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Abstract

We have witnessed the Fixed Internet emerging with virtually every computer being connected today; we are
currently witnessing the emergence of the Mobile Internet with the exponential explosion of smart phones, tablets and
net-books. However, both will be dwarfed by the anticipated emergence of the Internet of Things (IoT), in which
everyday objects are able to connect to the Internet, tweet or be queried. Whilst the impact onto economies and
societies around the world is undisputed, the technologies facilitating such a ubiquitous connectivity have struggled
so far and only recently commenced to take shape.

To this end, this paper introduces in a timely manner the cornerstones of a technically and commercially viable
IoT which includes a detailed discussion on the particular standard of choice at each protocol layer. This stack is
shown to meet the important criteria of power-efficiency, reliability and Internet connectivity. Industrial applications
have been the early adopters of this stack, which has become the de-facto standard, thereby bootstraping early IoT
developments.

Corroborated throughout this paper and by emerging industry alliances, we believe that a standardized approach,
using latest developments in the IEEE 802.15.4 and IETF working groups, is the only way forward. We introduce
and relate key embodiments of the power-efficient IEEE 802.15.4-2006 PHY layer, the power-saving and reliable
IEEE 802.15.4e MAC layer, the IETF 6LoWPAN adaptation layer enabling universal Internet connectivity, the IETF
ROLL routing protocol enabling availability, and finally the IETF CoAP enabling seamless transport and support of
Internet applications.

The protocol stack proposed in the present work converges towards the standardized notations of the ISO/OSI and
TCP/IP stacks. What thus seemed impossible some years back, i.e., building a clearly defined, standards-compliant
and Internet-compliant stack given the extreme restrictions of IoT networks, is commencing to become reality.

I. INTRODUCTION

In early 2000’s, Kevin Ashton from the MIT Auto-ID Center [1] proposed the term “Internet of Things”, making

reference to the binding of Radio Frequency Identifiers (RFID) information to the Internet. Soon, the interest for

an Internet of connected objects raised the attention of governments and leading IT companies that recognized the
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concept as one of their key axes for future economic growth and sustainability. The concept of Internet of Things

was adopted by the European Union in the Commission Communication on RFID, published in March 2007 [2].

The Council’s conclusions of November 2008 on Future Networks and the Internet, recognized that “the Internet

of Things is poised to develop and to give rise to important possibilities for developing new services but that it

also represents risks in terms of the protection of individual privacy” [3]. In 2008, the U.S. National Intelligence

Council (NIC) reported that “By 2025 Internet nodes may reside in everyday things, food packages, furniture, paper

documents, and more. Today’s developments point to future opportunities and risks that will arise when people can

remotely control, locate, and monitor even the most mundane devices and articles. Popular demand combined with

technology advances could drive widespread diffusion of an Internet of Things (IoT) that could, like the present

Internet, contribute invaluably to economic development and military capability” [4].

Although the IoT is a widely used term, its definition is still fuzzy due to the large amount of concepts it

includes, and the ambiguity and opposed meaning of the two terms that compose the name “Internet of Things”

[5]. Several definitions overlap in the literature, for example in [6] the IoT stands for a “world-wide network

of interconnected objects uniquely addressable, based on standard communication protocols”. Whilst Atzoria et

al. [7] considers IoT as much more than uniquely addressable objects; it envisages the existence of services that

may interface Things having identities and virtual personalities operating in smart spaces and using intelligent

interfaces to connect and communicate within social, environmental, and user contexts. Further conceptual designs,

visions and application spaces of the IoT are exposed in [8]–[14] − all of which converge to the view that simple

embedded sensor networking is now evolving to the much needed standards and Internet enabled communication

infrastructure between objects.

Structurally, the IoT requires software architectures that are able to deal with a large amounts of information,

queries, and computation, making use of new data processing paradigms, stream processing, filtering, aggregation

and data mining, all of this sustained by communication standards such as HyperText Transfer Protocol (HTTP)

[15] and Internet Protocol (IP) [16]. In contrast, due to the nature of IoT objects, very low power consumptions are

required so any object can plug into the Internet while being powered by batteries or through energy-harvesting.

Energy is wasted by transmission of unneeded data, protocol overhead, and non-optimized communication patterns;

these need to be taken into account when plugging objects into the Internet. Existing Internet protocols such as

HTTP and Transmission Control Protocol (TCP) [17] are not optimized for very low-power communications, due to

both verbose meta-data and headers, and the requirements for reliability through packet acknowledgment at higher

layers, which hinders the adaptation of existing protocols to run over that type of networks.

The objects conforming to the IoT have a wide range of connotations and understandings, including RFID [5],

Wireless Sensor Networks (WSNs), Machine-to-Machine (M2M) [18], [19], among others. However, in the actual

sense of its name, the IoT pertains to the ability to interconnect as well as Internet-connect objects, things, machines,

etc. There are three core requirements related to this ability:

• A Low Power Communication Stack. The majority of objects will not be able to draw power from the mains,

and have batteries at best. This means that finding enough energy to power processing and communication is
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a major challenge. Whilst we are ready to recharge our mobile phones on a daily basis, changing batteries in

millions of objects is impractical, at best. Any stack must therefore exhibit a low average power consumption.

Indeed, the stack discussed in this paper obeys precisely this requirement.

• A Highly Reliable Communication Stack. Although the Internet is a best-effort transport medium, protocols

incorporate error detection, retransmissions and flow control. These techniques are applied at various protocol

layers concurrently, which leads to a reliable end-to-end experience, albeit in a rather inefficient way. For the

IoT to merge seamlessly into the Internet, it needs to offer the same reliability we are used to on the Internet

− with the additional requirement that said reliability is achieved at highest possible efficiency.

• An Internet-Enabled Communication Stack. Enabling another dialect of the Internet has profound impli-

cations on the protocol design. The Internet is exhibiting emergent behavior today because communication

is bi-directional; it is hence of utmost importance to ensure that communication from objects but also towards

objects is facilitated. Furthermore, the explosion of the Internet can arguably be attributed to the ability of any

machine around the world to talk to any other machine, all this facilitated by one universal language, IP; it is

hence of paramount importance that the IoT is IP enabled [13]. This in turn calls for standardized approaches,

which is core to the exposition in this paper.

Identifying the requirement above has taken some time, as shown in Table I. Early conceptual designs can

be traced back to the emergence of the Distributed Sensor Networks program [21] at the MIT Lincoln Labs

[22]. It aimed at developing and extending target surveillance and tracking technology in systems that employ

multiple spatially distributed sensors and processing resources. The WSN field really took off with the concept of

“Smart Dust” and the eponymous DARPA project [23] - [24], lead by Prof. Kristofer Pister from the University of

California, Berkeley. In the following years, the concept of a ubiquitous WSN has not only been demonstrated but

also awaken commercial interest. A variety of pioneering companies thus emerged, such as Dust Networks, Ember,

Millennial, Sensicast, Moteiv and Arch Rock. All of these companies had in one form or another their proprietary

hardware and communication stack. It was quickly recognized however that having a multitude of proprietary

systems connected to the Internet does impede the much hoped-for scalability and explosion of the IoT.

Starting in 2003, various IEEE and IETF standardization bodies commenced putting a framework to the com-

munication protocols of the emerging systems.

The standard with the longest-standing impact is IEEE 802.15.4 [25], which defines a low-power Physical (PHY)

layer, and upon which most IoT technologies have built. It also defines a Medium Access Control (MAC), which

has been the foundation of ZigBee 1.0 and ZigBee 2006 [26]. It became soon clear that the single-channel nature

of this MAC protocol caused its reliability to be unpredictable, especially in multi-hop settings. An alternative

which uses channel-hopping to combat multipath fading and external interference was developed and commercialize

by Dust Networks [27]. This protocol, called Time Synchronized Mesh Protocol (TSMP) [28], became the de-facto

standard for reliable low-power wireless in industrial application, and was turned into the WirelessHART standard

[29] in 2008. In 2011, it was integrated into the IEEE 802.15.4 standard through the IEEE 802.15.4e working

group, and will thus become a default MAC protocol in the next revision of the IEEE 802.15.4 standard. With a
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TABLE I
EVENTS WHICH HAVE HELPED SHAPING THE WORLD OF THE IOT.

Year Event
1967 REMBASS Remotely Monitored Battlefield Sensor System
1978 Distributed Sensor Networks for Aircraft Detection

Lincoln Labs - Lacoss
1992 RAND Workshop - Future Technology Driven Revolutions in Military Conflict.

Concepts behind Smart Dust emerge.
1993-1996 DARPA ISAT studies - many WSN ideas and applications discussed.

Deborah Estrin leads one of the studies.
1994 LWIM - Low Power Wireless Integrated Microsensors - Bill Kaiser (UCLA)
1997 Smart Dust proposal written, Kris Pister (Berkeley)
1998 Seth Hollar makes wireless mouse collars
1999 Endeavour project proposed by Randy Katz, David Culler (Berkeley)

PicoRadio project started by Jan Rabaey (Berkeley)
2000 Crossbow begins selling ‘Berkeley motes’
2001 Multiple demos proving viability
2002 Dust, Ember, Millennial, Sensicast founded
2003 IEEE 802.15.4-2003 standard

Moteiv (now Sentilla) founded
2004 ZigBee 1.0 standard ratified

TSMP 1.1 shipping
2005 Arch Rock founded
2006 ZigBee 2006 standard ratified

IEEE 802.15.4-2006 standard
2007 WirelessHART standard ratified

IETF 6LoWPAN’s RFC4944 published
WirelessHART shown to achieve 99.999% reliability [20]

2008-2009 IETF workgroup Routing Over Low-power Lossy links (ROLL) created
IEEE 802.15.4e work group created

2010-2011 IEEE 802.15.4e’s MAC protocol ratified
IEFT 6LoWPAN’s RFC4944 updated
IETF ROLL’s RPL routing protocol ratified

power-efficient and reliable link layer , it was now possible to connect these networks to the Internet. This was

the trigger for the birth of various IETF WGs, notably 6LoWPAN [30] as a convergence layer, ROLL RPL [31] as

a routing protocol, and CoAP [32] facilitating native support of current Internet applications.

These layers and their tight interaction are hence seen as instrumental in making the IoT happen from a technology

point of view , and are thus surveyed and described in great details in subsequent sections. With respect to prior

art, the core contributions of this paper can be summarized as follows:

• For the first time, a detailed survey on the new IEEE 802.15.4e MAC and IETF ROLL RPL routing standards

is provided; indeed, these standards have been discussed in various sources at different technical depths but

such a detailed exposure with explanations is unprecedented.

• The introduction of a clear vision on a workable communication stack for the IoT using proven standards and
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the accumulated expertise of the authors, is also unprecedented.

• Finally, this paper shun away from using high-level approaches to defining the IoT but rather introduced

concrete protocols as well as the reasoning why they will succeed and last.

The rest of the paper is organized as follows. Section II introduces the IEEE 802.15.4-2006 PHY, along with

the main features of low-power radio hardware suitable for the IoT protocol stack. Section III then details the

IEEE 802.15.4e Time Synchronized Channel Hopping (TSCH) MAC protocol, showing how it is able to provide

both high reliability and energy-efficiency. IETF 6LoWPAN (IPv6 addressing) and IETF ROLL RPL (routing) are

covered in Section IV and Section V, respectively. We then discuss the novelty introduced by the CoAP protocol at

the application layer in Section VI. Section VII finally concludes this article and presents possible paths for future

research.

II. LOW-POWER PHY LAYER − IEEE 802.15.4-2006

The PHY layer determines the physical radio frequency at which the radio operates, the radio modulation, and

the encoding of the signal. In this Section we briefly review the importance of a low-power hardware and PHY

layer which, together with an energy-efficient MAC layer, cater for lower power connectivity among smart objects

in the future IoT.

A. Low-Power Radio Hardware

A radio translates bytes of digital information into an electromagnetic signal for transmission over the air. When

transmitting, the radio uses a modulation scheme to encode bytes of data into an analog signal. This signal is

then amplified by a Power Amplifier (PA) before being sent over the antenna. A low-power radio typically outputs

0 dBm, or 1 mW . Fading and shadowing causes the amplitude of that signal to weaken as it travels through the

air. When it is picked up by the receiver antenna, the signal is too weak to be demodulated directly, and the radio

uses a Low-Noise Amplifier (LNA) to bring it to a level the demodulator can handle. The power of the weakest

signal that the radio can successfully receive is called its sensitivity. A radio with a −90 dBm sensitivity (a typical

number for low-power radios) can successfully demodulate signals as weak as 1 pW .

When on, the modulator, demodulator, PA and LNA all consume substantial amounts of current, making the radio

the most power-hungry component of most designs. The radio, however, does not consume any energy when off.

The challenge of a good communication stack is to enable reliable transmission of data, while keeping the radio

off most of the time. Radio duty cycle is the portion of time the radio is on, either transmitting or receiving. It is

a good indicator of the power consumption of the mote. An energy-efficient communication stack has a duty cycle

(far) lower than 1 %.

Table II lists data sheet numbers for commercially-available low-power radios from different vendors. Radios can

change the power they transmit at, usually over a range going from -50 dBm to +5 dBm. In detail, 0 dBm (i.e,

1 mW) is the default transmit power for most radios; we therefore choose to show the transmit current at that power.

The receive current is the current drawn by the radio when in receive mode; radio draw the same current when
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TABLE II
COMPARISON OF DIFFERENT 802.15.4-COMPLIANT LOW-POWER RADIOS.

vendor name sensitivity transmit current @ 0 dBm receive current
Atmel AT86RF231 −101 dBm 14.0 mA 12.3 mA

Dust Networks DN6000 −91 dBm 5.4 mA 4.5 mA
Ember EM357 −100 dBm 27.5 mA 25.0 mA
Freescale MC13233 −94 dBm 26.6 mA 34.2 mA
Microchip MRF24J40 −95 dBm 23.0 mA 19.0 mA
NXP/Jennic JN5148 −95 dBm 15.0 mA (1.8 dBm) 17.5 mA

Texas Instruments CC2520 −98 dBm 25.8 mA 18.8 mA

idle listening (without receiving a packet), or actively receiving bytes. A common misconception is to consider a

system is energy-efficient when the motes transmit few packets. Table II shows that radios draw about the same

current in transmit and receive mode. Optimizing the power consumption of a system therefore consists in lowering

the duty cycle of the radio as a whole, i.e. having the radio off most of the time.

In most designs, motes are battery-powered, and it is impractical to change batteries. The goal of an energy-

efficient solution is to increase the lifetime of a mote by decreasing its average current consumption. This can be

done by choosing a radio which draws little current, and by using a protocol which runs the radio at a low duty

cycle. Let’s take some examples by assuming the mote is powered by a pair of AA batteries, holding 3000 mAh

of charge. If we use the AT86RF231 (which draws ≈ 13 mA when on) and a protocol which left the radio on all

the time (i.e. radio duty cycle is 100 %), the batteries will be depleated in 3000 mAh/13 mA = 230 h, or 10

days. If, on the same hardware, we use a protocol with a 1 % radio duty, the lifetime increases by a factor of 100,

to 32 months. If, on top of that, we replace the radio by the lower-power DN6000 (which draws ≈ 5 mA when

on), the lifetime increases to 3000 mAh/(5 mA× 1%) = 60000 h, or 7 years.

B. PHY of IEEE 802.15.4-2006

The most prominent standard in low-power radio technology is IEEE 802.15.4 [25]. It defines both the PHY

layer (e.g., the modulation scheme used) and the MAC layer (e.g., in a network, which mote talks when, on which

channel). The first revision of the standard was published in 2003, with a revision in 2006. Several working groups

are currently working on improving the standard in preparation for its next revision. These groups are identified by

a letter, e.g. IEEE 802.15.4e to be discussed below.

The IEEE 802.15.4 PHY is a healthy trade-off between energy-efficiency, range, and data rate targeted at building-

sized networks. While the current standard defines multiple PHY layers, the most widely used is the one operating

in the 2.4− 2.485 GHz frequency band, a worldwide and unlicensed band.

In this band, the IEEE 802.15.4 PHY layer uses Offset-Quadrature Phase-Shift Keying (O-QPSK) modulation

with a 2 Mbps physical data rate. Internally to the radio, every group of 4 bits of data sent for transmission are

encoded as 32 chips (‘physical bits’) by following some simple lookup table. From a user’s perspective, the bitrate

appears to be 250 kbps, although internally 8 more chips are sent over a 2 Mcps link. This technique is referred
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to as Direct Sequence Spread Spectrum (DSSS) and known to yield extra robustness.

IEEE 802.15.4 defines 16 frequency channels, located every 5 MHz between 2.405 GHz and 2.480 GHz. The

channels themselves are only 2 MHz wide, so channel i does not interfere with channel i− 1 or i+ 1; channels

are said to be orthogonal. The radio can arbitrarily send and receive on any of those channels, and every compliant

radio is able to switch channels in no more than 192 us.

When a radio sends a packet, it starts by transmitting a physical preamble for 128 us to allow for the receiver to

lock to its signal. It then sends a well-known Start of Frame Delimiter (SFD) to indicate the start of the physical

payload. The first byte of the physical payload indicates the length (in bytes) of the payload itself. Its maximum

value is 127, which limits the length of a packet to 128 bytes when including the length byte. A radio listening

continuously demodulates what it hears. When no other mote is transmitting, it hears white noise and the stream

of bits coming out of the demodulator is random. The circuitry in the receiver looks for a physical preamble to

‘lock onto’. Once locked on, the receiver waits for the SFD, then for the length byte. It then fills a receive buffer

with the number of bytes indicated in the length byte, after which it can switch off safely. After successfully

receiving a packet, the radio indicate reception to the micro-controller. From a implementer’s point of view, the

only requirements are to send packets of at most 128 bytes, and to have the first byte indicate how many bytes

follow. Although in a protocol stack the bytes following the length byte comply to different header formats (e.g.

MAC, routing, transport), they can be arbitrary as far as the radio is concerned.

III. POWER-SAVING LINK LAYER − IEEE 802.15.4E

IEEE 802.15.4 also defines a MAC protocol, i.e. the layer interacting directly with the radio. It defines the format

of the MAC header (with fields such as source and destination address) and how motes can communicate with

each other. This MAC layer is geared toward star networks, in which all motes communicate directly with a special

coordinator mote. It is ill-suited for low-power multi-hop networking mainly because of the following reasons:

• Powered routers. While it is possible to use the existing IEEE 802.15.4 MAC protocol for multi-hop routing,

the motes which are relaying the data need to keep their radio on all the time (100 % duty cycle). In a mesh

network, each mote also acts as a router. Using the existing IEEE 802.15.4 MAC protocol leads to a power

hungry solution.

• Single channel operation. The wireless medium is unreliable in nature and propagation effects, such as

shadowing and multi-path fading, as well as temporarily varying interference can cause wireless links to

break. If the network operates on a single channel, this causes network instabilities which can lead to network

collapse.

The IEEE 802.15.4e working group was created in 2008 to redesign the IEEE 802.15.4 MAC protocol. Through

time synchronization and channel hopping, it enables high reliability while maintaining very low duty cycles, both

highly recommended requirements for the emerging IoT. IEEE 802.15.4e [33] is only a MAC protocol change,

which does require any changes to the hardware.
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Time Synchronized Channel Hopping (TSCH), part of IEEE 802.15.4e draft standard since 2010, is the latest

generation of highly reliable and low-power MAC protocol, and thus very suitable for a protocol stack for IoT.

The initial concept emerged in the proprietary Time Synchronized Mesh Protocol (TSMP) [28] in 2006. Following

its successful adoption by the industrial automation community, TSMP was standardized in ISA100.11a [34] in

2008 and WirelessHART [29] in 2009. While those different standards might have adopted different packet formats

and higher-layer commands, the underlying technology is the same: synchronize the motes for energy efficiency,

channel hop for reliability.

A. Slotframe Structure

In TSCH, motes synchronize on a slotframe structure. A slotframe is a group of slots which repeat over time.

Each mote follows a schedule which tells it what to do in each slot. In a given slot, a mote can either transmit,

receive, or sleep. In a sleeping slot, the mote does not turn on its radio. For each active slots, the schedule indicates

with which neighbor to transmit or receive, and on which channel offset (detailed in Sec. III-C).

Fig. 1. A 4-slot slotframe and timeslot diagram of an acknowledged transmission.

As shown in Fig. 1, a single slot is long enough for the transmitter to send a maximum length packet, and for

the receiver to send back an acknowledgment indicating good reception. While the duration of a slot is implement-

specific, 10 ms is a possible value suggested in the draft [33].

When an upper layer generates a packet, it sends it to the MAC layer which stores the packet in a transmit queue.

At each transmission slot, the MAC layer checks whether it has a packet in its queue destined to the neighbor

associated with that slot. If not, it goes back to sleep without turning its radio on. If yes, it transmits the packet and

waits for the ACK. If an ACK is received, it removes the packet from the queue. Otherwise, it keeps the packet in

the queue for future re-transmission. A number of retransmissions is kept for every packet to avoid staleness.

At each reception slot, a mote turns on its radio right before the time it expects to receive the packet. If it receives

a packet destined for it, it sends an acknowledgment, turns off its radio, and forwards the packet to the upper layer

for processing. If it does not receive anything after some timeout, it returns to sleep. This means that either the

transmitter had nothing to say, or that the packet got lost due to interference or fading.

Fig. 2 shows an example topology and the associated schedule. Here, the slotframe is only 5 slots long, and there

are 6 channel offsets (the concept of channel offset is presented in Sec. III-D). Each mote in the network only cares

about the cells it participates in. For example, when G has a packet to send to D, it waits for slot 3, and sends it
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on channel offset 0. It will stay off for the other cells. If a packet needs to go from G to A, it will first be sent

from G to D, be buffered at D, then sent from D to A in the next frame. Note that, as depicted in Fig. 2, while

most cells are dedicated, some can be shared between different links (e.g. D → A and C → A ). IEEE 802.15.4e

defines a simple backoff scheme for shared cells in case a collision occurs.

Fig. 2. Dedicated and shared links.

B. Scheduling

IEEE 802.15.4e defines how the MAC layer executes a schedule (as described in Sec. III-A). It does not specify

how such as schedule is built. A schedule needs to be built carefully so that, when mote A has a transmit slot to

mote B, B is actually listening for packets from A. Similarly, if A is no longer a neighbor of B (e.g. it moved or

switched off), B should not be listening anymore for packets from A. While all these rules are intuitive, they also

illustrate that the network’s schedule needs to be both carefully built, and constantly refreshed as links come and

go in the network. Scheduling can either happen in a centralized or a distributed way:

• In a centralized approach, a specific “manager” mote is responsible for building and maintaining the network

schedule. Every mote in the network regularly updates the manager with the list of other motes it can hear,

and the amount of data it is generating. From the neighbor information, the manager draws the connectivity

graph. From the data generation demands, it assigns slots to the different links in the connectivity graph. Once

this schedule is built, the manager then informs each mote about the links in the schedule it is participating

in. The motes then simply follow these instructions. When there is a change in the connectivity (i.e., a mote

lost a neighbor), the manager updates its schedule and informs the affected motes.

In practice, networks often have a gateway mote which connect it to the Internet (see Sec. IV). In a centralized

approach, that mote often also manages the IEEE 802.15.4 schedule. This type of approach has been commer-

cially available since TSMP, and thousands such networks deployed.

A centralized approach builds very efficient schedules. Since the manager knows exactly what the network

looks like, it can apply centralized scheduling techniques. Yet, such an approach does not cope well with very

dynamic network (e.g. mobile robots), since there is some delay between a link failing and the schedule being

adapted.



10

• In a distributed approach, motes decide locally on which links to schedule with which neighbors. Once can

imagine opting for this approach in mobile networks, or when the network has many gateway motes. The

simplest solution is for each node to schedule a link to each neighbor. This is the approach adopted by Tinka

et al. [35], which evaluates this approach by simulation and experimentally. A more complex problem is when

multiple motes generate data at a constant rate, which requires links to be scheduled along the multi-hop route

this data travels over. Internet-like reservation protocols such as the Resource Reservation Protocol (RSVP) [36]

and the Multi Protocol Label Switching (MPLS) protocol [37] could be applied, but this is remains a very

open issue.

C. Synchronization

Device-to-device synchronization is necessary to maintain connectivity with neighbors in a slotframe-based

network. As shown in Fig. 1, no beacon is transmitted in a IEEE 802.15.4e network for TSCH applications.

Two methods are defined for allowing a device to synchronize to the network: (I) Acknowledgment-Based

synchronization and (II) Frame-Based synchronization. The former involves the receiver calculating the delta

between the expected time of frame arrival and its actual arrival, and providing that information to the sender

mote in its acknowledgment. This allows a sender mote to synchronize to the clock of the receiver. The latter

involves the receiver calculating the delta between the expected time of frame arrival and its actual arrival, and

adjusting its own clock by the difference. This allows a receiver mote to synchronize to the clock of the sender.

When there is traffic in the network, motes which are communicating will implicitly re-synchronize using the data

frames they exchange. If they have not been communicating for some time (typically 30 s), motes will exchange

an empty data frame (called keep-alive messages) simply to re-synchronize.

In a typical IEEE 802.15.4e TSCH network, time propagates outwards from the PAN coordinator. It is very

important to maintain unidirectional time propagation and avoid timing loops. Each device periodically synchronizes

its network clock to at least one other device, and it also provides its network time to its neighbor motes. Each mote

determines whether to follow a neighbors clock based on the presence of a ClockSource flag in the corresponding

neighbors record (configured by the network manager in a centralized system). It has to be specified that the

direction of time propagation is independent of data flow in the network.

D. Channel Hopping

The IEEE 802.15.4e TSCH MAC adds channel hopping to time slotted access. Channel hopping implies frequency

diversity that mitigates the effects of interference and multipath fading. Moreover, the use of several frequencies

increases the network capacity, because more motes can transmit their frames at the same time, using different

channel offsets. Channel hopping combined with slot access improves also reliability. The advantages derived from

the channel hopping have been already tested and analyzed [38], [39].

Let (t, chOf ) be the slot and the channel offset, respectively, assigned to a given link. The channel offset, chOf,
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is translated to a frequency f (i.e., a real channel) using the following translation function

f = F{(ASN + chOf ) mod nch}, (1)

where ASN is the Absolute Slot Number, i.e., the total number of slots that elapsed since the network was deployed.

The ASN is incremented at each slot and shared by all the devices in the network. In detail, ASN = (k · S + t),

where k is the slotframe cycle, as shown in Fig. 1. The function F is realized with a look-up-table, containing the

set of available channels. The value nch (i.e., the number of available physical frequencies) is the size of such a

look-up-table. Moreover, the following constraints on t and chOf hold: 0 ≤ t ≤ S − 1, and 0 ≤ chOf ≤ nch − 1.

In an IEEE 802.15.4e network, 16 channels are available. Furthermore, a blacklist can be used to restrict the set of

allowed channels for coexistence purposes. If the slotframe size, S, and the number of channels, nch, are relatively

prime, the translation function assures that each link rotates through k available channels over k slotframe cycles. In

other words, successive frames over a same link are sent over different physical frequencies in successive slotframe

cycles k.

E. Network Formation

IEEE 802.15.4e TSCH networks support the same two classes of devices considered in the IEEE 802.15.4 standard

[25]: the Full Function Device (FFD), which can act as a simple mote or as a network coordinator, and the Reduced

Function Device (RFD), which cannot become a network coordinator and hence only talks to a network coordinator.

A network topology is composed by a combination of FFD and RFD devices.

The network formation procedure for TSCH applications includes two components: advertising and joining. As a

part of advertising, only FFD devices that are already members of the network can send command frames announcing

the presence of the network. A new device trying to join the network, instead, listens for the Advertisement command

frames. When at least one of these frame is received, the new mote can attempt to join the network sending a

Join Request command frame to an advertising device. In order to fulfill this task, two consecutive slots in the

slotframe are required: the first one for broadcasting Advertisement frames and the second one for receiving Join

Request frames. In fact, given that a single packet can be transmitted in a single slot, a new device that listens to

the Advertisement message in a given slot, will send the Join Request frame in the next slot.

In a centralized management system, Join Request frames are routed to the PAN coordinator. In a distributed

management system, they can be processed locally. When a new mote is accepted into the network, the advertiser

activates the mote by setting up slotframes and links between the new mote and other existing ones. These slotframes

and links can also be deleted and/or modified after a mote has joined the network.

1) Network Ramp-Up: In order to aid the understanding of the network formation procedure, Fig. 3 shows the

messages exchanged during the network build up phase in a simple scenario with a PAN coordinator (mote A), a

FFD (mote B) and a RFD (mote C), using a 7 slots slotframe. For each exchanged message we specify the slot

ASN used for that transmission. Moreover, we mark the beginning of each new slotframe occurrence, specifying
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the value of the slotframe cycle, k. As it can be seen in Fig. 3, several messages are sent in consecutive slotframe

cycles.

Fig. 3. Messages exchanged during the network build up phase among the motes in a simple network with a PAN coordinator, a FFD and a
RFD.

We suppose that the TSCH network is based on a centralized management system. In other words, the PAN

coordinator works as master node and, during the network build up phase, it defines the links for allowing broadcast

and dedicated communications in the network. Being the first mote in the network, the PAN coordinator starts one

slotframe, to which other motes may later synchronize. It reserves the first two slots within the slotframe to itself

for broadcasting the Advertisement command frames and receiving the Join Request frames, respectively. As soon

as other devices join the network, the PAN coordinator assigns slots and channel offsets to each of them.

Fig. 4 shows the links scheduled within the 7 slots slotframe, during the network build up phase. In this example

the PAN coordinator assigns the same channel offset value, chOf = 0, to all the broadcast links, and chOf = 1 to

all the dedicated links used for receiving Join Request frames.

As already specified, the use of the same chOf does not imply the use of the same channel. In fact, in the

frequency translation function, given by Eq. (1), the value of chOf is the same, but the value of t is different, and

therefore it results in a different channel to be used.

In the considered network scenario, mote C is a simple RFD device that cannot allow other motes to join the

network. For this reason, the links used for advertising and joining the network are not set for it. In order to allow

frames generated by mote C to reach the PAN coordinator, a slot is reserved for each dedicated link along the path

that goes from mote C to the root mote (i.e., C → B, B → A).

Once all the motes have joined the network, i.e., the PAN coordinator has not received any Join Request frames
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Fig. 4. Time pattern within the 7 slots slotframe defined during the network build up phase in Fig. 3.

during a timeout period, the Advertising procedure can be disabled. Afterwords, the procedure could be activated

again, with a given frequency, in order to check if there are new devices that wait to join the network.

IV. CONNECTING TO THE INTERNET − IETF 6LOWPAN

As well known, the Internet is composed of many networks, a number of which are typically traversed by a

packet on its way from source to destination. Thus, for each type of link layer technology which the network is

based on, there needs to be an “IP-over-X” specification that defines how to transport IP packets. In many cases,

to map the services required by the IP layer onto the services provided by the lower layer (i.e, the link layer), the

“IP-over-X” specification can amount to a (sub)layer of its own, often called adaptation layer [40]. In the process

of shaping the IoT world, in 2007 the IETF IPv6 over Low power WPAN (6LoWPAN) working group has started

to work on specifications for transmitting IPv6 over IEEE 802.15.4 networks.

Typically, Low power WPANs are characterized by: small packet sizes1 , support for addresses with different

lengths, low bandwidth, star and mesh topologies, battery supplied devices, low cost, large number of devices,

unknown node positions, high unreliability, and long idle periods during which communications interfaces are

turned off to save energy [30], [41] – [44].

Given the aforementioned features, it is clear that the adoption of IPv6 on top of a Low power WPAN is not

straightforward, but poses strong requirements for optimization of this adaptation layer. For instance, due to the

IPv6 default minimum MTU size of 1280 bytes, a no-fragmented IPv6 packet would be too large to fit in an IEEE

802.15.4 frame; moreover, the overhead due to the 40 bytes long IPv6 header would waste the scarce bandwidth

available at the PHY layer.

For these reasons, the 6LoWPAN working group has devoted huge efforts for defining an effective adaptation

layer in [45]- [46]. Further issues encompass the auto-configuration of IPv6 addresses [47], the compliance with

the recommendation on supporting link-layer subnet broadcast in shared networks [48], the reduction of routing

and management overhead, the adoption of lightweight application protocols (or novel data encoding techniques),

1In an IEEE 802.15.4 WPAN, the maximum length for a packet to be transmitted on physical layer is 127 bytes.
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and the support for security mechanisms (i.e., confidentiality and integrity protection, device bootstrapping, key

establishment and management).

A. 6LoWPAN frame format

To solve the problem of manage IPv6 packets, allowing link-layer forwarding and fragmentation, 6LoWPAN uses

an intermediate adaptation layer between IPv6 and IEEE 802.15.4 MAC levels [45]. Moreover, 6LoWPAN may

compress IPv6 header and Next Headers, by suppressing redundant information that can be inferred from other

layers in the communication stack [46].

Specifically, all 6LoWPAN encapsulated datagrams (that should be transported over IEEE 802.15.4 MAC) are

prefixed by astack of headers, each one identified by a type field. In particular, the header types can be logically

grouped in four categories, depending on the function they play in the 6LoWPAN adaptation strategy, as shown in

Table III and summarized below:

• a NO 6LoWPAN Header is used for specifying that the received packet is not compliant to 6LoWPAN

specifications and therefore it has to be discarded (in this way allowing the coexistence with other no-6LoWPAN

nodes in the same network ).

• A Dispatch Header is used to compress an IPv6 header or to manage link-layer multicast/broadcast.

• A Mesh Addressing Header allows IEEE 802.15.4 frames to be forwarded at link-layer, extending single-hop

WSNs in multi-hop ones.

• A Fragmentation Header is used when a datagram does not fit within a single IEEE 802.15.4 frame.

It is worth to note that each header may be present or not, depending on the needs. Moreover, headers should

appear in a precise order, as described in the sequel.

TABLE III
6LOWPAN HEADER TYPES.

First 2 bits Following bit combinations
NO 6LoWPAN 00 xxxxxx Any combination

Dispatch 01

000000 Additional Dispatch byte follows
000001 Uncompressed Ipv6 Addresses
000010 LOWPAN HC1 compressed IPv6
010000 LOWPAN BC0 broadcast
1xxxxx LOWPAN IPHC compressed IPv6

Mesh Addressing 10 xxxxxx Any combination

Fragmentation 11 000xxx First Fragmentation Header
100xxx Subsequent Fragmentation Header

The IEEE 802.15.4 standard does not define any routing capability and relies on functionalities of upper layers

to do this. At this aim, a routing protocol that can be used for populating the routing table will be described in Sec.

V. Anyway, two devices do not require direct reachability in order to communicate because an Originator device
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may use other intermediate devices as forwarders toward the Final Destination device. To realize the frame delivery

using a unicast communication, a Mesh Addressing Header is used prior to any other headers of the 6LoWPAN

encapsulation. For each forwarder node, it includes the link-layer addresses of the considered forwarding node and

of the next-hop node, in addition to the the link-layer addresses of the Originator and of the Final Destination.

When some form of multicast/broadcast communication at link layer is needed for controlled flooding mechanisms

(e.g., the one described in Sec.V) or for topology discovery, a Broadcast Header immediately follows the Mesh

Addressing Header (if present). It is a kind of Dispatch Header (see below) and it includes a 1-byte long Sequence

Number for detecting and, thus, suppressing duplicate packets.

The Fragmentation Header can be used for fragmentation purposes and it must follow Mesh Addressing and

Broadcast headers, if present. Such a header includes: the Datagram Size, that is the dimension of the entire

IP packet before link layer fragmentation (it shall be the same for all link layer fragments of an IP packet); the

Datagram Tag, which identifies univocally the original fragmented IP packet; and the Datagram Offset that specifies

the offset of the fragment from the beginning of the payload of the datagram (obviously it is present only in the

second and subsequent fragments.)

Finally, the Dispatch Header category includes several kinds of headers, used for encapsulating and, optionally,

compressing an IPv6 packet. Therefore, a Dispatch Header, except the Broadcast one, must follow all the other ones

described till now. The 6LoWPAN specifications consider the LOWPAN IPHC encoding scheme for compressing

IPv6 header, as defined in IETF RFC 6282 [46]. It substitutes the original scheme suggested in the IETF RFC 4944

[45]. However, new implementations of 6LoWPAN should support LOWPAN HC1 decompression for backward

compatibility issues. Therefore, both compression schemes are identified by different Dispatch Types (see Table III).

B. Header compression

Within the same WPAN, many IPv6 header fields are expected to be common and/or easy to derive without

requiring their explicit indication by the sender. As an example, the Payload Length can be inferred either from

the MAC Frame Length or from the Datagram Size field in the fragment header (if present); Hop Limit will be

set to a well-known value by the source; addresses assigned to 6LoWPAN interfaces are formed with an Interface

Identificator derived directly from MAC addresses.

The LOWPAN IPHC encoding scheme performs effective compression of unique local, global, and multicast

IPv6 addresses, based on shared states. To this end, a 13-bit LOWPAN IPHC encoding field is appended to the

first 3 bits of the Dispatch Type. If some of the IPv6 header fields have to be carried in clear, they follow the

LOWPAN IPHC encoding. In the best case, the LOWPAN IPHC can compress the IPv6 header down to 2 bytes

in an IPv6 link-local communication (i.e., a direct single-hop communication). When a packet is routed through

multiple hops, LOWPAN IPHC can compress the IPv6 header down to 7 bytes.

6LoWPAN provides also a technique to compress IPv6 next-headers, namely the LOWPAN NHC encoding.

Compression formats for different next-headers are identified by a variable-length bit-pattern which immediately
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follows the LOWPAN IPHC compressed header. Each next-header in the original IPv6 packet will be present in

the compressed one in the same order and it will encoded with the appropriate LOWPAN NHC format.

Finally,the RFC 6282 allows a compression format for UDP headers using LOWPAN NHC. The UDP Length

field is always elided, as it can be inferred from lower layers using the 6LoWPAN Fragmentation Header or the

IEEE 802.15.4 header. The Checksum field can be also elided if authorized by upper layers. Source and destination

ports can be compressed if they match some common cases and, hence, the compression result is carried in-line

after the LOWPAN NHC encoding field; the length of the compression result can range from a minimum of 8 bits

(i.e., 4 bits for each port) to 32 bits (i.e., both ports are not compressed). Not compressed or partially compressed

fields are carried in-line, appearing in the same order as they do in the original UDP header. In the best case, an

UDP header can be compressed to only 2 bytes, i.e., one byte for the LOWPAN NHC encoding field and the other

one for the compressed ports.

V. ROUTING − IETF ROLL

Routing issues are very challenging for 6LoWPAN, given the low-power and lossy radio-links, the battery supplied

nodes, the multi-hop mesh topologies, and the frequent topology changes due to mobility. Successful solutions should

take into account the specific application requirements, along with IPv6 behavior and 6LoWPAN mechanisms [40].

An effective solution is being developed by the IETF “Routing Over Low power and Lossy (ROLL) networks”

working group. Recently, it has proposed the leading IPv6 Routing Protocol for Low-power and Lossy Networks

(LLNs), RPL, based on a gradient-based approach [31], [43], [44], [49].

RPL can support a wide variety of different link layers, including ones that are constrained, potentially lossy,

or typically utilized in conjunction with host or router devices with very limited resources, as in building/home

automation, industrial environments, and urban applications [50]- [53]. It is able to quickly build up network routes,

to distribute routing knowledge among nodes, and to adapt the topology in a very efficient way; thus, it is suitable

also for smart grid communications [54].

The information dissemination mechanism of RPL is regulated by the so called trickle timer [55], that has to be

properly tuned in order to assure a small signaling overhead and fast path repair operations [56] [57].

In the most typical setting entailed by RPL, the nodes of the network are connected through multi-hop paths

to a small set of root devices, which are usually responsible for data collection and coordination duties. For each

of them, a Destination Oriented Directed Acyclic Graph (DODAG) is created by accounting for link costs, node

attributes/status information, and an Objective Function, which maps the optimization requirements of the target

scenario.

Each DODAG is identified with a DODAGID, which is set upon its creation, and with a DODAGVersionNumber,

which is updated each time the graph is rebuilt. The topology is set-up based on the Rank metric, which encodes

the distance of each node with respect to its reference root, as specified by the Objective Function. Regardless the

way it is computed (see Sec. V-D for more details), the Rank should monotonically decrease as the DODAG is

followed towards the DODAG destination, in accordance to the gradient-based approach.
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The identification of the different kinds of traffic encompassed by RPL is a basic preliminary step needed to

understand the main facets of this protocol. In fact, signaling information exchanged among nodes and ancillary

data structures used in support of routing operations are strictly related to the requirements of the considered data

flows.

The Multipoint-to-Point (MP2P) is the dominant traffic in many LLN applications. It is usually routed towards

nodes with some application relevance, such as the LLN gateway to the larger Internet or to the core of private

IP networks. In general, these destinations are the DODAG roots and they act mainly as data collection points for

distributed monitoring applications. Contrariwise, Point-to-Multipoint (P2MP) data streams can be used for actuation

purposes, by means of messages sent from DODAG roots to destination nodes. Finally, Point-to-Point (P2P) traffic

is necessary to allow communications between two devices belonging to the same LLN, e.g., a sensor and an

actuator. In this case, a packet will flow from the source towards the common ancestor of those two communicating

devices; then, downward towards the destination. In some constrained scenarios (e.g., when nodes cannot store

routes), the common ancestor may be a DODAG root, needing some form of IP source routing from the DODAG

root towards the destination.

As an obvious consequence, RPL has to discover both upward routes (i.e., from nodes to DODAG roots) in order

to enable MP2P and P2P flows, and downward routes (i.e., from DODAG roots to nodes) to support P2MP and

P2P traffic.

A. RPL topology formation

The simplest RPL topology is made by a single DODAG with just one root, that is, it is built as a DAG containing

only one DODAG. For example, this is the case of a WSN monitoring a small size area.

A more complex scenario encompassed by RPL is composed of multiple uncoordinated DODAGs with inde-

pendent roots. This topological choice is a way to split the LLN in several partitions depending on the needs of

the application context. Note that, in this kind of scenario, all DODAGs belong to the same DAG and each node

can join only one of those DODAGs.

A more sophisticated and flexible configuration could contain a single DODAG with a virtual root that coordinates

several LLN root nodes . The main advantage in this case, with respect to the previous one, is the absence of

limitations on the parent set selection, given that all nodes belong to the same virtual DODAG , although a stronger

coordination is needed among the root nodes.

Depending on the application requirements, it is also possible to combine the three examples presented so far in

more complex topology.

Moreover, RPL provides a way to manage several monitoring applications on the same network. Multiple instances

of RPL may run concurrently on the network devices and each instance has specific routing optimization objectives,

such as the minimization of delay and energy consumption. Such an instance is strictly linked to a single DAG

(composed by one or more DODAGs). To this aim, a RPLInstanceID is also employed to identify one of the possible

RPL instances running on the same network.
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The formation of all these possible kinds of topologies relies on the RPL information dissemination mechanism,

which enables a minimal configuration in the nodes and allows them to operate mostly autonomously. In this sense,

a key role is played by DODAG Information Option (DIO) messages, containing information about the Rank, the

Objective Function, the IDs, and so on. They are multicasted (periodically and link-locally) by each node to create

the DODAG, thus establishing paths towards the roots.

In detail, according to RPL specifications, in order to implement network formation and management operations,

all nodes execute several operations: they send and receive DIOs; they compute their own Rank, based on the

information included in the received DIOs; they join a DODAG and select a set of possible parents in that DODAG

among all nodes in the neighborhood; they select the preferred parent among the possible ones. More specifically,

when a node joins the LLN, it waits for a DIO message in order to discover possible parents. Optionally, a new

node can multicast a DODAG Informational Solicitation (DIS) to ask for a DIO.

A node receiving a DIO message uses its information to join a new DODAG, or to maintain an existing one,

according to the Objective Functions and the Ranks of their neighbors. It can also detect possible routing loops.

To reach these goals, the following function is used to compare node Ranks and to create a DODAG:

DAGRank(N) = �Rank(N)/MinHopRankIncrease� (2)

where N is the node identifier, Rank(N) is the Rank of node N , �x� is the greatest integer less than or equal to

x; and MinHopRankIncrease is the implementation-dependent minimum hop rank increase value, representing the

minimum difference between the Rank of a node and the Ranks of its possible parents.

Upon a DIO message is received from a neighbor, a node setups its own Rank to a value that is a function of both

the neighbor Rank and the cost to reach the DODAG root through it. The considered node lets that its set of possible

parents contain only that neighbor, if one of the following conditions is true: (i) the node Rank was not already setup;

(ii) the old value, A, of the node Rank and the computed one, B, verify the relation DAGRank(A) > DAGRank(B).

Instead, if DAGRank(A) = DAGRank(B), the neighbor is added to the set of possible parents. In other cases, the

DIO is not further considered. Finally, each node can select its preferred parent within its set of candidate parents

based on several possible rules, such as Objective Function, path cost, Rank, and so on.

On the other hand, a node advertises its presence, the affiliation with a DODAG, the routing cost, and the

related metrics by sending DIO messages to nodes in its neighborhood, only if it has already computed its own

Rank. An exception is allowed to the DODAG root, which is configured to get its own Rank equal to the value

MinHopRankIncrease, and to send it with the DODAGID, the routing cost, and the related metrics into DIO

messages. In this way, a DODAG is constructed in a widening-wave fashion, starting from the DODAG root.

A DODAG root can issue a global repair operation by creating a newer version of the DODAG. Nodes in the

new DODAG can choose a new Rank regardless their positions within the old DODAG Version. RPL also supports

mechanisms which may be used for local repair within the same DODAG version, e.g., upon loop detection.

It is worth to remark that these procedures are useful to establish upward routes only. Therefore, in presence

of P2MP and P2P traffics, an additional mechanism is required to create downward paths. To this end, RPL uses



19

Destination Advertisement Object (DAO) messages to back-propagate routing information from leaf nodes to the

roots. They are triggered by the reception of a DIO message, or in global and local repair operations. After receiving

a DAO message, each node forwards it to its parent at the expiration of a timer, which is implementation-dependent

[31].

To avoid redundancies and to control the signaling overhead, the trickle algorithm [55] triggers, for each node, a

new DIO message only when the overall amount of control packets already sent in the neighborhood of that node

is small enough. With this algorithm, the time is split in an endless sequence of intervals with size I . A node can

transmit a new DIO message at a random instant t in the second half of each interval if, since the beginning of

that interval, the number of signaling messages (which have been heard) is smaller than a given threshold, δRC ,

i.e., the redundancy constant. The size I is not fixed, but it is varied along the time in the range [Im, 2M · Im],

where Im is the minimum size of I . In particular, note that, starting from its minimum value, I is doubled at the

end of each interval, up to a maximum number, M , of times. When an inconsistent state is detected (e.g., there is

the detection of a loop or the join to a new DODAG version), the trickle timer is reset, i.e., I is set again equal to

Im.

B. RPL control messages

In the previous section we have explained how the DIS, DIO, and DAO objects are used to create and maintain a

LLN topology. Herein, we explain how they are exchanged in multi-hop network. Specifically, they are encapsulated

as RPL control messages into ICMPv6 packets, according to [58]. The structure of a message is reported in Fig.

5.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 3

ChecksumCode

Option(s)

Type = 155 (RPL)

Base

Fig. 5. RPL encapsulation in an ICMPv6 packet.

The requested Type code for RPL messages is 155 (such a value has to be confirmed by the Internet Assigned

Numbers Authority, IANA). The Code field indicates which kind of control message, i.e., DIS, DIO, or DAO, is

present after the Checksum . The Base field is the RPL message header and it contains only the basic information

related to the functionalities of the carried object. Instead, the Option(s) field is the body of such messages and,

depending of the needs, it may be composed of any combination of optional functionalities (padding, metric

containers, route information, DODAG configuration, RPL target, and so on).
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A DIS message (code field = 0x00) is composed by a 2 bytes long header, which is initialized to zero by the

sender and it is ignored by the receiver. In general, it includes in its body a solicited information option, which

expresses possible preferences on the RPL instance, the DODAG or the version that nodes want to join.

A DIO message (code field = 0x01) provides a richer set of information with respect to DIS packets. In fact,

besides containing RPLInstanceID, DODAGID, DODAGVersionNumber, and Rank, it also includes several flags.

The more significant ones specify: (i) if a repair operation is ongoing; (ii) if RPL can support downward routes

and, in case, if nodes in the DODAG should maintain them in their routing tables; (iii) a preference index for the

DODAG, called the DODAGpreference.

Finally, DAO messages (code field = 0x02) transport the RPLInstanceID in their header, in order to construct

downward routes in the related DAG. Among all the features provisioned by RPL, its local instances can be

declared in support of a future on-demand routing solution. In that case, the DODAGID should be also included

in the DAO header. Other notable fields are: (i) a settable flag for asking an acknowledgment (i.e., the RPL DAO-

ACK message, with code field = 0x03) for the correct reception of a DAO message; (ii) a DAOSequence field to

distinguish between consecutive DAO message receptions.

Besides, each RPL message has a secure variant providing integrity and protection as well as optional confiden-

tiality and delay features .

C. Metrics and constraints

Possible metrics and constraints (which can be fruitfully exploited for timely adapting the topology to changing

network conditions) are [59]: node energy, hop count, link throughput, latency, link reliability, and link color. In

particular, with the term “colors” RPL refers to specific properties of links, so that the link color is used to include

or exclude such links from the paths.

This richness of information, from on side, makes RPL highly adaptable to different operating conditions. On

the other hand, it is necessary to keep under control the adaptation rate of routing metrics in order to avoid path

instabilities, which would severely impair LLN performance and scalability.

All the available metrics can be advertised in DIO or DAO messages, using the DAG Metric Container object

(see Fig. 6). In particular, a Metric Container Option can be carried into the option field of a RPL control message

and it can include several Metric Container Objects.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
1 2 3

Routing-MC-Type Res Flags P C O R A Prec Object Length

(object body)

Fig. 6. Metric Container Object format.
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The Routing Metric/Constraint Type field identifies each Routing Metric/Constraint object, while the length field

reports the length of the object body (expressed in bytes). The flag C is used to discriminate whether the content

is a routing constraint or a metric. If the content is a routing constraint, the O flag expresses if it is optional.

Otherwise, if the content is a routing metric P indicates if all nodes on the path record metrics; R, instead, specifies

if metric are recorded or aggregated along the path; A discriminates among additive, multiplicative, maximizing or

minimizing metrics. Finally, the Prec field sets the precedence of the object relative to other ones in the container.

D. The Objective Function

In RPL, the Objective Function translates key metrics and constraints into a Rank, which models the node distance

from a DODAG root, in order to optimize the network topology in a very flexible way. Furthermore, the Objective

Function allows the selection of a DODAG to join and the identification of a number of peers in that DODAG as

parents. Generally speaking, the parent selection at a node could be triggered in response to several events, such

as the reception of a DIO message, a timer elapse, all DODAG parents become unavailable, or a trigger indicating

that the state of a candidate neighbor has changed. After the Objective Function has scanned all the interfaces at

a node to check whether they can be eligible for establishing a link in the topology, all candidate neighbors are

examined to evaluate if they can act as RPL router. These preliminary operations are useful to exclude all those

links and candidate nodes that do not match basic Objective Function compatibility rules, e.g., related to security

issues, performance, an so on. Then, the node scans the list of the candidate parents that passed the preliminary

tests. The Rank that would result from having each of them as parent is evaluated. The preferred parent is elected

as the one that can grant the smallest Rank, provided that this Rank is smaller than the one currently held by the

node itself. Obviously, these operations can be iterated when more than one parent has to be selected.

The Objective Function is identified by an Objective Code Point (OCP) within the DIO Configuration option,

indicating the method that should be used to construct the DODAG. The Objective Functions proposed by IETF

are described below.

1) Objective Function 0: It is identified by an OCP equal to zero [60], and it requires only the information in the

RPL DIO header, such as the Rank and the DODAGPreference. A node Rank is obtained by adding a normalized

scalar, RankIncrease, to the Rank of a selected preferred parent. The RankIncrease value is a multiple of 0x100, so

that Rank values can be stored in one octet. Given that in the RPL main specification [31] there is neither default

Objective Function, nor default metric container, it might happen that two implementations, following different

guidelines for a specific problem or environment, will not support a common Objective Function which they could

interoperate with. Therefore, Objective Function 0 is designed as a common denominator among all the generic

implementations. It ignores metric containers and it leaves to implementation the responsibility to compute how

link properties are transformed into a RankIncrease.

2) Minimum Rank Objective Function with Hysteresis: It is designed to find the paths with the smallest path

cost while preventing excessive churn in the network [61]. It is identified by an OCP equal to 1. A node switches
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to the minimum cost path, NewPathCost, only if the following inequality is verified:

NewPathCost < CurrentPathCost− PARENT SWITCH THRESHOLD (3)

where CurrentPathCost is the path cost of the current path, and PARENT SWITCH THRESHOLD is a given

threshold, implementing hysteresis.

This Objective Function may be used with any additive metric listed in [59] as long the routing objective is to

minimize the given routing metric. Besides, it employs a DODAG parent set with only one node. This node is

automatically chosen as the preferred parent. As a consequence, any candidate neighbor may become the preferred

parent.

VI. TRANSPORT LAYER AND ABOVE − IETF COAP

A LLN using IPv6 provides world-wide Internet integration given that nodes can be addressed and information

can be routed through the network without requiring specialized NAT techniques at the gateways. However, for

complete Internet compatibility, some features which are not addressed by the network layer are required. On

one hand, it would be desirable that a node manage multiple non-interfering requests. This issue can be dealt by

specialized application code running at each node or by multiplexing network layer through the use of the concept

of port. Besides, end to end reliability cannot be guaranteed by network layer as its task need to be performed over

the network routing structure. Usually both functionalities are addressed by upper-network layers such as transport

and application in the TCP/IP network stack.

On the other hand, application layer protocols provide application independent semantics that facilitate content

representation and inter-operability between different applications. Protocols, such as HTTP [15], enable applications

to inter-operate in a client/server content/resource centric fashion. Internet of Things aims to enable LLNs to

interoperate with existing applications without the need of specialized application oriented code, thus requiring

LLNs to talk application layer protocols. As classical networks do not need to operate with energy restrictions,

content tagging and metadata are not optimized for minimum packet overhead; this limits their integration in LLN

applications. Thus, a set of techniques to compress application layer protocol metadata have been proposed without

compromising application inter-operability.

A. Transport over LLNs

The Transport layer is responsible of providing end-to-end reliability over IP based networks. TCP [17] provides

traffic control and congestion control through Automatic Repeat-Request (ARQ) techniques [62]. It sustains the

traffic on the Internet and provides reliability thanks to the control overhead introduced for each transmitted packet.

Reliable transport protocols over LLNs are being studied but the amount of information for traffic control and

reliability are expensive in terms of number of transmitted packets and end to end packet confirmation which

directly maps to energy consumption. Dunkels et al [63] presented a lightweight TCP implementation based on the

use of caching that reduces the amount of control packets. Other approaches focus on the use of Selective Repeat
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variant [64] which selectively acknowledge received packets with the caveat that acknowledgments are end-to-end.

So that, they are required to cross the entire network and this is not energy efficient. Due to the expensive energy

requirements imposed by end to end reliability and the lack of a clear proposal for reliable transport in LLNs,

the use of User Datagram Protocol (UDP) [65] and retransmission control mechanisms at application layer are

demonstrating a good tradeoff between energy cost and reliability.

UDP is a datagram oriented protocol that provides a procedure for application programs to send messages to other

programs with a minimum of protocol mechanism and overhead. The protocol is transaction oriented, and delivery

and duplicate protection are not guaranteed (i.e. UDP neither provides guarantees to the upper layer protocols for

message delivery nor retains state of UDP messages once sent). Like TCP, UDP provides application multiplexing

through the concept of port.

As stated in previous sections, 6LoWPAN removes a number of fields in the IPv6 and UDP headers because

they take well-known values, or because they can be inferred from fields in the IEEE 802.15.4 header.

B. Application Layer

In the application scenarios addressed by LLNs, we will find a range of devices involved with very different

capabilities, from full servers to constrained devices consisting of 8-bit or 16-bit microcontrollers with wireless

network interfaces such as IEEE 802.15.4 radios. In that kind of scenarios, there is the need to restrict the use

of different protocols to a certain subset that can interoperate across device types, inclusively at application layer.

Experience with protocol gateways translating between protocols providing similar services, tells us that such

gateways can cause nasty operational problems since protocol semantics are often not 100% translatable in some

corner cases. In addition, the use of web services on the Internet applications has become the de-facto standard

which draws that application layer interoperability have to be in conformance with a representational state transfer

architecture of the web [15].

Due to the restrictions imposed by LLNs, a straightforward implementation of RESTful architectures such as

the client/server model defined by HTTP is not possible and an adaptation is required. While REST architectures

make assumptions on efficient reliable transport and are not strictly constrained by payload size as expensive

fragmentation is dealt at lower layers, a LLN has to carefully take into account several of these features as the

services offered by lower layers are considerably more restrictive. 6LoWPAN for example supports the expensive

IPv6 packet fragmentation into 127 bytes long packets, but an abuse of that makes the network inoperable. Thus a

requirement for application layer is to limit the packet extension.

The IETF Constrained RESTful Environments (CORE) working group [66] has defined the Constrained Applica-

tion Protocol (CoAP) [32] which easily translates to HTTP for integration with the web, while meeting specialized

requirements such as: multicast support, very low overhead, and simplicity for constrained environments. CoAP

has been designed as a generic protocol for LLNs taking into account the features of the underlying architecture

[67]. The CORE working group, instead of blindly making a compression of HTTP [15], defined a subset of the

RESTful specification, making it interoperable with HTTP but also specializing it for so constrained environments.
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The summary of the main features addressed by CoAP are [32]:

• Constrained web protocol specialized to M2M requirements.

• Stateless HTTP mapping through the use of proxies or direct mapping of HTTP interfaces to CoAP.

• UDP transport with application layer reliable unicast and best-effort multicast support.

• Asynchronous message exchanges.

• Low header overhead and parsing complexity.

• URI and Content-type support.

• Simple proxy and caching capabilities.

• Optional resource discovery.

Unlike HTTP, CoAP is an asynchronous request/response protocol over a datagram oriented transport such as

UDP. The client/server architecture of HTTP is slightly different in CoAP as end-points do not assume a so clear

role. This is motivated by the nature of the underlying transport, which is asynchronous (i.e., datagram oriented),

and both endpoints acting as clients and servers. The architecture of CoAP is divided in two layers, a message layer

in charge of reliability and sequencing and a request/response layer in charge of mapping requests to responses

and their semantics (see Fig. 7).

Fig. 7. CoAP architecture.

1) Message layer: The function of the CoAP message layer is to control message exchanges over UDP between

two endpoints. Requests and Responses share a common message format. Messages are identified by an ID used

to detect duplicates and for reliability. There are four types of messages which are specified in the header.

• Confirmable: messages that require a response, which can be piggybacked in an acknowledgement or sent

asynchronously in another message if the response takes too time to be computed. Confirmable messages that

cannot be processed are replied with a Reset message. Responses to confirmable messages are also confirmable

messages that need to be acknowledged.

• Non-Confirmable: Messages that do not need to be neither acknowledged nor replyed.

• Acknowledgement: Messages that confirm the reception of a confirmable message. They can contain the

piggybacked response to the confirmable message.

• Reset: In case a confirmable message cannot be processed.

In addition, multicast messages are supported being only possible for Non-Confirmable messages.
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2) Request/Response layer: CoAP request and response semantics are carried in CoAP messages, which include

either a method code or response code, respectively. Optional (or default) request and response information, such

as the URI and payload content-type are carried as CoAP options. A Token Option is used to match responses to

requests independently from the underlying messages. As CoAP is implemented over non-reliable transport, CoAP

messages may arrive out of order, appear duplicated or be lost without notice. Thus, CoAP needs to implement a

reliability mechanism with the following features:

• Simple stop-and-wait retransmission reliability with exponential back-off for confirmable messages.

• Duplicate detection for both confirmable and non-confirmable messages.

• Multicast support.

Reliability works over Confirmable messages. Upon reception of such message, receiver must acknowledge

it or reject it by sending a Reset message. The sender retransmits the Confirmable message at exponentially

increasing intervals, until it receives an acknowledgment (or Reset message), or runs out of attempts (controlled by

a retransmission counter). Non-confirmable messages are never acknowledged nor rejected. In case they cannot be

processed, they are ignored.

Request and Responses are mapped to each other thanks to the token embedded into the header. A Request

consists of the method that should be applied to the resource, of the identifier of the resource, of a payload and an

Internet media type (if any), and of an optional meta-data about the request. A Response is identified by the Code

field in the CoAP header. Similar to the HTTP Status Code, the CoAP Response Code indicates the result of the

attempt to understand and satisfy the request.

3) CoAP frame: CoAP messages are encoded in a simple binary format. As shown in Fig. 8, a message consists

of a fixed-sized CoAP Header followed by options in Type-Length-Value (TLV) format and a payload. The number

of options is determined by the header. The payload is made up of the bytes after the options, if any; its length is

calculated from the datagram length. The main fields on the frame are the following:

• Version: 2 bits that show the CoAP version number. Set to 1 in the current version.

• Type: 2 bits that indicate the type of message. In particular, we can have the messages: (0) Confirmable, (1)

Non-Confirmable, (2) Ack, (3) Reset.

• Option Count: 4 bits, indicate the number of options in the option header.

• Code: 8 bits that indicate if the message is a request or a response. In case of request, indicates the request

method (GET, PUT, and so on). In case of a response, the Response code (2.01, 4.03, and so on).

• Message ID: 16 bits field with a unique ID to match Confirmable and Acknowledgements or Reset messages

and to detect duplicates.

• Options: Option list in TLV format.

• Payload: The content of the message, usually a resource representation. Its type is defined by the Content-Type

Option. Error responses include a human-readable description of the error such as “Bad Gateway”.

4) CoAP basic methods: CoAP offers the methods for a RESTful architecture.
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Fig. 8. CoAP frame format.

• GET: Idempotent and safe operation that retrieves a representation for the information corresponding to the

resource identified by the request URI.

• POST: Requests the processing of the representation enclosed in the resource identified by the request URI.

Normally it results in a new resource or the target resource being updated. The method is neither safe nor

idempotent.

• PUT: Requests that the resource identified by the request URI be updated or created with the enclosed

representation. The representation format is specified by the media type given in the Content-Type Option.

PUT is not safe but idempotent.

• DELETE: The method requests that the resource identified by the request URI be deleted.

Responses are identified by Response codes analogous to HTTP Status codes. Due to space limitations only some

of them are commented in this section. The full list of codes can be found at [32].

• Success: Codes 2.XX represent that the request has been received, understood and accepted. For example,

code 2.01 is analogous to HTTP code 201 “Created” but only in response to POST and PUT requests.

• Client Error: Codes 4.XX are returned when a client incurred in some error. For example, code 4.04 is the

same as HTTP code 404 “Not Found”.

• Internal Server Error: Code 5.xx returned when a server is not able to carry out the request. For example

5.02 analogous as HTTP 502 code “Bad Gateway”.

5) Caching and Proxying: The goal of caching in application layer protocols is to reduce the required network

bandwidth thanks to the reuse of prior response messages to satisfy a specific current request. In some cases,

a cached response can be used without requiring a network request, considering the constraints of LLNs, this

extremely benefits the lifetime, latency and network round-trips. Contrarily to HTTP, CoAP responses are defined

to be cacheable according to the Response Code in the header definition. For this purpose, a freshness mechanism

based on a Max-Age option is used. Responses are tagged by the server (i.e., the end-point answering) with an

explicit age that will maintain the response cached until its expiration. By default the Max-Age option is 60 s.

CoAP distinguishes between requests to an origin server and a request made through a proxy. A proxy is a

CoAP end-point that can be tasked by CoAP clients to perform requests on their behalf. This may be useful, for

example, when the request could otherwise not be made, or to serve the response using a cache in order to reduce

response time and network bandwidth or energy consumption. CoAP requests to a proxies are made as Confirmable

or Non-Confirmable requests to the proxy end-point, but setting the Proxy-Uri Option and splitting the request URI
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to the Uri-Host, Uri-Port, Uri-Path and Uri-Query Options. As in the architecture of Internet caching and proxying

are fundamental to alleviate the traffic in LLNs.

6) CoAP URIs: CoAP URIs are very similar to HTTP URIs. The “coap” URI scheme has been identified for

CoAP resources and for providing the means to locate the resources. As in RESTful architectures, resources are

organized hierarchically and governed by a potential origin server listening for requests on a given port. The structure

of the URI follows the model defined in [68]:

coap− URI = “coap :′′ “//′′ host [ “ :′′ port ] path− abempty [ “?′′ query ]

The host can be provided either as an IP address, or a name which should be resolved using a resolution service

such as DNS. The port is the UDP port where the end-point is listening and the path defines the resource in that

host. Finally, as in RESTful resources, the query in the form of “key=value” pairs enables the parametrization of

the resource.

As indicated in [32] application designers are encouraged to make use of short, but descriptive URIs. Since the

environments addressed by CoAP are usually constrained for bandwidth and energy, the trade-off between these

two qualities should lean towards the shortness, without ignoring descriptiveness.

Resource discovery is related to how CoAP end-points are addressed and it is defined in [69]. Basically, the

function of the discovery mechanism is to provide URIs (“links”) for the resources offered, complemented by

information describing the relationship between the resource description and each resource as well as other attributes.

7) Application layer protocols mapping: As CoAP implements a subset of the HTTP functionalities, there is a

direct mapping between them. Besides CoAP can be easily mapped to the Session Initiation Protocol (SIP) [70]

and the Extensible Messaging and Presence Protocol (XMPP) [71] as they have some similarity with HTTP.

• CoAP-HTTP Mapping enables CoAP clients to access resources on HTTP servers through an intermediary. This

is initiated by including the Proxy-Uri Option with an “http” URI in a CoAP request to a CoAP-HTTP proxy,

or by sending a CoAP request to a reverse proxy that maps CoAP to HTTP. The mapping is straightforward,

requiring the translation of the HTTP Status codes to the Response Codes in CoAP.

• HTTP-CoAP Mapping enables HTTP clients to access resources on CoAP servers through an intermediary.

This is initiated by specifying a “coap” URI in the Request-Line of an HTTP request to an HTTPCoAP proxy,

or by sending an HTTP request to a reverse proxy that maps HTTP to CoAP. The mapping requires a filtering

of those codes, options, and methods that are not supported by CoAP.

VII. CONCLUDING REMARKS

Frost & Sullivan confirm that the industrial segment is the fastest growing market for sensors, corroborating the

notion of an Internet of Important Things. The world market over all industry segments is estimated at some 36

billion Euros, showing the importance of that market but also underlying the need of getting its design right. It

has to be noticed that Important stands for not only economical terms, but also for the implications of enriching
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Internet with the information of millions (or even billion in the coming future) of real world critical, unattended

sensing and actuating objects. The latter are omnipresent and important per se 2 as they inter-actuate physically not

only with other smart objects, but also with human beings.

The aim of this paper has hence been to outline a technically viable communication architecture able to support

the stringent energy and connectivity needs of the emerging IoT. To this end, we have seconded the community’s

view in the need of a standardized architecture which replaces proprietary approaches by means of a transparent

end-to-end architecture.

From a PHY perspective, we found that the current IEEE 802.15.4-2006 PHY layer(s) suffice in terms of energy

efficiency. In the end, it is the actual hardware implementation which dictates the exact current draws and thus

the energy needed to transmit a given information bit. Current hardware implementations by e.g., Dust Networks

are already very close to the limit of possibilities when it comes to short-range and medium-rate communication.

Given that a large amount of IoT applications however will require only a few bits to be send, it may be advisable

to commence looking into a standardized PHY layer which allows ultra low rate transmissions over very narrow

frequency bands, with the obvious advantage of enormous link budgets and thus significantly enhanced ranges.

From a MAC perspective, we found that the current IEEE 802.15.4-2006 MAC layer(s) do not suffice which

essentially triggered the existence of the IEEE 802.15.4e working group. We have presented in great details the

MAC protocol of this new family which is tailored to industrial multihop/mesh applications under extreme fading

and interference conditions. Channel hopping, albeit not novel in the wireless communications community, has

been successfully applied to this embedded MAC; in addition to a rigid slot structure allowing for enormous energy

savings since transmitter and receiver only wake up when truly needed. Some open issues pertain also to this family

in that no optimal centralized or decentralized scheduling protocols have been put forward; nor is it entirely clear

which approach is to be preferred.

From a networking perspective, the introduction of the IETF 6LoWPAN protocol family has been instrumental

in connecting the low power radios to the Internet and the work of IETF ROLL allowed suitable routing protocols

to achieve universal connectivity. Indeed, both WGs enabled IPv6 connectivity which is a great asset in guaran-

teeing global reachability, true scalability, reliable security and, since IP-enabled networks have been successfully

engineered and deployed for decades now, the same engineering skills maintaining and troubleshooting these type

of emerging networks; this is an enormous advantage over proprietary solutions. Various open issues pertain to the

networking layer, however; examples are a suitable choice of the embodiment of the objective function, inclusion

of trust, ability to run over any link layer protocol and not only those which have regular beacons, etc.

From an application perspective, the introduction of the IETF CoAP protocol family has been instrumental in

ensuring that application layers and applications themselves do not need to be re-engineered to run over low-power

embedded networks. Indeed, the current approach allows for the same design principles as currently used in general

Internet application designs, thus acting as a true enabler for the IoT.

2by themselves



29

The introduced stack, in one form or another, is currently being evangelized by various industrial alliances. Of

importance to the development of an IoT are arguably the Zigbee and IPSO alliances. Whilst the Zigbee alliance

has traditionally been proponent of the IEEE 802.15.4-2006 PHY/MAC embodiments and an alliance-proprietary

protocol stack (referred to as profile) on top, it is lately adopting above IETF recommendations at networking layers.

The IPSO alliances, on the other hand, is very actively pushing for IPv6 enabled solutions to be adopted across the

industry with the ultimate aim to facilitate true connectivity.

This paper has shed light onto some of the most recent and emergent design paradigms related to the commu-

nications stack of a viable Internet of Things. A lot of tweaking and optimizing is still ahead of us but we believe

that the major bulk of design work is accomplished and that the current stack will make a significant impact in the

take-off of the IoT.
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