostatistics when applications arose for which
conventional conditional probability models were not
well suited, the foremost of which being the problem
of time-dependent confounding. Whereas, for simple
problems, the parameters of logistic and multiplica-
tive intensity models have an interpretation as mea-
sures of (conditional) causal effects, Kalbfleisch and
Prentice (1980) noted that this ceased to be the case
in the presence of time-dependent confounding. While
the statistical modelling approach can be extended by
joint modelling of the event history and confounder tra-
jectories, such models are complex and, again, causal
effects do not correspond with model parameters and
would need to be estimated by simulations based on
the fitted model. Such models continue to be studied
[see, e.g., Henderson, Diggle and Dobson (2000)], but,
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although it could be argued that these offer the opportu-
nity for a more detailed understanding of the nature of
causal effects in this setting, the simpler marginal ap-
proaches pioneered by Robins (1986) are more attrac-
tive in most applications. The success of this latter ap-
proach in offering a solution to a previously intractable
problem encouraged biostatisticians to further explore
methods for estimation of marginal causal effects; for
example, propensity scores are now widely used in this
literature.

So where are we today? Both approaches have
strengths and weaknesses. The conditional modelling
approach relies on the assumption of homogeneity of
effect across subgroups or, when this fails to hold, to
a multiplicity of effect measures. The marginal ap-
proach, while seemingly less reliant on such assump-
tions, encounters the same issue when considering the
transportability of effect measures to different popula-
tions.
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