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Standardization of brain 
MR images across machines 
and protocols: bridging the gap 
for MRi‑based radiomics
Alexandre carré1,2, Guillaume Klausner1,2, Myriam Edjlali3,4,5, Marvin Lerousseau1,6, 
Jade Briend‑Diop1, Roger Sun1,2,6, Samy Ammari7, Sylvain Reuzé1,2, Emilie Alvarez Andres1,8, 
théo estienne1,6, Stéphane Niyoteka1,2, Enzo Battistella1,6, Maria Vakalopoulou6, 
frédéric Dhermain2, Nikos Paragios6,8, Eric Deutsch1,2, Catherine Oppenheim3,4,5, 
Johan Pallud4,5,9 & charlotte Robert1,2*

Radiomics relies on the extraction of a wide variety of quantitative image-based features to provide 
decision support. Magnetic resonance imaging (MRI) contributes to the personalization of patient care 
but suffers from being highly dependent on acquisition and reconstruction parameters. Today, there 
are no guidelines regarding the optimal pre-processing of MR images in the context of radiomics, 
which is crucial for the generalization of published image-based signatures. This study aims to assess 
the impact of three different intensity normalization methods (Nyul, WhiteStripe, Z-Score) typically 
used in MRI together with two methods for intensity discretization (fixed bin size and fixed bin 
number). The impact of these methods was evaluated on first- and second-order radiomics features 
extracted from brain MRI, establishing a unified methodology for future radiomics studies. Two 
independent MRI datasets were used. The first one (DATASET1) included 20 institutional patients 
with WHO grade II and III gliomas who underwent post-contrast 3D axial T1-weighted (T1w-gd) and 
axial T2-weighted fluid attenuation inversion recovery (T2w-flair) sequences on two different MR 
devices (1.5 T and 3.0 T) with a 1-month delay. Jensen–Shannon divergence was used to compare 
pairs of intensity histograms before and after normalization. The stability of first-order and second-
order features across the two acquisitions was analysed using the concordance correlation coefficient 
and the intra-class correlation coefficient. The second dataset (DATASET2) was extracted from the 
public TCIA database and included 108 patients with WHO grade II and III gliomas and 135 patients 
with WHO grade IV glioblastomas. The impact of normalization and discretization methods was 
evaluated based on a tumour grade classification task (balanced accuracy measurement) using 
five well-established machine learning algorithms. Intensity normalization highly improved the 
robustness of first-order features and the performances of subsequent classification models. For the 
T1w-gd sequence, the mean balanced accuracy for tumour grade classification was increased from 
0.67 (95% CI 0.61–0.73) to 0.82 (95% CI 0.79–0.84, P = .006), 0.79 (95% CI 0.76–0.82, P = .021) and 0.82 
(95% CI 0.80–0.85, P = .005), respectively, using the Nyul, WhiteStripe and Z-Score normalization 
methods compared to no normalization. The relative discretization makes unnecessary the use 
of intensity normalization for the second-order radiomics features. Even if the bin number for the 
discretization had a small impact on classification performances, a good compromise was obtained 
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using the 32 bins considering both T1w-gd and T2w-flair sequences. No significant improvements in 
classification performances were observed using feature selection. A standardized pre-processing 
pipeline is proposed for the use of radiomics in MRI of brain tumours. For models based on first- and 
second-order features, we recommend normalizing images with the Z-Score method and adopting an 
absolute discretization approach. For second-order feature-based signatures, relative discretization 
can be used without prior normalization. In both cases, 32 bins for discretization are recommended. 
This study may pave the way for the multicentric development and validation of MR-based radiomics 
biomarkers.

Radiomics relies on the extraction of a wide variety of quantitative image-based features, including shape, 
histogram-based, textural and higher order  statistics1. Along with machine learning techniques, radiomics is 
becoming an increasingly popular computer-aided diagnostic tool in the �eld of medical  research2,3. Radiom-
ics o�ers an almost unlimited supply of imaging biomarkers that can facilitate cancer detection, diagnosis, and 
prognosis assessment and the prediction of treatment  response1–4.

Magnetic resonance imaging (MRI) exhibits high so� tissue contrast and submillimetre spatial resolution. 
In the context of radiomics, a main issue is that MRI intensities are non-standardized and are highly depend-
ent on the manufacturer, sequence type and acquisition  parameters5. Consequently, a large variability in image 
intensities among inter-patient and intra-patient acquisitions exists that could highly a�ect the extraction of 
the radiomics features, compromising the pooling and the reproducibility of published data using independent 
imaging  sets6,7.

To solve this problem, previous radiomics studies have focused on image pre-processing techniques. For 
example, it has been shown that bias �eld correction e�ciently minimizes MR intensity inhomogeneity within a 
tissue  region8–10. �e variability generated by di�erent voxel sizes can also be reduced by spatial  resampling9,11,12. 
Moreover, brain extraction is mandatory to remove the skull regions that generate the most important varia-
tions in intensities and to de�ne the region in which intensities should be considered before any image intensity 
 normalization13,14. However, even though these three types of pre-processing of brain MRI are widely accepted 
by the community, there is no consensus within radiomics studies regarding the applied image normalization 
method (Table 1). In this study, we focused on three normalization methods that were selected for their rep-
resentativeness within current radiomics studies (Nyul, WhiteStripe and Z-Score). �ese techniques include 
relatively simple (e.g., Z-Score) to more complex (e.g., WhiteStripe) formulations.

�e technique developed by Nyúl et al.31 and further extended by Shah et al.32 is a piecewise linear histogram 
matching method. In particular, in this method, a standard histogram is learned from the training set and then 
used to linearly map the intensities of the image of interest. Shinohara et al.33 described a statistical normaliza-
tion method called WhiteStripe based on the intensity values of the normal-appearing white matter (NAWM). 
�e Z-Score method consists of subtracting the mean intensity of the entire image or a region of interest from 
each voxel value and dividing it by the corresponding standard  deviation34.

To calculate second-order features, also known as texture features, a grey-level discretization step clusters 
similar intensity levels into bins to minimize the noise impact and decrease calculation  times35. �is is an addi-
tional critical pre-processing step that does not express any consensus in the literature, and it is usually not truly 
clari�ed in radiomics studies (Table 1). Conventionally, the grey-level discretization can be de�ned as absolute 
if a �xed bin size (FBS) is used to cluster the intensities of the region of interest (ROI) or as relative when a �xed 
bin number (FBN), whose size depends on the minimum and maximum values within the same ROI, is preferred.

Even if several studies have shown variabilities in texture analysis depending on MRI acquisition parameters 
and the grey-level discretization step, none of them has assessed the combined impact of intensity normalization 
and grey-level discretization pre-processing methods on radiomics feature values in  MRI36–40.

�e objective of this study was to assess the impact of three intensity normalization methods coupled with two 
methods for grey-level discretization on the challenging task of tumour grade classi�cation in two independent 
cohorts. Finally, we propose recommendations to standardize the pre-processing techniques of brain MRI, which 
is crucial to achieve reliable radiomics-based machine learning models.

Results
Impact of the intensity normalization method on histograms and first-order features. Jensen–
Shannon divergence (JSD) values showed signi�cant di�erences (P < 0.001) related to the intensity normalization 
process for both T1w-gd and T2w-�air sequences (DATASET1). On post hoc analysis, signi�cantly higher JSD 
values were found when comparing images without normalization to Nyul (P < 0.001), WhiteStripe (P < 0.001) 
and Z-Score (P < 0.001) pre-processed images (Table 2). �e numbers of �rst-order features de�ned as robust 
between the two acquisitions, depending on the normalization method, are summarized in Table  3 (DATA-
SET1). Nyul’s method provided the highest number of robust �rst-order features based on a threshold value 
of 0.80 for both intra-class correlation coe�cients (ICCs) and concordance correlation coe�cients (CCCs) for 
both T1w-gd and T2w-�air sequences with 16 and 8 features out of 18, respectively. Images without any normali-
zation did not generate any robust feature for the T1w-gd and T2w-�air sequences.

For the T1w-gd sequence, the average balanced accuracy corresponding to the binary tumour grade classi�-
cation task obtained from the 5 test folds and the �ve machine learning models using the 18 �rst-order features 
only (model 1) was equal to 0.67 (95% con�dence interval (CI) 0.61–0.73) when no normalization was applied. 
In comparison, this value was equal to 0.82 (95% CI 0.79–0.84, P = 0.006), 0.79 (95% CI 0.76–0.82, P = 0.021) and 
0.82 (95% CI 0.80–0.85, P = 0.005) when applying the Nyul, WhiteStripe and Z-Score pre-processing methods, 
respectively (DATASET2) (Fig. 1A). For the T2w-�air sequence, this value was equal to 0.62 (95% CI 0.59–0.64) 
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References Multicenter
Number of 
patients MRI sequences

Normalization 
technique

Grey-level 
discretization

Radiomics 
so�ware Features Objective

Su et al.15 No 100 T2w-�air – – Pyradiomics
18 �rst-order, 13 
shape, 54 texture

Investigate the 
feasibility of 
predicting H3 
K27M mutation 
status by applying 
an automated 
machine learning 
approach to the 
MR radiomics 
features of patients 
with midline 
gliomas

Liu et al.16 Yes 130 T1w, T2w-�1air ComBat –
Arti�cial Intel-
ligence Kit (GE)

First-order, texture

Develop and 
validate a model 
that can be used 
to predict the 
individualized 
treatment response 
in children with 
cerebral palsy

Bologna et al.17 – Phantom T1w, T2w Z-Score 32 FBN Pyradiomics
18 �rst-order, 14 
shape, 75 texture

Analysis of virtual 
phantom for 
preprocessing 
evaluation and 
detection of a 
robust feature set 
for MRI-radiomics 
of the brain

Elsheikh et al.18 Yes 135
T1w, T1w-gd, T2w, 
T2w-�air

– – – First-order, texture

Analysis of multi-
stage association of 
glioblastoma gene 
expressions with 
texture and spatial 
patterns

Tixier et al.19 Yes 90 T1w-gd, T2w-�air – 128 FBN CERR
72 features (�rst-
order, texture, 
shape)

Study the impact 
of tumor segmen-
tation variability 
on the robustness 
of MRI radiomics 
features

Ortiz-Ramón 
et al.20 No 200

T1w, T2w, T2w-
�air

– 32 FBN MATLAB 114 textures

Identify the pres-
ence of ischaemic 
stroke lesions by 
means of texture 
analysis on brain 
MRI

Vamvakas et al.21 No 40
T1w, T1w-gd, T2w, 
T2w-�air

– – MATLAB
11 �rst-order, 16 
texture

Investigate the 
value of advanced 
multiparametric 
MRI biomarker 
analysis based on 
radiomics features 
and machine 
learning classi�ca-
tion for glioma 
grading

Tixier et al.22 Yes 159
T1w, T1w-gd, 
T2w-�air

– 128 FBN CERR
286 features 
(�rst-order, shape, 
texture)

Evaluate the capac-
ity of radiomics 
features to add 
complementary 
information to 
MGMT status, 
to improve the 
ability to predict 
prognosis

Wu et al.23 Yes 126
T1w, T1w-gd, T2w, 
T2w-�air

– – –
704 features 
(�rst-order, shape, 
texture)

Identify the 
optimal radiomics-
based machine 
learning method 
for isocitrate dehy-
drogenase geno-
type prediction in 
di�use gliomas

Artzi et al.24 No 439 T1w-gd WhiteStripe – MATLAB
757 features 
(�rst-order, shape, 
texture)

Di�erenti-
ate between 
glioblastoma and 
brain metastasis 
subtypes using 
radiomics analysis

Continued



4

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12340  | https://doi.org/10.1038/s41598-020-69298-z

www.nature.com/scientificreports/

Table 1.  Normalization methods and grey level discretization applied in recent radiomics studies dedicated to 
brain tumors.

References Multicenter
Number of 
patients MRI sequences

Normalization 
technique

Grey-level 
discretization

Radiomics 
so�ware Features Objective

Kniep et al.25 No 189
T1w, T1w-gd, 
T2w-�air

WhiteStripe – Pyradiomics
18 �rst-order, 17 
shape, 56 texture

Investigate the 
feasibility of tumor 
type prediction 
with MRI radiom-
ics image features 
of di�erent brain 
metastases in a 
multiclass machine 
learning approach 
for patients with 
unknown primary 
lesion at the time 
of diagnosis

Sanghani et al.26 Yes 163
T1w, T1w-gd, T2w, 
T2w-�air

– – Pyradiomics
2200 features 
(�rst-order, shape, 
texture)

Predict overall 
survival in 
glioblastoma mul-
tiforme patients 
from volumetric, 
shape and texture 
features using 
machine learning

Liu et al.27 Yes 84 T2w Z-Score – MATLAB
131 features 
(�rst-order, shape, 
texture)

Develop a radiom-
ics signature for 
prediction of 
progression-free 
survival (PFS) 
in lower-grade 
gliomas and inves-
tigate the genetic 
background 
behind the radi-
omics signature

Peng et al.28 No 66 T1w-gd, T2w-�air – 64 FBN MATLAB
51 features (�rst-
order, shape, 
texture)

Distinguish true 
progression from 
radionecrosis a�er 
stereotactic radia-
tion therapy for 
brain metastases 
with machine 
learning and 
radiomics

Bae et al.29 No 217 T1w-gd, T2w-�air WhiteStripe – Pyradiomics
796 features 
(�rst-order, shape, 
texture)

Investigate 
whether radiomics 
features based 
on MRI improve 
survival prediction 
in patients with 
glioblastoma 
multiforme (GBM) 
when they are 
integrated with 
clinical and genetic 
pro�les

Chen et al.30 Yes 220
T1w, T1w-gd, T2w, 
T2w-�air

Nyul – Pyradiomics
420 features 
(�rst-order, shape, 
texture)

Classify gliomas 
combining auto-
matic segmenta-
tion and radiomics

Table 2.  Jensen–Shannon divergences on DATASET1 compared using a Turkey HSD test. *Signi�cant 
(P < .05).

Turkey HSD (mean 
di�erence)

T1w-gd T2w-�air

Pair 1 No normalization-Nyul − 0.469* − 0.284*

Pair 2 No normalization-WhiteStripe − 0.446* − 0.237*

Pair 3 No normalization-Z-score − 0.433* − 0.241*

Pair 4 Nyul-WhiteStripe 0.024 0.048

Pair 5 Nyul-Z-score 0.036 0.043

Pair 6 WhiteStripe-Z-score 0.012 − 0.005

ANOVA P value < 0.001 < 0.001
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when no normalization was applied and 0.56 (95% CI 0.52–0.59, P = 0.045), 0.57 (95% CI 0.54–0.60, P = 0.164), 
0.60 (95% CI 0.57–0.63, P = 0.770) when the Nyul, WhiteStripe and Z-Score methods were applied, respectively 
(Fig. 1B).

Impact of the intensity normalization method and grey-level discretization on textural fea‑
tures. Fixed bin number (FBN). Figure  2 illustrates the percentage of the 73 textural features showing 
ICCs and CCCs higher than 0.8 depending on the intensity normalization and discretization method based on 
DATASET1. When a relative discretization was used (FBN), the WhiteStripe and Z-Score methods extracted the 
same feature values as the raw images, which explains the similar plots (Fig. 2A,B). Nyul’s method provided the 
highest percentage of robust textural features compared to images without any normalization for the T1w-gd 
sequence, with a mean di�erence of 8 percentage points (Fig. 2A) for all discretization values. For the T2w-
�air sequence, features extracted from original images were more robust than those obtained by Nyul’s method 
(Fig. 2B). Between 16 and 128 bins, the percentages of robust features were quite stable, with a maximum varia-
tion of 10 percentage points regardless of the sequence and normalization method (Fig. 2A,B).

Figure 3 shows the mean balanced accuracies obtained from the �ve machine learning models trained on 
the tumour grade classi�cation task (DATASET2) using the 73 textural features only (model 2) for di�erent 
intensity normalization and discretization methods. No normalization and the WhiteStripe or Z-Score meth-
ods led to the same classi�cation performances (Fig. 3A,B). Nyul’s method resulted in 5% lower performances 
on average than no normalization when considering the T1w-gd sequence and all numbers of bins (Fig. 3A). 
Even if the ANOVA test resulted in a P value < 0.001 regarding the normalization e�ect, the di�erence was not 
statistically signi�cant when a subsequent pairwise post hoc Tukey’s multiple comparison test was performed 
(P = 1.0). Regarding the number of bins, only the comparison between 32 and 512 bins demonstrated statistical 
signi�cance (P = 0.039). For the T2w-�air sequence, the best classi�cation performance was obtained using Nyul’s 
histogram harmonization and 32 bins, with a mean balanced accuracy of 0.67 (95% CI 0.64–0.69—Fig. 3B). No 
signi�cant di�erence was identi�ed regarding the impact of normalization (P = 0.198) as opposed to the impact 

Table 3.  Number of �rst-order features with ICCs and CCCs > 0.80 on DATASET1.

Number of �rst-
order features 
with ICCs and 
CCCs > 0.80

T1w-gd T2w-�air

No normalization 0/18 0/18

Nyul 16/18 8/18

WhiteStripe 5/18 1/18

Z-Score 9/18 1/18

Figure 1.  Balanced accuracies obtained for the tumour grade classi�cation task using the 18 �rst-order features 
only. Bar plots and associated error bars represent the average balanced accuracies and the 95% CIs obtained 
using all 5 test folds of the cross-validation of the 5 machine learning models as a function of the normalization 
method, respectively. (A) T1w-gd MRI sequence only, (B) T2w-�air MRI sequence only.
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of discretization (P < 0.001). Statistically signi�cant results depending on the number of bins were equal to 
P = 0.012 (8–256 bins), P = 0.010 (32–1024 bins), P = 0.009 (16–256 bins), P = 0.001 (32–128 bins), and P < 0.001 
(32–256 bins, 32–512 bins).

Fixed bin size (FBS). When an absolute discretization was adopted, all normalization methods improved the 
number of robust features compared to no normalization, irrespective of the MR sequence (Fig. 2C, D—DATA-
SET1). A higher number of bins was o�en associated with a higher number of robust features in both T1w-gd 
and T2w-�air MRI sequences. In particular, a maximum increase of 30 percentage points was reported for the 
T1w-gd sequence when the number of bins varied from 8 to 1024 (no normalization). For the T1w-gd sequence, 
considering a number of bins equal to 32, the Nyul, WhiteStripe and Z-Score methods achieved 33%, 21% and 
49% robust features, respectively; regarding the T2w-�air sequence, these values were equal to 55%, 48% and 
34%, respectively, for the same bin size.

�e use of an MR intensity normalization method signi�cantly improved the balanced accuracy in DATASET2 
for the T1w-gd sequence (P < 0.001—Fig. 3). At 32 bins, the mean balanced accuracy for tumour grade classi�-
cation using only textural features from the T1w-gd sequence (model 2) was equal to 0.68 (95% CI 0.62–0.72) 
without normalization (Fig. 3C). �e same metric reached 0.76 (95% CI 0.74–0.79, P < 0.001), 0.76 (95% CI 
0.73–0.79, P < 0.001), and 0.78 (95% CI 0.75–0.81, P < 0.001) when the Nyul, WhiteStripe and Z-Score methods 
were applied, respectively. Absolute improvement was poor for the T2w-�air sequence and did not exceed 0.04 
for comparisons of no normalization and the Z-Score method (Fig. 3D). No signi�cant di�erences were observed 
between the di�erent bin numbers for T1w-gd (P = 0.909) and T2w-�air (P = 0.597) sequences.

Performance comparison of different classification models. Table  4 summarizes the mean bal-
anced accuracy and the area under the receiver operating characteristic curve (ROC-AUC) obtained using 32 
bins for the T1w-gd and T2w-�air sequences based on �rst-order features only (model 1), second-order fea-

Figure 2.  Percentages of the 73 textural features showing ICCs and CCCs values > 0.8 depending on the 
intensity normalization and the discretization method. (A) FBN T1w-gd, (B) FBN T2w-�air, (C) FBS T1w-gd, 
(D) FBS T2w-�air. FBN �xed bin number (relative discretization), FBS �xed bin size (absolute discretization), 
ICC intra-class correlation coe�cient, CCC  cross correlation coe�cient. In (A) and (B), the No Normalization, 
WhiteStripe and Z-Score line plots are confounded. In (C) and (D), the No Normalization, WhiteStripe and 
Z-Score line plots are separated.
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tures only (model 2), �rst- and second-order features (model 3) and robust �rst- and second-order features 
only (model 4). For model 4, the number of robust features included in the model, corresponding to features 
presenting ICCs and CCCs > 0.8 based on the DATASET1 experiment, are indicated in square brackets. In all 
con�gurations, model 3 reached a balanced accuracy similar to that of the best model previously obtained using 
�rst-order features only or second-order features only, i.e., model 1 for the T1w-gd sequence, except when a 
con�guration including no normalization with FBN was considered, and model 2 for the T2w-�air sequence. 
Model 4 resulted in the same classi�cation performances as model 3 in terms of balanced accuracy for the T1w-
gd sequence, except when no normalization was coupled to FBS discretization. As an example, considering the 
T1w-gd sequence, Z-Score normalization, and FBN discretization, the mean classi�cation accuracy was equal to 
0.82 (95% CI 0.80–0.86) for model 3 and 0.81 (95% CI 0.78–0.84) for model 4. For the T2w-�air sequence, the 
accuracy decreased regardless of the considered con�guration a�er applying feature selection. All trends were 
similar when the number of bins was modi�ed (results not shown).

�e results summarizing the average balanced accuracy and the corresponding 95% CI obtained using all 5 
test folds of the cross-validation of the 5 machine learning models as a function of the normalization method 
and of the number of bins for models 3 and 4 are available in Figures S1 and S2.

To illustrate the robustness of the observations independently of the performance metric, the results corre-
sponding to the ROC-AUC metric for Figs. 1, 3, S1 and S2 are plotted in Figures S3, S4, S5 and S6, respectively.

Discussion
Radiomics relies on the extraction of features from multimodal imaging, aiming to improve patient care. 
Although acquisition parameters strongly a�ect the content of MR images, only some recent studies have spe-
ci�cally focused on the impact of MRI pre-processing methods on radiomics  features10,40,41. Here, we investigated 
the impact of three di�erent intensity normalization approaches combined with two grey-level discretization 
methods on brain MR-based radiomics. In a majority of studies, FBS has, in fact, been presented as the default 
discretization method based on published PET/CT  results35,42. �is conclusion is relevant for quantitative or 

Figure 3.  Balanced accuracies obtained for the tumour grade classi�cation task using the 73 textural features 
only. Bar plots and associated error bars represent the average balanced accuracies and the 95% CIs obtained 
using all 5 test folds of the cross-validation of the 5 machine learning models as a function of the normalization 
method and number of bins, respectively. (A) FBN T1w-gd. (B) FBN T2w-�air. (C) FBS T1w-gd. (D) FBS T2w-
�air. �xed bin number (relative discretization). FBS �xed bin size (absolute discretization).
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semi-quantitative modalities (e.g., HU in CT, SUV in PET) for which intensities have a physical meaning. In 
MRI, intensity values strongly depend on acquisition parameters, making the generalization of radiomics models 
even more  challenging38. Recently, the IBSI has proposed recommendations for each imaging  modality43. For 
MRI, a relative discretization is recommended to account for the variable intensity ranges.

First, we demonstrated that the use of an intensity normalization step improves the robustness of the �rst-
order and FBS-based textural features using DATASET1 (Table 3 and Fig. 2C) and associated performances on 
the classi�cation task based on T1w-gd images (Figs. 1A, 3C—DATASET2). Nyul’s harmonization method, based 
on a reference histogram, leads to the highest number of robust �rst-order features (Table 3). However, it has 
already been shown that this piecewise linear transformation a�ects the texture of the  images33. Additionally, 
piecewise mapping can be distorted when large tumours are considered. �ese observations are in accordance 
with our results showing that di�erent texture feature values were obtained with the Nyul method compared to 
no normalization and the WhiteStripe and Z-Score methods with FBN discretization (Fig. 2A,B). WhiteStripe 
intensity normalization performs a Z-Score normalization based on NAWM values. �e WhiteStripe method is 
dependent on the accuracy of the white matter segmentation, which can a�ect the quality of the normalization. 
In contrast, the Z-Score method is the simplest to implement, requires only a short computation time and is the 
most robust method because it considers all the voxels inside the brain mask. �is latter produces very good 
results in terms of classi�cation performances (Figs. 1, 3, S1 and S2) independent of the MR sequence and the 
grey-level discretization method, even though no statistical signi�cance was achieved. Overall, normalization 
has a greater positive impact on the T1w-gd sequence than on the T2w-�air sequence. �is is mainly because the 
intensity range of raw MR images is, on average, 5 times lower on T2w-�air images than on T1w-gd images. With 
the additional use of a grey-level discretization step for textural feature computation, intensity normalization is 
mandatory when absolute discretization is preferred for T1w-gd images (Fig. 3C). Classi�cation performances 
obtained on DATASET2 highlight that intensity normalization is not needed when relative discretization is 
applied, making the pre-processing steps of skull stripping and intensity normalization unnecessary (Fig. 3A,B).

�e evaluation of the impact of the number of bins for discretization is not trivial. Even if high numbers 
of bins increase feature robustness in the majority of the cases (Fig. 2), they tend to decrease performance in 

Table 4.  Summary of the average balanced accuracies and the corresponding 95% CI (DATASET2) obtained 
using all 5 test folds of the cross-validation of the 5 machine learning models (neural network, random forest, 
support vector machine, logistic regression, naïve Bayes) as a function of the normalization method. For both 
intensity discretization methods (FBN and FBS), 32 bins were used. For model 4, numbers of robust features 
as de�ned using DATASET1 are written in square brackets. BAC balanced accuracy, ROC-AUC  area under the 
receiver operating characteristic curve.

T1w-gd T2w-�air

Model 1 Model 2 Model 3 Model 4 Model 1 Model 2 Model 3 Model 4

BAC
ROC-
AUC BAC

ROC-
AUC BAC

ROC-
AUC BAC

ROC-
AUC BAC

ROC-
AUC BAC

ROC-
AUC BAC

ROC-
AUC BAC

ROC-
AUC 

FBN

No nor-
maliza-
tion

0.67 
(0.61–
0.73)

0.74 
(0.68–
0.80)

0.80 
(0.76–
0.83)

0.86 
(0.82–
0.89)

0.76 
(0.71–
0.81)

0.83 
(0.77–
0.88)

0.73 
(0.70–
0.77) 
[23]

0.83 
(0.80–
0.86) 
[23]

0.62 
(0.59–
0.64)

0.64 
(0.60–
0.68)

0.65 
(0.62–
0.68)

0.70 
(0.67–
0.73)

0.63 
(0.60–
0.65)

0.70 
(0.66–
0.74)

0.60 
(0.57–
0.63) 
[23]

0.66 
(0.63–
0.70) 
[23]

Nyul
0.82 
(0.79–
0.84)

0.90 
(0.87–
0.92)

0.76 
(0.72–
0.79)

0.83 
(0.80–
0.86)

0.81 
(0.77–
0.84)

0.88 
(0.86–
0.91)

0.81 
(0.78–
0.84) 
[43]

0.89 
(0.86–
0.92) 
[43]

0.56 
(0.52–
0.59)

0.61 
(0.58–
0.65)

0.67 
(0.64–
0.69)

0.72 
(0.70–
0.74)

0.66 
(0.64–
0.69)

0.71 
(0.69–
0.74)

0.62 
(0.59–
0.66) 
[27]

0.67 
(0.63–
0.70) 
[27]

Whit-
eStripe

0.79 
(0.77–
0.82)

0.88 
(0.86–
0.90)

0.80 
(0.76–
0.83)

0.86 
(0.83–
0.90)

0.80 
(0.77–
0.84)

0.89 
(0.86–
0.92)

0.79 
(0.76–
0.83) 
[28]

0.89 
(0.87–
0.91) 
[28]

0.57 
(0.54–
0.60)

0.63 
(0.60–
0.67)

0.65 
(0.62–
0.68)

0.70 
(0.67–
0.73)

0.65 
(0.62–
0.67)

0.70 
(0.67–
0.73)

0.62 
(0.59–
0.65) 
[24]

0.67 
(0.64–
0.71) 
[24]

Z-Score
0.82 
(0.80–
0.85)

0.91 
(0.89–
0.93)

0.80 
(0.76–
0.83)

0.86 
(0.83–
0.90)

0.82 
(0.80–
0.86)

0.90 
(0.88–
0.93)

0.81 
(0.78–
0.84) 
[32]

0.91 
(0.89–
0.94) 
[32]

0.60 
(0.57–
0.63)

0.65 
(0.62–
0.69)

0.65 
(0.62–
0.68)

0.70 
(0.66–
0.73)

0.67 
(0.64–
0.70)

0.72 
(0.69–
0.75)

0.63 
(0.60–
0.66) 
[24]

0.68 
(0.65–
0.72) 
[24]

FBS

No nor-
maliza-
tion

0.67 
(0.61–
0.73)

0.74 
(0.68–
0.80)

0.68 
(0.62–
0.72)

0.75 
(0.70–
0.79)

0.69 
(0.63–
0.74)

0.75 
(0.68–
0.81)

0.58 
(0.54–
0.61) 
[9]

0.64 
(0.59–
0.69) 
[23]

0.62 
(0.59–
0.64)

0.64 
(0.60–
0.68)

0.60 
(0.58–
0.63)

0.64 
(0.61–
0.68)

0.59 
(0.56–
0.62)

0.64 
(0.60–
0.67)

0.56 
(0.54–
0.59) 
[7]

0.61 
(0.58–
0.65) 
[7]

Nyul
0.82 
(0.79–
0.84)

0.90 
(0.87–
0.92)

0.76 
(0.74–
0.79)

0.83 
(0.80–
0.86)

0.81 
(0.78–
0.84)

0.88 
(0.85–
0.91)

0.82 
(0.79–
0.85) 
[40]

0.89 
(0.86–
0.91) 
[43]

0.56 
(0.52–
0.59)

0.61 
(0.58–
0.65)

0.64 
(0.60–
0.68)

0.71 
(0.67–
0.75)

0.62 
(0.59–
0.66)

0.70 
(0.66–
0.73)

0.59 
(0.55–
0.62) 
[50]

0.64 
(0.61–
0.68) 
[50]

Whit-
eStripe

0.79 
(0.77–
0.82)

0.88 
(0.86–
0.90)

0.76 
(0.72–
0.79)

0.84 
(0.81–
0.87)

0.79 
(0.76–
0.82)

0.87 
(0.84–
0.90)

0.79 
(0.76–
0.82) 
[20]

0.88 
(0.86–
0.90) 
[28]

0.57 
(0.54–
0.60)

0.63 
(0.60–
0.67)

0.63 
(0.60–
0.66)

0.69 
(0.67–
0.73)

0.61 
(0.58–
0.64)

0.69 
(0.65–
0.72)

0.61 
(0.58–
0.64) 
[36]

0.68 
(0.65–
0.71) 
[36]

Z-Score
0.82 
(0.80–
0.85)

0.91 
(0.89–
0.93)

0.78 
(0.75–
0.82)

0.86 
(0.83–
0.89)

0.80 
(0.77–
0.83)

0.90 
(0.87–
0.93)

0.83 
(0.80–
0.85) 
[45]

0.91 
(0.88–
0.93) 
[32]

0.60 
(0.57–
0.63)

0.65 
(0.62–
0.69)

0.64 
(0.61–
0.67)

0.70 
(0.67–
0.73)

0.64 
(0.60–
0.67)

0.71 
(0.68–
0.74)

0.61 
(0.58–
0.63) 
[36]

0.66 
(0.62–
0.69) 
[36]
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terms of classi�cation accuracy when considering the T2-�air sequence (Fig. 3B). Goya-Outi et al. investigated 
the impact of intensity binning combined with WhiteStripe normalization on 30 patients su�ering from di�use 
intrinsic pontine  glioma44. �ey compared patient ranking based on radiomics features to visual assessment of 
the heterogeneity. �e dataset was obtained using a single MR device and included 4 MR sequences (T1w, T1w-
gd, T2w and T2w-�air). �ree types of intensity binning were compared: (1) a constant bin size and relative 
bounds (FBS); (2) a constant number of bins and relative bounds (FBN); and (3) a constant number of bins and 
absolute bounds. For 20 out of the 240 indices, patient rankings obtained with binning (1) and (2) were highly 
correlated (|r|> 0.7). �is number increased to 188 when comparing rankings obtained with binning (2) and 
(3) and was reduced to 9 when comparing (2) and (3). �ey subsequently adopted the absolute discretization 
(1), as it does not require the setting of absolute lower and upper bounds. Goya-Outi et al. have shown similar 
patient rankings for the large majority of 240 textural features when using di�erent values of FBN (8, 16, 32, 64, 
128) or FBS (0.75, 1, 2, 3, 4). More recently, Duron et al. evaluated the in�uence of grey-level discretization on 
inter- and intra-observer reproducibilities of textural features extracted from 6 MR  sequences39 based on manual 
and automatic segmentations. FBS was shown to be associated with a higher number of reproducible features 
based on a combination of ICCs and CCCs. In this study, the authors did not normalize the intensities before 
feature extraction, but they also did not limit the conclusions to a selected range of bin sizes or numbers. In our 
study, we found that the choice of the number of bins leads to small di�erences between 16 and 128 bins, with a 
maximum variation of 10% in the percentages of robust features (Fig. 2—DATASET1) regardless of the sequence 
and normalization method. Regarding the classi�cation, increasing the number of bins above 128 signi�cantly 
reduced the accuracy of the classi�cation for the T2w-�air sequence for the FBN discretization. Based on our 
results (Figs. 3, S1 and S2), a number of bins equal to 32 seems to be a good compromise for brain MR analysis 
a�er Z-Score normalization, as it leads to the most informative radiomics signatures for both sequences, with 
acceptable calculation times.

Preliminary feature selection based on robustness is widely used in  radiomics45,46. In the present study, no 
improvements in classi�cation performances were observed using feature selection (Figure S2, Table 4). �ese 
results suggest that, considering brain MR data for a grade classi�cation task, a step of feature selection based 
on feature robustness could be optional.

Most recently, 2 publications focused on the image pre-processing steps and their impact on radiomics 
feature reproducibility in brain patients. Moradmand et al.10 evaluated the impact of 5 combinations of image 
pre-processing on the reproducibility of 1461 radiomic features (i.e., spatial resampling, skull stripping, noise 
reduction, bias �eld correction and intensity normalization) extracted from di�erent glioblastoma (GBM) sub-
regions (i.e., oedema, necrosis, enhanced tumour). �ey showed that radiomics features extracted from necrotic 
regions were the most reproducible and recommended that, a�er the bias �eld correction step, noise �ltering 
should be applied. In that work, no analysis of the optimal pre-processing based on a clinical classi�cation or 
regression task was performed, making it di�cult to compare their results to ours. In 2019, Um et al.40 studied 
the impact of image pre-processing methods on 420 radiomics features extracted from MR images from two 
datasets: 50 patients from the TCGA-GBM dataset and 111 institutional patients. �ey evaluated �ve image 
pre-processing techniques: 8-bit global rescaling, 8-bit local rescaling, bias �eld correction, histogram normali-
zation and isotropic resampling. �eir goal was to evaluate the ability of a machine learning classi�er to classify 
each patient according the cohort to which a patient belongs (covariate shi�) depending on the pre-processing 
step performed. �ey also assessed the impact of each pre-processing step on an overall survival model. �ey 
showed that no single pre-processing step was su�cient to completely remove the machine e�ect. However, in 
their cohort, histogram normalization combined with a relative grey-level discretization (16, 32, 64 and 128 bins) 
was the most important step in reducing inter-machine e�ects. Compared to our study, they did not analyse the 
impact of di�erent methods of normalization or discretization. Moreover, the comparison of their results to ours 
is di�cult, as no interplay e�ect of the di�erent pre-processing methods was analysed. In addition, there was 
no use of "skull stripping" prior to the application of intensity rescaling, which should have been a mandatory 
 step47. Finally, this comparison is also challenging due to di�erent cohorts and tasks applied.

Additional studies are awaited to con�rm our results, which also need to be validated in other tasks. Of note, 
cross-validation was used to assess classi�cation performances. Even if the use of an independent test set would 
have been preferable, the various train-test partitions combined with a bootstrapping strategy allowed us to draw 
conclusions e�ciently. Regularization methods will have to be implemented in future studies to decrease the 
risk of over�tting. In addition, only anatomical MR sequences have been considered. �ese images are, however, 
the conventional sequences for radiological assessment of cerebral lesions; the use of more quantitative func-
tional imaging is still sparse in clinical practice. In this study, a unique ROI was delineated; thus, the choice of 
the ideal number of bins can be in�uenced by the sharpness of the intensities at the border of the lesion. As the 
number of voxels included in the tumour was negligible compared to the number of voxels in the whole brain 
(i.e., the volume of the tumour was equal to 7.5 ± 3.7% of the whole brain in DATASET2), no tumour exclusion 
was applied during the normalization process. �is assumption could have biased, to a limited extent, the imple-
mentation of the normalization algorithms. In the second experiment, in which a classi�cation task was studied, 
the results from DATASET1 regarding feature reproducibility were considered for feature selection in model 
4. In DATASET1, a narrow set of acquisition and reconstruction parameters was investigated and compared to 
real-life disparity, emphasizing the need for additional studies. Finally, some pre-processing step parameters, 
such as bias �eld correction and spatial resampling, could have a�ected comparisons. �ese two pre-processing 
methods have still been used in a large number of published studies that have demonstrated their importance 
for the robustness of  features48–50. Recently, a compensation method to pool radiomics features from di�erent 
centres has been suggested. �is data-driven post-processing method, called  ComBat51, seems to be able to 
harmonize radiomics data a posteriori. Initially proposed to correct batch e�ects in genomic studies, ComBat 



10

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:12340  | https://doi.org/10.1038/s41598-020-69298-z

www.nature.com/scientificreports/

has demonstrated its e�ectiveness in  PET52 and  CT53. �e next step will consist of comparing ComBat with the 
pre-processing methods described in this article.

In conclusion, a standardized pre-processing pipeline is recommended for brain tumour radiomics analyses. 
For models based on �rst- and second-order features, the combination of Z-Score normalization and absolute 
discretization seems to be the best of the methods tested. For works that consider only second-order features, 
the relative discretization without prior intensity normalization seems to be su�cient. Even if the bin number 
for the discretization has a small impact on classi�cation performances, 32 bins appear to be a good compromise 
when T1w-gd and T2w-�air sequences are considered. �e pre-processing methods used must be described in 
detail in the published papers to achieve reliable radiomics-based machine learning models. Such a pipeline will 
be pivotal for the implementation of large-scale multicentric studies and may pave the way for the development 
and validation of MR-based radiomics biomarkers.

Material and methods
Data description. Two retrospective datasets were used for this study. DATASET1 included twenty con-
secutive patients with WHO grade II and III gliomas between January and June 2010 (Table 5). A previous article 
based on the same cohort analysed the robustness of conventional features (lesion volumes, ratios of cerebral 
blood volumes, contrast-to-noise ratios) depending on the magnetic  �eld54. In this manuscript, the same cohort 
was considered to evaluate the stability of �rst-order and second-order radiomics features across acquisitions. 
Each patient underwent two MR acquisitions on 1.5 T (Signa EchoSpeed, GE Healthcare, Milwaukee, Wiscon-
sin, USA) and 3 T (Discovery MR750, GE Healthcare) scanners, with a mean interval of 7.4 (± 3.0) days. Inclu-
sion criteria supposed that no clinical or morphological change related to the glioma occurred during this delay. 
�is was certi�ed by a blinded radiologist (SA, 10 years of experience, with 5 years of specialization in neuro-
oncology). A post-contrast 3D axial T1-weighted (T1w-gd) sequence and an axial T2-weighted �uid attenuation 
inversion recovery (T2w-�air) sequence were acquired on each scanner.

Table 5.  Datasets description including MR acquisition parameters. TR repetition time, TE echo time, FOV 
�eld of view. a Some metadata information are missing (< 10% of all patients). For the DATASET2, values 
representations are: mean [min–max]. �e number of patients for each MR system is indicated in brackets. 
Additional information about DATASET2 are available in Bakas et al. 34,35.

Parameters DATASET1 DATASET2a

Sequence T1w-gd T2w-�air T1w-gd T2w-�air

Manufacturer 
model

GE Signa HDxt
GE Discovery 
MR750

GE Signa HDxt
GE Discovery 
MR750

Philips AchievaSiemens (17)
GE Signa Genesis (52)
GE Signa Excite (71)
GE Signa HDx (3)
GE Signa HDxt (8)
Siemens Magnetom Vision (10)
Hitachi Oasis (1)
Philips Ingenia (6)
Philips Intera (6)
Philips Intera Achieva (1)
Siemens Avanto (9)
Siemens Skyra (1)
Siemens Symphony (10)
Siemens Trio (2)
Siemens TrioTim (3)
Siemens Verio (5)
Unde�ned (38)

Cohort LGG HGG LGG HGG

Magnetic �eld 
strength (T)

1.5 3.0 1.5 3.0

1.16 (N = 1), 1.5 
(N = 51), 3.0 
(N = 47), unde-
�ned (N = 9)

0.5 (N = 2), 1 
(N = 1), 1.5 
(N = 82), 3.0 
(N = 44) unde-
�ned (N = 6)

1.16 (N = 1), 1.5 
(N = 51), 3.0 
(N = 47), unde-
�ned (N = 9)

0.5 (N = 2), 1 (N = 1), 
1.5 (N = 82), 3.0 
(N = 44) unde�ned 
(N = 6)

TR (ms) 11 10 9802 8000 1106 [6–5500] 890 [5–3286]
9686 [6000–
11,000]

9581 [1000–11,000]

TE (ms) 4 3 157 123 7 [3–17] 9 [2–105] 128 [94–158] 135 [74–355]

Slice thickness 
(mm)

1.4 1.2 5.0 3.5 2.4 [1.0–5.0] 3.2 [1.0–6.0] 3.8 [2.0–5.0] 4.14 [1.2–6.0]

Pixel spacing 
(mm)

0.49 × 0.49 0.47 × 0.47 0.47 × 0.47 0.43 × 0.43
0.68 × 0.68 
[0.39 × 0.39–
1.02 × 1.02]

0.77 × 0.77 
[0.43 × 0.43–
1.02 × 1.02]

0.74 × 0.74 
[0.39 × 0.39–
1.01 × 1.01]

0.77 × 0.77 
[0.43 × 0.43–
1.01 × 1.01]

Matrix dimen-
sions

288 × 288 320 × 288 256 × 192 352 × 192
303 × 2130 
[224 × 134–
512 × 300]

283 × 204 
[224 × 134–
512 × 300]

306 × 214 
[256 × 112–
512 × 256]

283 × 194 
[192 × 98–512 × 320]

FOV (mm) 250 240 240 220 244 [200–260] 235 [200–260] 237 [200–260] 228 [200–260]

Pixel bandwidth 
(Hz/px)

65.12 65.12 122 195 166 [81–250] 162 [61–355] 153 [61–358] 170 [61–750]

Flip angle (°) 17 15 90 90 53 [8–90] 70 [8–90] 100 [90–180] 102 [90–180]
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DATASET2 included pre-operative multi-institutional scans of �e Cancer Genome Atlas (TCGA) Glioblas-
toma Multiforme (GBM) and Low-Grade Glioma (LGG) collections, publicly available in �e Cancer Imaging 
Archive (TCIA). A total of 135 and 108 exams, including T1w-gd and T2w-�air sequences extracted from the 
TCGA-GBM and TCGA-LGG cohorts, respectively, were used (Table 5)55–57.

Image pre-processing. MR images from DATASET1 and DATASET2 were �rst corrected for the bias �eld 
e�ect using the N4ITK  algorithm49 as implemented in the Advanced Normalization Tools (ANTs)58 with default 
parameters. �ey were then spatially resampled on a 1 mm × 1 mm × 1 mm grid as suggested by Vallières et al.50 
using b-spline interpolation with ANTs. Images from DATASET1 were �nally skull-stripped with the Brain 
Extraction Tool (BET) of the FSL so�ware (FMRIB’s So�ware Library)59 and co-registered with a global linear 
registration including 12 degrees of freedom using ANTs to the T1w-gd sequence, considered as the reference. 
As some di�erences occurred in the skull stripping between the 1.5 T and 3 T images for the same MR sequence, 
an intersection between the two masks was performed. For DATASET2, the method described by Bakas et al. 
was used for co-registration to recover the spatial domain in which the segmentations were  performed55,60. Brain 
masks provided by Bakas et al. were applied for skull stripping. In both cases, MR images were �nally normalized 
using 3 di�erent methods (Nyul, WhiteStripe, Z-Score).

�e Z-Score method normalizes image histograms by subtracting (µbrain) , corresponding to the mean inten-
sity value of the considered ROI (here, the brain), from each voxel intensity I(x) and dividing the result by the 
standard deviation of the ROI (σbrain):

�e WhiteStripe method normalizes image intensities by subtracting (µws) , which corresponds to the mean 
intensity value of the normal-appearing white matter (NAWM), from each voxel intensity I(x) and dividing the 
result by the standard deviation of the NAWM (σws)33. As conventionally applied in the literature, the “white 
stripe” region was de�ned automatically in this work, using a threshold in intensities, corresponding to ± 5% 
of (µws).

Nyul’s method corresponds to piecewise linear histogram  matching31. �e normalization problem is addressed 
by learning a standard histogram from a set of images and linearly mapping the intensities of each image of interest 
to this standard histogram. �e standard histogram is learned by averaging prede�ned landmarks deduced from 
histograms of the training set. �e intensity landmark con�guration CL = [1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 99] 
(intensity percentiles) chosen in this study corresponds to the one de�ned by Shah et al.32.

Note that for the normalization process, no tumour exclusion from the brain mask was applied.
More details about intensity normalization methods can be found in the original  papers31–33. �e code used 

in this paper as well as details about the algorithm  implementation61 are available at https ://githu b.com/jcrei 
nhold /inten sity-norma lizat ion.

Segmentation. A unique ROI including the tumour and peritumoral oedema was considered. �ese ROIs 
were segmented for DATASET1 by an experienced radiation oncologist (GK, 4 years of experience) using the 
3D Slicer open-source platform version 4.10.1 (https ://www.slice r.org). For DATASET2, the labelled regions 
supplied by Bakas et al. were merged.

Feature extraction and grey-level discretization. �e open-source Pyradiomics package (version 
2.1.2) was used to extract 18 �rst-order statistics and 73 textural features from the segmented tumour regions of 
both  DATASETS62. �e 5 texture feature classes were based on the grey-level co-occurrence matrix (GLCM, 22 
features), grey-level run length matrix (GLRLM, 16 features), grey-level size zone matrix (GLSZM, 16 features), 
neighbourhood grey tone di�erence matrix (NGTDM, 5 features) and grey-level dependence matrix (GLDM, 14 
features). Except for 4, all the features conformed to the de�nition provided by the Imaging Biomarker Normali-
zation Initiative (IBSI)43. All the features used in this study are listed in Supplementary Data S7.

To assess the impact of the intensity discretization method on textural features, two approaches of grey-level 
discretization commonly used in the literature were implemented.

�e FBS method assigns the same bin for every voxel intensity corresponding to the bin width wb . It is de�ned 
as follows:

where the minimum intensity in the ROI, Xgl,min , is subtracted from intensity Xgl,k , corresponding to the intensity 

of voxel k , and divided by the bin width wb . 
⌊

Xgl,min

wb

⌋

+ 1 ensures that the grey-level rebinning starts at 1.

�e FBN method discretizes every voxel intensity from an ROI to a �xed number of Ng bins. It is de�ned as 
follows:

(1)IZ-Score(x) =

I(x) − µbrain

σbrain

(2)IWhiteStripe(x) =

I(x) − µws

σws

(3)Xd,k =

⌊

Xgl,k

wb

⌋

−

⌊

Xgl,min

wb

⌋

+ 1

https://github.com/jcreinhold/intensity-normalization
https://github.com/jcreinhold/intensity-normalization
https://www.slicer.org
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where Ng corresponds to the �xed number of bins between Xgl,min and Xgl,max , which are the minimum and 
maximum intensities of the ROI, respectively.

To correctly analyse the impact of grey-level discretization on pre-processed images on which the intensity 
ranges can be di�erent, a scaling factor was computed for the FBS method, as shown in Eq. (5):

where meanRange corresponds to the mean of the intensity intervals computed for all patient ROIs for one MR 
sequence. For the two datasets, 8 di�erent bin numbers were applied: 8, 16, 32, 64, 128, 256, 512 and 1024.

Data analysis. R so�ware (version 3.6.0) was used for the statistical analysis. Regarding DATASET1, JSD 
was used to compare each pair of intensity histograms before and a�er  normalization63. A one-way analysis 
of variance (ANOVA) test was conducted to compare JSD values among the normalization methods. If the 
ANOVA test was statistically signi�cant, a subsequent pairwise post hoc Tukey’s multiple comparison test was 
performed. For both tests, a P value < 0.05 was considered signi�cant. �e CCCs and ICCs were computed to 
assess the stability of �rst-order and textural features across the two acquisitions before and a�er normalization 
(Supplementary Data S8). �ere are currently no conclusions on the optimal thresholds to be used for ICCs and 
CCCs. In the literature, the most commonly used values are 0.8 for the ICC and 0.85 to 0.9 for the CCC 45,64. 
Lecler et al.45 showed in 2019 that a CCC threshold of 0.9 overrides the value imposed by the ICC. �us, it was 
concluded that a too-restrictive threshold could lead to loss of valuable information. In this work, radiomics 
features were de�ned as robust if the ICC and the CCC were > 0.8.

DATASET2 aimed to evaluate the usefulness of intensity normalization and to de�ne the optimal grey-level 
discretization for a tumour grade classi�cation task. Five widely used classi�ers were implemented based on 
the scikit-learn library version 0.20.365. �ese included random forest, naïve Bayes, logistic regression, sup-
port vector machine and neural network multi-layer perception classi�ers. Default parameters were chosen to 
prevent over�tting. Multiple classi�ers were used to avoid limiting the conclusions to a single machine learning 
model. Moreover, a �ve-fold strati�ed cross-validation was adopted. In all cases, feature values were normalized 
using the Z-Score method within the cross-validation. �e average values of the balanced accuracies and the 
ROC-AUC and corresponding 95% CIs evaluated using the �ve le�-out folds of the 5 machine learning models 

(4)Xd,k =

{ ⌊

Ng
Xgl,k−Xgl,min

Xgl,max−Xgl,min

⌋

+ 1, Xgl,k < Xgl,max

Ng , Xgl,k = Xgl,max

(5)FBS =

1

FBN
× meanRange

Figure 4.  Design of the study.
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were reported. For the 95% CIs, bootstrapping including 1000 iterations was applied. Balanced accuracy is a 
performance metric that should be preferred to accuracy in the case of imbalanced  datasets66. Model 1 included 
�rst-order features alone. Model 2 was based on textural features only. �e added value of the combination of 
the two types of features was analysed in model 3. Model 4 included only features de�ned as robust, i.e., having 
both an ICC and a CCC > 0.8 in the DATASET1 experiment. A two-way ANOVA test was conducted to simul-
taneously evaluate the e�ect of normalization and discretization. If the ANOVA test was statistically signi�cant, 
a subsequent pairwise post hoc Tukey’s multiple comparison test was performed. For both tests, a P value < 0.05 
was considered signi�cant.

�e design of the study is detailed in Fig. 4.
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