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1. PSEUDO-ASYNCHRONOUS CONTROL DESIGN 

1.1 'Design Strategy . . 

His tor ica l ly ,  t he  University o f , I l l i n o i s  Dig i ta l  Computer Labora- 
, . 

t o ry  has been primarily involved i n  t he  invest igat ion and construction of 

asynchronous computers. The use  of asynchronous control  has been d ic ta ted  by 

t he  p a r a l l e l  operation of t h e  various processors and t he  general  complexity 
. . 

and speed considerations of the  complete system. By designing t he  computer 

so t h a t  i t s  behavior i s  independent of t h e  r e l a t i v e  speeds of t h e  elements, 
- .  

one may ignore t he  problem of matching speeds and synchronizing s ignals  t o  

achieve correct  operation,  While asynchronous networks do have ce r t a in  

advantages over synchronous ones, the re  a re  some design r e s t r i c t i o n s  as  

Braun (1963) has staljed, 

"because of an indeterminate time f o r  execution of 
operations and the  complexities required i n  general 
Yor hazard free operation,  asynchronous S;Y.Y~LUS w e  

considered more' d l  ff f c u l t  t o  design, miiers.tarld, and 
service . 

It then i s  t he  respons ib i l i ty  of both the  mathematican and t he  

l og i ca l  design engineers t o  work together t o  optimize t he  design of t he  

asynchronous control  such t h a t  these  r e s t r i c t i o n s  a r e  minimized. Control 

l og i c  can generally be considered as being e i t h e r  speed-dependent o r  speed- 

independent' i s  it s operat ion. 

A speed-dependent c i r c u i t  can be bas ica l ly  described as one i n  

which the  operation i s  a function of time as determined by a model f l i p - f l op  

o r  timing delay. That i s ,  once a control  c i r c u i t  i s  ac t ivated ,, the re  i s  a 

f i n i t e  time a l located f o r  t h e  control  t o  perform i t s  various t asks .  Each 

control  function must be ca re fu l ly  analyzed t o  determine t he  minimum t h e  

required t o  perform i t s  spec i f i c  task.  Consideration must be given t o :  the  



. var ia t ions  of component parameters, propagation delay times, and t he  e f fec t s  

of component aging and voltage changes. While .the hardware ,realizat , ion from 

log i ca l  flow char t s  i s  qu i te  s t r a igh t  forward f o r  t h i s  type of control ,  the re  

a re  some sac r i f i c e s  t o  both operational '  speed and . r e l i a b i l i t y .  

Speed-independent or asynchronous log ic  i s  d i f f e r en t  *om speed- 

dependent log ic  i n  t h a t  reply  s ignals  a r e  used t o  ind ica te  t he  completion of 

a  given operation. These reply s ignals  a r e  incorporated i n  t he  basic  

sequencing control  log ic  and e l imiates  t he  need f o r  model f l ip - f lops  o r  timing 

delays..  The opkrational  speed i s  a  function of t h e  time ac tua l ly  required t o  

complete a  spec i f i c  t a s k  and there ,  the re fore ,  can be considered t o  be 

optimized. . .While t h i s '  type of control  does' not have t h e  disadvantages .of. a  

speed-dependent system, it does require  addi t ional  hardware which , g r ea t l y  . 

inc reases . the  design complexity and renders 'a l og i ca l  design problem of flow 

chart  r e a l i z a t t on .  Robert Swartout ( i963) performed extensfve s tudies  i n  I , 

speed-independent log ic  f o r  control  and s t a t ed :  

"The majori ty of t h e  l og i ca l  ,design problems were 
presented a s  infomiation flow char ts  t o  be real ized.  
Unfortunately, t he  s t a t e  of t he  speea-independent 
l og i ca l  design a r t  i.s s t i l l  mostly an art and nut a 

' . sci.ellce." , 

* 
The de'sign of the  con t ro l  u n i t s  used i n  the  I l l i a c  I11 computer 

and the  design techniques described 'in t h i s  paper a re  a  combination of speed- 

dependent h d  sp&ed-independent c i r c u i t s  .(pseudo-asynchronous control )  , 

incorporating t he  advantages of both. Since the  design of t h i s  par t i cu la r  

control  iog ic ,  l i k e  many other synthesis  procedures, does not- necessar i ly  

produce a  unique topology', d e ~ i g n ~ t a c h n i q u e s  have been developed i n  the  

I l l i a c  I11 pro jec t  ko ' insure  consistency throughout t h e  control .  

* 
I l l i a c  111 i s  an AEC finded pa t te rn  recognit ion computer being constructed a t .  
the 'universi t iy of I l l i n o i s .  



~ o r i t r o l  Re l i ab i l i t y  and Maintenance 

Anyone who has had t he  opportunity t o  be involved i n  the  operation 

of a d i g i t a l  camputer, ' .will agree t h a t  it i s  only usef'ul so  long as  it func- 

t i o n s  cor rec t ly  and consis tent ly .  As d i g i t a l  computers have been designed t o  

operate a t  f a s t e r  and f a s t e r  r a t e s  and have become grea te r  i n  s i z e  and 

Complexity, t h e  .requirements f o r  malt'unctlon-Yree operation by each c i r c u l t  

element i n  t he  machine have become extremely high. It i s  conceivable t h a t  

c i r c q i t  elements might be required t o  operate as many as  1616 times i n  a 

s ing le  day without an e r ro r .  This high degree of r e l i a b i l i t y  can be at+,ained 

by t he '  proper s 'election of components, t he  u t i l i z a t i o n  of spec i f i c  fabrica- 

t i o n  techniques, along with design s t ra t ,egies  which have proven t o  function 

as f r e e  of malfunctions as poss ible .  With t he  advances i n  both component 

and fabr ica t ion  technologies,  t he  assurance of' control  r e l i a b i l i t y  'becomes 

r e l a t ed  very c losely  with t he  design techniq-ues being employed. 

No matter how much consideration i s  given t o  control  r e l i a b i l i t y ,  

the re  w i l l  be cer ta in  unavoidable malfunctions which do occur. With t h e  in- 

creasing s i z e  of computing.machines, it does not require a g rea t  deal  of 

imagination to .env is ion  t h e  problems associated with t he  loca t ion  of a defec- 

t i v e  c i r c u i t  element within a system t h a t  might employ thousands.of these  

elements. It. i s ,  the re fore ,  necessary t h a t  t he  computer control  c i r c u i t r y  be 

so designed t h a t  not only a r e  t h e  apparently unattainable requirements f o r  

c i r c u i t  r e l i a b i l i t y  met, but '  a l so  t h a t  it i s  r e l a t i v e l y  easy t o  service  and 

maintain as  well .  

In  t h e  pa s t ,  a c i r c u i t  malfunction which has been detected i n  a 

processor of the  computer has usual ly  been local ized by the  use of diagnostic 

rout ines .  If a c i r c u i t  within the  controlmalfunct ions ,  the  probabi l i ty  of 



loca t ing  t h i s  trouble i s  much l e s s  than it would be f o r  another un i t  o r  pro- 

cessor i n  t he  computer. This i s  due t o  t h e  f a c t  t h a t  t he  incorrect ly  opera- 

t i n g  c i r c u i t  can cause t he  diagnostic rout ines  t o  be improperly executed, 

which might jus t  add t o  the  t o t a l  confusion t h a t  already ex i s t s .  The 

ac tua l  maintenance or "de-buggi,rq$ of t h e  control  then becomes one t h a t  i s  

r e l a t ed  t o  how clever or experienced t h e  service  personnel a re  and i s  a t  

. . 

bes t ,  one t h a t  i s  s t r i c t l y  on a h i t  and miss 

The control  should then be designed t6 operate with g r e a t e r  r e l i -  . 

a b i l i t y  and be eas ie r  t o  service  than any other port ion of t h e  machine. 

, . . , 



2. FLOW CHART 

The' flow char t  i s  t h e  means by which t h e  ,mathematician'or software 

o r ien ta ted  individual  conveys t o  the  l og i ca l  designer t he  time o r  sequential  

ordering of operations t o  'be performed i n  order t ha t  a glveri i i i s tmct lon/  

rou t ine ,  or subset  of,^ ins t ruct ion/rout ine ,  be properly executed. It can be 

one t h a t  contains only t h e  e s sen t i a l  information used i n  t h e  i n i t i a l  planning 

st,age of con t ro l  design o r  i t m i g h t  be a de ta i l ed  funct ional  descr ipt ion used 

fo r  check-out and maintenance. As G i l l i e s  (1961) noted: 

"As a p r ac t i c a l  mat te r ,  a  flow. char t  nota- 
t i o n  should preferably be compact., e a s i l y  drawn 
freehand, a d  should exhibi t  only t he . e s sen t i a1  
information. This i s  important. 8,t t4hc p18.nn i ng 

stage because such flow char t s  a r e  very suscep- 
t i b l e t o  e r ro r  and must be redrawn, with' correc- 
t i ons ,  many times ." 

The flow chart  i s  ac tual ly  then a mathematical descr ipt ion t h a t  

corresponds t o  a l og i ca l  design and can be used t o  e i t he r  implement t h i s  

design i n t o  hardware or a s  a check t o  insure  t h a t  the  control  design i s  

cor rec t .  

It i s  e s s e n t i a l  then t h a t  t h e  mathematicians and l og i ca l  designers 

work c losely  together t o  insure  t h a t  these  flow char t s  a re ' r epresen ta t ive  of a 

design i n  which there  has been a minimization of 'the number of s teps  required 

t o  perform a given operation o r  routine.  There should a l so  be mutual agree- 
:. 

ment t o  such t r i v i a l  d e t a i l s  as the  naming of ga tes ,  r e g i s t e r s ,  buffers.,  and 

other  associated pieces of hardware t h a t  wi l l 'be  acted upon by the  control .  



If the  flow char ts  a re  presented t o  t h e  log ica l 'des igner  i n  an 

optimized, f i n a l  form, aldng with a  de ta i l ed  l i s t i n g  and descr ipt ion of names 

used i n  these  char ts ,  h i s  t a s k ' o f  implementing these  flow char ts  i n t o  an 

ac tua l  logicalhardware  design w i l l  be, s implif ied.  ' ' 

There a r e  bas ica l ly  only four'  d i f fe ren t  types of symbols used i n  t h e  

representation of these  flow char ts .  'There i s  a l so  speci'al consicleration given 

t o  t he  notation contained within these  symbols. " 

The symbol i s  used t o  ind ica te  e i t he r  t he  entry o r  c a l l  o f  a  

routine with i t s  name appearing within t he  symbol and i s  shown i n  Figure 2.2.1. 
' 

. . 
. . . . 

Probably the  most important and commonly used symbol i n  the  flow 

char ts  i s  t he  t a sk  box . This box, as shown i n  Figure 2.2.2,. indicates  , 

. . 
. . 

t he  t ask  or  operation t h a t  i s  t o  be performed i n  t h e  time ordered sequence of 

events t h a t  occur dur ing 'a  given routine.  Within t he  box i s  notation corre- 

sponding t o  the  spec i f ic  operation t h a t  occurs when the  t ask  box i s  entered. 

This nota t ion ' fol lows t he  format XXX - Y - Z Z ,  where XXX i s  t h e  name of t h e  

element or device upon which t he  t ask  w i l l  be performed ( e .  , t h e  dependent 

var iab le )  ,' Y indicates  t h e  t ypk  of operation being executed by t h e  box, and ZZ 

spec i f ies  t h e  opkr&tional var iable  (i. e. , t he  independent va r i ab l e ) .  For 

example, LSB/G = 1 indicates  t h a t  t h e  gate of an element LSB would be "turned 

on". during t h e  bperatkon of t h i s  par t i cu la r  con t ro l  event.. Another example i s  

XDU -+ A ,  wherk t he  value of a  .va r iab le  A., i s  loaded i n to  a memow. device XDU. 

Associated with each task  is a ce r t a in  duration of time a f t e rwh ich  

a  reply s igna l  i s  generated and control  proceeds alo,n& t h e  e x i t  l i n e  of t he  
. . . . . . . . . . . . , . .  

, .  . 
box. 



When more than one t a sk  can be . i n i t i a t e d  concurrently, t h e  condi- 

t i o n s  which must e x i s t  f o r  t he  t a sk  t o  take place a r e  indicated above t h e  t ask  

entry  l i n e  a s  shown i n  Figure 2.2.3. The rep ly  l i n e s  of t h e  TASK A and TASK B 
' 

boxes merge together on one hor izontal  l i ne .  ' Control w i l l  advance t o  t h e  next 

s tage of t h e  flow char t  when both r e p l i e s  a r e  t r u e , , t h a t  i s  when Reply A 

Reply B = ''1". 

6 

The symbol ( \ i s  ' ~ 8 e i i  t o  represent a decision . i s  t o  be performed 
-d 

and t h e  name. of t he  dependent var iab le  i s  rlot,ed w i th in ' t he  symbol. Figure 

2.2.4 i l l u s t r a t e s  t he  use of t h i s  d e c ~ s l o n  Sy3nt561. If DOIVE = "l", Lheu gu Lu 

X ,  whereas i f  DONE = "O",  then control  would go t o  Y .  The decision could a l s o  

be used t o  cause a "wait" u n t i l  c e r t a in  conditions a r e  met. 

The termination o r  reply  of a given rou t ine  i s  indicated by t h e  

symbol (-1 and i s  shown i n  Figure 2.2.5. The termination of a rout ine  

might be due t o  e i t h e r  an e r ro r  occurring o r  jus t  t he  normal completion wf 

t a sks ,  so  there fore ,  a  memory element f o r  e i t h e r  case i s  included with . the 

rep ly  s ignal .  

The flow chart  w i l l  then consis t  of various combinations of these  

four  symbols connected by l i n e s  with arrowheads indicat ing the  di.rection of 

flow. I n  most ins tances ,  t he  char t  w i l l  be layed out such t h a t  t he  flow w i l l  

be from top  t o  'bottom. 

The ' se lect ion of t he  symbols and nbtation described i n  t h i s  paper 

we- - those  used by t h e  author i n  the  design of t h e  Scanner-Monitor-Video 

Controller  f o r  t he  I l l i a c  I11 computer and a re  ac tua l ly  qu i te  a rb i t r a ry  i n  

nature. The spec i f ic  symbolic and nota t ional  representa t ion to ,  use i s  

s t r i c t l y  a matter of personal choice and mutual ,agreement between t he  software 

and hardware individual  involved i n  t h e  design of a control .  



REPLY 

Figure 2 .2 .1  - Example of a Routine symbol 

Figurk 2.2.2 - Example of a Task Box 

T.C. = Task Condit ion 

FIGURE 2.2.3 - Example of P a r a l l e l  Condi t iona l  Tasks 



Figure 2.2.4 - ~xarn~les  of Decision Symbol 

C 
YES ' A N 6  

I ERROR +- 1 I I TASK n .  I 
I.... , ..:. . . .-. _1 . 

I .  

Figure 2.2.5 - Example of Reply Symbol 



2.3 Examples 

. . .  . ... , 

Several  flow char ts  w i l l  be examined t o  re in force  t h e  ' i n i t i a l  ideas - 

and views which were presented i n  t h e  proceeding section.  These examples w i l l  
, . 

show the  mathematicians design approach, along'with t he  i den t i f i c a t i on  of 

. . 
te rms, .and t h e  flow char t  equivalent .  

. . 
. . 

The f i r s t  example w i l l  show % h e  hierarchy ' of subroutines contained 

within a rou t ine  ca l l ed  M ~ N P A R .  * Table. 2.3.1 i s  t he  mathematical design 

approach and t h e  i d e n t i f i c a t i o n  of t e rms  has been l i s t e d  i n  Table 2.3.2.' The 
. ~ .  . . .  ' .  

flow chart  equivalent of M$NPAR can be seen i n  Figure 2.3.1. 

The second example w i l l  dea l  more exp l i c i t l y  with one of these  sub- 

rout ines  XSET. The mathematical approach and t h e  i den t i f i c a t i on  of terms a r e  

.shown i n  Table 2.3.3 and Table 2.3.4 respect ively .  Figure 2.3.2 i l l u s t r a t e s '  

the  flow char t  f o r  t h i s  subroutine. . . , . 

* MgNPAR i s  a por t ion of the  Scanner-Monitor Communication Control used i n  
the  I l l i a c  I11 computer. 



' MgNPAR ' ( SET 'MONITOR ' PARAMETERS ) 

@ Called by BMC o r  I N C R  

@ C a l l  MINIT 
. . 

@ Cal l  u SET (where u E (w, X, Y, Z) ) 
. . .  

' @  SEND.= 1 . 

@ ,  I f  DONE, go t o  @ 

@ Heply 
' ,  ' .  

Table 2.3.1 Mathematical ~ e s i ~ n a t i o n '  f o r  MgN'PAR 

BMC, ' Beam Motion Control 

INCR, Incremental Control 

MINIT,  I n i t i a l i e c  monitor pa rmete ro  rout ine  

nSET, ( 4 )  S e t  monitor parameter rou t ines  
i . e. , WSET, XSET, YSEC, ZSET 

SEND, Fbag communication b i t  

DONE, Indicate's a l l  parameters a r e  properly s e t  

Table 2.3.2 I de n t i f i c a t i o n  of Terms for.~flNPAR 



SET MONITOR PARAMETERS - (MONPAR) 

. . 

REPLY i-? 
. . 

, . 

Figure 2.3.1 Flow Chart of MONPAR 



: X-SET ( s e t  x-&xis p a r a e t e r s )  . .  

- 
~f A-G.(MPX = p);  go t o  @ 

If A0G*(EXPX = q ) ,  go t o  @ 

Go t o  @ . . 

EXPX -+ 0 

DPQX +r 1 . 

If Dm, go t o  0 

~f (MPX = h ) , g o  t o  @ 
. . 

EXPX + 0 

DHX -+ 1 . 

If (DF = a )  + K, go t o  @ .  ., 
- 

If A a G ,  go t o  0 

If (mx = TI, go to 0. 

D N t - 1  . 

MDCX + 00 

- 
If A * G ,  go t o  .@ 

MDCZ -+ 00 

Go t o  @ 

EXPX + Enx + 1 

Reply 
. . 

Table 2.3.3 ~ a t h & a t i c a l  De,s.ignation f o r  XSET 
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. 3. ' CONTROL ' POINT ' .' - ' ' A  ' BUILDING ' BLOCK 'APPROACH 
. . . . 

3 .1  'Description 

Pseudo-asynchronous control  i s  based on the  cbncept t h a t  t a sks  b e  . . 

performed i n  control led  s teps  o r  i n  i r r eg u l a r  time i n t e rv a l s  dependent on t he  
. . 

execution tim'e of these  t asks .  This type of con t ro l  has been'"imp3lemented a t  

I l l i n o i s  by t h e  use .o f  l og i c a l  c i r c u i t s . c a l l e d  co n t ro l ' p 6 in t .  The control  

point  or ig inal ly .  developed a s  a  modification of t h e  I l l i a c  I1 "speed indepen- 

dent" .control- c i r c u i t s  by Gi l l es ,  Robertson, and Swartwout (1961). Generally 

speaking; each control  s t e p  i s  performed by one control  .point .  I n  many ,cases, 

the  control  point  may be used t o  implement s w e r a l  similar c.ontro1 s teps  

. from d i f fe ren t  , par t s  of a  sequence and w i l l  r e t u r n  t o  t h a t  pa r t  of the '  

sequence from which it was c a l l ed . '  

The bas ic  idea  behind a  control  point  i s  t h a t  it i n i t i a t e s  some 
. . 

operation by turning on a .  given s e t  of con t ro l .  l i n e s .  ~ h e s e '  con t ro l  l i n e s  

w i l l  remain on u n t i l  e i t h e r  a  c e r t a i n  length  o f  time has passed, o r  a  r ep ly  

h i s  been received indicat ing t h a t  t h e  operatibn has been completed. A s  the.se 

control  l i n e s  . . a r e  turned o f f ,  an advance s igna l  i s  i n i t i a t e d  which w i l l  ac t i -  

va te  t h e  next control  point .  

.The use of control  po in t ,  the re fore ,  provides an ordered scheme f o r  

the  ass,ignment of spec i f i c  t a sks  being performed i n  control led  s teps .  In  
. . 

other  words., the  control  -point renders t o  t h e  l o g i ca l  designer a  bui ld ing 

block approach o r  technique i n  the  design of pseudo-asynchronous control .  
. . . . . . 

The evolution of t he .  control  point  design f o r  I l l i a c  I11 has been 

long and tortuous.  The invest igat ion and appl ica t ions  of. severa l  control  



point  configurations have be& made by Atkins and Nordmann (1969). The con- 

t r o l  point configuration presented i n  t h i s .  paper consis ts  of two stages: a  

t ask  s tage and a  timing st,age. 
. . 

3.1.1 Task Stage 

The function of t he  t ask  s tage is  t o  perform ce r t a in  operations on 

various hardware: i . e . ,  gates  a re  operated, f l ip - f lops  are. s e t ,  counters in- 

cremented or  other control  points cal led.  These operat2.ons may be condit ional  

upon.. s t a t u s  conditions. ' Cons.ider t h e  block diagram of t yp i ca l  t a sk  s'tage 

- 
log ic  as  shown i n  Figure '3..1.1.1: The adirace i n  ' l i n e ,  Ai, i s  connected . to  an 

. . 

adjacent s tage log ic .  When t h i s  l i n e  drops t o  '"0" , t h e  memory element i s  s e t  

and t he  t ask  log ic  i s  sa id  t o  be prtmed. When A. . returns to , ' ' l ' . ' ,  t h e  t ask  .. 
1 

ac t iva t ion  s igna l ,  -=; be-comes "0" pravided t h a t  t he  enable l i n e ,  EN; i s  a t  

"I". "l1he t a sk  stage l og i c  i s  now sa id  t o  have been i n i t i a t e d .  . 

. .. . . 
The s igna l  f r b i  the '  memory boX i s  one inpui t o .  t h e  donditional ' 

t & s k ' l o g i c ,  while t h e  ;the+ ' i n p i t s  t o  t h i s  log ic  are  extei-ilal c&nditions 

appropriate t o  ' tha t '  t a sk  st age. Typical examples of these '  conditions,' a r e  t h e  

outputs of counter decoders, t he  contents of parameter r e g i s t e r s ,  or  the  out- 

,.- . :  

put's of s t a t u s  f l ip - f lops .  

The s igna l  a l so  a c t i v a t e s t h e  timing s tage which, a f t e r  a  se lect -  

- 
able  durat ion,  causes t he  advance out l i n e ,  A , ~ ,  t o  go t o  "0". This act ion 

. . . . . . . . . . 

w i l l  r e se t  t h e  memory element, thus turning .off t h e  t a sk  element, and can be 
- .  

. :. . . .  

used t o  a l so  prime and i n i t i a t e  t he  next succeeding t a sk  stage.  
. . . , . . 

Figure 3.1.1.2 i l l u s t r a t e s  t he  most elementary t a sk  s tage conf igura- 

t i o n  and an explanatory t imi.ng diagram. In  t h i s  case t h e  timing s tage w i l l  

consis t  of an inteynal  timing model which w i l l  be explained l a t e r  i n  t h i s  paper 
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F i g u r e  3.1.1.2 Most E l e m e n t a r y  T a s k  S t a g e  C o n f i g u r a t i o n  



No de ta i l ed  . log ic  . i s  shown i n  t he  condit ional  t a sk  log ic  box since 

t he  configuration i.s' highly var iab le  from task s tage t o  t ask  s tage.  The most 
. .  . 

elementaq configuration would be a d i r ec t  connection of t h e  DO ( ~ e r h a p s  

through an inver tor  o r  l i n e '  d r i ve r )  t o  t h e  t ask  l i n e s .  

The. enable input ,EN,off e r s  a  f a c i l i t y  f o r  inh ib i t ing  t h e  operation 

of t h e  t a sk  stage.  I f  t h i s  input i s  h e l d . a t  "o", t he  control  sequence w i l l  

stop when t h e  memory element of t he  inh ib i ted  s tage i s  i n i t i a t e d .  As EN 
. . 

returris t o  "l", the  pormai operation of w i l l  resume. This input may then 
. . . . 

be used t o  e i t he r  i nh ib i t  a  control  sequence condit ional  upon an asynchronous 

s igna l  or  serve as a  maintenance stop. A maintenance s top may be performed 

e i t he r  manually as. a.f 'unction of a  control  panel switch, o r  automatically by 

t he  use of a  diagnostic t e s t i n g  routine.  . . 

- 
The cdm6ri-61~ar input ,  CC;  provides a  means by whiGh the  t a s k  

s tage memory element can. be s e t  t o  t h e  "off" s t a t e .  ~y-p ica l iy  t h e  ??? input of 

all t h e  t a sk  &ages of a  r ou t i ne ( s )  a r e  connected together and " in i t i a l i z ed"  

at t h e  s t a r t  of a  spec i f i c  control  sequence. 

It may be found desi rable  i n  some i.nstances. ' that a task  s tage be 

i n i t i a t e d  'from more than one advance i n  l ine .  Figure 3.1.1.3. i l l u s t r a t e s  a  

method f o r  implementing multiple advance i n  s ignals  t o  a  memory element. The 

- 
A .  inputs a re  quiescently "1". When any one drops to' "0" , t he  memory element 

1 

f l ip - f lop  i s  s e t  such t h a t @ =  "1". As long as any xi o r  t h e  EN input i s  "0"' 

11 11 - t he  5 s igna l  remains a t  "l", but when they re tu rn  t o  1 DO drops t o  

- 
ac t iva te  t h e .  t a sk  log ic .  The duration of t h e  A *-• A. s igna l s  must be long 

i 3  1 ' n. 

enough t o  allow t h e  memory flip-flop's t o  s e t  (i. e. , compensate f o r  t he  added 

propagation delay caused by t h e  tw6 addi t ional  NANDs ) . 
. . . . 



Figure 3.1.1.3 Multiple 'bdvance In"1nputs t o  Memory Element ' 



1t i s  t'he function of this s tage t o  prqri.de a delay of t h e  5 
. . 

s igna l  f o r  a time per iod 'necess ,uy t o  complete a l l  t h e  t asks  of a given task 

stage.  Associated with. t h i s  time delay i s  t he  log ic  required for. the, genera- 

t i o n  of a reply  s igna l  & used t o  r e s e t  t he  t a sk  memory f l ip - f lop ,  which tu rns  

o f f  t he  t ask  l i n e s ,  and drives t he  next sequence s tage log ic  which primes and 

i n i t i a t e s  t he  next t ask  stage.  

In  many cases t h i s  time delay i s .  generated by an i n t e rna l  delay 

element which provides a timi,ng model of t he  ac tua l  t ask .  Figure 3 .l. 2.1 ' 

i l l u s t r a t e s  a timing s tage configuration and an explanatory timing diagram. 
. . 

As E goes to '"0"  @ , t h e  output of NAND I ,  goes t o  "1". The 'advance out 

l i n e ,  & , w i l l  be delayed from going t o  "0" .by t h e  amount of time required f o r  

the RC-network a t  t he  @ input of NAND 11 t o  charge t o  t he  l og i ca l  "1" thres-  

hold. When t h i s  threshold i s  reached, & drops t o  "0" causing t h e  t a sk  memory 

t o  be re'set and therefore  DO w i l l  re tu rn  t o  "1". 

The following design .. . information o n . t h i s  c i r c u i t  configuration was 

obtained biy. t he  u se .  of. bas ic  c i r c u i t  trans'format ion techniques. A simplif ied 

. .  . .. . 

model of NAND I1 a id  the  equivalent c i r c u i t s  used i n  t h i s  analysis  a re  shown i n  

Figure 3.1.2.2. The log ic  elements used i n  t h i s  design were 54/74 s e r i e s  TTL 

and the  following assumptions have been made.. 

' = 5.0 vo l t s  
vcc 

- 
- .!a Ill" 

= 1 . 4  v o l t s  (midpoint of uncertainty 
V~~~~~~~~ 

range 1 

R1 = 4 K (value, given i n  T.1.-TTL handbook) 

Rp ' = 8.2 . K . (determined empirically) 

C = ' 1 0 0 p f d .  



TIMING DIAGRAM: 
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I 

Figure 3.1.2.1 Timing Stage Using I n t e r n a l  Delay Element 
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. . .. . . 

Figure 3.1.2.2  in^ Stage Equivalent C i r c u i t s  



avoid in teract ion.  I f  t h i s  const ra int  hinders c i r c u i t  performance it may be 

grea t ly  reduced by t h e  addit ion of a diode a s  shown i n  Figure 3.1.2.3. This 

diode, a USD25 i s , a  ~ ~ 2 8 0 0  hot c a r r i e r  device with a low forward drop and 

junction capacitance, i s  used t o  discharge C when @ goes t o  "0". With t he  

addi t ion of t h i s  diode, only 1 .5  delay times a r e  required between input pulses 

or t he  'timing ' stage can be pulsed a s  .,soon a s  it has completed i t s  delay 

function. 

Ehpirical  t e s t s  have indicated a des igncen t e r  value f o r  R2 of 8.2W1 

with upper and lower l i m i t s  of 12K and 6 . 2 ~ .  respectively.  Using R2 = 8 . 2 ~ ~ 2 ,  
. . 

' t he  following was found t o  hold: ; 

Delay - 1.5nS/pFd. 

Variation of + .5v i n  V - + 15% CC - 

Variation between I C  packages - + 15%. 
. . . . 

Variation due t o  R2 = 6 . 2 ~  + 12K - 8% 

The. delay time of t h e  timihg stage could a l so  be a d i r e c t  function 

of an external '  replay s igna l  as  has been shown i n  Figure 3.1.2.4. In  t h i s  

case t h e  RC-network has been replaced by t he  reply  l i n e ,  GO. 

Once' again a s  i n  t h e  previous example, a s  DO goes t o  '!Ow, t he  output 

of NAND I goes t o  "1". The advance' out l i n e  A w i l l  not go t o  '"0" u n t i l  GO 
0 .  

has been s e t  t o  "1". If GO were "1" as  DO goes t o  "0" , the  delay t'ime would. 

then depend on t he  propagation time of NAND I and NAND I1 and t h e  amount o f ,  

time required fo r  the  t ask  f l i p - f l op  t o  be r e s e t  by KO . 

The control  point i s  thcn t h e  combination of a t a sk  s tage and a 

timing at.a.ge wit .h  the block diagram and c i r c u i t  configuration being repre- 

sented i n  Figure 3.1.2.5. and ac tua l  t e s t  r e s u l t s  a r e  presented i n  Appendix 11. 



Figure 3 .l. 2.3  Delay Cfrcu i t  with Diode tu ~nll.wlct! Recovery 

. .  , Figure.3.1.2.4 Timing Stage Using External  Reply 
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where C = f (time delay requi red)  

. . 

Figure , . 3.1.2.5 Control Point  Block Diagram and C i r c u i t  Configuration 
. . 

I' . 



3.2 Sequence 'Stage 

~ n t e r s p e r s e d ' w i t h  the '  con t ro l  points  used t o  implement t h e  asynchro- 
. . 

nous con t ro l l ed  s t e p s  i s  t h e  sequence s t age . '  The f'unction of t h e  s tage  i s  
. . 

b a s i c a l l y  one of s e l e c t i o n  o r  s t e e r i n g .  That is ,  a s  a con t ro l  point  completes 
. , . . 

i t s  s p e c i f i c . t a s k  the.sequence s tage  makes t h e  decis ion a s  t o  which control  

point  ( s )  t o  i n i t i a t e  next .  

The moat elementary exmvAe of sequence st,age .I,ngi.c i s  merely 9. w y r e  
. . 

connecting t h e  & output  of one c o n t ~ o l  point  t o  t h e  A input  of t h e  next 
i 

con t ro l  point .  

I n  t h e  case where two o r  more con t ro l  po in t s  a r e  t o  be c a l l e d  con- 

c u r r e n t l y ,  t h e  sequence st,age log ic  w i l l  be AND'eh as a  funct ion of &, and 

e x t e r n a l  condit ions.  Figure 3.2.1 i l l u s t r a t e s  an example of a  two-way branch. 

The con'ditions, .a and B ,  determine where t h e  from t h e  previous con t ro l  . . 

point  i s  direc ted .  It i s  important t h a t  these  condit ions a r e  s e t  p r i o r  t o  t h e  

a r r i v a l  of t h e  pu l se ,  the re fo re ,  it i s  advisable tha.t, a nor B - not he 

determined by t h e  a c t i o n  of t h e  con t ro l  point  which generates t h e  KO pulse  

which they s t e e r .  It should be noted t h a t  a t  l e a s t  one condit ion must be t r u e  

or  e l s e  t h e  A hulse i s  l o s t  and t h e  con t ro l  sequence hangs-up i . e . ,  i f  
0 

a = f3 = 0 ,  an e r r o r  e x i s t s .  

- 
I n  many cases t h e  condi t ional  l o g i c  i s  designed such t h a t  a = B and 

t h i s  e r r o r  s i t u a t i o n  i s  averted.' 

  he sequence s t age  may a l s o  be required  t o  delay t h e  continuation of 

con t ro l  contingent upon an asynchronous wait  condit ion.  Since t h e  a r r i v a l  

time of t h i s  s i g n a l  i s  unknown, t h e  c i r c u i t  configurat ion of Figure 3.2.1 is  

not appl icable .  Figure 3.2.2 and Figure 3.2.3 i l l u s t r a t e s  methods of imple- 

menting t h i s  wait condit ion.  



a ,  B ARE BRANCHING CONDITIONS 

. , 

Figure 3.2.1 Two Way Branch Sequence Stage Logic 



In  Figure 3.2.2 t h e  w a i t  s igna l  i s  used t o  delay t he  act ion of con- 

- 
. t r o l  point  a f t e r  it has been i n i t i a t e d .  That i s ,  DO w i l l  be inh ib i ted  from 

going t o  "0" u n t i l  WAIT goes t o  "0". When the  w a i t  condition i s  s a t i s f i e d ,  

- 
DO provides a  means fo r  keeping EN at  ''1" u n t i l  t he  control  point  completes 

i t s  normal operation. This same delay act ion t o  t he  control  point operation 

could a l so  be a  f'unction of'a'mainteriarice h a l t ,  MH, used for  check-out and 

. . diagnostic.  procedures, 

In  Figure 3.2.3 t he  wait s igna l  i s  used t o  delay t he  propagation 

of t h e  To1 s ignal .  The s igna l  i s  then a  function of both t h e  timing s tage 

and t h e  w a i t  condition. Here the  DO l i n e  w i l l  drop t o  "0" and remain t he r e  

(even though the  timing s tage i s  done) u n t i l  WAIT goes t o  "0". The To1 
. . 

s igna l  w i l l  then terminate t h e  operation of t he  control  point  and i n i t i a t e  t h e  

ne& stage logic. % .  , . 

This saqe wait logic  configuration may 'also be used t o .  in te r lock  two 
, . 

or  more paral le l . ,  independent control  chains. The design . requirement . . .  here i s  

t o  make t h e  To s igna l  t o  t he  next stage wait  u n t i l  a l l  t h e  p a r a l l e l  t a sks  a r e  

complete. . Figure 3.2.4 i l l u s t r a t e s  an example of t h i s  interlocked con t ro l  

chains. The A l i n e  of l a s t  control  point of each chain i s  delay u n t i l  a 
0 

. .  . 

reply ' f rom kll the  chains  i s  received. 1% i s  assumed t h a t  when one 'control  

chain i s  act ivated,  then so i s  the  o ther ,  i . e . ,  t h a t  eventually both r ep l i e s  

w i l l  be generated. 

Another appl icat ion of the  wait l og i c ,  s imilar  t o  t h a t  shown i n  

~ i & e  3.2.3, i s  where a  control  point  i s  used t o  c a l l  some rout ine  and w i l l  

not advance control  u n t i l  t he  cal led rout ine  has r ep l i ed .  For apparent 

reasons, t h i s  configuration has been named " c d l i n g  control  point" and i s  
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shown i n  Figure 3.2.5. The DO' l i n e  w i l l  go t o  "0" as  t h e  control  point 

- 
i s  i n i t i a t e d  ( i . e . ,  DO goes to ' "0"  and KO i s  a t  "1"). After a  spec i f i c  delay . . . 

- 
time, due t o  the  t iming.s tage,  A, goes t o  "0" causing Kt t o  re tu rn  t o  "1". 

This act ion of DOt may have been used t o  prime a n d  ' i n i t i a t e  a control  point 

i n  a  rout ine .  When t h i s  rout ine  has completed i t s  t a sk ,  it r ep l i e s  and WAIT 

goes t o  "0". 



WAIT 

- .  . . . . 

Figure 3.2.5 "ca l l ing  Control  Point'" C i rcu i t  Configuration ' 



4.  ' CONTROL 'LOGIC ' IMPLEMENTATION 

4.1  Conversion 'of Flow ' C h e t  s t o  'Control 'Lokid 'Represexittition 

The purpose of t h i s  section i s  t o  describe t h e  procedure used i n  the  

r ea l i z a t i on  of control  design by using techniques previously de ta i l ed  i n  

Sections 2 and 3. 

I n  gcncroil, it i o  aornuncd. t h a t  thc  baoic control  dcoign in iUbiel ly  
. . 

e x i s t s  i n  t he  form of flow char ts .  It i s  important , . t h a t  these  flow chasts be 

representa t ive  of t he  techniques employed i n  Section 2. That i s ,  t he  f low 

char t  should be i n  a very e x p l i c i t  form so t h a t  every control  s igna l  which 

must be influenced i s  expressed. Theref ore ,  each operatio? (.s ) which r e l a t e s  

t o  each given' control  s t ep  should be t r r i t t en  a s  the '  contents of the: opera- 

t i o n a l  block o r  decision symbol of t he  flow char t .  Each control  s t ep  thus 

becomes i n  effect  a l i s t  of e i t h e r  t he  control  s ignals  t o  be act ivated by 

t he  t ask  s igna l  of a given operational  block (control  po in t )  o r  t he  speci- 

f i c a t i on  of a decision t o  be. p e r f o ~ e , d  (sequence. s t age) .  

Careful inspection of t h e .  flow char t s  may' revea l  t h a t  many s ingle  
.. . . . 

control  s t eps  or even whole'sequences of control  s teps  a re  iden t ica l .  Such 

occurrences a r e  of ten capable 'of being implemented by t he  kame physicalS'con- 

t r o l  point  ( s )  and should be noted f o r  fu tu re  reference. 
. . 

After  t he  flow char t s  have been ca re fu l ly  scrut in ized and a r e  con- 

sidered a s  being optimized and represent.ative of t h e  prescribed format, t he  

next s t ep  i n  design implementation i s  t h a t  of 'converting t h e  flow char t s  i n t o  

ac tua l  logic  .drawings. In  general ,  ce r ta in  conventions w i l l  'be employed f o r  

making these  conversions and a r e  shown i n  a char t  in Table 4.1..1. It i s  

ra ther  apparent from t h i s  char t  t h a t  t h e  majori ty of flow char t  symbols are  

represented by control  points i n  the  l og i ca l  drawings. Additional log ic  
. . . . . . 

t 
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elements may a l so ' be  required t o  f u l l y  r ea l i z e  these  conversions. In  many 

instances t h i s  log ic  w i l l  be incorporated as  pa r t  of the  sequence stage. 

The ROUTINE symbol may. appear as - e i t he r  t he  f i r s t  entry of a  'flow 

char t  o r  as a  control  . s tep  within the  char t .  This symbol can then be logi-  

c a l l y  represented by a control' point plus addi t ional  logic  dependent upon t he  

. r e l a t i v e  posi t ion of t h e  symbol i n  the  char t .  

In  t he  f i r s t .  case t h e  function of t h i s  symbol i s  t o :  1) ind ica te  
. . 

t he  entry  i n t o  a  spec i f i c a l l y  named rou t ine ,  2 )  l i s t  t h e  sources f o r  t he  acti- . '  

va t ion o f .  t h i s  rou t ine ,  3 ) .  r e se t  t h e  ' reply  f l i p - f l op  and set  t h e  condi.toional 

f l ip - f lops  used i n  t h ig  routine.  A s ingle  control  po in t ,  i s  al.1. t.hi.to is 

needed t o  implement t h i s  function. 
. . 

In  t h e  second case t h e  function of t he  ROUTINE symbol i s  to:! 
. . 

1) c a l l .  another rou t ine ,  2 )  provide a r e tu rn  of. control  t o  t h e  o r ig ina l  

rout ine  upon receiving a  completion indicat ion from t h e  ca l led . rou t ine .  The 

operation here may be implemented by using a  control  point and t he  'wait log ic  

aE shown i n  Figure 3 .2 ,5 ,  

The igplemcntation of Lhe TASK symbol i s  achieved by using a control  

point and t he  various addi t ional  gates  needed f o r  the  condit ional  t ask  log ic .  

This t ask  log ic  i s  h igh ly 'var iab le  and dependent upon the  conditions associ- 

ated with each task  stage.  It i s  t he  respons ib i l i ty  of t h e  designer then t o  

specify t he  log ic  elements reqqired f o r  r0ch task c lugc .  

The DECISION symbo1 . i~  normally rea l ized  by using e i t he r  t h e  se- 

quence stage a s  sllown in  Figure 3.2.1 o r  the  wait log ic  as  shown in 

Figure 3.2.3. 

The implementation of the  REPLY symbol i s  accomplished by a  control  

point arid a rep ly  f l i p - f l op  which can be used as  a  rou t ine  o r  sequence s t a tu s  

indicat ion.  



The symbols of the flow chart are connected together by l ines  which 

i n  most cases are r ep resen ta t i~e  of the sequence stage. The general con- 

figurations for  sequence stages, as explained i n  Section 3.2, should be 

employed here . 
In making logic drawings f o r  a large sequence or control it is 

usually easier simply t o  l abe l  the  task signals and then on a separate 

drawing show all the  collection logic and signal drivers associated with 

these task signals. This i s  extremely helpf'ul if a giyen task  may be signaled 

from many separate routines,  The collection logic i s  usually ccnnbinations 

of NOR's and NAND'S which fan in to  the  signal or l i n e  drive which then drives 

the actual control signal. The outermost layer  of t h i s  logic w i l l  consist of 

NAND'S and NOR's whose inputs are the labeled task signals gf the various 

routines or sequences. 

Optimization of t h i s  logic can be accomplished by looking for 

certain types of tasks which always use the same se t s  of control l ines .  

Often several redradngs of the  control point logic w i l l  be necessary 

i n  order t o  optimize the  logic between control points and the conditional 

task  logic. 

The application of these conversion techniques has been i l lus t ra ted  

i n  Figure 4.1.1 for  the M@NPAR sequence which was described i n  section 2 -3.  
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4.2 Hardwee Realization . 

After the  control  design has been implatiented i n  terms of l og i ca l  

drawings, t h e  problem ex i s t s  as t o  how might t h i s  design be rea l ized  i n  

ac tua l  log ic  elements, Many f ac to r s  such a s  cos t ,  speed, packaging, oper- 

a t ing  paramet,ers , and r e l i a b i l i t y  must be evaluated i n  the  se lect ion of , 

these  logic  elements. 

The control  logic  of I l l i a c  I11 has .been implemented with Texas 

Instruments 7 4 ~  s e r i e s  TTL . log ic .  Several etched board configurations have 

been designated t o  f a c i l i t a t e  t he  appl icat ion of these  log ic  elements. 

One board consis ts  of j u s t  control  points ( i . e .  t a sk  and timing 

s tages )  and i s  i l l u s t r a t e d  i n  Figure 4.2.1. Any sequence s tage ' logic,  task' 

condition log ic  and any other reply  generation logid  other than a s ingle  

delay element w i l l  be implemented on a universal  I C  board. This board pro-; 

vides f a c i l i t i e s  f o r  24, dual i n l i n e  I C  packages (14 o r  16 pin)  and includes 

44 card edge pins  which mate with t he  back-panel wired connectors of,  the  

mainframe. 

In  many instances it i s  advantageous t o  use the  universal  boarrd t o  

implement t he  log ic  f o r  a whole sequence o r  rout ine .  I f  t h i s  i s  t h e  case,  

t he  control  points a r e  a l so  included on t h i s  same b o c d .  ~ a c h  card i s  then 

unique i n  t h a t  it has been wired (wires a r e  connected between I C  socket pins 

on t he  back of t h e  card)  t o  perform a ce r t a in  function or  contr.01 routine.  

This tends t o  give t he  control  a modular appearance and reduces t he  amount of 
\ 

wiring normally required t o  interconnect .a control  point  card with a condition- 

al logic card. This a l so  f a c i l i t a t e s  t he  check-out o r  bench t e s t i p g  capabil i-  

t i e s  of a given routine.  Examples of these  hardware r ea l i z a t i on  techniques 

a re  shown i n  t h e  log ic  drawings of Appendix I. It should be noted t h a t  t he  
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45 
. , .  

EN ga te  o f , a l l  control  points  a r e  connected t o  t h e  etched board output p ins  

t o  provide maintenance capabi l i t ies . .  
. . 

This provides t h e  c a p a b i l i t y  f o r  "steppi,ng" t h e  con t ro l  sequence.or 

rou t ine  through i t s  normal operat ing f i n c t i o n s  a t  a  l e v e l  of individual  
. . . . . . 

con t ro l  point  increments.. This has proven extremely use fu l  i n  con t ro l  check- 

out and . the de tec t ion  of erroneous' t a s k  operat ion.  

There s t i l l  remains t h e  specif2cation of delay time required f o r  t h e  

con t ro l  point  t o  perform i t s  t a sk .  I n  some cases t h e ' c o n t r o l  point  may 
. . 

function i n  a speed-independent manner and the re fo re  no delay capacitor  i s  

used i n  t h e  timing stage.  However i f  a  delay capaci tor  i s  t o  be used, it is  

t h e  r e s p o n s i b i l i t y  of t h e  log ic  designer t o  s e l e c t  a  value of capacitance 

t h a t  w i l l  guarantee t h a t  t h e  con t ro l  point  properly executes i t s  t a s k ( s ) .  

Some design information r e l a t e d  t o  con t ro l  point  operat ion i s  ava i l ab le  i n  

Appendix 11. 

4.3 Question of.Minimization v s ;  Standwdizat ion 

while. t h e  main theme of t h i s  paper has been concerned with t h e  

s tandardiza t ion of con t ro l  design implementation, t h e  hardware rea l i za t ion 'may  

not necessar i ly  be of an optimized na tu re . ,  That i s ,  it i s  poss ib le  t h a t  not 

all t h e  l o g i c  elements of a given IC ,ch ip  have been used. It is  a l s o  poss ib le  

t h a t  not a l l  t h e  ava i l ab le  I C  socket loca t ions  a r e  u t i l i z e d  due t o  t h e  unique- 

ness of t h e  design function o r  t h e  output p in  l i m i t a t i o n  of t h e  etched board. 

I n  many cases these  cons t ra in t s  have proven t o  be advantageous 

ins tead  of being a disadvantage. It i s  of ten  times necessary t o  make modi- 

f i c a t i o n s  and changes t o  t h e  l o g i c  design a s  determined by t h e  r e s u l t s  of 

con t ro l  check-out and t e s t i n g .  An e x t r a  log ic  element o r  I C  socket loca t ion  

can o f ten  times be very handy i n  making these  modificat ions.  It is then t h e  



respons ib i l i ty  of t h e  log ic  designer t o  specify the  type of log ic  elements 

(NAND'S,  NOR'S ,  l a t ches ,  d r i ve r s ,  e t c .  ) t o  be used i n  a standardized control: 

implementation approach kh i l e  s t i l l  t ry ing  t o  AinttXin a niinimiz&tion of 
) 

" .  

l og i c  elements. 



. . 
' CONCLUSION 

. 
' 

Since t he  des ign  of a pseudo-asynchronous . .  control  logic  does not 
.. , 

. ' .  

necessari ly produce a unique topology, a design 'technique o r  method has been 
. . . . 

developed t o  provide a standardized design approach. The Specific technique . 

chosen produced a comprehe.nsive s e t  . of . -sequential ly ordered control  diagrams 

1 .  

(flaw ch&ts ) which' could be converted d i r e c t l y  t o  l og i ca l  drawings using 

c e r t a i n ,  standard modeling procddures (con t ro l  point ) . Additional considera- 

t i o n  was given t o  such areas as  control  . r e l i a b i l i t y ,  hardware r ea l i z a t i on ,  

. . . . . . 
and the  ease of control  maintenance .' 

The techniques and procedures offered i n  t h i s  paper were used i n  t he  
. . 

design &d implement a t ion  of t he  1 , l l i ac  111 ' scanner-~onit or-~ideo ~ o r i t r o l i e r  ' 

and proved t o  be extremely helpful  i n  t h e  r ea l i z a t i on  of t h i s  control .  

. I 

.. . .,: While these  techniqukswere applied t o  t h e  conti-01 design f o r  a 

spec i f ic  computer, they may be. applicable t o  other design d i sc ip l ines .  In  

the re  appears t o  be a cor re la t ion  t o  t he  work of Clark (1966) 

on the  macrbmodular approach t o  computer design. 
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Appendix I 

This 'appendix cqntains a c t u a l  f low c h a r t s  and t h e i r  l o g i c a l  

representa t ions  f o r  con t ro l  rou t ines  of t h e  Scanner-Monitor-Video Contro l ler  

of I l l i a c  111. 
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Flow Chart of B-DEZ'ECT 
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Flow Chart of E-DETECT 
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Flow Chart of QYBACK 
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Appendix I1 

This appendix contains t e s t  resul t s  for  a typica3 control point 

configuration. The card used i n  these t e s t s  was Buffer Control A ( 3 2 ~ ~ 2 0 )  

Ser ia l  #016170 Control Point #1 

*Spare NAND used t o  obtain negative going pulse from DATAPULSE 

required t o  se t  flip-flop. 

The t e s t  r e su l t s  and photographs i n  t h i s  appendix dl refer  t o  

the above c i rcui t  configuration. 



SCOPE SETTINGS 

TOP TRACE: 2Y/DIY. 

BOTTOM TRACE; IY/DIY. 

SWEEP SPEED: 100nS/DIY. 

IDENTIFICATION 

TOP TRACE: Input pulse at pin 4 of ~6 

BOTTOM TRACE: PIN 5 o f  B6 - Charge  & discharge curve of delay 
e l e m e n t  ( 2 2  pfd. & 8 . 2 ~ )  w i t h o u t  hot cwrier d i ~ d e .  



SCOPE SETTINGS 

TOP TRACE: 2Y/DIY. 

BOTTOM TRACE : l V / D I Y .  

SWEEP SPEED: ~ O ~ S / D I V .  

IDENTIFICATION 

TOP TRACE: Input pulse a t  pin 4 of ~6 

BOTTOM TRACE: Pin 5 of B6 - C h a n g e  & discharge czucYe of delay 
e l e m e n t s  (22 pfd. & 8 . 2 ~ )  with hot c a r r i e r  diode 



SCOPE SETTING 

TRACE; 2V/DIV. 

SWEEP SPEED: 20nS/DIV. 

IDENTIFICATION 

TRACE: Output pulse a t  pin 6 of ~6 (DO) using no delw elements 

( R  & C). Pulse width indicates the inherent delay of 
control point i t s e l f ,  consisting of collector delays, 
wiring capacitance, e tc .  

NOTE: Typical control point cycle time i s  therefore approximately 
20 MHz 



SCOPE SETTINGS 

ALL TRACES : ~Y/DIY. 

SWEEP SPEED: 50nS/DIV. 

TRACES: Output pulse a t  pin 6 of ~6 (z) using various values of 
capacitance i n t h e  timing element a n d R e q u a l t o  8 . 2 ~ i n  
a l l  cases. 

TOP TPACE 
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