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Abstract

Motivation: In a genome-scale metabolic model, the biomass produced is defined to have a molecu-

lar weight (MW) of 1 g mmol�1. This is critical for correctly predicting growth yields, contrasting mul-

tiple models and more importantly modeling microbial communities. However, the standard is rarely

verified in the current practice and the chemical formulae of biomass components such as proteins,

nucleic acids and lipids are often represented by undefined side groups (e.g. X, R).

Results: We introduced a systematic procedure for checking the biomass weight and ensuring com-

plete mass balance of a model. We identified significant departures after examining 64 published

models. The biomass weights of 34 models differed by 5–50%, while 8 models have discrepancies

>50%. In total 20 models were manually curated. By maximizing the original versus corrected bio-

mass reactions, flux balance analysis revealed >10% differences in growth yields for 12 of the cura-

ted models. Biomass MW discrepancies are accentuated in microbial community simulations as

they can cause significant and systematic errors in the community composition. Microbes with

underestimated biomass MWs are overpredicted in the community whereas microbes with overesti-

mated biomass weights are underpredicted. The observed departures in community composition

are disproportionately larger than the discrepancies in the biomass weight estimate. We propose the

presented procedure as a standard practice for metabolic reconstructions.

Availability and implementation: The MALTAB and Python scripts are available in the

Supplementary Material.

Contact: costas@psu.edu or joshua.chan@connect.polyu.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-scale metabolic (GSM) networks and the constraint-based re-

construction and analysis (COBRA) framework have proved to be valu-

able tools in modeling cellular metabolism (Lewis et al., 2012; Price

et al., 2004; Schellenberger et al., 2011) and answering important bio-

logical questions (McCloskey et al., 2014). In flux balance analysis

(FBA), one of the fundamental constraints is the steady-state mass bal-

ance equation (Orth et al., 2010), which quantifies the conservation of

component balance. As a prerequisite for quantitative predictions, all

reactions must be component and charge balanced. This principle of

mass balance also applies to the biomass reaction, which expresses bio-

mass as a defined ratio of macromolecules synthesized from metabolites
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(Feist and Palsson, 2010). A GSM model describes in quantitative terms

the substrate-to-biomass conversion, from mmol of substrates to gram

dry cell weight of cells. By definition the biomass produced must have a

molecular weight (MW) of 1 g mmol�1 in order to quantitatively com-

pare biomass formation with the observed growth yields or specific

growth rates (Feist et al., 2010; Fong and Palsson, 2004; Ibarra et al.,

2002; Lewis et al., 2010). FBA identifies optimal solutions that strike a

balance between biomass formation and ATP production, thus any dis-

crepancy in biomass weight may tilt the balance to have a dispropor-

tionate influence on FBA derived flux predictions. This becomes even

more critical when comparing multiple GSM models or modeling mi-

crobial communities that combine multiple organisms (Harcombe

et al., 2014; Heinken and Thiele, 2015a,b; Khandelwal et al., 2013;

Klitgord and Segrè, 2010; Magn�usd�ottir et al., 2016; Shoaie et al.,

2013, 2015; Zhang et al., 2016; Zhuang et al., 2011; Zomorrodi and

Maranas, 2012; Zomorrodi et al., 2014; Zhang et al., 2016;

Magn�usd�ottir et al., 2016; Chan et al., 2017). Predictions from

optimization-based analyses such as FBA will introduce a bias towards

lightly biomass-weighted microbes in the overall community abun-

dance. Despite its importance, we found that ensuring that the MW of

biomass is exactly equal to 1 g mmol�1 is not always enforced in prac-

tice. We introduce a systematic procedure named ‘minimum inconsist-

ency under parsimony’ (MIP) for determining the MW of the biomass

and simultaneously ensuring the complete elemental balance in every

single reaction in a metabolic network. MIP formulates the elemental

balance as an optimization problem that solves for the chemical formu-

lae of generic metabolites by minimizing the inconsistencies using the

information of known metabolites. The MIP solution provides guide-

lines for resolving all imbalances in a model. After examining 64 pub-

lished models, 20 models were manually curated to ensure complete

mass-and-charge balance and a standardized biomass weight. The im-

pact of standardizing the biomass weight on FBA-based simulations

was assessed by comparing the biomass yield per carbon using the ori-

ginal versus corrected biomass reactions for the 20 curated models.

2 Materials and methods

2.1 Minimum inconsistency under parsimony
An optimization problem for computing the biomass MW based on

the elemental balance of internal reactions is presented. Let I and J be

the sets of metabolites and reactions, respectively. S ¼ ½Sij�i2I;j2J de-

notes the stoichiometric matrix and Ik the set of known metabolites

with defined chemical formulae. Consequently, Iu ¼ I�Ik is the set of

metabolites with unknown molecular groups. Iu includes biomass,

macromolecules and any other metabolites with generic side groups.

We define E as the set of chemical elements and Jne as the set of non-

exchange reactions. Jne consists of all biochemical reactions but

excludes all exchange reactions that represent the net system inputs/

outputs (reactions solely producing or consuming single metabolites,

e.g. glc-D[e] <¼>). By invoking elemental balances of each reaction

in Jne, the unknown molecular groups of metabolites in Iu can be

determined by solving the following system of linear equations:

X

i2Iu

Sijmie ¼ �
X

i2Ik

Sijmie; 8j2Jne; e2E ð1Þ

mie � 0; 8i 2 Iu; e 2 E

where mie is the stoichiometry of element e in metabolite i. However,

if any elemental imbalance exists in any reaction, the system of equa-

tions becomes infeasible. To accommodate imbalances in Equation

(1), a variable xje is added in the optimization problem to quantify the

elemental imbalance in reaction j for element e. An objective function

is thus defined that minimizes the sum of the absolute elemental

imbalances. The result of this minimization problem is the minimum

possible elemental imbalances that can be used to identify defined

chemical formulae for metabolites in Iu that balance as many reac-

tions as possible. We find that most imbalances are caused by differ-

ences in elemental hydrogen balances that can be resolved through the

addition of missing protons. The optimization model, therefore, deter-

mines the stoichiometry of protons or other small molecules in each

reaction that minimizes imbalances. The set of metabolites used for

correcting imbalances is denoted by If, which in this study contains

only protons. For each i in If, a variable Aij representing the adjust-

ment of the stoichiometry is defined for each internal reaction j in Jne.

The complete procedure termed MIP is a three-step optimization ap-

proach. First, the total inconsistency is minimized (Step 1):

min
X

j2Jne

X

e2E

����xje

����

subject to
X

i2Iu

Sijmie þ
X

i2If

Aijmie þ xje ¼ �
X

i2Ik

Sijmie; 8j 2 Jne; e 2 E

mie � 0; 8i 2 Iu; e 2 E

xje; Aij 2 R; 8i 2 If ; j 2 Jne; e 2 E

Then, the total inconsistency is bounded above by its minimum and

the total adjustment by Aij is minimized (Step 2):

min
X

i2If

X

j2Jne

����Aij

����

subject to Constraints in Step 1

X

j2Jne

jxjej �
X

j2Jne

jx�jej; 8e 2 E

where x�je is the inconsistency determined in Step 1. Having Aij > 0

implies that adding metabolite i as a product to reaction j relieves

the inconsistency whereas Aij < 0 denotes that metabolite i should

be added as a substrate. Any remaining non-zero xje represents an

inconsistency requiring manual resolution. Finally, a set of minimal

formulae is obtained by minimizing mie with the total inconsistency

and adjustment bounded above by (Step 3):

min
X

i2Iu

X

e2E

mie

subject to Constraints in Step 2

Aij ¼ A�ij; 8i 2 If ; j 2 Jne

where A�ij is the adjustment determined in Step 2. We find that if the

formulae for all known metabolites used are correct and the elemen-

tal imbalances among reactions are rare then the imbalance xje iden-

tified by MIP generally correctly represents the true underlying

inconsistency. The veracity of MIP predictions thus relies on the ac-

curacy of the chemical formulae for the known metabolites.

Flagging as many metabolites as possible as ‘known’ and providing

their correct elemental composition can help reveal inconsistencies.

Ideally, inconsistencies should be fixed so that the objective values

in Steps 1 and 2 are both zero in the final model. In this case, unique

formulae for metabolites not involved in the transfer of any con-

served moieties (discussed in the Section 2.2) can be obtained.

Alternatively, in the presence of inconsistency, a range for the min-

imum and maximum possible mie of an interested metabolite i (e.g.

biomass) can be calculated. See SI Methods for more details.
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2.2 Conserved moieties involved in metabolites with

non-unique formulae
Another issue that frequently arises is that a non-zero null space of

ST will result in non-unique solutions when solving the formulation

MIP. For example, oxidized and reduced ferredoxins always appear-

ing as a pair in reactions are in the null space of ST. Although MIP

finds the set of the simplest chemical formulae, the general case can

be modeled using mass conservation vectors in metabolic networks

studied previously by (Fleming et al., 2016; Gevorgyan et al., 2008).

A mass conservation vector is any vector n � 0 satisfying STn ¼ 0.

The space of all conservation vectors Nþ forms a convex polytope:

Nþ ¼ f n j STn ¼ 0; n � 0 g

The set of extreme rays of Nþ is finite and computable using the

existing methods for finding elementary modes of metabolic net-

works (Schuster et al., 1999; Terzer and Stelling, 2008). Denote the

set of all extreme rays by:

P ¼ f pt ¼ ½pit�i2I 2 Nþ j t ¼ 1; . . . ;T g

where T is the number of extreme rays. Each extreme ray pt defines

a minimal unit of mass conservation and P characterizes all pos-

sible conserved moieties transferred between metabolites. If pt de-

scribes a metabolite in Ik, then the corresponding moiety is

defined. Otherwise, if all metabolites containing the conserved

moiety are in Iu (i.e. i 2 Iu whenever pit > 0) then their chemical

formulae are not unique and can be a variety of solutions formed

by adding or subtracting a multiple of pt. For example, MIP usu-

ally returns the formulae for the oxidized and reduced ferredoxins

as ‘none’ and ‘H2’, respectively as they only differ by two hydrogen

atoms. Any pair of formulae with this difference is thus a valid so-

lution even ‘C100’ and ‘C100H2’. By adding a hypothetical elemen-

tal component Rpit to the chemical formula calculated by MIP for

each metabolite i, the expression can be generalized to chemical

formulae that contain the unknown moiety corresponding to pt. In

this formalism, the formulae for the oxidized and reduced ferre-

doxins become ‘R’ and ‘H2R’, respectively. One unique hypothet-

ical “element” was used for each unknown moiety corresponding

to each pt in this study. This is similar to the current practice of as-

signing a ‘R’ or ‘X’ group in GSM reconstruction, except unknown

groups here are constrained by the metabolic network structure

(i.e. the space Nþ) and therefore do not affect the mass-and-charge

balance. Figure 1 shows an example of the conversion between

palmitate, palmitoyl-CoA and palmitoyl-[acyl-carrier protein

(ACP)]. In this example, the set of unknown metabolites Iu includes

ACP and palmitoyl-[ACP] because the chemical formula of ACP is

usually not defined. Three conserved moieties can be identified

from the extreme ray matrix P. p1 and p2 respectively represent the

transfer of the palmitoyl-group and the coenzyme A, both having

defined chemical formulae while p3 represents the transfer of ACP.

Both palmitoyl-[ACP] and ACP involved in p3 have undefined

chemical formulae. The generic element ‘R’ is therefore added into

the minimal formulae for metabolites involved in p3.

2.3 Summary of the procedure
The complete procedure is summarized as follows:

i. Identify the set of non-exchange reactions Jne, the set of known

metabolites Ik and unknown metabolites Iu.

ii. Solve MIP and resolve conflicts in S and m.

iii. Compute the set of extreme rays P for the space of conservation

vectors Nþ. For each extreme ray pt, if pit ¼ 0 for all i in Ik, add

a hypothetical elemental component (e.g. akin to –R or –X)

Rpit
for each i with pit > 0 to the chemical formula.

The scripts and examples for the procedure are available in

Supplementary Material.

2.4 Standardization of biomass reactions
After running the procedure in Section 2.3, the MWs of the biomass

and macromolecules can be calculated. A biomass reaction is not

standardized if (i) the MW of the formula is not equal to 1 g

mmol�1, or (ii) the formula contains any of the conserved moieties

flagged by the extreme ray calculation (e.g. ACP, ferredoxin). The

stoichiometric coefficients in the biomass and macromolecule reac-

tions need to be rescaled according to the original biomass compos-

ition so that the biomass has a MW of 1 g mmol�1. For the 20

models curated in this study, the chemical formulae for most known

metabolites (Ik) used were adopted from MetaCyc, in which all me-

tabolites are protonated to the physiological pH 7.3 (Caspi et al.,

2016). The BiGG (King et al., 2016) or the

SEED databases (Henry et al., 2010) were used for those not

found in MetaCyc. See Supplementary Table S2 for the curation of

biomass reactions and Supplementary Table S3 for the conserved

moieties identified for each of the curated models.

2.5 Flux balance analysis
FBA simulations were performed under the condition of carbon and

ATP limitation. Community simulations were performed by treating

the microbial community as one multi-compartment metabolic

model with the unweighted sum of the biomass reaction fluxes of in-

dividual organisms as the objective function.

3 Results

3.1 Determination of in silico biomass weight
48 models from the GSM model collection in the openCOBRA com-

munity (https://github.com/opencobra/m_model_collection), together

with 16 models from the literature, were taken to form a group of

64 models (Supplementary Table S1). We applied MIP to determine

the MW of biomass within each GSM model (see Section 2).

Only external metabolites with defined chemical formulae were

used to define the set of known metabolites Ik. Only a few models

Fig. 1. Identification of defined or generic conserved moieties. S is the stoi-

chiometric matrix. P is the extreme ray matrix identified from S. The minimal

formulae are the results from solving MIP. Adding the generic conserved

moieties into the minimal formulae results in the general formulae
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strictly comply with the standard of 1 g mmol�1 for the MW of the

biomass (Fig. 2). They include models of Escherichia coli (Archer

et al., 2011; Feist et al., 2007; Orth et al., 2011), Salmonella typhi-

murium (AbuOun et al., 2009), Saccharomyces cerevisiae (Förster

et al., 2003) and Mycobacterium tuberculosis (Bordbar et al., 2010)

(�1% deviation from 1 g mmol�1). Approximately 42 of 64 models

exhibited >5% discrepancies and 20 models had >20% discrepan-

cies. We selected 20 models, which span model and industrially im-

portant organisms for correction and further analysis (see Table 1,

models are available in Supplementary Material).

3.2 Curation of biomass reactions
For the 20 corrected models that are now mass-and-charge bal-

anced, the biomass reaction of each model was further modified to

produce biomass with a MW that is normalized to 1 g mmol�1. This

entails renormalizing the coefficient of each biomass component ac-

cording to its mass fraction provided in the original biomass com-

position data. If the data was not available, the coefficient for each

component was divided by the biomass MW calculated by MIP (in

g mmol�1), ensuring that the updated biomass reaction produces

biomass with a MW equal to 1 g mmol�1.

We identified three primary sources leading to inaccuracies in

the biomass MW (Fig. 3). First, a subset of models uses biomass re-

actions that were generated by automated platforms or adapted

from other models (e.g. the models for Bacteroides thetaiotaomi-

cron, Faecalibacterium prausnitzii, Lactococcus lactis,

Streptococcus thermophilus and Yeast 7). In the absence of experi-

mental data, the mass fractions for the biomass reaction were simply

obtained by uniformly normalizing over all biomass components.

Second, for some models we found inconsistent stoichiometric coef-

ficients in the biomass reaction because the MWs of macromolecules

used for calculating the coefficients were not the same as the actual

MWs implied by their elemental balance. For example, in the

Yarrowia lipolytica model, our MIP procedure calculated MWs for

phospholipids that were �100� larger than the MWs used in the

original model construction (Pan and Hua, 2012) yielding a biomass

MW of 30 g mmol�1. The reason for this was that the model lipid

building blocks such as 1-acyl-sn-glycerol 3-phosphate were synthe-

sized as polymers with 100-mers (e.g. in the reaction for glycerol 3-

phosphate acyltransferase), instead of monomers as in other models.

Inconsistent stoichiometric coefficients were also found in the mod-

els for Corynebacterium glutamicum, Clostridium acetobutylicum

and Eubacterium rectale. A probable reason for the errors is the lack

of the application of a procedure to ensure complete mass balance

and verify the biomass MW. Some GSM models included metabol-

ites with undefined side-groups (e.g. acyl groups in lipids) that

Fig. 2. MW of the in silico biomass of each model examined in this study cal-

culated using MIP

Table 1. Genome-scale reconstructions curated in this study

Organism Model/References Biomass MW

(g mmol�1)

No. of conserved

moieties (generic)

Error 1 Error 2 Error 3

B. thetaiotaomicron VPI-5482 iAH991 (Heinken et al., 2013)

updated in (Heinken and Thiele,

2015b)

1.44 33 (7) X

Bifidobacterium adolescentis L2-32 iBif452 (El-Semman et al., 2014) 1.04 96 (25) X

E. faecalis V583 V583 (Veith et al., 2015) 1.08 46 (21) X

E. coli K-12 MG1655 iJO1366 (Orth et al., 2011) 1.00 39 (35)

E. rectale ATCC 33656 iEre400 (Shoaie et al., 2013) 0.62 32 (15) X X

F. prausnitzii A2-165 iFpraus_v1.0 (Heinken et al., 2014) 1.44 40 (4) X

Klebsiella pneumoniae MGH 78578 iYL1228 (Liao et al., 2011), updated

in (Heinken and Thiele, 2015b)

0.97 44 (30) X

Lactobacillus casei ATCC 334 iLca12A_640 (Vinay-Lara et al.,

2014)

1.02 95 (15) X

P. gingivalis W83 iVM679 (Mazumdar et al., 2009) 1.08 73 (27) X

S. thermophilus LMG 18311 iMP429 (Pastink et al., 2009),

updated in (Heinken and Thiele,

2015b)

0.81 44 (24) X

C. acetobutylicum ATCC 824 iCac802 (Dash et al., 2014) 1.16 94 (22) X X

L. lactis MG1363 (Flahaut et al., 2013) 0.83 52 (24) X

B. subtilis 168 iBsu1103V2 (Tanaka et al., 2013) 1.10 67 (10) X X

C. glutamicum ATCC 13032 (Kjeldsen and Nielsen, 2009) 0.79 5 (4) X X

Consensus model of yeast Yeast7 (Aung et al., 2013) 0.88 90 (60) X X

Y. lipolytica iYL619 (Pan and Hua, 2012) 30.76 17 (12) X

P. pastoris iMT1026 (Tom�as-Gamisans et al.,

2016)

0.92 110 (71) X

Synechococcus elongatus PCC 7942 (Mueller et al., 2017) 0.87 181 (58) X

Cyanothece sp. ATCC 51142 iCyt773 (Saha et al., 2012) 1.08 47 (29) X

Methanosarcina acetivorans iMAC868 (Nazem-Bokaee et al.,

2016)

0.99 40 (24) X X
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complicate the estimation of the MWs of macromolecules. Among

the models examined, Bacillus subtilis, C. acetobutylicum,

Enterococcus faecalis, E. rectale, Porphyromonas gingivalis and

Yeast 7 included metabolites with chemical formulae containing

generic ‘R’ or ‘X’ groups. Finally, small molecules in macromolecu-

lar synthesis reactions were sometimes missing, (e.g. missing proton

in the growth-associated maintenance (GAM), H2O in protein syn-

thesis, and pyrophosphate in DNA or RNA synthesis). This was

observed in the models for B. subtilis, C. acetobutylicum, C. gluta-

micum, E. rectale and Pichia pastoris. Figure 3 pictorially illustrates

the sources of error in the calculation of biomass composition. A de-

tailed discussion regarding mass-and-charge imbalance and how

biomass reactions were corrected is included in Supplementary

Material S1 and Supplementary Table S2.

3.3 Impact on FBA and community simulation
To access the impact of the non-standardized biomass reactions,

FBA was performed for each one of the 18 curated models to opti-

mize the original and the corrected biomass reactions (matching 1 g

mmol�1) for 1000 sets of randomly sampled uptake rates on carbon

sources. Half of the models have �10% difference (on average) in

biomass yield over the range of the uptake sets (Fig. 4A). We

observed that significant errors for even a single component in the

biomass reaction could have a profound effect on FBA calculations.

For example, in the B. subtilis model, proton production due to

GAM was missing resulting in a 10% increase in the MW of bio-

mass. After correction, the predicted biomass yield increased by

17% because the extra proton can drive additional ATP production

to support growth.

We also constructed a proxy gut microbial community of three

bacteria using the curated models for B. thetaiotaomicron, C. aceto-

butylicum and E. rectale. The growth of the community was simu-

lated using FBA by maximizing the uniform sum of individual

biomass formations (El-Semman et al., 2014; Heinken et al., 2013;

Heinken and Thiele, 2015a,b; Stolyar et al., 2007). Diets composed

of various ratios of total carbohydrate and dietary fiber to amino

acids (CF/AAs) were tested in the simulations (Supplementary Table

S4). Differences were observed upon optimizing the sum of the ori-

ginal versus corrected biomass reactions (Fig. 4B). Using the original

biomass reactions, FBA predicted the dominance of E. rectale at

high CF/AA ratio and no growth of B. thetaiotaomicron under all

conditions. Using the corrected biomass reactions, the expected

dominance of B. thetaiotaomicron at high CF/AA ratios was pre-

dicted. The co-growth of Bacteroidetes and Firmicutes experimen-

tally observed in gut microbiota (Huttenhower et al., 2012), was

also predicted at CF/AA ratios ranging from 0.2 to 1 and from 4 to

6. This confirms that non-standardized biomass reactions in micro-

bial community simulations can cause a significant and systematic

biased preference toward the more lightly weighted microbes (E.

rectale in this case). The quantitative impact of 10–40% discrepan-

cies in biomass MWs for the community members causes a dispro-

portionate and often dramatic change in community composition.

4 Discussion

4.1 A method to ensure complete mass balance

in GSM networks
Analyzing the biomass MWs for 64 GSM models suggests that stand-

ardizing the biomass reactions in models is not yet common practice.

This can lead to significant errors, especially for microbial community

models. A possible reason for this omission is the difficulty of comput-

ing the in silico biomass MWs in the presence of metabolites with un-

defined side-groups (e.g. alkyl group) and inconsistencies in mass

balances. These observations support the necessity of a systematic

procedure to ensure complete elemental balance and standardized bio-

mass reactions, in line with the recent call for clearer standards

(Ebrahim et al., 2015). The proposed procedure determines the bio-

mass MW and reveals imbalances among reactions based on a set of

defined metabolites which must at least include external metabolites

sufficient for biomass production. It can accommodate both generic

Fig. 3. Sources of errors in the biomass reactions. Three sources of errors in the biomass reactions: (i) biomass reactions generated by automated platforms or

adapted from other models with biomass components deleted (‘Bio5’) or newly added; (ii) inaccurate stoichiometric coefficients in the biomass reaction (‘Bio3’,

‘Bio4’) partially due to the existence of undefined side-groups (e.g., ‘R’ and ‘X’); and (iii) missing cofactors in macromolecular synthetic reactions, such as proton

in GAM (‘Hþ’), water in protein synthesis and pyrophosphate in DNA and RNA syntheses
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metabolites containing conserved moieties (e.g. ferredoxin) and me-

tabolites with defined formulae (e.g., AAs) using the network struc-

ture encoded in the S matrix. The procedure provides a systematic

way of testing for biomass MW consistency. The veracity of the re-

sults from the procedure relies on the correct chemical formulae for

known metabolites. This implies the need to determine/verify the cor-

rect protonation state of each known metabolite at the compartment-

specific physiological pH based on its chemical structure (Flamholz

et al., 2012; Noor et al., 2013).
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