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Abstract— The effective integration of configuration sys-

tem development with industrial software development

is crucial for a successful implementation of a Mass

Customization strategy. On the one hand, configuration

knowledge bases must be easy to develop and maintain

due to continuously changing product assortments. On the

other hand, flexible integrations into existing enterprise

applications, e-marketplaces and different facets of supply

chain settings must be supported. This paper shows how

the Model Driven Architecture (MDA) as an industrial

framework for model development and interchange can

serve as a foundation for standardized configuration know-

ledge representation, thus enabling knowledge sharing in

heterogeneous environments. Using UML/OCL as stan-

dard configuration knowledge representation languages,

the representation of configuration domain-specific mode-

ling concepts within MDA is shown and a formal semantics

for these concepts is provided which allows a common

understanding and interpretation of configuration task

descriptions.
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I. INTRODUCTION

In today’s rapidly changing and globalizing mar-

kets the traditional Mass Production paradigm appears

anachronistic. Highly competitive markets are redefining

the way companies do business. In this context, Mass

Customization [1], [2] appeared as a new paradigm

representing the trend towards the production of highly

variant products under Mass Production time and pri-

cing conditions. Key enablers for implementing a Mass

Customization strategy are, on the one hand, intelligent

manufacturing systems which allow the provision of

customer-individual products on the basis of flexible

production processes [1], [3], [4], on the other hand,

systems supporting the management of highly variant

products and services [5], [6], [7], [8]. Focusing on

the second aspect, configuration systems (configurators)

support the design of customizable products following

a building blocks principle where basic parts can be

configured into different sets of assemblies. Essential

gains [9], [10], [11], [12] provided by configurators are,

for example, an increased level of sales force knowledge,

pre-informed customers (Web-based configurators), a re-

duction of sales force training costs, explicit knowledge

about products formalized in an organizational memory,

less routine work, reduced response times through au-

tomated check of customer requirements and reduced

delivery times by avoiding errors in the quotation and

order processing phase. Although configurators have

shown their applicability in various real-world applica-

tions [9], [11], [12], [13], [14], [15] there exist additional

requirements related to the integration of configuration

technologies into industrial software processes which

must be fulfilled in order to improve the applicability

and increase the acceptance of configurators.

Standardized Interfaces. Each configuration environ-

ment has its own (proprietary) knowledge representation

language. This makes the application and integration of

such technologies demanding for software development

departments. Efforts are triggered by the development

and maintenance of specific interfaces to the confi-

guration system [10], for example, for the export of

configuration results to an underlying ERP system or the

import of user profiles from a CRM system with the goal

to support personalized configuration processes for the

customer [16]. As reported in [10], integration tasks can
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become too difficult with the result that purchased confi-

guration software has to be exchanged for an alternative

configurator.

Reduced Development and Maintenance Efforts. The

development of configuration knowledge bases is con-

ducted in cooperation between technical experts and

domain experts. The development of such knowledge

bases can be very expensive [10]. In this context, the

application of industrial standard representations can

ease knowledge base development and maintenance pro-

cesses since those representations are known by technical

experts and in many cases also known by domain experts

without a technical background. In this context, a major

requirement for the applicability of standard representa-

tions is a graphical modeling environment which makes

those representations accessible to domain experts as

well [17].

Increased Customer Acceptance. With the goal to re-

duce software development and maintenance costs, infor-

mation system departments focus on standardization and

interoperability. In this context, configuration systems are

required to provide standard knowledge representation

formats. Such formats contribute to an improved flex-

ibility of a company’s software infrastructure. For our

customers in the financial services domain, standardized

interfaces are a major decision criterion for incorporating

a configurator into the existing software environment.

Reusable Configuration Knowledge. Resources re-

quired to develop and maintain configuration knowledge

bases are substantial, see, e.g., [10], [11]. The implemen-

tation of configuration knowledge bases is an iterative

development, maintenance and validation process. In

most cases the resulting knowledge base is encoded in

the proprietary language of the underlying configura-

tion system. This makes related investments extremely

vulnerable due to the fact that, for example, changing

requirements on the configurator application could lead

to the need of having to change the whole configuration

environment [10]. In this case no support is available for

transforming a knowledge base into the representation of

the new environment.

Standardized Knowledge Representations. Dozens of

competing (and partially incompatible) B2B frameworks

supporting the representation of non-configurable pro-

ducts exist, for example, RosettaNet, cXML or BizTalk

[18], [19]. These standards do not provide mechanisms

for the representation of configurable products and ser-

vices [20]. STEP applications [21], [22] as industrial

standards for the representation of configurable products

are restricted to specific types of products (e.g., products

in the automotive industry). They are very large and

hardly provide real examples for product models which

sometimes make the meaning of STEP concepts unclear

[23]. Other standards for the representation of configur-

able products are restricted in their expressiveness w.r.t.

the underlying constraint representation, e.g., BMEcat

[20]. Therefore, standard representations are required

which provide easy to use modeling concepts and the

expressivity for designing configurable products as well

as product catalogs.

This paper shows how UML/OCL [24], [25], [26]

as Software Engineering modeling languages can be

applied to configuration knowledge design and thus,

contribute to an improved applicability of configuration

technologies. The major contributions of this paper are

the following:

• The representation of configurable products and

services is shown using UML/OCL as standard

knowledge representation languages.

• The paper provides a formal basis for UML/OCL

modeling concepts. This formalization supports a

clear and common understanding of configuration

task definitions.

• The paper shows the integration of UML/OCL

based configuration models into the Model Driven

Architecture (MDA) [27], [28], [29] which supports

model-based system interoperability.

• Finally, experiences from applying UML/OCL in

industrial projects are reported.

The remainder of the paper is organized as follows:

Section II gives an introduction to knowledge-based con-

figuration, the Model-Driven Architecture (MDA) and

UML/OCL as MDA-related knowledge representation

languages. Section III provides a formal semantics for

the modeling concepts of UML/OCL and shows the

representation of typical configuration domain-specific
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types of constraints, using UML/OCL. Section IV shows

the integration of UML/OCL into MDA. Section V

presents our configuration knowledge base development

environment. Finally, Section VI presents experiences

related to the application of standard configuration know-

ledge representations in industrial settings.

II. BACKGROUND

Knowledge-based Configuration. Knowledge-based

configuration has a long history as an application area

of Artificial Intelligence, see, for example, [9], [11],

[12], [13], [14], [15]. Informally, configuration can be

seen as a special case of design activity [30], where the

artifact being configured is assembled from instances of

a fixed set of well-defined component types which can

be composed conforming to a set of constraints. Such

constraints represent technical restrictions, restrictions

related to economic factors and restrictions according to

production processes (see, e.g., Fig. 3). The result of a

configuration process is a concrete product configuration,

i.e., a list of instances and (if needed) connections

between those instances. Examples for product config-

urations are descriptions of concrete computers to be

delivered (see, e.g., Fig. 4) or portfolio offers consisting

of financial services fitting to the wishes and financial

restrictions of a customer (e.g., a concrete combina-

tion of loan and corresponding risk insurance). Industry

demonstrates high demand for configuration systems.

Examples of applications are, e.g., the automotive indus-

try [13], the telecommunication industry [11], the com-

puter industry [9], [31] or power electric transformers

[12]. Starting with rule-based systems such as R1/XCON

[9], model-based knowledge representations (in con-

trast to rule-based representations) have been developed

which strictly separate domain knowledge from problem-

solving knowledge. Such a clear separation significantly

increases the effectiveness of configuration application

development and maintenance [11], [13], [14], [32] since

changes in the domain knowledge do not effect search

strategies and vice versa. Core configuration, i.e., guiding

the user and checking the consistency of user require-

ments with the knowledge base, solution presentation

and translation of configuration results into detailed bill-

of-materials are major tasks to be supported by a configu-

rator [33]. Configuration knowledge bases are generally

built using proprietary languages (see, e.g., [14], [34],

[35]). In most cases knowledge bases are developed

by technical experts who elicit product, marketing and

sales knowledge from domain experts. Configuration

knowledge bases consist of a formal description of the

product structure and additional constraints restricting

the possible combinations of different components of

the product structure. Configurators are considered as

toolkits for open innovation, i.e., tools supporting cus-

tomers in the product identification phase [33], where

customers are innovators articulating their (potentially)

new requirements leading to new innovative product

solutions [33], [36]. Mass Confusion [37] which denotes

the overwhelming of customers by a large number of

possible solution alternatives (choices), is a phenomenon

which often comes with the application of configurators.

This motivated the development of personalized confi-

guration applications taking into account a customer’s

knowledge, wishes and needs [16].

Model Driven Architecture. The Model Driven Archi-

tecture (MDA) [27], [28], [29] is the result of standard-

ization efforts of the Object Management Group (OMG -

www.omg.org). The focus of MDA is the provision of an

integrated architecture supporting system interoperability

on the application level based on the sharing of metadata.

The overall strategy for sharing and understanding meta-

data consists of the automated development, publishing,

and management of models [29]. The long-term vision

for MDA includes applications capable of automatic

discovering capabilities/properties of other applications.

MDA can be defined as the implementation of model en-

gineering principles around a set of OMG standards like

the Unified Modeling Language (UML) [24], [25] and

the Object Constraint Language (OCL) [26]. UML/OCL

are the most frequently applied modeling languages

within the context of the MDA.

An MDA-based process is related to the develop-

ment of models on different abstraction layers [38] (see
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Fig. 1. Different abstraction levels of the Model Driven Architecture

(MDA).

Fig. 1). First, a Platform Independent Model (PIM)1

is designed on an implementation-independent abstrac-

tion level (specification of the functionality). UML/OCL

models on this level are the basis for knowledge inter-

change between different platforms. Second, a PIM is

extended with platform-specific properties which results

in a Platform Specific Model (PSM). PSMs specify how

a particular functionality is implemented. Finally, a PSM

is translated into the source code representation of the

underlying platform.

Fig. 2 sketches the model-driven (MDA-based) in-

tegration of configuration environments based on the

exchange of product catalogs and configuration models

(on the PIM level).

Fig. 2. MDA-based application integration of product catalogs,

configurators and electronic marketplaces.

Such an architecture supports different application

scenarios ranging from the interchange of product cat-

alogs [20] (e.g., suppliers publish their products in a

marketplace environment) and knowledge sharing [39]

to the interchange of knowledge bases as the basis for

1A platform is defined as a set of technologies that provide a

coherent set of functionality through interfaces and specified usage

patterns [28].

different facets of distributed problem-solving scenarios

[16], [40]. In this case configuration models are pub-

lished (exchanged) in order to provide external applica-

tions with an access to the provided set of configurable

products [16].

UML Configuration Models. UML is widely applied

as modeling approach in industrial software development

projects. For presentation purposes a simplified UML

configuration model (class diagram) of a personal com-

puter (Computer) is introduced as a working example

(see Fig. 3). This model represents the generic product

structure, i.e., all possible variants of a Computer. The

set of possible products is restricted by a set of OCL

constraints which are related to technical restrictions,

economic factors and restrictions according to the pro-

duction process. The modeling concepts provided in

UML are a basis for the design of a configuration

knowledge base. Such a knowledge base is modeled

using classes/attributes (e.g., HDUnit/capacity), associa-

tions (e.g., a motherboard (MB) is part of a Computer),

multiplicities which refine the definition of associations

(e.g., a Computer consists of at least one motherboard

(MB) and at most two motherboards), and generalization

hierarchies (e.g., a CPU can be a CPU1 or a CPU2). The

set of possible configurations is restricted by additional

constraints (e.g., an IDEUnit requires a motherboard of

type MB1) which are represented as OCL invariants.2

OCL Constraints. Constraints are defined using OCL

invariants which are expressed in the context of a certain

class (Fig. 3 includes three technical constraints defined

in the context of the class Computer). Note that OCL

itself does not provide language elements which support

the definition of classes, attributes, and relationships,

i.e., the structural model must be defined within a UML

class diagram. The relationship between a UML class

diagram and OCL constraints is specified by assigning

constraints to a certain context class (in the simple

configuration model of Fig. 3 all OCL constraints are

assigned to the context class Computer). Class attributes

in the UML configuration model can be accessed in

2Constraints are based on OCL 2.0 [26], the term OCL constraint

is used synonymously with the term OCL invariant (OCL expression

of type Boolean).
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Fig. 3. Example model of a configurable computer defined as UML class diagram (product structure) with a set of corresponding OCL

constraints.

an OCL expression using the ’.’ operator. A typical

OCL constraint imposed on a configurable Computer

could state that an IDEUnit requires the inclusion of

a motherboard of type MB1 (see constraint c1 in Fig.

3). OCL constraints are typically built of the following

language elements3:

• Context: a context describes for which classes the

constraint has to hold, e.g., the constraint c1 has to

hold for all instances of the class Computer.

• Navigation expression: evaluating the expression

self.HDUnit results in a set of HDUnit instances

associated with an instance of the class Computer.

If there exists an association between two classes

in a class diagram, a navigation step between those

classes can be defined in OCL. The result of such an

expression is a set of instances (objects) or a single

object. Navigations can be defined over a sequence

of classes, e.g., self.MB.CPU is a legal navigation

expression resulting in a set of CPU instances which

are connected to a Computer instance. Finally, nav-

igation expressions can be defined on attributes, for

example, the result of self.MB.CPU.clockrate is a

set of corresponding CPU clockrate values.

• Collection operation: the select operation (a specific

collection operation) calculates a subset of the in-

3An overview of the supported modeling concepts can be found in

[41].

voking set consisting of elements fulfilling the sub-

expression. In constraint c1 of Fig. 3 HDUnits of

type IDEUnit are selected, where self.HDUnit is

the invoking set and select(oclIsTypeOf (IDEUnit))

is the select expression.4

• Operation size: operates on sets resulting in the

number of elements in the set. In constraint c1 of

Fig. 3 the number of IDEUnit instances part of a

Computer instance is returned.

• Logical operator implies: operates on logical expres-

sions. In constraint c1 the existence of an IDEUnit

instance in the final configuration requires (implies)

the existence of a corresponding motherboard of

type MB1.

Instances. After having defined the model of a configur-

able product, the configuration system can start to cal-

culate concrete configurations (configuration solutions).

The customer can articulate his/her requirements on a

solution. Assuming that the requirements in the example

are include a text-editor (Textedit) and two IDEUnits, the

configuration system calculates a solution represented by

a number of instances (objects) and their connections.

Such a configuration result is depicted in Fig. 4 where,

e.g., ideunit-1 is an instance of the class IDEUnit.

4Note that self is the starting instance of an OCL constraint, i.e.,

in our example an instance of the class Computer.



36 IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, IEEE, TO APPEAR 2007.

Fig. 4. Configuration result as UML instance diagram.

III. FORMAL SEMANTICS FOR UML/OCL-BASED

CONFIGURATION MODELS

Configuration knowledge interchange requires a clear

and common understanding of the problem definition and

its solution. Therefore it is necessary to agree on the

definition of a configuration task and its solution. This

section provides a formal definition of a configuration

task which is the basis for many existing configuration

systems, e.g., [11], [14], [35]. The following definition

is based on a consistency-based approach [42] where

a configuration task can be seen as a logical theory

which describes a class library5, a set of constraints,

and customer requirements. Classes are described by

attributes and relationships to other classes. The result of

a configuration task is a set of instances, their attribute

values, and connections that all together satisfy the

logical theory. The form of the logical sentences used

to represent the logical theory is restricted to a subset

of range-restricted first-order-logic with set extension.6

Following this approach, a configuration task is defined

as follows.

Definition 1 (Configuration Task): In general, a con-

figuration task is described by two sets of logical sen-

tences (DD, SRS). DD represents the domain description

of the configurable product, i.e., the product structure

and additional constraints on the allowed combinations

of instances and attribute settings. SRS (system re-

quirements specification) specifies the particular system

requirements (e.g., customer requirements) defining an

individual configuration task instance. DD includes the

5Note that the term class is used synonymously with the term

component type which is also frequently used in the configuration

domain [15].
6Every variable of the consequence part of the clause is also

contained in the antecedent part.

TABLE I

DOMAIN DESCRIPTION (DD).

Group Values

CLASSES

{computer, software, dtpsoftware,

textedit, hdunit, ideunit,

scsiunit, mb, mb1, mb2, cpu,

cpu1, cpu2, screen}.

ATTRIBUTES

attributes(software)={capacity}.

attributes(hdunit)={capacity}.

attributes(cpu) = {clockrate}.

/* further attribute definitions

for subtypes */

ROLES

roles(software) =

{software-of-computer}.

roles(hdunit) =

{hdunit-of-computer}.

roles(mb) =

{mb-of-computer, mb-of-cpu}.

roles(cpu) = {cpu-of-mb}.

roles(screen) =

{screen-of-computer}.

roles(computer) =

{computer-of-software,

computer-of-hdunit,

computer-of-mb,

computer-of-screen}.

/* further role definitions

for subtypes */

DOMAINS

dom(software, capacity) = {50..100}.

dom(hdunit, capacity) = {10000..20000}.

dom(cpu, clockrate) = {300..500}.

/* further domain definitions

for subtypes */

description of the classes, roles of classes in relations

and attributes with their domains (dom).

In Table I the structural part of the domain description

(DD) of the Computer configuration model is depicted

(CLASSES, ATTRIBUTES, DOMAINS and ROLES).

Additional logical sentences are added to DD repre-

senting constraints on the product structure (e.g., con-

straints on the type of generalization hierarchy, on the

multiplicities of roles, or on the compatibility of different

instance types in the configuration result). The derivation

of such constraints from a UML/OCL configuration

model is sketched in the following subsections.
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TABLE II

SYSTEM REQUIREMENTS SPECIFICATION (SRS).

Group Values

INSTANCES

{type(computer-1, computer).

type(ideunit-1, ideunit).

type(ideunit-2, ideunit).}

CONNS

{conn(computer-1, computer-of-hdunit,

ideunit-1, hdunit-of-computer).

conn(computer-1, computer-of-hdunit,

ideunit-2, hdunit-of-computer).}

ATTRS
{val(ideunit-1, capacity, 10000).

val(ideunit-2, capacity, 10000).}

The second input for a configuration task is SRS

which represents additional requirements related to a

configuration result. SRS is specified by a number of key

instances which must be part of the result. The require-

ment two IDEUnits must be included in the configuration

is shown in Table II. Additional requirements as well

as configuration results are described using the literals

type/2, conn/4, val/3 which are included in the following

sets:

• INSTANCES: is a set of literals of the form

type(c,t), where the constant c represents an instance

of a class t and t is included in the set CLASSES.

• CONNS: is a set of literals of the form

conn(c1,r1,c2,r2), where c1, c2 are connected in-

stances and r1, r2 are the connecting ROLES.

• ATTRS: is a set of literals of the form val(c,a,v),

where c is an instance, a is an attribute of c and v

is the attribute value.

Using the sets INSTANCES, CONNS and ATTRS, the

configuration result depicted in Fig. 4 can be represented

as follows (see Table III).

Note that this result is consistent with the domain

description (DD) of Table I and the customer require-

ments (SRS) of Table II. Based on the above definition

of a configuration task, a configuration result (consistent

configuration) can be defined as follows.

Definition 2 (Consistent Configuration): If (DD,

SRS) is a configuration task and INSTANCES,

CONNS, ATTRS represent a configuration result, then

the configuration result is consistent iff DD ∪ SRS ∪

TABLE III

CONFIGURATION RESULT.

Group Values

INSTANCES

{type(computer-1, computer).

type(textedit-1, textedit).

type(ideunit-1, ideunit).

type(ideunit-2, ideunit).

type(mb1-1, mb1).

type(cpu1-1, cpu1).

type(screen-1, screen).}

CONNS

{conn(computer-1, computer-of-software,

textedit-1, software-of-computer).

conn(computer-1, computer-of-hdunit,

ideunit-1, hdunit-of-computer).

conn(computer-1, computer-of-hdunit,

ideunit-2, hdunit-of-computer). ...}.

ATTRS

{val(textedit-1, capacity, 100).

val(ideunit-1, capacity, 10000).

val(ideunit-2, capacity, 10000).

val(cpu1-1, clockrate, 300). ...}

INSTANCES ∪ CONNS ∪ ATTRS is satisfiable.

Table I sketches the logical representation (DD) of

UML product structures. In the following subsections the

inclusion of further constraints into the domain descrip-

tion (DD) is shown. The corresponding logical sentences

additionally restrict the set of possible configurations,

i.e., the set of possible instance models which correspond

to a UML/OCL configuration model.

Formalizing OCL Constraints. Since UML is a wide-

spread modeling language, OCL itself has established

an important role in the field of formal specification

languages. However, the definition of the OCL semantics

is based on a proposed syntax and additional textual des-

criptions and examples. Although this is a quite intuitive

approach for demonstration purposes, a corresponding

formal definition is needed. In the following it is shown

how OCL constraints (OCL invariants, i.e., expressions

of type Boolean) can be translated into the logic-based

representation of a domain description (DD).7 Each OCL

constraint is translated into a corresponding logical sen-

tence S following an implication schema where the left-

7For reasons of space limitations the translation is discussed in the

context of examples. The complete set of translation rules can be

found in [41].
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TABLE IV

TRANSLATION OF OCL CONSTRAINT C1 (FIGURE 3).

OCL expression Logical representation

(a) context Computer inv: type(ID1, Computer) ∧ ResultSet1={ID1}

(b) (self.HDUnit connected_set(↓ResultSet1, HDUnit, ↑ResultSet2)

(c) ->select(oclIsTypeOf(IDEUnit)) selected_set1(↓ResultSet2, ↑ResultSet3)

(d) ->size > 0) implies |ResultSet3|=Val1

(e) (self.MB connected_set(↓ResultSet1, MB, ↑ResultSet4)

(f) ->select(oclIsTypeOf(MB1)) selected_set2(↓ResultSet4, ↑ResultSet5)

(g) ->size > 0) |ResultSet5|=Val2 ⇒ ¬Val1 > 0 ∨ Val2 > 0.

connected_set(↓Setin, C, <↑Resultout>) ⇐ ID ∈ Setin ∧ type(Resultout, C) ∧

conn(ID,_,Resultout,_).

selected_set1(↓Setin, <↑Resultout>) ⇐ Resultout ∈ Setin ∧ type(Resultout, IDEUnit).

selected_set2(↓Setin, <↑Resultout>) ⇐ Resultout ∈ Setin ∧ type(Resultout, MB1).

hand side (LHS) contains variables which correspond to

the result of evaluations of navigation expressions and

the right-hand side (RHS) contains the corresponding

logical consequence. In order to assure a consistent nam-

ing of variables in S, each variable has a corresponding

index which is unique inside S. The following variable

types are generated into S.

• ID: variables used for representing instances within

S, e.g., ID1 in Table IV (a) represents a Computer

instance.

• ResultSet: variables used for representing a set of

instances or basic values inside S, e.g., ResultSet2

in Table IV (b) represents the set of HDUnits

connected to ID1.

• Val: variables used for representing a basic value

(e.g., integer) within S, e.g., Val1 in Table IV (d)

stores the number of HDUnit instances of type

IDEUnit.

Each OCL constraint is defined within the context of

a class. Starting from this reference point, attributes of

the class can be accessed and navigation expressions

over associations can be defined. The translation of OCL

context specifications is shown in Table IV (a), where

ID1 as an instance of the class Computer is the starting

point for navigations in the configuration model.

OCL navigation expressions can be formulated using

the access operator ’.’. The result of such a navigation

expression is one object if the multiplicities of the related

classes along the path of the navigation expression are

[0..1] or [1..1]. The result of a navigation expression

is a set of objects in all other cases. In the example

of Table IV (b), the result of the navigation expression

self.HDUnit is a set of objects since the multiplicity of

HDUnits associated to Computers is specified with [2..6].

In the logical theory (DD), the result of a navigation

expression is represented by a set identifier (Result-

Set). Navigations are expressed by the predicate con-

nected_set/3 which implements one step to another class

and connected_set_a/3 which implements the navigation

to a class attribute. Selection operations such as in Table

IV (c) are calculating subsets of instances of a given

set. For the representation of selection operations on

the logical level a predicate selected_set/2 is introduced

which implements the criteria defined as parameter of

the select operator (the index of selected_set/2 is unique

within the given domain description DD).8 Finally, the

size operation is translated into a cardinality and the

relational operator is directly translated into DD, see

Table IV (d), (g). The entries (e) and (f) are handled

analogously to the entries (b) and (c) in Table IV.

8For the definition of the predicates connected_set(_a)/3 and

selected_set/2 an LDL-like [43] syntax is applied. After calling, e.g.,

the predicate connected_set(↓ResultSet1, HDUnit, ↑ResultSet2),

↑ResultSet2 (output) contains all HDUnits which are connected

with Computer instances of ↓ResultSet1 (input).
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A. Multiplicities and Generalization Hierarchies

The formalization of multiplicities and generalization

hierarchies is shown in Table V, where additional logical

sentences are introduced to DD representing the part-

of relationship between Computer and HDUnit and the

generalization between the motherboards MB, MB1 and

MB2.

There exists a set of constraint types which are fre-

quently used when building configuration models. These

constraint types and their representation in OCL are

discussed in the following subsections.

B. Requirement constraints

In some cases, the existence of an instance of a

specific class requires the existence of another specific

instance in the configuration result. Using OCL, such

requirement constraints can be expressed on the class

level (an instance of class A part of the configuration

result requires an instance of class B to be part of the

configuration result) as well as on the attribute level (an

instance of class A with attribute value v=a requires an

instance of class B with attribute value v=b to be part of

the configuration result). The pattern for OCL require-

ment constraints on the class level is shown in Table IX

(a), where the expressions Aij denote the jth class in the

navigation path to class Ci. Also the pattern for OCL

requirement constraints on the attribute level is shown

in Table IX (a). In cases, where a subclass S of C within

a generalization hierarchy is accessed via a navigation

path, the expression C->select(oclIsTypeOf (S)) must be

added to the navigation path. This selection is used in

the following examples. An example for a requirement

constraint is shown in Table VI which expresses that, if

an instance of an IDEUnit is part of the configuration

result, an MB1 instance must be contained as well. Note

that the constraint types of Table IX refer to situations

where 0..n associations are concerned (constraints on

class level) and 0..1 associations are concerned (con-

straints on attribute level).9

9Hybrid variants are possible - for readability reasons those variants

are omitted.

C. Incompatibility constraints

Certain types of instances must not be part of the same

final configuration, they are incompatible. The pattern

for OCL incompatibility constraints on the class level

(both an instance of class A and an instance of class

B must not be part of the same configuration result)

as well as on the attribute level (both an instance of

class A with attribute value v=a and an instance of

class B with attribute value v=b must not be part of the

same configuration result) is shown in Table IX (b). An

example for an OCL incompatibility constraint is shown

in Table VII expressing that an SCSIUnit instance and

an MB1 instance must not occur in a configuration result

together.

D. Resource constraints

Parts of a configuration task can be seen as a resource

balancing task where some of the classes produce some

resources and others are consumers (e.g., the hard-

disk capacity needed by the installed software must not

exceed the provided hard-disk capacity). Using OCL,

resource constraints can be expressed as follows assum-

ing that {Ci, ..., Ck} denotes a set of consumers and

{Cl, ..., Cn} denotes a set of producers and {aip, ..., akq},

{alr, ..., ans} denote the resource attributes of those

classes. The pattern for OCL resource constraints is

shown in Table IX (c). An example for a resource

constraint is the following (see Table VIII).10

Resource constraints can be represented on the class

level as well. In this case the task is to balance the

number of instances of consumer and producer classes

(see Table IX (c)).

IV. CONFIGURATION MODELS IN THE

MODEL-DRIVEN ARCHITECTURE

MDA provides a framework developed by the Object

Management Group (OMG) which defines how models

can be defined in certain languages (e.g., UML and OCL)

and how models can be transformed into other languages

[38]. For the interchange of UML/OCL configuration

10Note that the OCL sum operator calculates the sum of attribute

values resulting from a navigation expression.
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TABLE V

LOGICAL REPRESENTATION OF MULTIPLICITIES AND GENERALIZATIONS.

Description Logical representation

Computer consists of [2..6] HDUnits

type(ID1, Computer) ∧ ResultSet1={ID1} ∧

connected_set(↓ResultSet1, HDUnit, ↑ResultSet2) ∧

|ResultSet2|=Val1 ∧ Val1 >= 2 ∧ Val1 <= 6.

Each MB1 and MB2 is an MB type(ID1, MB1) ⇒ type(ID1, MB). type(ID1, MB2) ⇒ type(ID1, MB).

An MB is either an MB1 or an MB2 type(ID1, MB) ⇒ type(ID1, MB1) ∨ type(ID1, MB2).

An MB cannot be both MB1 and MB2 type(ID1, X) ∧ type(ID1, Y) ∧ X ∈ {MB1, MB2} ⇒ Y=MB ∨ X=Y.

TABLE VI

IDEUNIT REQUIRES MB1.

OCL expression Logical representation

context Computer inv:

(self.HDUnit

->select(oclIsTypeOf(IDEUnit))->size>0)

implies

(self.MB

->select(oclIsTypeOf(MB1))->size>0)

type(ID1, Computer) ∧ ResultSet1={ID1}

∧ connected_set(↓ResultSet1, HDUnit, ↑ResultSet2)

∧ selected_set1(IDEUnit)(↓ResultSet2, ↑ResultSet3) ∧ |ResultSet3|=Val1

∧ connected_set(↓ResultSet1, MB, ↑ResultSet4)

∧ selected_set2(MB1)(↓ResultSet4, ↑ResultSet5)

∧ |ResultSet5|=Val2 ⇒ ¬Val1 > 0 ∨ Val2 > 0.

TABLE VII

SCSIUNIT INCOMPATIBLE WITH MB1.

OCL expression Logical representation

context Computer inv:

(self.HDUnit

->select(oclIsTypeOf(SCSIUnit))->size>0)

and

(self.MB

->select(oclIsTypeOf(MB1))->size>0)

implies false

type(ID1, Computer) ∧ ResultSet1={ID1}

∧ connected_set(↓ResultSet1, HDUnit, ↑ResultSet2)

∧ selected_set1(SCSIUnit)(↓ResultSet2, ↑ResultSet3) ∧ |ResultSet3|=Val1

∧ connected_set(↓ResultSet1, MB, ↑ResultSet4)

∧ selected_set2(MB1)(↓ResultSet4, ↑ResultSet5)

∧ |ResultSet5|=Val2 ∧ Val1 > 0 ∧ Val2 > 0 ⇒ false.

TABLE VIII

CONSUMED SOFTWARE CAPACITY <= PROVIDED HDUNIT CAPACITY.

OCL expression Logical representation

context Computer inv:

(self.Software.capacity)->sum

<=

(self.HDUnit.capacity)->sum

type(ID1, Computer) ∧ ResultSet1={ID1}

∧ connected_set(↓ResultSet1, Software, ↑ResultSet2)

∧ connected_set_a(↓ResultSet2, capacity, ↑ResultSet3) ∧
∑

(V al1∈ResultSet3) = Val2

∧ connected_set(↓ResultSet1, HDUnit, ↑ResultSet4)

∧ connected_set_a(↓ResultSet4, capacity, ↑ResultSet5) ∧
∑

(V al3∈ResultSet5) = Val4

⇒ Val2 <= Val4.
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TABLE IX

PATTERNS FOR CONFIGURATION DOMAIN-SPECIFIC OCL CONSTRAINT TYPES.

Constraint type Class level constraint Attribute level constraint

(a)Requirement

context R inv:

((self.Ai1.Ai2. Ci ->size > 0) and...

and (self.Ak1.Ak2. Ck ->size > 0))

implies

((self.Al1.Al2. Cl ->size > 0) and...

and (self.An1.An2. Cn ->size > 0))

context R inv:

((self.Ai1.Ai2. Ci.(aip = vaip)->size> 0) and...

and (self.Ak1.Ak2. Ck.(akq = vakq)->size> 0))

implies

((self.Al1.Al2. Cl.(alr = valr)->size> 0) and...

and (self.An1.An2. Cn.(ans = vans)->size > 0))

(b)Incompatibility

context R inv:

(self.Ai1.Ai2. Ci ->size > 0) and...

and (self.Ak1.Ak2. Ck ->size > 0))

implies false

context R inv:

((self.Ai1.Ai2. Ci.(aip = vaip)->size> 0) and...

and (self.Ak1.Ak2. Ck.(akq = vakq)->size> 0))

implies false

(c)Resource

context R inv:

((self.Ai1.Ai2. Ci ->size) + ... +

(self.Ak1.Ak2. Ck ->size)) <=

((self.Al1.Al2. Cl->size) + ... +

(self.An1.An2. Cn->size))

context R inv:

((self.Ai1.Ai2. Ci.aip ->sum) + ...

+ (self.Ak1.Ak2. Ck.akq ->sum)) <=

((self.Al1.Al2. Cl.alr ->sum) + ...

+ (self.An1.An2. Cn.ans->sum))

Fig. 5. Platform Independent Configuration Model (PICM): product model of a configurable computer represented in XMI (XML Metadata

Interchange).
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models and related instances, the XMI (XML Metadata

Interchange) standard specification [44] is applied. Using

XMI, UML/OCL-based Platform Independent Models

(PIMs) as well as Platform Specific Models (PSMs) can

be represented in XML (Extensible Markup Language)

[45]. In the following, the representation of UML/OCL

configuration models on the different levels of the MDA

is discussed using XMI.11

Applying the three-level architecture of MDA to the

configuration domain results in the following types

of models. Platform Independent Configuration Models

(PICMs) (no configurator-specific properties included)

serve for model interchange between different configura-

tion environments. Platform Specific Configuration Mod-

els (PSCM) (configurator-specific properties included)

are used for designing configuration knowledge bases for

a concrete target environment (e.g., JConfigurator [35]).

PSCMs are translated to the Source Code level of the

target environment.

PICM (Platform Independent Configuration Models):

PICMs represent configurator-independent descriptions

of configurable products which can be exchanged bet-

ween different configuration environments. An example

for a configuration model at the PICM level is the UML

configuration model depicted in Fig. 3. Fig. 5 depicts

parts of the XMI-based representation of the model

shown in Fig. 3 (the view is restricted to the OCL

constraint c1, the classes Computer and HDUnit and

the partof association between those classes). Constraints

are represented by the XML tag <UML:Constraint>.

Constraints are referenced by classes using the attribute

xmi.idref. Similar to constraints, associations are stored

outside of the corresponding class.

Objects as instances of classes are represented in XMI

as follows (see Fig. 6). The <UML:object> tag is used

to describe instances of classes. Classes are referenced

with <UML:Instance.classifier>.

PSCM (Platform Specific Configuration Models):

PSCMs represent configurator-specific descriptions (e.g.,

11XMI is chosen for presentation purposes since XMI documents

provide an integrated view on UML configuration models (product

structure information as well as constraints can be integrated into one

document).

configurator-specific search directives, number of auto-

matically pre-generated product instances as basis for

the search process, references to local product catalogs,

etc.) of configurable products which can be directly

translated into the representation of the underlying con-

figuration environment (see Fig. 7). Such configurator-

specific properties cannot be added on the PICM level

since different configuration environments support differ-

ent search directives, provide different local interfaces

to product catalogs, etc. In order to add configurator-

specific properties on the PSCM level, tagged values

are applied which are basic extension mechanisms of

UML [25]. Tagged values are modeling concepts appli-

cable to each element of a UML class diagram, e.g.,

classes can be additionally annotated with configurator-

specific properties. Typically, the definition of tagged

values is supported by state-of-the-art UML modeling

environments. Fig. 7 depicts a PSCM of the Computer

(an extension of the PICM depicted in Fig. 5) in XMI.

Fig. 6. Platform Independent Configuration Model (PICM): repre-

sentation of instances.

Tagged values are assigned to classes and associations,

e.g., the class Computer has an additional tagged value

with the id xmi_t7 which references the tag definition

of ilog.iloInstancesCount. Tagged values are separated

from the tag definition since one tag definition is used

by different tagged values, e.g., ilog.iloInstancesCount

is defined in all classes of the configuration model.

The same principle is applied to associations, e.g., the

tag definition ilog.iloRelation (id xmi_t8) has the value

n-configurable-objects which indicates to JConfigurator

[35] that more than one HDUnit object has to be con-

figured.

Source Code: the source code representation of a
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Fig. 7. Platform Specific Configuration Model (PSCM): product model of a configurable computer represented in XMI (XML Metadata

Interchange).

PSCM is interpretable by the underlying configuration

environment. A PSCM is translated into the target re-

presentation language of the underlying configuration

system (e.g., the JAVA-based representation of JConfig-

urator [35]). This translation is done in two steps:

1) Transformation of the product structure by a set

of XSL transformations [46] which extract struc-

tural properties from the XMI PSCM (see Fig.

8: JConfigurator Business Object Model). The at-

tribute iloInstancesCount is derived from a tagged

value at the PSCM level. It indicates the number

of IDEUnit instances to be pre-generated by the

configuration system in order to reduce instance

generation efforts during runtime.

2) In addition, a configurator-specific OCL parser12

must be provided for translating OCL constraints

12Our parser has been implemented on the basis of JLex

(www.cs.princeton.edu/~appel/modern/java/JLex/) and the CUP

parser generator (www.cs.princeton.edu/~appel/modern/java/CUP/).

into the representation of the underlying configu-

ration system. The result of translating the OCL

constraint of Table IV into the representation of

JConfigurator is depicted in Fig. 8. The method

imply represents the OCL implies, the method

getObjectSetField realizes OCL navigation expres-

sions, the method cardinality corresponds to the

OCL size, the method setOf corresponds to the

OCL OclIsTypeOf, and the method gt corresponds

to the operator ’>’.

Finally, if somebody wants to export a configuration mo-

del from the development environment, the PSCM must

be reduced into a PICM. This translation is supported

by another set of XSL transformations which filter out

tagged-values and tag definitions (see Fig. 8).

V. KNOWLEDGE BASE DESIGNER

The architecture of the design environment (Know-

ledge Base Designer) for developing UML/OCL-based
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Fig. 8. Translation of platform-specific configuration models (PSCM) into a. the configurator-specific source code representation

(PSM2SourceCode translation) and b. the platform-independent representation (PSM2PIM translation).

configuration knowledge bases is shown in Fig. 9.

Fig. 9. Architecture of Knowledge Base Designer (environment for

the development and interchange of configuration knowledge bases).

The environment has been implemented as an add-

in for the Rational Rose modeling environment (see

www.ibm.com). The environment supports the im-

port/export of XMI-based models from/to external con-

figuration environments. Using Product Structure De-

signer and Business Rule Designer, configuration models

can be designed for and translated into the source code

representation of the underlying configuration environ-

ment, i.e., models are designed on the PSCM level and (if

needed for model interchange) transformed and exported

as PICM.

Product Structure Designer. The design of product

structures is based on a Rational Rose add-in tailored

to the design of configurable products (see Fig. 10).

Product structures are represented as UML class dia-

grams. Configurator-specific properties are modeled us-

ing tagged values which are pre-defined in the Rational

Rose add-in for the used configuration environment.

In Fig. 10 specific JConfigurator properties [35] are

represented as tagged values in the properties of HDUnit.

Business Rule Designer. This is a JAVA-based con-

straint editor supporting the design of OCL constraints

on product structures. For frequently used types of

constraints, constraint schemes [47] are provided with
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Fig. 10. Screenshot of Product Structure Designer: designing classes, associations, generalization hierarchies on PICM and PSCM levels.

a corresponding graphical interface (see Fig. 11). First,

incompatibility constraints can be defined by selecting

incompatible classes in the tree on the left-hand side and

by specifying additional incompatible attribute settings

on the right-hand side. Second, resource constraints can

be defined by selecting consumer classes (e.g., Software)

on the left-hand side and by selecting producer classes

on the right-hand side (e.g., HDUnit). The structure

of the interface for requirement constraints is similar

to the interface for resource constraints. The user can

select classes and attributes to formulate constraints

conforming to the structure discussed in Section II - these

constraints are internally represented as OCL constraints.

Import/Export of Configuration Models. Configuration

knowledge interchange is based on the exchange of Plat-

form Independent Configuration Models (PICMs) which

are represented using XMI. Product Structure Designer

supports two modes for generating XMI-based models:

• Export of the platform independent configuration

model (PICM): the generated XMI document13 is

used for exchanging complete configuration models

between configuration environments.

• Export of the platform specific configuration model

(PSCM): the generated XMI document is used as

input for the generation of a configuration knowle-

dge base.14

Code Generation. First, the PSCM product structure

is transformed into the product structure representation

of the target configuration system. This transformation

is realized using XSL transformations [46] which is

the standard approach in Product Structure Designer.

The transformation of XMI product structures to an

underlying JConfigurator Business Object Model (BOM)

is sketched in Fig. 12. The XSL transformation rules

13This document is generated from a PSCM by filtering out tagged

values and tag definitions. In MDA terms this transformation is

denoted as PSM2PIM transformation.
14In MDA terms, this transformation is denoted as

PSM2SourceCode transformation.
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Fig. 11. Example constraints supported in Business Rule Designer (incompatibilities, resources and constraints directly defined in OCL).

specify in which way the different elements of the

XMI file have to be translated into the corresponding

target representation. The statement <xsl:for-each se-

lect=UML.Class> can be regarded as a kind of loop

traversing all classes of an XMI-based model and ex-

ecutes the translation instructions which are included in

the loop, e.g., <xsl:value-of select=@name/> exports the

class name to the target representation.

Fig. 12. A simple XSL transformation of a PSCM product structure

into the representation of the target configuration environment [35].

Second, OCL constraints imposed on the PSCM pro-

duct structure have to be translated into the constraint

representation of the underlying configuration system.

Within Business Rule Designer this task is supported

by an OCL parser which generates constraints corre-

sponding to the expression language of the underlying

configuration environment.

VI. EXPERIENCES FROM PROJECTS

Within the scope of our work we have conducted a

number of industrial projects where configurator appli-

cations have been deployed to support effective sales

processes for complex products and services.

Telephone switching systems are large electronic sys-

tems supporting the task of switching telephone connec-

tions and providing additional services such as ISDN,

videotelephony or videoconferencing. EWSD configura-

tions can comprise more than 40.000 components, more

than 200.000 attributes and about 60.000 connections

[11] which makes knowledge acquisition and mainte-

nance of configuration knowledge bases a demanding

task. Projects in this application domain (conducted in

cooperation with www.siemens.com) triggered our work

in the field of knowledge acquisition with the goal of
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making knowledge acquisition processes for configura-

tion knowledge bases more effective.

Virtual private networks (VPNs) extend the intranet

of a possibly multi-national company and are capable

of meeting access requirements at reduced cost using

the worldwide IP network services and dedicated service

provider IP backbones. VPN infrastructures are designed

to be flexible and configurable in order to be able to cope

with a rich variety of possible customer requirements.

Therefore, the establishment of some concrete VPN

involves different steps after determination of customer

requirements, like determining locations to be connected,

selection of adequate access facilities from the customer

site to some entry point to the VPN backbone, reserva-

tion of bandwidth within the backbone, as well as confi-

guration of routing hardware and additional services like

installation support. These products and services needed

for the provision of a VPN are made available by differ-

ent specialized solution providers, e.g., Internet Service

Providers, telecommunication companies or hardware

manufacturers. On the other hand, integrated solution

providers integrate these products and services into a

solution for a specific customer. In order to support this

task, configuration environments of specialized solution

providers have to be integrated (configuration knowledge

bases have to be shared) to enable the automated cal-

culation of configuration solutions. The implementation

of this distributed configuration scenario has been con-

ducted within the scope of the CAWICOMS project [16],

in cooperation with www.bt.com and www.ilog.com.

Financial services - beside a number of basic recomm-

ender applications (advisory-related to specific product

branches [48]), a configurator application has been de-

veloped for one of the larger financial service providers

in Austria (www.hypo-alpe-adria.at). The focus of this

application is to support sales processes related to finan-

cial services portfolios which are offered to customers.

The result of a configuration process is a number of

financial services which suit to the wishes and needs

of the customer (e.g., a loan with a combined building

society savings).

Building control systems and light management - light

management equipment is responsible for controlling

and managing light constellations at the workplace and

as such it is part of an integrated building control

system. Light equipment, sensors and the corresponding

control units are organized in a bus-architecture. The

task of the configuration system is to determine the

distribution of the equipment, sensors and control units

in the building. A corresponding configuration system

has been implemented for a major provider of light

management systems in Austria (www.luxmate.com).

Experiences and customer feedback from these

projects strongly indicate that proprietary knowledge

representations are one of the major obstacles for the

adoption of configuration technologies by information

system departments. This challenge has been tackled by

applying de-facto standards (MDA/UML/OCL/XMI) for

configuration knowledge representation. This approach

eases the application of configuration technologies for

the following reasons.

Successfully Applied Modeling Language. Experiences

from our projects clearly indicate the applicability of

the modeling concepts provided by UML/OCL. The

environment has been used by domain experts without

a technical background (e.g., in the financial services

domain) as well as by technical experts (in the Virtual

Private Networks and the Building Control Systems and

Light Management scenario). The concepts provided by

UML/OCL have shown to be sufficient for modeling

configuration knowledge bases in quite different app-

lication domains. Recapitulating, UML/OCL can pro-

vide the basis for a standard configuration knowledge

representation language supported by future versions of

commercial configurators.

Reduced Development and Maintenance Efforts. De-

velopment and maintenance efforts related to configu-

ration knowledge bases can be reduced by providing

standardized modeling concepts. Typically, technical ex-

perts know the modeling concepts provided by stan-

dard languages such as UML/OCL but know nothing

about configurator-specific representations. Every new

technology added to the software environment requires

additional practice and implementation efforts, therefore

standard representations can reduce development and

maintenance costs of configuration knowledge bases.
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Furthermore, best-practice modeling approaches clearly

separate a system into cohesive subcomponents, a basic

principle which is also fundamental to MDA (separation

between PICM and PSCM level). This separation of

specification and implementation is directly applicable to

configuration knowledge base development (first, define

the basic properties of the product on the PICM level,

second think about specific implementation issues related

to the target system). Configuration knowledge base de-

velopment in our financial services project (www.hypo-

alpe-adria.at) has first been conducted in cooperation

with domain experts. After having introduced the first

version of the knowledge base, experts themselves partly

took over the role of the knowledge engineer in order to

maintain the knowledge base. Changes in the product as-

sortment (introduction of additional product classes, pre-

configured instances) and changes of constraints on the

graphical level (requirement, incompatibility, resource

constraints) are directly conducted by domain experts.

Experiences from all application domains show that

the validation of the knowledge base is still a rather

time-consuming task since changes in the knowledge

base have to be extensively checked w.r.t. possible

faulty results. The integration of an automated test case

generation component and automated regression testing

functionalities is planned for future versions of the

environment.

Protected Investments for Configurator Applications.

In many cases resources required for the development

and maintenance of configurator applications are sub-

stantial. One major result of a configurator project is

the configuration knowledge base which represents a

company’s product knowledge. Standardized knowledge

representations are making the investments related to

knowledge base development and maintenance stable

w.r.t. to technological changes. Within the context of

projects in the financial services domain, XMI-based re-

sults from a configuration process (configuration results)

can be directly transformed (using XSL transformation)

into a configuration process protocol which is provided

to customers in the following. The generation of such

protocols is triggered by regulations of the European

Union [49]. The goal of these regulations is to improve

the transparency of configuration results for the cus-

tomer. Experiences from the financial services domain

show a clear customer requirement for standard know-

ledge representations and interfaces to the configuration

environment. This reflects a clear strategy of companies

towards the application of industrial standards where this

is possible, i.e., standardized knowledge representations

can lead to an increased acceptance of configuration

technologies.

Benchmarking and Reference Models. Although it is

not directly related to experiences from commercial

projects, it seems worth mentioning since it is directly

related to requirements imposed by the configuration

research community. Benchmark knowledge bases which

are used for testing the performance of configuration

algorithms are still quite rare and by the majority fo-

cusing on constraint representations [50], i.e., are not

directly applicable to a specific configuration environ-

ment. It is very hard to translate such representations

(e.g., represented as Java code) into the representation of

another configuration environment which argues for the

development of benchmark knowledge bases on the basis

of standardized configuration knowledge representation

languages. Similarly, the idea of providing reference con-

figuration models (e.g., a reference model for configuring

investment portfolios) strongly requires the provision of

a standard language.

Applicability of Effort Estimation Techniques. Build-

ing configuration systems is a knowledge-intensive pro-

cess where, e.g., effort estimation is crucial for deter-

mining the feasibility of a project, creating an offer,

or managing resources. Software Engineering research

has developed a number of approaches supporting effort

estimation which in many cases are based on UML-

based representations [51]. The applicability of such

approaches in configurator projects strongly depends on

the applied representation formalism [52].

VII. RELATED WORK

Configuration. Knowledge-based configuration has a

long history as a successful application area of Artificial

Intelligence, see, e.g., [9], [11], [12], [13], [14], [15]. In

the management literature, configurators are subsumed
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under toolkits for open innovation, i.e., tools support-

ing customers in expressing requirements and mapping

requirements to physical product structures [33]. In this

context, users can be regarded as innovators explicitly or

implicitly articulating new requirements, leading to new

innovative solutions [33], [36]. When dealing with highly

variant products and services, customers are becoming

confronted with the phenomenon of Mass Confusion

[37] since the number of possible choices overwhelms

customers during the configuration process [36]. This

situation motivated the integration of personalization

technologies with configuration systems - this was the

major goal of the CAWICOMS project [16] which aimed

at the provision of new technologies allowing the per-

sonalized access to an assortment of complex products.

The second goal of CAWICOMS was the development

of distributed configuration problem-solving algorithms

supporting calculation of solutions in different facets

of supply chain settings (e.g., our VPN scenario). In

this context, a prototypical knowledge acquisition com-

ponent was developed which supported the interchange

of UML configuration models based on a proprietary

XML representation without taking into account the

exchange of OCL constraints. The goal of this paper

is to present further developments of the system in

detail (formalization of OCL constraints, integration of

configuration knowledge base design into the framework

of the model-driven architecture, standardized represen-

tation using XMI) and to discuss experiences related to

the application of the knowledge representation concepts

in industrial settings.

Configuration ontologies. The definition of a com-

mon representation language to support knowledge in-

terchange between and integration of knowledge-based

configuration systems is an important issue. In [53]

one approach to collect relevant concepts for modeling

configuration knowledge bases is presented. The defined

ontology is based on Ontolingua [54] and represents a

synthesis of resource-based, function-based, connection-

based and structure-based configuration approaches. This

ontology is a kind of meta-ontology which includes

modeling concepts quite similar to the concepts pre-

sented in this paper. The goal of [53] was to present

an ontology including major modeling concepts needed

for the design of configuration models. Compared to our

approach, the work of [53] does not indicate relationships

to industrial standards. Furthermore it remains unclear to

what extent the used language supports the formulation

of configuration domain-specific constraints.

Semantic Web. OIL [55] and DAML+OIL [56] are

ontology representation languages developed within the

context of the Semantic Web [57]. These languages

enable the design of ontologies on a formal basis (des-

cription logics). Triggered by the requirement for more

flexibility and expressiveness of those languages there

are ongoing efforts to increase the expressiveness of

Web ontology languages. The CIF (Constraint Inter-

change Format) [58] is an approach with the goal to

provide constraint languages for the Semantic Web. [17]

point out that Semantic Web representation languages

are suitable for configuration knowledge representation,

however, an additional language is needed supporting an

intuitive formulation of constraints on product structures,

particularly the definition of aggregation functions and

complex structural properties is not supported by state-

of-the-art Semantic Web knowledge representation lan-

guages [17]. W.r.t. ongoing efforts to extend DAML+OIL

or its successor OWL [59], the work of [17] contributes

a set of criteria which must be fulfilled in order to

apply those languages for fully-fledged configuration

knowledge representation. It follows that standard Se-

mantic Web knowledge representation languages must be

extended in order to cover the modeling capabilities of

configuration ontologies such as [53]. In this paper it has

been shown that UML/OCL provides these capabilities.

Product knowledge representations. The Universal

Standard Products and Services Classification Code

(UNSPSC) (www.unspsc.org) is a coding system or-

ganized as a taxonomy for products. Frequently used

levels of the taxonomy are segments denoting logical

aggregations of families (e.g., computer equipment),

families as groups of interrelated categories (e.g., soft-

ware), classes as a group of elements sharing a common

usage (e.g., text-editing), and commodity as a group of

substitutable products (e.g., Linux texteditors). Roset-

taNet (www.rosettanet.org) classification schemes are
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restricted to the categorization of electronic equipment.

RosettaNet has two taxonomy levels (product groups and

products). Both standards focus on the categorization of

products but do not provide any mechanisms for build-

ing models of generic product structures. Further stan-

dards related to product data representation are cXML

(commerce XML - www.cxml.org), and xCBL(Common

Business Library - www.xcbl.org) which neither provide

any mechanisms for the representation of configurable

products or services [20]. The BMEcat 2.0 standard

[20] makes a claim on integrating configuration know-

ledge representation formalisms. However, the focus of

BMEcat is to support catalog creators to extend fixed

products with simple configuration mechanisms in an

easy way. Rules on product structures are definitely out

of the scope of the BMEcat standard. The standard for

the exchange of product model data (STEP) [21] takes

into account all aspects of a product including geometry

and organizational data [23]. The idea of STEP is to

provide means for defining application-specific concepts

for modeling products in a particular application do-

main. These application-specific concepts are denoted as

application protocols, which are defined using the EX-

PRESS data definition language (application protocols

are EXPRESS schemas). EXPRESS includes a set of

modeling concepts useful for representing configurable

products, however, it cannot be used to define enterprise-

specific configuration models without leaving the STEP

standard (the reason is that STEP standards define a fixed

(although generic) product structure, i.e., they do not

provide the freedom to design any type of configuration

model). If a company models its products according to

STEP, it should use an application protocol in order

to conform to the STEP standard. As pointed out in

[23], EXPRESS itself can in principal be applied for

configuration knowledge representation. The focus of the

presented work is to show the application of Software

Engineering standard representation languages in order

to ease the integration of knowledge-based configuration

technologies. The comparison of EXPRESS representa-

tions with the modeling concepts presented in this paper

is the subject of future work.

Model Driven Architecture. The Model-Driven Ar-

chitecture (MDA) [27], [38], [28], [29] provides a

solid basis (it is based on a number of industry

standards) for knowledge interchange in the domain

of knowledge-based configuration. In this architec-

ture, different transformations between model levels

are possible (e.g., PIM2PIM, PIM2PSM, PSM2PIM,

or PSM2SourceCode). Within the scope of our work,

PSM2SourceCode transformations have been developed

in order to generate configuration knowledge bases and

PSM2PIM transformations to provide an interchangeable

version of a configuration knowledge base. An appli-

cation of the MDA in the domain of smart cards is

presented in [60], where the customer-specific confi-

guration of smart cards (both software and hardware

configuration) is organized in two steps (domain confi-

guration (e.g., credit card, SIM card) and card issuers

configuration (e.g., banks)). Configuration models of

smart cards are organized in conformity with the MDA,

i.e., PIMs of smart cards, PSMs of smart cards and finally

customer-specific configurations. Unfortunately, [60] do

not present their approach to configuration knowledge

representation in detail.

Object Constraint Language (OCL). OCL [26] in-

cludes the concepts needed for the construction of con-

figuration knowledge bases. Experiences from projects

show that it is an excellent basis for configuration know-

ledge representation. The availability of such a standard-

ized language is a crucial success factor for integrating

configuration technologies into industrial software deve-

lopment processes and for configuration knowledge base

integration. In [47] experiences from the application of

OCL in industrial software development processes are

discussed. In principle, OCL seems to be quite useful,

and software engineers and even domain experts with a

technical background are able to apply OCL for stating

formal constraints on a given object model. In partic-

ular, software engineers accepted OCL because of the

similarities of its syntax to object-oriented programming

languages. However, [47] point out that additional, more

intuitive concepts are needed in order to support effective

introduction of OCL constraints. They have made the

observation that software engineers tried to change an

object’s state, what is prohibited by the declarative
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semantics of OCL. In order to tackle this challenge,

[47] introduce the notion of constraint schemes. These

schemes represent parametric constraints, which can be

differently instantiated, depending on the actual situation.

For example, a constraint schema could restrict the

occurrence of objects of a class to an upper bound. In

this case, the upper bound is represented by a variable

which must be instantiated in order to instantiate the

corresponding OCL constraint. The graphical interfaces

for requires, incompatible, and resource constraints pro-

vided by the modeling environment can be interpreted

as a type of constraint schemes.

VIII. CONCLUSIONS

The use of the Object Constraint Language (OCL)

and the Unified Modeling Language (UML) as stan-

dard representation languages for building platform-

independent and platform-specific configuration mod-

els has been demonstrated. These models are specified

conforming to the model development process defined

by the Model Driven Architecture (MDA) which is an

industrial standard framework for model development

and interchange. Such a standardized representation of

configuration knowledge is a foundation for the effective

integration of configuration technologies into software

environments dealing with the management of complex

products and services. Configuration systems supporting

such a standardized representation ease their integration

into existing software environments and thus signifi-

cantly improve the technological support for the imple-

mentation of a company’s Mass Customization strategy.
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