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Abstract. The Standardized Precipitation Evapotranspiration Index (SPEI) was 

developed in 2010 and has been used in an increasing number of climatology and 

hydrology studies. The objective of this article is to describe computing options that 

provide flexible and robust use of the SPEI. In particular, we present methods for 

estimating the parameters of the log-logistic distribution for obtaining standardized 

values, methods for computing reference evapotranspiration (ET0), and weighting 

kernels used for calculation of the SPEI at different time scales. We discuss the use of 

alternative ET0 and actual evapotranspiration (ETa) methods and different options on the 

resulting SPEI series by use of observational and global gridded data. The results 

indicate that the equation used to calculate ET0 can have a significant effect on the SPEI 

in some regions of the world. Although the original formulation of the SPEI was based 

on plotting-positions Probability Weighted Moment (PWM), we now recommend use of 

unbiased PWM for model fitting. Finally, we present new software tools for 

computation and analysis of SPEI series, an updated global gridded database, and a real-

time drought-monitoring system. 
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1. Introduction 

The Standardized Precipitation Evapotranspiration Index (SPEI) was first 

proposed by Vicente-Serrano et al. (2010) as an improved drought index that is 

especially suited for studies of the effect of global warming on drought severity. Like 

the Palmer Drought Severity Index (PDSI), the SPEI considers the effect of reference 

evapotranspiration on drought severity, but the multi-scalar nature of the SPEI enables 

identification of different drought types and drought impacts on diverse systems 

(Vicente-Serrano et al., 2012, 2013). Thus, the SPEI has the sensitivity of the PDSI in 

measurement of evapotranspiration demand (caused by fluctuations and trends in 

climatic variables other than precipitation), is simple to calculate, and is multi-scalar, 

like the Standardized Precipitation Index (SPI). Vicente-Serrano et al. (2010, 2010b, 

2011, 2012) provided complete descriptions of the theory behind the SPEI, the 

computational details, and comparisons with other popular drought indicators such as 

the PDSI (Palmer, 1965) and the SPI (McKee et al., 1993).  

The procedure for calculating the SPEI is similar to that for the SPI. However, 

the SPEI uses “climatic water balance”, the difference between precipitation and 

reference evapotranspiration (P – ET0), rather than precipitation (P) as the input. The 

climatic water balance compares the available water (P) with the atmospheric 



2 

 

evaporative demand (ET0), and therefore provides a more reliable measure of drought 

severity than only considering precipitation. The climatic water balance is calculated at 

various time scales (i.e. over one month, two months, three months, etc.), and the 

resulting values are fit to a log-logistic probability distribution to transform the original 

values to standardized units that are comparable in space and time and at different SPEI 

time scales. 

Although the SPEI was only recently developed, it has been used in diverse 

studies that have analyzed drought variability (Potop, 2011; Paulo et al., 2012; Wei-

Guang et al., 2012; Li et al., 2012; Spinoni et al., 2013; Sohn et al., 2013), drought 

reconstruction (Allen et al., 2011), drought atmospheric mechanisms (Vicente-Serrano 

et al., 2011b; Boroneant et al., 2011; Seibert, 2012), climate change (Abiodun et al., 

2012; Wolf and Abatzoglou, 2011; Soo-Jin et al., 2012, Yu et al., 2013), and 

identification of drought impacts on hydrological (Lorenzo-Lacruz et al., 2010; McEvoy 

et al., 2012; Wolf, 2012), agricultural (Potop et al., 2012), and ecological systems (Deng 

et al., 2011; Toromani et al., 2011; Vicente-Serrano et al., 2010c; Vicente-Serrano, 

2012b, 2013a; Drew et al., 2012; Martin, 2012; Levesque et al., 2013; Cavin et al., 

2013; Barbeta et al., 2013). In addition, the SPEI has been used in drought monitoring 

systems (e.g., Fuchs et al., 2012). Several of these studies reported that the SPEI 

correlated better with hydrological and ecological variables than other drought indices 

in a variety of natural and managed systems. 

Several issues have appeared after extensive use of the SPEI in the past 2 years, 

and these have led to improved formulations of the SPEI. These improved formulations 

are related to: (i) the method that parameters of the log-logistic distribution are 

estimated to obtain SPEI values; (ii) the method used to calculate ET0; and (iii) the 

weighting kernel used for computation of climatic water balance at time scales larger 

than one month. In response, we have developed additional improvements: (iv) a set of 

computing tools for calculation and analysis of the SPEI, (v) an improved global 

gridded database, and (vi) an operative real-time global drought monitoring system 

based on the SPEI. 

Estimation of the log-logistic parameters is important because spatial and 

temporal comparability of drought indices is important for accurate drought analysis 

and monitoring (Nkemdirim and Weber, 1999). For this reason, it is necessary that SPEI 

series at different sites have the same average (x = 0) and Standard Deviation (SD = 1); 

the same is applicable to series of the SPEI recorded at the same location but at different 

time-scales. Parameter estimation can lead to bias and errors in variance, so the method 

used for estimation is very important. In Section 2 of this article, we identify some 

problems related to the plotting-positions Probability Weighted Moment (PWM) 

method used in the original formulation of the SPEI, and suggest use of an unbiased 

PWM as an alternative. 

The use of actual evapotranspiration (ETa) instead of the reference 

evapotranspiration (ET0) has been suggested in calculating drought indices. 

Computation of ETa, however, introduces a number of additional problems, and it is not 

totally clear whether ETa is a good variable to consider when estimating drought. Here 

we discuss on the use of ETa and ET0 for drought quantification and on particularly on 

the SPEI calculation. 

The original formulation of the SPEI suggested use of the Thornthwaite (Th) 

equation for estimation of ET0 (Thornthwaite, 1948). This equation only requires mean 

daily temperature and latitude of the site, and it was used due to limited data 

availability. However, previous research indicated that the Th equation underestimated 
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ET0 in arid and semiarid regions (Jensen et al., 1990), and overestimated ET0 in humid 

equatorial and tropical regions (van der Schrier et al., 2011). Moreover, this equation 

leads to an overestimation of ET0 with increasing air temperature and it does not 

accurately estimate the evolution of ET0 over the last decades (Donohue et al., 2010). 

The use of a particular equation for estimation of ET0 is not central for the 

calculation of SPEI. Thus, the International Commission for Irrigation (ICID), the Food 

and Agriculture Organization of the United Nations (FAO), and the American Society 

of Civil Engineers (ASCE) (Allen et al., 1998; Walter et al., 2000) have used the 

Penman-Monteith (PM) equation for calculation of ET0. However, the PM equation 

requires extensive data (solar radiation, temperature, wind speed, and relative humidity), 

that many meteorological stations do not routinely measure, and long-term records of 

these variables are not always available. Thus, the Hargreaves (Hg) equation 

(Hargreaves and Samani, 1985) may be used when this data is not available (Xu and 

Singh, 2001; Droogers and Allen, 2002). As with the Th equation, the Hg equation has 

limited data requirements, and only requires daily maximum and minimum 

temperatures. However, the Hg equation does not have the limitations of the Th 

equation, and at monthly and annual timescales ET0 estimates from the Hg and PM 

equations are very similar, with differences less than 2 mm per day (Droogers and 

Allen, 2002). Hargreaves and Allen (2003) showed that the relationship between 

monthly ET0 calculated via the Hg equation were within 97% to 101% of that measured 

by a lysimeter for semi-arid and sub-humid regions of the United States. It is clearly 

important to test the reliability of the specific ET0 equations that are used for SPEI 

calculations. Thus, in Section 3 we compared the use of different ET0 equations for 

calculation of SPEI from observatory and global gridded data. 

In subsequent sections of this article, we present new tools and data sources that 

can be used for computation of the SPEI. In Section 4, we present a software package 

used to compute the SPEI, which describes the various alternatives presented in this 

article and other alternatives such as the use of different temporal kernels. In Section 5, 

we present an improved global gridded dataset of the SPEI. Finally, in Section 6 we 

present a new real-time global drought monitoring system based on the SPEI. 

The main objective of this article is to provide more flexible and robust options 

for computation and use of the SPEI, explain possible sources of error, and provide 

advice on the use of the different ET0 equations. 

 

2. Estimation of Log-logistic parameters 

We previously showed that the log-logistic distribution provided better results 

than other distributions for obtaining SPEI series in standardized z units (mean = 0, SD 

= 1) (Vicente-Serrano et al. 2010). The probability distribution function of a variable D 

according to a log-logistic distribution is given by: 

𝐹 𝐷 = 1+
!
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, (eq. 1) 

where α, β, and γ  represent the scale, shape and location parameters that are estimated 

from the sample D (difference between Precipitation and ET0). Originally, Hosking 
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where ws is the PWM of order s, N is the number of data points, Fi is a frequency 

estimator, and Di is the difference between Precipitation and Reference 

Evapotranspiration for month i.

 

The plotting position method is very easy to implement. Alternative PWM 

estimators can be obtained by other methods, such as the unbiased estimator (Hosking, 

1986): 

𝑤! =
!

!

!!!

!
!!

!!!

!

!

!!!   (eq. 3) 

The maximum likelihood estimator is another more complicated method that 

employs an iterative search for the most likely parameter values that generated the 

observed sample. Initial values of the parameters must be specified, and the unbiased 

PWM estimations are a possible source. 

Rao and Hamed (2000) indicated that there is no theoretical reason to prefer 

plotting position estimators to other approaches. They also stated that their experience 

indicated that plotting position estimators sometimes yield better estimates of 

parameters and quantiles. However, this might not be the case for SPEI estimates. Thus, 

we computed SPEI series by three methods based on data from eleven observatories 

around the world (see details in Vicente-Serrano et al., 2010). The datasets include 

regions whose climates are classified as tropical (Tampa, Sao Paulo), monsoon (Indore), 

Mediterranean (Valencia, Kimberley), semiarid (Albuquerque, Lahore), continental 

(Vienna), cold (Helsinki, Punta Arenas), and oceanic (Abashiri). We used data from the 

Global Historical Climatology Network (GHCN-Monthly) database 

(http://www.ncdc.noaa.gov/oa/climate/ghcn-monthly/) and examined the means and 

standard deviations of the SPEI series at different time scales. All of these observatories 

provide accurate and high-quality long-term records.  

However, these observatories may not be entirely representative of the diversity 

of climatic conditions at a global scale, so we repeated the analysis based on global 

gridded data. Global gridded data is less accurate than that from observatories, but it 

covers the entire range of world climatic regions. We used data inputs from SPEIbase 

(Beguería et al., 2010), which are based on the Climatic Research Unit (CRU) 

TS3.10.01 dataset (Harris et al., 2012, http://badc.nerc.ac.uk/). Again, we looked at the 

means and SDs of SPEI series obtained by three methods at different time scales. The 

results of this analysis indicated that that the plotting position estimator was not an 

optimal method for computation of SPEI, because it led to biased SDs (Figure 1A). This 

bias was different for different stations, and this could cause problems for comparison 

of SPEI values. Moreover, the SD increased with increasing SPEI time scale, so that 

SPEI series at different time scales cannot be compared for a given site. On the 

contrary, SPEI series based on the unbiased PWM estimator did not have this problem 

(Figure 1B). The SPEI series based on maximum likelihood were very similar to those 

based on the unbiased PWM method (data not shown). Given that calculation of the 

maximum likelihood estimation was about two-fold more time consuming, we conclude 

that the unbiased PWM method should be preferred for computation of SPEI series. 

The results for the global-scale analysis of gridded data were similar, which also 

indicated biased SDs of the SPEI series for the plotting position method, and increasing 

SDs for increasing SPEI time scale (Figures 2 and 3). Again, the maximum likelihood 

method yielded results were similar to those of the unbiased PWM method (data not 

shown). 
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The global scale survey indicated another unanticipated problem. D in eq. 1 

must have a value within a limited range (𝛾 ≤ 𝐷 < ∞ for −𝛽 < 0 and −∞ < 𝐷   ≤ 𝛾 for 

–𝛽 > 0) (Rao and Hamed, 2000), so there are cases in which eq. 1 has no solution and 

the SPEI cannot be computed. The plotting position method led to many cases with no 

solution (more than 2% in some areas of the world), and the number of such cases 

increased as the time scale decreased (Figure 4). On the contrary, the unbiased PWM 

method did not lead to unsuccessful fits to a log-logistic distribution, and provided a 

solution for any D value (with a few exceptions). Most of the problems were in areas 

that were very arid, at high altitude, and at high latitude (i.e. cold deserts). In these 

areas, there is a high probability of a month with no precipitation and, as Wu et al. 

(2007) illustrated with calculations of SPI, the statistical models (probability 

distributions) used to estimate the probability density functions and the limited sample 

sizes in these areas reduce the reliability of SPEI calculations and do not provide 

solutions in a small number of cases. 

 

3. Evapotranspiration models 

3.1. Reference versus actual Evapotranspiration 

The SPEI uses both precipitation and ET0 to quantify drought severity. Here we focus 

on the concepts of actual evaporation (ETa) and reference evaporation (ET0), which 

must be clearly defined given recent discussion on what are the factors that drive 

drought severity and which variables are relevant for quantifying drought severity. 

ETa is the water lost under real conditions (i.e., considering the water available in 

the soils, the vegetation or crop type and state, physiological mechanisms, climate, etc). 

ET0, on the other hand, represents the evapotranspiration rate of a reference surface (a 

well-watered hypothetical grass reference crop with specific characteristics). Allen et al. 

(1998) stressed that ET0 represents “the evaporative demand of the atmosphere 

independently of crop type, crop development and management practices. [...] The only 

factors affecting ET0 are climatic parameters. Consequently, ET0 is a climatic 

parameter, it can be computed from weather data, and it expresses the evaporating 

power of the atmosphere at a specific location and time of the year”. As a consequence, 

ET0  calculated at different locations or in different seasons are totally comparable. 

Some authors suggested that considering ETa is better than ET0 when a drought index is 

defined since ETa and not ET0 would determine the surface water balance and the 

drought conditions (e.g., Dai, 2011; Joetzjer et al., 2012). The proponents of this idea 

(i.e. the use of Precipitation–ETa) explain that, compared to ET0, ETa would always be a 

better estimation of the amount of water really transferred to the atmosphere. Thus, ETa 

would allow for a better estimation of the soil water balance than ET0. Whether the 

SPEI aim would be simulating the true water balance of the soils, as other indices such 

as the PDSI do, then using ETa instead of ET0 would be a better option for the SPEI. 

But that is actually not the case: the idea behind the SPEI is to compare the highest 

possible evapotranspiration (what we call the evaporative demand by the atmosphere) 

with the current water availability. Thus, precipitation (accumulated over a period of 

time) in the SPEI stands for the water availability, while ET0 stands for the atmospheric 

water demand. ETa would be a poor estimator of this demand, since it depends in turn 

on the current water availability. On the other hand, the very definition of ET0 indicates 

that it refers to the maximum amount of water that would be transferred to the 

atmosphere by the soils and vegetation if there were no water supply deficit. Using ET0 

as an estimator of the true evaporative demand seems, thus, a more convenient choice. 
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The relevant soil/plant/atmosphere interaction is as follows: water flows through the 

vascular system of tracheophytes (plants with lignified conducting cells) due to the 

existence of a water potential gradient between the roots and the leaves in order to 

satisfy the evaporative demand set by the atmospheric conditions. Together with water 

part of the nutrients and other chemical substances are transported within the plant. 

Under drought conditions (deficient water availability to meet the atmospheric demand) 

the hydraulic tension within the xylem may increase excessively provoking cavitation 

and drought-induced xylem embolism that in turn causes a loss in conductance (Chaves 

et al., 2003; McDowell et al., 2008). Plants may combat this by closing their stomata 

and thus reducing ETa. Nevertheless, and independently of soil water availability and 

ETa, if water demand (ET0) increases over a certain threshold the physiological 

mechanisms may collapse producing cellular and tissue damage and even plant die-off. 

That is, plants may dye due to high water demand by the atmosphere (ET0) and even 

then ETa might not show any variation. Therefore ETa is a poor indicator of drought 

stress, albeit the difference between input Precipitation (P) and demand (ET0).  

In fact, using the ETa in the SPEI would make sense as a replacement of P. Indeed, the 

ETa would be a better estimator than P of the amount of water actually used by the 

vegetation, hence the balance ETa–ET0 would provide a better indicator of the stress (or 

no–stress) that the system is undergoing in any given moment. The difference (and the 

ratio) between ETa and ET0 have been in fact used in several agronomic and ecologic 

studies as an indicator of plant stress (e.g., Stephenson, 1990 and 1998). ETa is not used 

in the SPEI, and P is used instead as an estimator of water available to the system 

because of the difficulties involved in estimating ETa. The ETa is not only determined 

by the precipitation input and the evapotranspiration demand but also by the water 

balance of the soil and plants, which depends on soil and vegetation parameters that are 

difficult to estimate and are not stationary in time (see more discussion in Vicente-

Serrano et al., 2011). Complex physically based models are normally required in order 

to estimate ETa for a given system, and then there are specific models for each system 

under consideration (tree and forest growth models, crop models, soil hydrology 

models, catchment hydrology models, etc). The SPEI was developed as a generalist 

drought index susceptible of being applied to a large variety of systems, so depending 

on a particular model was not an option. Thus, the precipitation accumulated over an 

arbitrary period of time that could be adapted to the behavior shown by a given system, 

can be considered a convenient approximation to the amount of water available to a 

system in any given moment. This leads to a final remark. There are many types of 

drought types besides the soil water content and plant conditions in which the debate 

between ETa and ET0 works. Drought affects several hydrologic and socioeconomic 

systems with varying time gaps between the reduction in water availability and the 

impacts to each system. In all these processes not only transpiration but direct 

evaporation from lakes, reservoirs, etc., may play an important role in the available 

water resources.  

A simple example using data from two meteorological stations in Spain with highly 

contrasted climatic conditions illustrates how water stress is driven by precipitation and  

ET0 and not by ETa, both in humid and arid systems: Zaragoza (1961-2011 mean annual 

precipitation: 317 mm; Penman-Monteith mean annual reference evapotranspiration: 

1330 mm) and Vigo (1961-2011 mean annual precipitation: 1860 mm; mean annual 

reference evapotranspiration: 867 mm). Data used is of high quality and the different 

variables involved in calculations (precipitation, temperature, relative humidity, wind 
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speed and sunlight duration) have been carefully quality controlled and homogenized 

(Vicente-Serrano et al., 2013b; Azorin-Molina et al., 2013). 

Using monthly data of Precipitation and ET0 we calculated a simple soil water balance 

assuming a maximum water capacity of 150 mm. This is maybe an unreal figure, but it 

was the value considered by Eagleman (1976) as a representative average to obtain 

continental climatic water balances; anyway, using the same value for the two cases 

would allow us make interesting comparisons. We considered a field capacity of 0 mm, 

which is of course not a real field capacity value, but it may serve for our exercise. The 

following water balance equation may then be used for computing the soil water 

balance (W) and ETa at timesteps n: 

Wn = Wn-1 + Pn - ET0,n  

If Wn > 150, it is set to 150 and the surplus is considered runoff. 

For ETa, 

if ET0 < Wn-1+Pn then ETa = ET0, if ET0 > Wn-1+Pn then ETa = Wn-1+Pn 

Figure 5 show the average water balances (1961-2011) in Zaragoza and Vigo. In 

Zaragoza the average soil water balance (black line) is 0 in most of the months and ETa 

(circles) mimics the variation of precipitation (blue triangles) the majority of the 

months. ET0 exceeds largely ETa, mainly in summer. On the contrary, Vigo shows a 

dominantly positive soil water balance (and thus surface runoff production), ETa is 

equal to ET0 in most of the months with the exception of the period between June and 

September. In both cases ET0 has the same meaning: the evaporative demand by the 

atmosphere, but it is clear that ETa is very different: in the semi-arid site it resembles P 

but in the humid site it is closer to ET0 as occur at the global scale (Stephenson, 1990). 

In the two cases the drought stress (that is, the difference between the evaporative 

demand and the available water or, in other words, the difference between ET0 and 

ETa), is driven by P and ET0, and not by ETa. 

This is further illustrated by the difference in average values of P, ET0, W and ETa in 

the periods 1961-1989 and 1990-2011. In Zaragoza there was an increasing evaporative 

demand by the atmosphere, mainly in spring and summer, whereas ETa did not show 

noticeable changes between both periods (Figure 6.A). Similarly, P remained mostly 

stationary in the majority of months. Although ETa and the soil water content remained 

stationary, it is reasonable to suppose that increasing ET0 enhanced water stress in the 

region due to a higher atmospheric demand (Figure 7.A). Since this demand could not 

be met by the soil water supply, plant respiration and gas interchange could have been 

affected and also probably stomatal conductance (depending on the resistance to 

cavitation of each plant species). It can be expected that drought stress increased driven 

by increasing ET0, despite the fact the average soil water and ETa did not show 

substantial differences between the periods, and that this stress had measurable 

consequences in the vegetation of this semi-arid region, as described in several recent 

ecological studies (Vicente-Serrano et al., 2010c; Vicente-Serrano et al., 2012; 

Camarero et al., 2012). 

On the contrary, in Vigo ET0 showed few changes while a strong precipitation decrease 

was experienced between the periods 1961-1989 and 1990-2011 (Figure 6.B). In this 

case ETa did not increase very much between both periods given the dominant control 

of ET0 on ETa in humid regions. Moreover, the soil water content did not decrease 

noticeably despite the decrease in precipitation given high average precipitation in the 

region (Figure 7.B). 

The SPEI as originally defined by us (that is, as P-ET0) indicates that drought severity 

increased in the last decades in Zaragoza (Figure 8.A). If we were to use P-ETa instead 
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of P-ET0 a number of technical difficulties arise due to the high frequency of 0 values in 

the series, which make it difficult fitting a probability distribution and calculating a 

standardized variate. Thus, the time variation of the standardized (P-ETa) using the 

same methodological approach as the SPEI did not have any reliable meaning. As a 

third option we calculated the standardized evaporation deficit (that is, ETa-ET0). The 

time series of ETa-ET0 was very close to that of the SPEI (Pearson’s r>0.99), as it could 

be expected given the strong relationship between P and ETa in arid to sub-humid 

regions. In Vigo, precipitation drove the increasing drought severity in the last decades, 

as recorded by the SPEI (Figure 8.B). Given the strong relationship between ET0 and 

ETa in humid sites, the differences between the 12-month SPEI and the standardized 12-

month P-ETa were minimum (Pearson’s r = 0.98). On the contrary, the standardized 

evapotranspiration deficit (ETa-ET0) was not a reliable parameter given the high 

frequency of ETa-ET0=0, which is a problem to fit a probability distribution to the data. 

Thus, the preference of using ET0 instead ETa also in humid sites is in agreement with 

recent experimental studies that showed how ETa is only limited at low soil moisture 

availability, indicating that ETa responds to the atmospheric water demand rather than to 

variability in soil moisture (Seneviratne et al., 2012; Teuling et al., 2013). 

These results support our preference for using ET0 instead of ETa on defining the SPEI, 

since both P and ET0 can be obtained with reliability using standard climatic data and 

the approach is valid in both humid and arid climates. Moreover, both variables may 

also account for water surplus, which generates runoff (although low in arid and semi-

arid regions) having implications for streamflow droughts that ETa-ET0 cannot account 

for. 

The relevance of considering ET0 instead ETa, or only precipitation, in determining 

drought severity is illustrated by means of real examples corresponding to two drought 

episodes that affected the European continent during the decade of 2000. In both cases 

temperature was the main factor accentuating water stress. In the summer of 2003 a 

strong heat wave affected central Europe (García-Herrera et al., 2010) and caused 

unprecedent reduction of vegetation activity and primary production driven by a higher 

evaporative demand of the atmosphere (Lobo and Maisongrande, 2006; Ciais et al., 

2005). Figure 9.A shows the 3-month SPEI values in August 2003 in Europe, which 

shows that this drought event corresponded to a severe and widespread episode across 

Europe. Putting in context the drought of 2003 over the long-term using precipitation 

and temperature data from the European Climate Assessment & Dataset (http: 

http://eca.knmi.nl/), the strong drought severity of this episode is better recorded using 

the SPEI than SPI. Thus, the 3-month SPI only shows a short and low severe dry 

episode (drought intensity corresponding to a return period of 12.5 years in September 

2003) over central France, while the 3-month SPEI recorded a extreme drought (return 

period of 62 years in September 2003) which is more in accordance with the severe 

ecological and agricultural impacts caused by this event (Figure 9.B). Using ETa instead 

of ET0 for calculating the 3-month SPEI fails at identifying this strong drought event, 

showing a value close to 0 (normal conditions) in September 2003. 

The second example focuses in the strong heat wave that affected central Russia in the 

summer of 2010 (Barriopedro et al., 2011) that dried vegetation and caused widespread 

forest fires (Konovalov et al., 2011). This extreme drought episode was clearly recorded 

by the SPEI as the most severe in the last 20 years. On the contrary, both the SPI and 

the standardized P-ETa indicate a low severe drought episode, which does not 

correspond to the strong impacts recorded in the region (Figure 10). 
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3.1. Reference Evapotranspiration methods 

The original formulation of the SPEI used the Th equation for ET0, but other 

equations can also be used. Recent studies compared the effect of using different ET0 

equations on drought indices other than the SPEI. For example, Van der Schrier et al. 

(2011) and Dai (2011) compared the effect of using the Th and PM equations for ET0 to 

obtain the PDSI at the global scale. They reported no differences in the resulting PDSI 

trends. However, Sheffield et al. (2012) reviewed these studies and argued that errors in 

the forcing data or the calibration period explained why no differences were found. 

They concluded that there were large differences in the PDSI obtained with the Th and 

PM equations for ET0. 

All previous global studies were based on low-resolution gridded datasets and 

some of the gridded variables used for the PM equation have high uncertainty due to 

limited availability of measurements (e.g. relative humidity, global radiation), and wind 

speed is considered as constant (the monthly climatology is used). Thus, the effect of 

using different ET0 equations for calculation of drought indices remains an open 

question. 

Here, we combined gridded data with high-quality station-based data to examine 

this issue. In particular, we compared SPEI series based on the Th equation (SPEITh), 

PM equation (SPEIPM), and Hg equation (SPEIHg), by calculation of the Pearson 

correlation coefficient and the mean absolute difference (MAD). First, we used high-

quality, long-term time series from 13 stations, five in the Netherlands (de Bilt, de 

Kooy, Eelde, Maastricht and Vlissingen) and eight in Spain (Badajoz, La Coruña, 

Málaga, Salamanca, San Sebastián, Tortosa, Valencia and Zaragoza) for the period 

between January 1960 and December 2009. The national meteorological services of 

both countries provided open records of all available data for this period, including all 

variables necessary for calculation of ET0 by the different equations. Second, we used 

global gridded data on precipitation, temperature, cloud cover, and vapor pressure from 

the CRU TS V3.10.01 dataset (Harris et al., 2012) for the period of January 1949 to 

December 2009, plus atmospheric pressure and surface level wind speed data from the 

20th Century Reanalysis V2 dataset (Compo et al., 2011) from January 1949 to 

December 2008. Missing data for year 2009 were estimated by use of monthly averages 

of both variables. 

The top three images in Figures 11 and 12 show the time evolution of the 12-

month SPEI using the 3 different ET0 equations at De Bilt (Netherlands) and Badajoz 

(Spain), respectively. The bottom three images in these two figures show the differences 

between the SPEI series. The results indicate that the differences between the three 

SPEI series were small at De Bilt (811.6 mm annual precipitation), with differences 

seldom larger than 0.5 units. The main drought episodes during the 1920s, 1970s, and 

1990s had similar magnitudes and durations for the three ET0 equations. However, the 

SPEI residuals based on Hg and the other two equations seemed to be time-dependent, 

in that there was an upward trend in the plot of Hg - Th, and a downward trend in the 

plot of PM - Hg. 

The differences between the SPEI series were larger at Badajoz (463 mm annual 

precipitation). In particular, drought severity during the 2000s was greater according to 

the SPEIPM estimate than the SPEITh and SPEIHg estimates, but the opposite trend 

occurred during the 1970s and 1980s. There was also a downward trend in the plot of 

PM - Hg and PM - Th since 1975, indicating reinforcement of drought according to 

SPEIPM relative to the other two methods. This suggests that the evolution of other 
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variables required to calculate ET0,PM (wind speed, relative humidity, etc.) reinforced 

ET0 in Badajoz in the most recent years. 

Figure 13 shows the correlations of the three different SPEI values at different 

time-scales in the 14 observatories. Assuming that ET0,PM is the best (although most 

data intensive) method, higher correlations with SPEIPM imply better estimation of the 

SPEI. In general, there was high correlation between the SPEI series, and this was 

independent of the ET0 equation and time scale. The best correlation was between 

SPEIHg and SPEIPM (more than 95% of the series had Pearson’s r coefficients greater 

than 0.95), and the poorest correlation was between SPEITh and SPEIPM. Correlations 

between SPEIPM and SPEITh decreased slightly as the time scale increased, but 

correlations between SPEIHg and SPEIPM remained relatively constant across different 

time scales. The MAD between SPEI values obtained by less data-intensive methods 

(SPEITh and SPEIHg) and SPEIPM were high in some cases, and they increased with the 

time scale (Figure 14). For the two methods that are not data intensive, SPEITh yielded 

the greatest differences with SPEIPM, and averaged more than 0.2 units for time scales 

greater than 12 months. 

These results were similar at the global scale. In particular, we found high 

correlations between the different SPEI series obtained from the three ET0 equations, 

and this was independent of the SPEI time scale (Figures 15 and 16). Large regions of 

the world had correlations greater than 0.9 for all three ET0 equations. Correlation was 

high at all time scales between the two ET0 methods that only used temperature for 

calculations (SPEITh and SPEIHg), with the exception of areas in East Asia and 

Australia. Correlation was lower between SPEIPM and the other two estimates, and large 

areas of the world had correlations less than 0.7. However, correlations tended to be 

higher between SPEIHg and SPEIPM than between SPEITh and SPEIPM, suggesting that 

ET0,Hg is a better equation when data is scarce or uncertain. The differences between 

SPEI series was high in some regions (Figures 17 and 18), and were generally lower 

between SPEITh and SPEIPM than between SPEIHg and SPEIPM. Nevertheless, the 

differences were very high in some regions, and the MAD was close to 0.4 SPEI units 

for SPEITh, and was close to 0.3 for SPEIHg. In some regions, such as parts of Australia, 

the average MAD was greater than one SPEI unit. Therefore, the differences between 

the SPEI series obtained with the less data-intensive ET0 equations had similar temporal 

variability as the SPEIPM, but there were some important differences in the magnitude of 

the SPEI values. 

The magnitude of the differences between SPEI series based on different ET0 

equations might be related to the importance that these different equations given to 

precipitation relative to climatic water balance at each site. Thus, we determined the 

correlations of the SPEI datasets calculated from the three ET0 equations with the mean 

annual precipitation and temperature in the 14 stations of Spain and the Netherlands and 

at the global scale (Figures 19 and 20). These relationships were clearly non-linear, so 

correlation was calculated by use of the non-parametric Spearman’s Rho coefficient. 

The results indicate a significant and positive correlation between each of the three 

SPEI models with annual precipitation (Fig. 19, top row), but no significant correlation 

with the annual temperature (Fig. 19, bottom row). The same pattern occurred with the 

global data (Figure 20). These results indicate that the ET0 equation used for calculation 

of SPEI is relatively unimportant in areas with high precipitation, but may be important 

in areas with low precipitation. This was expected, because as precipitation increases, it 

becomes more important in the climatic water balance, leading to a dependence of the 

SPEI on the magnitude of a ET0 decrease. On the contrary, in areas where moisture is 



11 

 

limited, the role of the ET0 equation in the climatic water balance increases, so SPEI 

becomes dependent on the magnitude of precipitation decrease. 

The equation used to calculate ET0 could also potentially influence long-term 

trends in the SPEI series. Thus, we performed trend tests on SPEI series calculated from 

the different ET0 equations on the observatory dataset (Figure 21) and on the global 

gridded data (Figure 22). Change was quantified by the slope of the linear regression 

between the SPEI series and time in months. The results indicate a downward trend (i.e. 

increasing drought conditions) for all three ET0 equations. The magnitude of the trend 

increased with the time scale of the SPEI. This is due to the cumulative character of the 

SPEI, which reinforces changes as D values accumulate at long time scales. The SPEIPM 

had the strongest trend, and the SPEIHg had the weakest trend (except at the largest time 

scales), but the differences between the methods were relatively small. At the global 

scale, the temporal change of the SPEI series was similar in magnitude and spatial 

distribution for the different datasets (Figures 22 and 23A). Overall, negative trends 

predominated (i.e. toward stronger droughts), and these trends increased as the time 

scale increased. These trends were stronger for SPEITh and SPEIPM than for SPEIHg. 

SPEITh and SPEIPM had similar patterns in America, Africa and Europe, and most of the 

differences were in North Asia and Australia, where the SPEIPM indicated a more acute 

decrease of the SPEI. Correlation was higher for SPEITh and SPEIHg than for either of 

these and SPEIPM. Comparison of nation-wide averages from the gridded database for 

the Netherlands and Spain (Figure 23B) were similar to those for the results from the 

instrumental series (Figure 21). 

 

4. Software implementation and available tools 

We implemented the improvements for calculation of the SPEI described above 

in the R package SPEI (http://cran.r-project.org/web/packages/SPEI). This package 

includes all the new issues described in this article, and is preferred over the previous 

implementation in C language (http://digital.csic.es/handle/10261/10002). This latter 

implementation only allows computation of the original formulation of the SPEI (based 

on the ET0,Th equation) and the plotting-position PWM fitting method. The SPEI R 

package allows selection of: (i) two probability distributions for calculation of SPEI 

(log-logistic [recommended] or Pearson III [commonly used to obtain the Standardized 

Precipitation Index, SPI; Quiring, 2008; Vicente-Serrano, 2006; Guttman, 1999]; (ii) 

three options for computation of the distribution function parameters (plotting position 

PWMs, unbiased PWMs, and maximum likelihood); and (iii) three ET0 equations (Th, 

Hg, and PM). In addition, there are different options for the PM equation, depending on 

data availability. For example, if data on solar radiation is rarely available, the code can 

estimate it from the duration of bright sunshine or from the percent cloud cover. 

Similarly, if data on saturation water pressure is not available, the code can estimate it 

from the dewpoint temperature, relative humidity, or minimum temperature, sorted from 

least to most uncertain method (Allen et al., 1998). Similarly, the atmospheric surface 

pressure required for computing the psychometric constant can be calculated from the 

atmospheric pressure at sea level and elevation, or assumed to be constant (101.3 kPa).  

The R package also allows selection of different kernels for weighting of 

previous months. Like the SPI, the SPEI can be obtained at different time scales by 

adding the values of the climatic water balance of the n previous months. This is 

important, because many systems vulnerable to drought can have a “memory”, so they 

are affected by drought at characteristic time scales. The accumulation of previous 

months was performed in the original formulation of the SPEI by use of a rectangular 
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kernel function, i.e. all data of the previous n months were given equal weight (Fig. 24, 

top left). However, data from further in the past may have a decreased influence on the 

current state of the system, so kernel functions that give less weight to older data may 

be useful, such as the triangular, circular and Gaussian kernels (Figure 24). The 

triangular kernel has a linear decrease of weight over time, and the circular and 

Gaussian kernels have non-linear decreases of weight over time. The use of different 

kernel functions affects the resulting SPEI (Figure 25). In particular, the results from 

using the triangular and circular kernels are similar to the rectangular kernel, but use of 

the Gaussian kernel results in greater temporal variability. This is evident in the drought 

period of 2005 to 2007, in which use of the Gaussian kernel splits this single drought 

episode into several periods. The use of different kernels may be important for some 

applications, because the kernels control the importance of past climatic conditions on 

current drought severity. Moreover, although the highest weight will commonly be 

given to the observation of the current month, it is possible to modify this by setting the 

shift parameter to a month higher than zero (e.g. Figure 24) and to give the highest 

weight to the n antecedent observation. Thus, the use of different kernels allows 

calculation of more flexible drought indices and the definition of optimum drought 

indices for specific uses or geographic regions. 

  

5. SPEIbase v.2 

After implementation of these changes for computation of SPEI, we also 

updated SPEIbase (Vicente-Serrano et al., 2010b; Beguería et al., 2010). The new 

global gridded SPEI dataset is available at time scales of 1 to 48 months, spatial 

resolution of 0.5º lat/lon, and temporal coverage from January 1901 to December 2011 

by use of the CRU TS3.2 dataset 

(http://badc.nerc.ac.uk/browse/badc/cru/data/cru_ts_3.20). Instead of using the ET0,Th 

equation, we used the Food and Agricultural Organization (FAO) grass reference 

evapotranspiration obtained from the CRU TS3.2 dataset as the ET0 input for the SPEI 

and also obtained monthly precipitation data from the CRU TS3.2 dataset. The 

unbiased-PWMs method was used for fitting the log-logistic distribution, instead of the 

plotting position method used in SPEIbase ver. 1.0. This helped to resolve most of the 

problems related to missing data in ver. 1.0. Finally, we put data for the entire Earth into 

one single netCDF file. The SPEIbase v.2.2 is available from 

http://digital.csic.es/handle/10261/72264 in netCDF format, and individual files 

corresponding to each 0.5º grid are available from http://sac.csic.es/spei/.  

 

6. Global Drought Monitoring System based on the SPEI 

Real-time drought monitoring is needed to guarantee the success of drought 

preparedness plans. There are several examples of drought monitoring systems at 

national and global scales (e.g., Svoboda et al., 2002) and there is a current initiative to 

develop a Global Drought Monitor web portal based on a modular structure (Heim and 

Brewer, 2012) and on synthetic information summarized by drought indices. The use of 

synthetic drought indicators to characterize the spatial extent and severity of drought 

conditions allows the expression of risk that end-users can easily understand. 

Nevertheless, there is no general consensus about use of a single drought index (Heim 

and Brewer, 2012). Participants at the WMO Inter-Regional Workshop on Indices and 

Early Warning Systems for Drought Workshop (Lincoln, NE, USA, December 2009; 

Hayes et al., 2011), proposed the Lincoln Declaration on Drought Indices. This was a 

consensus agreement that the Standardized Precipitation Index (SPI) be used by national 
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meteorological and hydrological services worldwide for characterization of 

meteorological droughts. Thus, most of national, regional, and global drought-

monitoring systems currently use the SPI as the reference index (e.g., 

http://drought.mssl.ucl.ac.uk/; http://www.hprcc.unl.edu/; http://www.dmcsee.org/).  

Nevertheless, there are well-known limitations in using precipitation alone for 

drought monitoring. Recent studies that analyzed drought impact on net primary 

production and tree mortality have documented the role of warming-induced drought 

stress (Breshears et al., 2005; Andereg et al., 2012). In other words, there is empirical 

evidence that higher temperatures exacerbate drought stress and forest mortality in the 

presence of reduced precipitation (Adams et al., 2009). There is also evidence that 

global warming has led to a decline in world agricultural yields, after accounting for 

technological advances in farming (Lobell et al., 2011). Thus, Breshears et al. (2005) 

proposed the term “global-change-type drought” to refer to drought under global 

warming conditions to illustrate how warming processes reinforce drought stress and 

similar ecological effects worldwide. The SPEI was developed as a multi-scalar drought 

index that had the same flexibility as the SPI, but that also considered 

evapotranspiration demand, a significant component of drought severity. Vicente-

Serrano et al. (2012) performed a global-scale analysis and showed that the SPEI 

correlates better with anomalies in different hydrological, agricultural and 

environmental variables than the SPI. This motivated our development of a global real-

time drought monitoring system based on the SPEI, which we believe provides better 

monitoring of drought severity than the SPI. 

The drought monitoring system described here is updated monthly at 

http://sac.csic.es/spei/. This system provides global SPEI maps for the entire earth at a 

spatial resolution of 0.5º. The SPEI products are obtained using the Th equation for 

calculation of ET0 because necessary global information for calculation of ET0 by the 

PM or Hg equations at real-time are not available. Only monthly precipitation and mean 

temperature observations are available globally with the required update times. Real-

time mean monthly temperature is obtained at a resolution of 0.5º from the NOAA 

NCEP CPC GHCN_CAMS gridded dataset (Fan and van den Dool, 2008), which is 

updated the first week of each month 

(ftp://ftp.cpc.ncep.noaa.gov/wd51yf/GHCN_CAMS/). Monthly precipitation is obtained 

from the Global Precipitation Climatology Centre (GPCC), which provides monthly 

precipitation sums on about the 5
th

 day of the following month at 1º spatial resolution 

(Rudolf et al., 2010, and ftp://ftp-anon.dwd.de/pub/data/gpcc/first_guess/), which is 

transformed to 0.5º resolution by a bilinear interpolation. The SPEI global drought 

monitor provides SPEI time-scales of 1 to 48 months, allows graphical display of the 

change in SPEI over time at user-defined sites, and allows downloading of time series 

of the SPEI at specific points, areas, or the complete dataset in netCDF format. This 

dataset is different than the SPEIbase v.2 dataset, and may be less accurate because 

climate inputs of the CRU TS3.2 dataset (from which the SPEIbase v.2.2 is computed) 

undergo careful quality-control, are homogenized, cover a longer time period (1901-

2011), and allow calculation of ET0 by the more robust PM equation. The main 

advantage of the drought monitoring system is the near-real time availability of data, 

which may be important for certain uses.  

 

7. Conclusions 

This article documents recent improvements in the methods used to calculate the 

SPEI. The SPEI allows determination of drought severity at different time-scales, which 
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is essential for assessment of the different responses to drought in different 

hydrological, environmental, and socioeconomic systems. We identified a problem in 

the traditional method used to estimate the parameters of the log-logistic distribution, 

which is used to fit the series of the climatic water balance (P - ET0) and to calculate the 

SPEI. The use of Probability Weighted Moments (PWMs) based on the plotting position 

formula had problems when comparing SPEI series between sites and across time 

scales, and this method had no solutions at some geographical sites. We found that an 

alternative method based on unbiased PWMs yielded excellent results and provided 

SPEI series with equal variance throughout the world and at different time scales. In 

addition, this alternative method also resolves the issue of no solutions at some 

geographical sites, because it provides complete SPEI series at the global scale. For 

these reasons, we recommend calculation of the SPEI based on the unbiased PWM 

method. We have implemented this method in software tools provided for calculation of 

the SPEI. 

Although there is some debate on the use of ET0 or ETa in calculating drought 

indices, we showed the advantages of using ET0 instead ETa, which is much more 

related to precipitation in arid zones and to ET0 in humid sites. Including ET0 in the 

SPEI formulation is valid for both humid and arid climates, producing reliable 

estimations of drought severity. Moreover, we illustrated by means of two relevant 

examples (the strong droughts of 2003 and 2020 in central Europe and Russia, 

respectively) how using ET0 the strong severity of the drought episodes is better 

reflected than only using precipitation or precipitation minus ETa. 

Several methods can be used to estimate ET0, but we generally recommend the 

more robust PM equation. If the data needed for this equation are not available, we 

recommend use of the Hg equation (first) or the Th equation (second). Our comparison 

of ET0 equations contributes to the on-going discussion regarding the influence of 

global warming on drought severity worldwide (see Dai, 2011 and 2012; Sheffield et 

al., 2012). Based on the PDSI, Dai (2011 and 2012) and Van Der Schrier et al. (2011) 

reported that the specific formulation of the ET0 equation had little effect on the 

magnitude of global drought, but Sheffield et al. (2012) used the same index and found 

substantial differences based on different data. Here we used gridded data and high-

quality instrumental series obtained from meteorological stations to compare SPEI 

series based on alternative ET0 equations. The SPEI is not affected by problems of 

spatial comparability, as is the PDSI (Guttman, 1998; Vicente-Serrano et al., 2010b), 

and is perfectly comparable among sites and time scales. Thus, this work is a substantial 

contribution to the debate on the effect of the ET0 equation on drought quantification. 

Our results, according to the data forcing used in this study, indicate that drought 

severity is increasing worldwide. To interpret these results, however, we must consider 

that several global gridded variables are highly uncertain and sometimes based on low 

spatial density and highly inhomogeneous variables (e.g. solar radiation, relative 

humidity, and wind speed). We believe that more research is needed at the local and 

regional scales, based on carefully checked station-based data, to resolve the 

disagreements about global drought trends (see Van Der Schrier et al., 2011; Dai, 2013; 

Sheffield et al., 2012). In addition, global drought impact studies are necessary for 

appropriate management of natural systems worldwide. 

We found that differences between the SPEI series calculated using the different 

ET0 equations were significant in some regions of the world. In general, these 

differences were larger in semi-arid to mesic areas, and smaller in humid regions. 

Although our sample was small (14 stations in two countries), the results were similar to 
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those obtained from the gridded dataset. Overall, our results support the hypothesis that 

there is a general increase in drought severity worldwide that is associated with global 

warming processes (Dai, 2011b and 2012). This result is supported by ecological 

(Breshears et al., 2005), agricultural (Lobell et al., 2011) and hydrological studies 

(Walter et al., 2004; Cai and Cowan, 2008), independently of which ET0 equation is 

used to calculate the SPEI. 

We also described options to improve the flexibility for calculation of the SPEI 

by use of different weighting kernels. The significance of this new feature has not yet 

been thoroughly examined. We implemented all of these new options in a computing 

package for the R environment. Moreover, we updated and improved global datasets 

and implemented a global drought monitoring system based on the SPEI. All these 

tools, datasets, and updated information on the SPEI are available at the SPEI web site, 

http://sac.csic.es/spei/. 
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Figure Legends 

Figure 1: Standard deviations of the SPEI series at different time scales (1 to 48 months) 

at 11 ground stations of the Global Historical Climatology Network (thin lines), 

relative to a standard deviation of one (thick line). SPEI series were based on 

plotting position (top) and unbiased PWMs (bottom). 

Figure 2: Standard deviations of the SPEI in grid cells of the global dataset at time 

scales of 3, 12 and 48 months, based on plotting position (left) and unbiased 

PWMs (right). 

Figure 3. Standard deviations of the SPEI in grid cells of the global dataset at time 

scales of 3, 12 and 48 months, based on plotting position (PP) and unbiased 

PWMs (UB). 

Figure 4: Percentage of months in which the SPEI cannot be computed due to non-

solvable parameter fitting at time scales of 3, 12 and 48 months, based on 

plotting position (left) and unbiased PWMs (right). 

Figure 5: Average soil water content (W) (black line) (1961-2011), precipitation (P) 

(blue triangles), Reference Evapotranspiration (ET0) (black triangles) and actual 

evapotranspiration (ETa) (circles) in Zaragoza (left) and Vigo (right). 

Figure 6: Average soil water content (W) (black line) (1961-2011), precipitation (P) 

(blue triangles), Reference Evapotranspiration (ET0) (black triangles) and actual 

evapotranspiration (ETa) (circles) in the periods 1961-1989, 1990-211 and the 

difference in the observatories of Zaragoza (left) and Vigo (right). 

Figure 7: Evolution of annual P, ET0, “W” and “ETa” in Zaragoza and Vigo between 

1961 and 2011. 

Figure 8: Evolution of 12-month SPEI, 12-month Standardized (P-ETa) and 

Standardized (ETa-ET0) in Zaragoza and Vigo. 

Figure 9: A) Spatial distribution of 3-month SPEI values in August 2003 from the SPEI 

Global Drought Monitor (http://sac.csic.es/spei/map/maps.html). B) Evolution of 

the 3-month SPI, SPEI and Standardized P-ETa in central France (47ºN-2ºE). 

Details for the 2003 drought are showed for the three indices. 

Figure 10: A) Spatial distribution of 6-month SPEI values in August 2010 from the 

SPEI Global Drought Monitor (http://sac.csic.es/spei/map/maps.html). B) 

Evolution of the 3-month SPI, SPEI and Standardized P-ETa in central Russia 

(50ºN-37.5ºE). Details for the 2010 drought are showed for the three indices. 

Figure 11: Time series of the 12 month SPEI at De Bilt (The Netherlands) obtained by 

the Thornthwaite (Th), Hargreaves (Hg), and Penman-Monteith (PM) reference 

evapotranspiration equations (top 3 plots), and differences between the three 

methods (bottom 3 plots). 

Figure 12: Time series of the 12 month SPEI at Badajoz (Spain) obtained by the 

Thornthwaite (Th), Hargreaves (Hg), and Penman-Monteith (PM) reference 

evapotranspiration models (top 3 plots), and differences between the three 

methods (bottom 3 plots). 

Figure 13. Correlations between SPEI series obtained by the Thornthwaite (Th), 

Hargreaves (Hg), and Penman-Monteith (PM) reference evapotranspiration 

equations at 13 ground stations in The Netherlands and Spain. 

Figure 14: Mean absolute difference between SPEI series obtained by the Thornthwaite 

(Th), Hargreaves (Hg), and Penman-Monteith (PM) reference evapotranspiration 

equations at 13 ground stations in The Netherlands and Spain. 
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Figure 15: Spatial distribution of correlations (Pearson’s r) between SPEI series 

obtained by the Thornthwaite (Th), Hargreaves (Hg), and Penman-Monteith 

(PM) reference evapotranspiration equations in grid cells of the global dataset. 

Figure 16: Correlations between SPEI series obtained by the Thornthwaite (Th), 

Hargreaves (Hg), and Penman-Monteith (PM) reference evapotranspiration 

equations in grid cells of the global dataset. 

Figure 17: Spatial distribution of the mean absolute difference between SPEI series 

obtained by the Thornthwaite (Th), Hargreaves (Hg), and Penman-Monteith 

(PM) reference evapotranspiration equations in grid cells of the global dataset.  

Figure 18: Mean absolute difference between SPEI series obtained by the Thornthwaite 

(Th), Hargreaves (Hg), and Penman-Monteith (PM) reference evapotranspiration 

equations in grid cells of the global dataset. 

Figure 19: Relationship between correlations of the 12 month SPEI based on the 

Thornthwaite (Th), Hargreaves (Hg), and Penman-Monteith (PM) reference 

evapotranspiration equations with the average annual precipitation (top row) and 

with the annual mean temperature (bottom row) at 13 ground stations in The 

Netherlands and Spain. 

Figure 20: Relationship between correlations of the 12 month SPEI based on the 

Thornthwaite (Th), Hargreaves (Hg), and Penman-Monteith (PM) reference 

evapotranspiration equations with the average annual precipitation (top row) and 

with the annual mean temperature (bottom row) in grid cells of the global data 

set. 

Figure 21: Magnitude of temporal trends of SPEI series from 1960 to 2009 (SPEI units 

per decade) for various time scales at 13 ground stations in The Netherlands and 

Spain. 

Figure 22: Magnitude of temporal trends of SPEI series from 1950 to 2009 (SPEI units 

per decade) for various time scales in grid cells of the global dataset. The 

scatterplots show the relationship of the magnitude of change for different SPEI 

models; the solid black line indicates perfect agreement (1:1) and the dashed line 

indicates a linear fit to the data. 

Figure 23: Magnitude of temporal trends of SPEI series from 1960 to 2009 (SPEI units 

per decade) at various time scales in grid cells of the global dataset (A) and for 

Spain and The Netherlands (B). 

Figure 24: Weights applied to each month for calculation of the 12 month SPEI by four 

different kernel functions. 

Figure 25: Effect of using different kernel functions on time series of 6 month SPEI 

based on the Penman-Monteith reference evapotranspiration equation in the 

observatory of Zaragoza (Spain). 
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Figure 11 
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Figure 19 
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Figure 21 
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Figure 23 
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Figure 25 
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