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Abstract

As drought is among the natural hazards which affects people and economies worldwide
and often results in huge monetary losses sophisticated methods for drought monitoring
and decision making are needed. Several different approaches to quantify drought have
been developed during past decades. However, most of these drought indices suffer from
different shortcomings and do not account for the multiple driving factors which promote
drought conditions and their inter-dependencies. We provide a novel methodology for the
calculation of (multivariate) drought indices, which combines the advantages of existing
approaches and omits their disadvantages. Moreover, our approach benefits from the
flexibility of vine copulas in modeling multivariate non-Gaussian inter-variable dependence
structures. A three-variate data example is used in order to investigate drought conditions
in Europe and to illustrate and reason the different modeling steps. The data analysis
shows the appropriateness of the described methodology. Comparison to well-established
drought indices shows the benefits of our multivariate approach. The validity of the new
methodology is verified by comparing the spatial extent of historic drought events based
on different drought indices. Further, we show that the assumption of non-Gaussian
dependence structures is well-grounded in this real-world application.
Keywords: standardized drought indices, dependence modeling, drought modeling, vine
copulas
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1 Introduction

The challenging field of drought research has a long history. Scientists of different disci-
plines described and defined different drought concepts and tried to measure, quantify and
predict drought events and their impacts. There exist several review papers trying to de-
pict/portray the state of the art and different developments in drought modeling. One of
the most recent and comprehensive ones is the review of drought concepts by Mishra and
Singh (2010). They state that “drought is best characterized by multiple climatological
and hydrological parameters”. Different drought types like meteorological drought (lack of
precipitation), hydrological drought (declining water resources), agricultural drought (lack
of soil moisture), socio-economic drought (excess demand for economic good(s) due to
shortfall in water supply) or ground water drought (decrease in groundwater recharge,
levels and discharge) are driven by different variables/phenomena. Recently, there have
been several attempts to develop multivariate drought indicators (see e.g. Kao and Govin-
daraju, 2010; Hao and AghaKouchak, 2013, 2014; Farahmand and AghaKouchak, 2015),
combining at least two different variables. Subsequently, we motivate and present a statis-
tically sound approach for the calculation of standardized uni- and multivariate drought
indices for arbitrary (sets of) drought relevant variables. The multivariate indices use so
called vine copulas to flexibly model the variable dependencies.

Copulas are explained best by Sklar’s Theorem (Sklar, 1959). Let F be a multivariate
(d-dimensional) distribution function and F1, . . . , Fd the corresponding marginals. Then
there exists a copula C, such that F (x) = C (F1(x1), . . . , Fd(xd)), where x = (x1, . . . , xd)

′

is the realization of a (continuous) random vector X ∈ R
d. A copula itself is a d-

dimensional distribution function on the unit hypercube with uniformly distributed mar-
gins. It captures all dependency information between the marginals of the corresponding
multivariate distribution function. Vine copulas are d-dimensional copula constructions
built on bivariate copulas only (see Aas et al., 2009; Dißmann et al., 2013). They allow
very flexible modeling of non-Gaussian, asymmetric dependency structures due to their
modularity.

The most popular drought indices are the Palmer Drought Severity Index (PDSI)
(Palmer, 1965) respectively its self-calibrating version (SC-PDSI) (Wells et al., 2004) and
the Standardized Precipitation Index (SPI) (McKee et al., 1993; Edwards and McKee,
1997). Drought indices in general should quantify deviations from normal conditions,
i.e. they should take seasonality into account. Often negative/small values reflect dry
conditions and positive/high values wet conditions. They usually require long data records
to yield meaningful results.

The PDSI is calculated based on precipitation and temperature and assumes a sim-
plifying water balance model (for details see Palmer, 1965). The major criticisms on the
PDSI are its lack of applicability and comparability for different climatic regions. Some
of its major shortcomings vanished with the SC-PDSI, whose parameters are determined
based on local climatic conditions rather than on some fixed locations in the US, i.e.
it allows for spatial comparison. One further criticism of the PDSI is its autoregressive
structure. Present conditions depend on past conditions, however the time interval which
influences the present varies across space but cannot be accessed from the model.

In contrast to the PDSI, other drought indices like the SPI (McKee et al., 1993; Ed-
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wards and McKee, 1997) are of probabilistic nature. This allows risk analysis, classification
and frequency analysis of drought events. Two advantages of the purely precipitation
based SPI over the PDSI are its standardization (standard normal distribution of SPI
values) and the concept of time scales, which allows to set the time interval which has
an influence on the present (drought) conditions. The SPI methodology can be applied
to other variables as well (see e.g. the Standardized Runoff Index of Shukla and Wood,
2008) and the standardization allows for comparison of such standardized indices and
across space and time. A criticism is that the SPI assumes a parametric distribution to
model the data. However, a good fit to the data (especially in the distribution tails)
is never guaranteed and in fact is not possible for many locations (e.g. in the Sahara).
Moreover, temporal dependencies in the data or those introduced through the time scale
cause the fitting to be biased.

As an enhancement of the SPI the Standardized Precipitation Evapotranspiration
Index (SPEI) (Vicente-Serrano et al., 2010) quantifies drought based on multivariate
input. Instead of precipitation a climatic water balance (precipitation minus potential
evapotranspiration) is considered to quantify dry/wet conditions. The SPEI allows for
trends in the time series data such that these are passed on to the index (to include effects
of climate change).

Kao and Govindaraju (2010) present a (to our knowledge) first multivariate copula-
based drought index, the Joint Deficit Index (JDI). They apply it to precipitation and
streamflow time-series, but application to other variables is possible. Marginals are mod-
eled using the SPI approach. Empirical copulas are used to (non-parametrically) estimate
the dependence structure of the marginals representing the different time scales of one
to twelve months. Finally, the joint deficit index combines the drought information cap-
tured by different time scales using the Kendall distribution function to assess the joint
probability. The results are transformed to a standard normal distribution. Note, that
for meaningful estimation of empirical copulas long data records are required.

Farahmand and AghaKouchak (2015) introduce the Standardized Drought Analy-
sis Toolbox (SDAT), with the aim to provide a generalized approach to derive non-
parametric standardized drought indices. Based on precipitation and soil moisture time
series, they present a multivariate approach to drought modeling. Enhancing the SPI idea
to bivariate data (based on non-parametric estimation), a bivariate empirical distribution
is fitted to the input data and the joint cumulative probability is transformed with the
inverse CDF of a standard normal distribution. Note however, that this approach doesn’t
yield a real standardization. Usually negative values of the proposed index are more
probable, since the joint cumulative probability is not uniformly distributed on [0, 1].

Summarizing the lessons learned from the sophisticated drought indices revised above,
we state that (univariate) drought indices should . . .

PROBAB be probabilistic (allow risk/frequency analysis and classification of drought events),
i.e. no assumptions about the characteristics of the underlying system have to
be made.

ARBVAR be applicable to arbitrary drought relevant variables.

DRYWET be negative/positive to indicate dry/wet conditions.
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Table 1: Comparison of different drought indices (SC-PDSI, SPI/SPEI, JDI, SDAT) and
their properties: + has this property, − doesn’t have this property, ? no definite answer
possible or not applicable (e.g. because the corresponding model is not probabilistic).

SC-PDSI SPI/SPEI JDI SDAT
PROBAB − + + +
ARBVAR − ? + +
DRYWET + + + +
SMALLS − − − −
TRENDS + + + +
SEASON + + + −
TIMDEP ? − + −
NPDIST ? − − +
STCOMP ? + + −
TSCALE − + − +
MULTEX − ? + +

SMALLS yield meaningful results for (monthly) data records for 10 years and more (i.e.
minimum sample size = 120).

TRENDS reflect trends in the input data.

SEASON model and eliminate seasonality.

TIMDEP model and eliminate temporal dependencies before a probability distribution is
fitted.

NPDIST use non-parametric distribution estimates for the (transformed) underlying vari-
able (better fit, computationally efficient).

STCOMP be standardized to enable comparison over space/time and with other indices.

TSCALE allow for computation/aggregation at different time scales l.

MULTEX be extendable to multivariate input (different types of drought).

Table 1 summarizes different drought indices and lists which characteristics they fulfill.
Subsequently, we introduce a novel approach to drought modeling which addresses the
above criteria step by step.

2 Data

For the purpose of application and illustration we utilize the publicly available Climatic
Research Unit (CRU) time series (TS) data (version 3.21, see Jones and Harris, 2013),
which is monthly climatic data on a 0.5◦×0.5◦ (longitude × latitude) grid. We restrict
this (model-calculated) data set to the area (11◦W, 32◦E)×(35◦N, 71◦N) covering most of
Europe (see gray shaded area in Figure 1). This results in data for S = 3380 grid cells. For
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the calculation of drought indices we use the variables potential evapotranspiration (PET),
precipitation (PRE) and vapor pressure deficit (VPD) for the years 1961 to 2010 (T = 600
months). VPD is calculated based on mean temperature (TMP) and vapor pressure (VAP) as
VPD = SVP−VAP, where SVP = 6.1078 ·10[(7.5·TMP)/(TMP+237.3)] is the saturated vapor pressure
(see Murray, 1967). The five pixels C, N, E, SE and SW highlighted in Figure 1 are used
for subsequent illustrations. Their coordinates are provided in the figure. Time series
plots corresponding to these five locations of the variables PET, PRE, VPD as well as SPI
and SPEI are provided in the supporting information (see Section 7.1).
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Figure 1: Study area and location of pixels used for illustration.

3 Univariate standardized indices

In a first step we seek to develop and illustrate a statistically sound (PROBAB) generalized
modeling framework for (univariate) standardized indices. These indices should have the
properties which were discussed in the introduction (Section 1).

3.1 Variable transformation

Let us now consider a time series xtk , k = 1, . . . , T , for an arbitrary drought relevant
variable (ARBVAR). Small values should always indicate dry and big values wet conditions
(DRYWET). To ensure that, we change the sign of the time series beforehand if it was the
other way round. Consider for instance potential evapotranspiration (PET). A high value
corresponds to potentially high evaporation and transpiration, i.e. to dry conditions. For
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low values the opposite is observed. Therefore we need to multiply the PET (and also the
VPD) time series by −1.

Subsequent steps include a month-wise standardization of the time series. Hence, it
is preferable that the distribution of the time series for each month is not skewed. To
achieve that, we consider monotone and continuous transformations. Figure 2 shows the
spatial variation of skewness for the month-wise time series of vapor pressure deficit (VPD).
We observe negative and positive skewness and a variation over the year, which supports
a month-wise modeling approach.
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Figure 2: Empirical skewness estimates for the month-wise vapor pressure deficit (VPD)
time series.

Let each time point tk, k = 1, . . . , T , be a 2-tupel (mk, yk), where mk ∈ {1, . . . , 12}
(1 = January, . . . , 12 = December) represents the month and the integer yk ∈ Z the year
corresponding to tk. Then we consider the month-wise time series xm := (xtk)k∈K(m) ={
x(m,yk), k ∈ K(m)

}
,m = 1, . . . , 12, where the index set for monthm is defined asK(m) :=

{k : mk = m}.
To eliminate/reduce skewness in the (12) month-wise time series xm, m = 1, . . . , 12,

we apply power transformations. An appropriate family of transformations, similar to the
famous Box-Cox transformations, which is defined not only for positive values is the Yeo
and Johnson (2000) transformation ψ : R× R → R, defined as

ψ (λ, x) =





(
(x+ 1)λ − 1

)
/λ if x ≥ 0, λ 6= 0

ln(x+ 1) if x ≥ 0, λ = 0

−
(
(−x+ 1)2−λ − 1

)
/(2− λ) if x < 0, λ 6= 2

− ln(−x+ 1) if x < 0, λ = 2.
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Figure 3: Yeo and Johnson transformation parameter λ for the month-wise VPD time
series.

Figure 3 maps the Yeo and Johnson transformation parameter λ for the month-wise
VPD time series. The observed spatial paterns resemble those observed for skewness in
Figure 2.

3.2 Elimination of seasonality

Often (climatic) variables are subject to seasonal fluctuations (see e.g. PET, Figure 4).
Moreover, they can be subject to trends (e.g. due to climate change). TRENDS are not
removed since a drought index should be able to detect changes in drought frequency and
intensity due to climate change. Since drought is considered as a (negative) deviation
from ‘normal’ conditions (anomaly), we remove seasonality (SEASON). This is accounted
for by month-wise modeling of the time series xtk , k = 1, . . . , T . However, to ensure that
the sample size (SMALLS) for fitting a distribution is not too small, our deseasonalization
procedure allows to recompose the resulting anomalies to a single time series.

To eliminate seasonality, we model the month-wise mean µm separately for each of the
12 time series xm, m = 1, . . . , 12. We estimate it as

µ̂m :=
1

|K(m)|
∑

k∈K(m)

x(m,yk), m = 1, . . . , 12. (1)

Figure 4 illustrates the month-wise modeling (1) of potential evapotranspiration (PET).
Least-squares estimation ensures that

∑
k∈K(m)

(
x(m,yk) − µ̂m

)
= 0 for all m = 1, . . . , 12.

Thus also the anomalies atk := xtk − µ̂mk
, k = 1, . . . , T , are centered around 0 (i.e.∑T

k=1 atk = 0). Hence, seasonal deviations from the annual mean could be eliminated.
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Figure 4: Month-wise modeling of PET: The original time series (black, 1991-2010, for
pixel C as given in Figure 1) is superimposed by the corresponding month-wise mean fit
(grey, cp. Equation (1)). The month-wise time series are illustrated by points colored
differently for each month. The modeled month-wise means are visualized by lines in the
corresponding color.

Also the variance of the time series may be subject to seasonality, i.e. in some months
the time series may deviate more from its mean compared to other months. The color-
coding in Figure 4 reveals inhomogeneity of the variance. To quantify this seasonal hetero-
geneity of the time series atk , k = 1, . . . , T , we estimate month-wise standard deviations
as

σ̂m :=

√
1

|K(m)| − 1

∑

k∈K(m)

a2(m,yk)
, m = 1, . . . , 12,

where | · | is the cardinality. To obtain a homogenized time series we compute the stan-
dardized anomalies (residuals) rtk := atk/σ̂mk

, k = 1, . . . , T .

3.3 Elimination of temporal dependencies

Apart from seasonality, time series often feature temporal dependence (TIMDEP). Such
serial dependencies can be captured by autoregressive moving-average models (see e.g.
Box et al. (2008)). For a (deseasonalized, homogeneous, zero-mean) time series rtk , k =
1, . . . , T , the autoregressive moving-average model ARMA(p, q) with AR-order p ∈ N0
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and MA-order q ∈ N0 is defined as

rtk =

p∑

j=1

φjrtk−j
+

q∑

j=1

θjεtk−j
+ εtk ,

where the error terms εtk are i.i.d. N(0, σ2) distributed. Note, that for p or q equal to
0 the corresponding summands are neglected. For adequate choice of the orders p and q
and estimates φ̂j, j = 1, . . . , p, and θ̂j, j = 1, . . . , q, of the corresponding parameters the

model residuals ǫtk := rtk −
∑p

j=1 φ̂jrtk−j
−∑q

j=1 θ̂jǫtk−j
, k = 1, . . . , T , are approximately

temporally independent. For the variables at hand (PET, PRE, VPD) p = 1 and q = 0 are
an adequate choice.

3.4 Transformation to standard normal distribution

As the assumption of established standardized drought indices like SPI and SPEI of a
parametric distribution model for the data performs bad, it seems appropriate to use the
(non-parametric) empirical distribution (NPDIST) function F̂T (x) :=

1
T

∑T
k=1 1{ǫtk ≤ x} of

the data respectively the residuals ǫtk , k = 1, . . . , T , resulting from the previous modeling
step. Here 1{A} is the indicator function, which equals 1 if the event A is true and
0 otherwise. Note that for fitting a distribution (no matter if parametric or not) to a
sample ǫtk , k = 1, . . . , T , it is a critical assumption that the sample originates from the
same distribution and is i.i.d. We ensured the i.i.d. assumption in the previous step by
eliminating the temporal dependencies.

We use the estimated distribution F̂T to transform our residuals ǫtk , k = 1, . . . , T ,
to the u-scale, i.e. to be (approximately) uniformly distributed on the interval [0, 1].
This transformation is called probability integral transform (PIT). We calculate utk :=

T/(T + 1)F̂T (ǫtk) = rank (ǫtk) /(T + 1), k = 1, . . . , T . We multiply by T/(T + 1) to
avoid any utk = 1. Further, we transform to the z-scale, calculating ztk := Φ−1 (utk),
k = 1, . . . , T , using the inverse PIT based on the CDF Φ of a standard normal distribution.
It holds that ztk , k = 1, . . . , T , is (approximately) independent and identically standard
normal distributed (STCOMP).

3.5 Standardized indices on different time scales

McKee et al. (1993) introduced the concept of time scales (TSCALE) to make their drought
index (the SPI) applicable to different types of drought. We adopt this concept, however
we perform the temporal aggregation in the end of the above described modeling process,
in order not to violate the independency assumption for fitting a probability distribution
to the residuals. This has also the advantage of being computationally more efficient. We
need to perform the different modeling steps of Sections 3.1-3.4 only once, after that we
are able to calculate the index on arbitrary time scales.

The (approximately) temporally independent standard normal distributed time series
ztk , k = 1, . . . , T , from above is already a standardized index with time scale l = 1.
The normal distribution has the advantage that a sum of independent normal distributed
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Table 2: Dryness and wetness categories.

cumulative
category probability quantile

W4 exceptionally wet 0.98-1.00 +2.05 < SI < +∞
W3 extremely wet 0.95-0.98 +1.64 < SI ≤ +2.05
W2 severely wet 0.90-0.95 +1.28 < SI ≤ +1.64
W1 moderately wet 0.80-0.90 +0.84 < SI ≤ +1.28
W0 abnormally wet 0.70-0.80 +0.52 < SI ≤ +0.84
D0 abnormally dry 0.20-0.30 −0.84 < SI ≤ −0.52
D1 moderately dry 0.10-0.20 −1.28 < SI ≤ −0.84
D2 severely dry 0.05-0.10 −1.64 < SI ≤ −1.28
D3 extremely dry 0.02-0.05 −2.05 < SI ≤ −1.64
D4 exceptionally dry 0.00-0.02 −∞ < SI ≤ −2.05

random variables is again normally distributed. We use this property to calculate stan-
dardized indices for time scales l ≥ 1. The sum

∑l
j=1 ztk+1−j

of standard normal variables
is normally distributed with mean 0 and variance l. Hence, we obtain a standardized index
with time scale l as SIl(tk) :=

1√
l

∑l
j=1 ztk+1−j

, k = 1, . . . , T .

To classify the values of standardized indices we use the dryness/wetness categories
as defined in Table 2 based on quantiles (cp. Svoboda et al., 2002). A comparison of
precipitation (PRE) based drought indices for different time scales is provided by Figure
5. For the selected location we identify persistent dry periods during the years 1976,
1989− 1991, 1992− 1993 and 2003− 2004. Whereas the index with time scale 1 identifies
single (agricultural) drought months, higher time scales (e.g. 6, 12) allow to identify
persistent periods of dryness (hydrological drought).

4 Multivariate standardized indices

Subsequently, we provide an extension of the methodology introduced in Section 3 to mul-
tivariate standardized drought indices (MULTEX). This extension is based on vine copulas
(see Aas et al., 2009) used for dependency modeling of the involved variables. The de-
pendence parameters will be estimated using a semi-parametric estimation procedure (see
Genest et al., 1995). Other copula based drought indices were introduced by Farahmand
and AghaKouchak (2015) and Kao and Govindaraju (2010).

4.1 Marginal models

As copulas allow separate modeling of margins and dependence structure, we first model
the margins according to Sections 3.1-3.4 as in the univariate case. We transform the
input data (see Section 3.1), then we eliminate seasonality (see Section 3.2) and temporal
dependencies (see Section 3.3) and estimate the distribution of the remaining residuals
non-parametrically (see Section 3.4). This enables transformation to the u-scale (copula
data) and after that copula based dependency modeling.



Standardized drought indices: A novel uni- and multivariate approach 11

S
I(

l=
1
)

1975 1980 1985 1990 1995 2000 2005

−3

−2

−1

0

1

2

3

D4
D3
D2
D1
D0

W0
W1
W2
W3
W4

S
I(

l=
3
)

1975 1980 1985 1990 1995 2000 2005

−3

−2

−1

0

1

2

3

D4
D3
D2
D1
D0

W0
W1
W2
W3
W4

S
I(

l=
6
)

1975 1980 1985 1990 1995 2000 2005

−3

−2

−1

0

1

2

3

D4
D3
D2
D1
D0

W0
W1
W2
W3
W4

S
I(

l=
1
2
)

1975 1980 1985 1990 1995 2000 2005

−3

−2

−1

0

1

2

3

D4
D3
D2
D1
D0

W0
W1
W2
W3
W4

Figure 5: Time series (1975 - 2004, for pixel C Figure 1) of standardized drought index
(SI) based on PRE, for time scales l = 1, 3, 6 and 12, repectively. The color-coding reflects
the severity of wetness/dryness according to the different categories specified in Table
2. For better identification of dry/wet periods points at the top/bottom of the panels
(colored accordingly) indicate points in time of wet/dry conditions.

4.2 Vine copula based dependency modeling

Let now u := (u1, . . . ,ud) be the copula data obtained from the marginal models corre-
sponding to d different drought relevant variables, where uj = (uj,tk)k=1,...,T , j = 1, . . . , d,
and uj,tk is the copula data corresponding to variable j at time tk. In a second (paramet-
ric) step we select and estimate a vine copula C for this data. We illustrate this procedure
based on a d = 3 dimensional example. For a more general explanation of vine copulas
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see Aas et al. (2009) and Dißmann et al. (2013).

T1 2=PET 1=VPD 3=PRE

1,2

VPD,PET

1,3

VPD,PRE
1=VPD,2=PET 1=VPD,3=PRE

2,3;1

PET,PRE;VPD

T2

Figure 6: Selected vine tree structure.

Let now d = 3 and 1 = VPD, 2 = PET and 3 = PRE. Generally, the structure of
vine copulas is organized using a nested set of trees (graphs) fulfilling certain conditions.
The edges of these trees correspond to bivariate copulas which are the building blocks
of the vine copula. Selecting the tree structure as given in Figure 6, we explicitly model
the bivariate dependence structures (copulas) C1,2, C1,3 (tree T1) and C2,3;1 (tree T2) for
the variable pairs (VPD,PET), (VPD,PRE) and (PET,PRE) given VPD, respectively. Here C2,3;1

denotes the pair-copula associated with the conditional distribution of the variable pair
(2, 3) given variable 1. Further, we select pair-copula families for the pairs above and
denote their parameters as θ := (θ1,2, θ1,3, θ2,3;1). Then the vine copula density c is given
as

c(u1, u2, u3;θ) = c1,2(u1, u2; θ1,2) · c1,3(u1, u3; θ1,3)
· c2,3;1(h2|1(u2, u1; θ1,2), h3|1(u3, u1; θ1,2); θ2,3;1),

where c1,2, c1,3 and c2,3;1 are the pair-copula densities corresponding to the copulas C1,2,
C1,3 and C2,3;1. The involved h-functions are defined as hb|a(ub, ua; θ) := Cb|a(ub|ua; θ),
where Cb|a denotes the conditional distribution function of Ub given Ua. The tree structure
can be saved in a triangular, so called R-vine matrix. For the given three dimensional
example a valid R-vine matrix is given as



3 0 0
2 2 0
1 1 1


 respectively



PRE 0 0
PET PET 0
VPD VPD VPD


 .

Whereas the second column encodes the pair (VPD,PET), the first column contains the
pairs (VPD,PRE) and (PET,PRE;VPD). Other orders of these variables are possible. For a
comparison of different orders see the supporting information (Section 7.1).

For the pair-copula family selection we can choose among a variety of bivariate copula
families, amongst others among the Gaussian (N), Student-t (t), Clayton (C), Gumbel
(G) Frank (F) and Joe (J) family, which all feature different dependence structures and
properties. Also rotated versions of the Clayton, Gumbel and Joe copula are considered
to capture negative asymmetric dependencies. The pair-copulas are selected separately
(according to the BIC) starting in tree T1. Their parameters are estimated at the same
time using maximum likelihood estimation. Before that a bivariate independence test
(Genest and Favre, 2007) can be performed, to see if an independence copula should be
selected. For more details on different (rotated) copula families and their selection we
refer to Brechmann and Schepsmeier (2013).

Figure 7 visualizes for all spatial pixels under consideration which dependence struc-
tures were selected for the vine tree structure specified above (Figure 6). For the pair
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Figure 7: Spatial variation in the pair-copula families selected for the pairs specified in
Figure 6.

(VPD,PET) the elliptical and symmetric Gaussian (N) and Student-t (t) copula were se-
lected most over Europe. Where the Student-t copula was selected extreme high or low
VPD and PET anomalies occur jointly, since the Student-t copula allows for dependence
in the upper and lower distribution tails, so called tail-dependence. For a large area on
the Iberian Peninsula (G) extreme wet conditions for both variable pairs seem to occur
simultaneously, since the Gumbel copula allows for upper tail dependence. For most of
Scandinavia (SG) we observe the opposite, high correlation of extreme dry conditions,
since the survival/180◦ rotated Gumbel copula allows for lower tail dependence. For the
other two (conditioned) pairs similar interpretations can be made. We observe that for
most pixels non-Gaussian dependence structures were selected.

4.3 Computation of multivariate indices

Based on the previously selected vine copula C for the data u = (u1, . . . ,ud), we transform
u to i.i.d. uniform data on [0, 1], using the so called Rosenblatt (1952) transformation, a
multivariate probability integral transform. The Rosenblatt transform v := (v1, . . . ,vd)
of u is defined as

v1,tk := u1,tk ,

v2,tk := C2|1(u2,tk |u1,tk),
. . .

vd,tk := Cd|1,...,d−1(ud,tk |u1,tk , . . . , ud−1,tk), k = 1, . . . , T

where Cj|1,...,j−1, is the conditional cumulative distribution function for variable j given
the variables 1, . . . , j − 1, for all j = 2, . . . , d. For vine copulas the order of the variables
is determined by the vine tree structure respectively the R-vine matrix. For details on
the computation of the Rosenblatt transform for vine copulas see Schepsmeier (2015).

Generally speaking, application of the Rosenblatt transform to our d dependent vari-
ables yields independent information about dry/wet conditions captured in these vari-
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ables. v1 incorporates the same information as an univariate drought index calculated
according to Section 3 based on variable 1. vj, j = 2, . . . , d, provide information on
dry/wet conditions identified by variable j, conditioned on the dryness/wetness informa-
tion provided by the previously considered variables 1, . . . , j − 1.

For our three dimensional example from above we compute vVPD,t = uVPD,t, which
represents the dry-/wetness information captured in the variable VPD for time point t.
vPET,t = CPET|VPD(uPET,t|uVPD,t) provides additional information based on PET knowing about
VPD in that particular time point t. Its calculation involves the pair-copula CVPD,PET. The
calculation of vPRE,t = CPRE|VPD,PET(uPRE,t|uVPD,t, uPET,t) is a bit more involved. We calculate
vPRE,t = CPRE|PET;VPD(CPRE|VPD(uPRE,t|uVPD,t)|CPET|VPD(uPET,t|uVPD,t)), based on the pair-copulas
CPRE,PET;VPD, CVPD,PRE and CVPD,PET.

Subsequently we consider two different approaches to join this multivariate drought
information into one index. For comparison, we provide a third approach which assumes
multivariate normality.

Method A (aggregation) This approach allows for a weighting with weights w =
(w1, . . . , wd), wj > 0, for the different variables j = 1, . . . , d. We calculate the standardized
multivariate index (SMI) with time scale l as

SMIAl (w; 1, . . . , d)(tk) :=
1√
lw′w

l∑

i=1

d∑

j=1

wjΦ
−1

(
vj,tk+1−i

)
.

Method M (multiplication) For the second approach we exploit that the multivari-
ate dependence structure of v = (v1, . . . ,vd) is represented by the independence copula
CΠ(v1, . . . , vd) =

∏d
j=1 vj. Hence, we calculate ṽtk :=

∏d
j=1 vj,tk , k = 1, . . . , T . To obtain

a standardized (multivariate) index we proceed as in the univariate case (see Sections 3.4
and 3.5). We calculate the rank transformation ũtk := rank (ṽtk) /(T + 1), k = 1, . . . , T ,
transform to the z-scale and calculate the SMI with time scale l as

SMIMl (1; 1, . . . , d)(tk) :=
1√
l

l∑

i=1

Φ−1
(
ũtk+1−i

)
,

where no weighting is allowed, i.e. w = 1 := (1, . . . , 1).

Method N (normal) Let z be the marginal transformation of u to the z-scale and con-
sider a vector of weightsw = (w1, . . . , wd), wj > 0. Assuming z to be a sample from a zero
mean multivariate normal distribution, we can conclude that the linear transformation
w

′
z is a sample from a zero mean univariate normal distribution. We estimate the sample

variance of w′
z by S := 1

T−1

∑T
k=1

(∑d
j=1wjΦ

−1(uj,tk)
)2

and calculate a (weighted) SMI

with time scale l as

SMINl (w; 1, . . . , d)(tk) :=
1√
l · S

l∑

i=1

d∑

j=1

wjΦ
−1

(
uj,tk+1−i

)
.
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Table 3: Maximum spatial extent of drought events classified as extreme (D3) or excep-
tional (D4) according to SPI6, SPEI6, SMIA6 (1; VPD, PET, PRE) and SMIM6 (1; VPD, PET, PRE).

univariate multivariate
SPI6 SPEI6 SMIA SMIM

event max. % area max. % area max. % area max. % area
1976 07.1976 31.0% 08.1976 28.4% 08.1976 28.7% 08.1976 24.1%
1990 03.1990 18.3% 03.1990 21.3% 05.1990 25.7% 05.1990 36.1%
2003 08.2003 21.9% 08.2003 37.2% 08.2003 50.7% 08.2003 46.9%

5 Application

To measure pair-wise dependence we use the rank-based association measure Kendall’s τ
(see e.g. Kendall, 1970). In Figure 8 we provide maps of Kendall’s τ between the univariate
drought indices SI6(VPD), SI6(PET) and SI6(PRE) and the (multivariate) drought indices
SMIN6 (1; VPD, PET, PRE), SMIA6 (1; VPD, PET, PRE), SMIM6 (1; VPD, PET, PRE), SPI6 and SPEI6
on time scale 6, to see how the different variables contribute to the different drought
indices and how this contribution varies over space. Whereas the SMIN is dominated
by PET and VPD (high Kendall’s τ values all over Europe for the pairs (SMIN,SIVPD)
and (SMIN,SIPET)), the other indices are stronger associated with PRE (comparatively
high Kendall’s τ values for the pairs (SMIA,SIPRE), (SMIM,SIPRE), (SPI,SIPRE) and
(SPEI,SIPRE)). For SMIA and SMIM the overall association with PET and VPD is stronger
compared to SPI and SPEI (compare the corresponding pairs). Especially for SPI and
SPEI we observe spatial differences in Kendall’s τ (see all pairs involving SPI and SPEI).

To validate and compare the different drought indices we consider the three major
drought events of the 30 years period 1975 − 2004 which were observed in large parts of
Europe. These droughts occured in the years 1976, 1989/90 and 2003. We summarize
these events in Table 3. It gives the dates when the drought events (in terms of an
extreme (D3) or exceptional (D4) drought) reached their maximum spatial extent (i.e.
the month in which the area affected by a D3 or D4 drought reached it’s maximum)
and the corresponding percentage of area under consideration which was affected by an
extreme (D3) or exceptional (D4) drought.

Figure 9 compares time series of the percentage of area affected by drought accord-
ing to the different univariate and multivariate drought indices calculated following the
methodology described above, as well as SPI6 and SPEI6. Comparing the univariate in-
dices we see that those based on PET and VPD yield similar however not identical results.
During the three major drought events in 1976, 1989/90 and 2003 all three univariate in-
dices indicate extreme dry conditions for large parts of Europe. Comparison to the middle
panel shows that the multivariate indices successfully combine the drought information
captured in the single variables used for their calculation. For the years 1990 and 2003
abnormally high PET and VPD aggravate the dry conditions due to a lack of precipitation.
During the years 1994, 1995, 1999 and 2000 one can see that the vine copula based indices
are more conservative compared to SMIN , since they are not as much influenced by PET

and VPD. In terms of spatial extent the multivariate indices classify the drought events of
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Figure 8: Maps of Kendall’s τ for all combinations of the univariate drought in-
dices SI6(VPD) (SIVPD), SI6(PET) (SIPET) and SI6(PRE) (SIPRE) with the indices
SMIN6 (1; VPD, PET, PRE) (SMIN), SMIA6 (1; VPD, PET, PRE) (SMIA), SMIM6 (1; VPD, PET, PRE)
(SMIM), SPI6 (SPI) and SPEI6 (SPEI).

1990 and 2003 as more severe compared to SPI and SPEI.

6 Conclusions and outlook

Comparison of the advantages and disadvantages of existing drought indices and the
flexibility of vine copulas in modeling multivariate dependence structures led to a novel
and flexibly applicable approach to calculate drought indices based on arbitrary sets of
drought relevant variables. This approach involves several well reasoned modeling steps
which we summarize in Figure 10.

Taking several drought drivers and their dependencies into account at the same time
our novel approach enables flexible modeling of different drought types and allows tailoring
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Figure 9: Percentage of area affected by a D3 or D4 drought according to SI6(VPD),
SI6(PET) and SI6(PRE) (upper panel), SMIN6 (1; VPD, PET, PRE), SMIA6 (1; VPD, PET, PRE) and
SMIM6 (1; VPD, PET, PRE) (middle panel), and SPI6 and SPEI6 (lower panel).

of drought indices to specific applications. An example would be the application of the
novel methodology in the field of ecology. Multivariate drought indices based on selected
variables could be calibrated to tree ring data to find good models for the response of
tree growth to climatic conditions. Moreover, the presented approach for the calculation
of severity indices is not restricted to drought. Applications to model for example the
degree of contamination of a water body due to different contaminants are feasible.

7 Supporting information

7.1 Accompanying figures and analyses

We provide figures and further analyses of the data at hand, visualizing/complementing
the presented methodology for drought index calculation. We address the following issues:
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Input: d time
series of drought
relevant vari-
ables (ARBVAR)

1. Variable
transforma-

tion (skewness
reduction, DRYWET)

2. Elimination
of seasonal-
ity (SEASON,

TRENDS, SMALLS)

3. Elimination of
serial dependence
(select AR-/MA-
order, TIMDEP)

4. Marginal
transformation
(PIT) to u-
scale/ copula
data (NPDIST)

5. Dependency
modeling (vine
copula selection,

Rosenblatt
transform, MULTEX)

Decision on:
method (N , A,
M), weights
w, time scale
l (TSCALE)

SMIAl (w; 1, . . . , d)SMINl (w; 1, . . . , d) SMIMl (1; 1, . . . , d) (STCOMP)

AN M

Figure 10: Modeling steps for multivariate drought index calculation.

1. Visualization of the data and its features

2. Testing of multivariate normality

3. Visualization of the area affected by drought according to the different indices

4. Visualization of the inter-index association

5. Visualization of drought index time series for selected locations

6. Comparison of different variable orders for the calculation of multivariate drought
indices

7. Effect of trends on multivariate drought indices

7.2 Software and data

Moreover, we provide an R software package (SIndices, version 1.0) which is an implemen-
tation of the presented methodology. It comes along with a detailed manual. Further, we
provide the R-code which was used to produce all results presented in the article and the
supporting information. The Climatic Research Unit (CRU) time series (TS) data (version
3.21, see Jones and Harris, 2013) on which all examples and computations are based can be
obtained from http://dx.doi.org/10.5285/D0E1585D-3417-485F-87AE-4FCECF10A992.

Acknowledgments

The first author was supported by the Deutsche Forschungsgemeinschaft (DFG) through
the TUM International Graduate School of Science and Engineering (IGSSE). All com-
putations were performed using the software environment R (R Core Team, 2015). To



Standardized drought indices: A novel uni- and multivariate approach 19

load the CRU data set we used the raster package (Hijmans, 2015). To handle spa-
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gueŕıa and Vicente-Serrano, 2013). For dependency modeling we used the VineCopula
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