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ABSTRACT 34 

3D-imaging technologies provide measurements of terrestrial and aquatic ecosystems’ 35 

structure, key for biodiversity studies. However, the practical use of these observations globally 36 

faces practical challenges. Firstly, available 3D data are geographical biased, with significant 37 

gaps in the tropics. Secondly, no data source provides, by itself, global coverage at a suitable 38 

temporal recurrence. Thus, global monitoring initiatives, such as assessment of essential 39 

biodiversity variables (EBVs), will necessarily have to involve the combination of disparate 40 

datasets. We propose a standardised framework of ecosystem morphological traits – height, 41 

cover and structural complexity – that could enable monitoring of globally-consistent EBVs at 42 

regional scales, by flexibly integrating different information sources – satellites, aircrafts, 43 

drones or ground data –, allowing global biodiversity targets relating to ecosystem structure to 44 

be monitored and regularly reported.  45 
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MAIN TEXT 51 

The challenge of monitoring biodiversity goals globally 52 

Remote sensing (RS) technologies provide excellent resources to support spatially-explicit 53 

monitoring of biodiversity change, in a globally consistent and repeatable fashion [1-4]. To 54 

date, international, national and regional monitoring of biodiversity is conducted through the 55 

assessment of indicators that are driven by a heterogeneous set of primary observations [5]. 56 

Essential Biodiversity Variables (EBVs) are designed to harmonise key aspects of 57 

biodiversity, from genes to landscape, to produce a comprehensive yet concise set of 58 

standardised observations that indicate how key aspects of biodiversity are changing [6-8]. 59 

Remote Sensing technologies have the capacity to inform a variety of EBVs, and there are a 60 

number of informative reviews developing and proposing relevant datasets and image 61 

acquisition programs [e.g. 9-11]. One area where recent advances in remote sensing have seen 62 

tremendous growth is the detection and monitoring of the three dimensional structure of 63 

ecosystems, through 3D-imaging technologies such as light detection and ranging (LIDAR), 64 

synthetic aperture radar (SAR) or digital aerial photogrammetry (DAP). These 65 

technologies have contributed to the spatial quantification of biodiversity assets, particularly in 66 

relation to species, community and ecosystem structure [12-17]. However, most studies have 67 

utilised 3D-imaging collection, processing and analysis approaches that are not generalizable 68 

beyond the location and study concerned. This limits their ability to provide global solutions 69 

for assessment of EBVs that relate to ecosystem structure [6,18].  70 

In this contribution, we propose a standardised framework to enable practical evaluation of 71 

ecosystem structure EBVs by consolidating disparate 3D-imaging data sources into a common 72 

workflow for deriving ecosystem morphological traits. Considering the practical limitations 73 

associated with these 3D-imaging technologies from spaceborne or airborne platforms (Box 1), 74 



   
 

we propose the characteristics of a standardised framework for practical application of 3D-75 

imaging data sources and identify a shortlist of EBVs that can be retrieved from these. We then 76 

convey pathways for assessing EBVs both nationally and globally, advocating for a system that 77 

makes the most of all locally available data while maintaining global consistency in the primary 78 

observations evaluated for assessing EBVs [6,7].  79 

 80 

**** approximate position of Box 1 **** 81 

 82 

Practical limitations to use remotely sensed 3D data to inform global efforts 83 

Global coverage of an ecosystem structure EBV cannot be achieved using a single 3D-imaging 84 

sensor / platform combination. While SAR data are available globally from a number of satellite 85 

providers, both current and planned satellite-based LIDAR observations present several 86 

limitations for the monitoring of biodiversity (Box 1, Table I). This is because they are sample-87 

based [2,19] and thus unable to measure EBVs requiring spatially-continuous datasets, such as 88 

habitat fragmentation. While Skidmore et al. [10] assessed the potential of RS-informed EBVs 89 

using spaceborne sensors only, we argue that the addition of airborne LIDAR data (a.k.a. 90 

airborne laser scanning; ALS), whenever available, can improve the robustness of EBV 91 

estimates [20]. In fact, many EBVs are compromised by geographical bias in the availability of 92 

species richness or other data related to biodiversity [21]. The incorporation of airborne data 93 

acquisition in EBV derivation faces the same biases, with most national ALS programmes 94 

occurring in Europe, North America and Australia, but significant gaps in tropical forests or 95 

drier regions, particularly in Africa, south and central Asia and South America (Box 1, Table 96 

II). Over time, more countries will incorporate ALS surveying into national programmes as the 97 

availability of the technology increases and costs decrease. Moreover, the advent of even finer 98 



   
 

scale 3D-imaging data from, for example, remotely piloted platforms utilising light-weight 99 

LIDAR or stereoscopic restitution of optical images [22,23], allows EBVs to be retrieved over 100 

hotspot areas and later extrapolated to larger areas using additional RS sources whenever full 101 

LIDAR coverage is lacking [1]. Multi-platform and multi-sensor systems, with clear definitions 102 

of the aspects of ecosystem structure encompassed, provide the only realistic solution for global 103 

assessments of EBVs that are practical, economically viable and sustainable in time [8,24]. 104 

Another challenge that hinders the use of these 3D data sources in conservation is the high 105 

degree of specialization required for their basic processing. To date, open data specifications 106 

often provide a limited set of processed products, such as terrain or canopy models, which are 107 

more manageable but less relevant to ecology and conservation. Thus, there is a need for 108 

distilling out the complexity of 3D-imaging information into concise ecosystem morphological 109 

traits that are easy to conceptualise and quantify [7,25,26] (Box 1, Figure I). Making the 110 

retrieval of these traits easily available [27] would foster the uptake of these datasets by non-111 

specialised stakeholders locally, and also globally by assuring compliance with protocols for 112 

involving metadata and the uncertainty of primary observation in EBV reporting [6,7], 113 

following open science principles [28].  114 

 115 

A standardised framework of EBVs of ecosystem structure that accommodates any type 116 

of 3D remote sensing data 117 

Different aspects of ecosystem structure EBVs may be informed directly from 3D-imaging data, 118 

with or without calibration with ground data (Table 1). The definition of the underlying terrain 119 

is critical, which can only be detected using LIDAR or SAR. By quantifying the elevation of 120 

the ground terrain, information on the height and arrangement of structural elements above the 121 

terrain surface can be obtained. Once measured, changes in the height or cover of all of the 122 



   
 

ecosystem structural elements over space and time then inform EBVs on ecosystem extent, 123 

connectivity and fragmentation [5,29-31] (Table 1). This vertical structure is typically assessed 124 

using statistics describing characteristics of either the returning waveform of a LIDAR pulse, 125 

backscatter of a SAR response, or morphological patterns from optical image matching. These 126 

include intensity of the backscatter, and variability, skewness, or proportions of returns along 127 

vertical strata, etc. [14,23,32-38] (Table 1). In turn, these metrics provide descriptors of 128 

ecosystem height, ecosystem cover, and ecosystem structural complexity [26,39], which can 129 

inform EBVs related to ecosystem traits such as canopy height, plant area index and foliage 130 

height diversity [13], or coral reef elevation, cover and rugosity [16]. These characteristics 131 

describe complementary aspects of ecosystem structure [26], with mechanistic relationships to 132 

properties like biomass [40] or leaf area index (LAI) [34], and thus there is a wide consensus in 133 

the literature on using them [13,14,16,17,25,39]. When clustered spatially, comparable 134 

assessment across wide spatiotemporal spans, such as mapping habitat structure across scales, 135 

can be achieved [29,36,41]. 136 

These three components of ecosystem structure constitute the backbone of a standardised 137 

framework of a few concise and complementary ecosystem morphological traits that can be 138 

derived from any available data (Fig. 1). The proposed framework is applicable and relevant to 139 

any terrestrial or marine environment [16]. We recognise these as descriptors of an ecological 140 

community as a whole, not individual organisms (structural elements), and as such they are to 141 

be evaluated for a given area. Specifically, area-based estimation at a spatial resolution of 15-142 

25 m would ensure a sample representative to the community [26,33,35,36,39,41], and would 143 

be commensurate with the footprint of satellite LIDAR and free and open optical datasets such 144 

as Landsat and Copernicus Sentinel (Box 1). Given the variety of sensors and platforms that 145 

can contribute data to these components of structure, uncertainty in the measurement should be 146 

assessed and accounted for in the final product [6,29]. These should be included into an 147 



   
 

ecosystem structure “data cube” along with metadata on data sources, methods, and dates, all 148 

critical to enable change detection [8]. As the GEDI (Global Ecosystem Dynamics 149 

Investigation) mission is completing the first comprehensive global LIDAR dataset [2] (Box 150 

1), the processing workflows for measuring ecosystem morphological traits and the 151 

determination of their uncertainties from GEDI should set a precedent on how the ecosystem 152 

structure components are to be derived from other 3D-imaging tools. As an example, tools like 153 

rGEDI (CRAN.R-project.org) [27] can provide new opportunities to allow practitioners from 154 

local to global scales to make use of GEDI data in compliance with the EBV framework. In 155 

order to seek harmonization and global consensus, subsequent workflows for retrieval of 156 

ecosystem morphological traits from other sources like airborne LIDAR [19] or SAR [42] 157 

should seek to emulate the exact parameters established after the first use of GEDI in the EBV 158 

data portal [8]. Future research on physically-based radiative transfer models (such as Hancock 159 

et al.’s [19]), especially once they become spectrum-invariant and thus valid from light to radar, 160 

will the most reliable pathway for homogenising the retrieval of EBVs from different sensors 161 

and missions [43]. 162 

 163 

**** approximate position of Figure 1 **** 164 

 165 

From standardised components of ecosystem structure locally, to EBVs globally 166 

Coupled with field data for calibration, these three components of ecosystem structure – height, 167 

cover, and structural complexity – can also be employed as a proxy to estimate many other 168 

ecosystem characteristics relevant to EBVs [44,45] (Table 1, Figure 1). These include, for 169 

instance, LAI or carbon stocks, which are variables typically predicted using LIDAR data 170 

calibrated with ground observations [20,40,46-49]. Methods coupling LIDAR data with 171 

https://cran.r-project.org/package=rGEDI


   
 

ancillary information may also inform additional EBVs beyond ecosystem extent and structure. 172 

Examples are ecosystem functional diversity [13] or community composition [15,33,34]. They 173 

can also support quantitative assessments of species abundances and distributions [12,50-53], 174 

and are useful in the estimation of many ecosystem services [54]. These morphological traits 175 

are focused on an ecosystem perspective, with mechanistic relationships to properties like LAI 176 

or biomass [13,14,40], which makes them suitable to feed in models that can derive reliable 177 

EBVs, such as the Ecosystem Demography (ED) or Dynamic Global Vegetation Models 178 

(DGVMs) and other process-based models [11]. Moreover, the parameterisation of vegetation 179 

structure-species richness models, using data from field-based sampling of species abundances 180 

or presence/absence data, also allows for the generation of spatially continuous predictive maps 181 

[8,17,45,50,51,55]. Table 1 details the range of ecosystem attributes that can be reliably 182 

estimated using 3D-imaging methods and the subsequent EBVs that they can inform.  183 

Given the simplicity and ecosystem-focused conceptual basis of these components, the specific 184 

remote sensing platform or technology to deliver their mapping can vary across space and time 185 

(Table 1), even allowing future adoption of hitherto unknown technologies. For global 186 

assessments of ecosystem structure EBVs, the most advantageous approach for EBV retrieval 187 

is to couple available LIDAR data with other RS sources. Figure 1 illustrates the variety of data 188 

fusion pathways that may be employed according to data availability in any area. Since no 189 

single data combination will attain the whole globe at suitable temporal recurrence, the 190 

framework on Fig. 1 seeks to make the different pathways compatible, so that many of them 191 

may be approached toward a same goal. Common to many approaches is the use of existing, 192 

free and open, satellite missions to extrapolate LIDAR estimates beyond the acquisition area. 193 

These include optical imagery such as Landsat or Sentinel [1,4,56], or data from SAR missions 194 

[3,42] (Box 1, Table I). There is a growing consensus in considering that LIDAR can obtain 195 

direct measurements of these ecosystem traits [13,29,35,39], whereas the current state-of-the-196 



   
 

art for other RS sources such as SAR is that they derive variables that can be used as proxies 197 

for estimation and upscaling [4,42,43,56] (Fig. 1). In particular, SAR is well suited to provide 198 

good proxies for ecosystem height [3,42], whereas ecosystem cover is best retrieved from 199 

spectral imagery [1,4]. The resulting spatially-continuous maps derived from 3D-imaging allow 200 

generation of large-area inventories for guiding biodiversity monitoring and conservation 201 

assessments [12]. These have significant potential for reporting key indicators to inform both 202 

regional and global policy targets [24], such as UN 2030 Sustainable Development Goals 203 

(SDG), post-2020 Global Biodiversity Framework, and UN Decade of Ecosystem Restoration. 204 

For example, these morphological traits could be used to assess ecosystem restoration efforts 205 

[57] (Aichi Target 14 and 15 of the Convention on Biological Diversity), sustainable ecosystem 206 

management [58] (SDG Target 15.2 and Aichi Target 5), and contribution of biodiversity 207 

towards enhancing forest carbon stocks [12,30] (Aichi Target 15). 208 

Compliance of this framework with the EBV definition 209 

The relevance of the framework providing three basic components of ecosystem structure as 210 

primary observations informing EBVs is contingent on them being feasible to reproduce 211 

(robustness), sensitive to change, and globally consistent [7]. The EBVs ought to be retrieved 212 

independently from the sensor and platforms employed for measuring them. The consistency 213 

of 3D-imaging in delivering these components of ecosystem structure has been conclusively 214 

demonstrated across biomes and ecosystem types [3,4,16,26,29,41] (Table 2). Vegetation 215 

height strongly correlates with forest carbon sequestration [40]. Vegetation cover has been used 216 

to map tropical forest canopy gaps and light environment [14,22,59], as well as local diversity 217 

of forest plants, fungi, lichens, and bryophytes [51]. Vegetation height, cover and structural 218 

complexity have been used to classify native species distribution in tropical savannahs and 219 

grasslands [34,46,60] and reveal fine-scale linkages between microstructure and photosynthetic 220 

functioning in tundra ecosystems [61]. These three components of ecosystem structure can also 221 



   
 

be applied to marine habitats [25] as habitat indicators for marine life [53]. As a result, the 222 

framework supports the inherent requirement of EBVs to be ‘ecosystem-agnostic‘ state 223 

variables, allowing generalizable relationships across biomes [6,62] (Table 2).  224 

Several studies have demonstrated the ability of structural components to be sensitive to change. 225 

Authors have applied multi-temporal LIDAR data for mapping and monitoring forest changes 226 

in tropical [e.g. 63], temperate [e.g. 64] and boreal [e.g. 47] forest ecosystems (Table 2). The 227 

utility of multitemporal LIDAR for carbon dynamics monitoring has been shown in subtropical 228 

[48] and conifer forests [47]. Temporal changes in LIDAR-derived EBVs are important for 229 

assessing ecosystem dynamics, including tree growth, biomass dynamics, and carbon flux. 230 

Almeida et al. [14] provides an example of how evolving methodological developments over 231 

decades can be standardised into simple measures, allowing long term monitoring. Thus, 232 

despite the technological changes constantly occurring over decades, consensus over the 233 

derivation of these morphological traits of ecosystems from 3D-imaging technologies can bring 234 

about the consistency needed for long term monitoring. 235 

Concluding Remarks and Future Perspectives  236 

We provide a rationale that ecosystem structure can be concisely defined by three key 237 

components: ecosystem height, cover, and structural complexity. This conceptual 238 

disaggregation simplifies the wealth of information provided by 3D-imaging data sources, 239 

allowing ecosystem structure information obtained from any sensor, platform or scale, 240 

including ground information (such as field based LAI), or future satellite missions and 241 

technological developments, to be combined effectively toward long term global goals. These 242 

morphological traits are focused on describing the ecosystems, not tailored to the available 243 

methods to retrieve them, which is key to the determination of EBVs. 244 



   
 

This framework is mandatory to monitor global targets over decades, as no seamless global 245 

retrieval of an EBV focused on ecosystem structure is attainable using a single 3D-imaging data 246 

source. We challenge the widespread notion that airborne 3D-imaging has no role to play in 247 

global EBV retrievals, and our framework aims to educate users on the potential role these data 248 

can play. We wish to encourage national programmes acquiring 3D-imaging data (Box 1 Table 249 

II) to consider routine delivery of these three easy-to-conceptualise ecosystem components. 250 

Such morphological traits presented as gridded products would foster uptake of these expensive 251 

datasets by conservationists, enhancing their global and national applicability in biodiversity 252 

policy and practice. We advocate for an EBV retrieval system which is sufficiently flexible to 253 

allow the generation of globally consistent information from a variety of methods and sensor 254 

combinations, making efficient use of LIDAR data available locally. Such a system would make 255 

a vital contribution towards future biodiversity goals and the prioritization of conservation 256 

actions. 257 

In order to encourage widespread adoption, further research is needed on further ensuring 258 

robustness, sensitivity, global consistency in the retrieval of EBVs from 3D-imaging data (see 259 

Outstanding Questions). Robustness is to be achieved by securing reproducibility in the 260 

application across different sensors/platform combinations. Sensitivity to change is an 261 

important characteristic of EBVs, and with rapid technological advances, research should focus 262 

on ensuring the comparability of datasets acquired in the past, present and future. Global 263 

consistency in the measures of ecosystem structure can be achieved by using GEDI as standard 264 

to follow. The current trend is in considering that LIDAR can measure at least some of these 265 

ecosystem morphological traits directly, and even better than field methods, which brings about 266 

a change of paradigm since now LIDAR can become the ground-truth to compare against other 267 

methods . Quantification of uncertainties in measuring these morphological traits from each 268 

possible 3D-imaging method allows for their optimised combination and multi-temporal 269 



   
 

comparison. Important research avenues lie in demonstrating relationships of each of these 270 

ecosystem structure components with biodiversity assets, noting that these will differ among 271 

biomes. We consider that this framework may facilitate just that, enabling the use of 3D-272 

imaging technologies to identify hotpots for action in conservation, and greatly enhancing the 273 

use of 3D-imaging datasets by those who can use them to advance ecological research and 274 

biodiversity monitoring. We would like to encourage ecology researchers to use this 275 

standardised framework in their search for relationships between ecosystem structural traits and 276 

biodiversity assets. 277 
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FIGURES  464 

Figure. 1. Schematic diagram showing the practical pathways for deriving EBVs from various 465 

potential sources, using a framework of standardised ecosystem morphological traits derived 466 

from 3D-imaging and/or ground information. 467 
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Box 1, Figure I. Basic common procedures for deriving morphological traits from different 477 

3D-RS data sources. Satellite LIDAR provides discretely-spaced pulses with a large footprint, 478 

whereas ALS or drones take a continuous scan throughout the surveyed area. While they 479 

produce different raw data, the procedures to derive ecosystem morphological traits are similar 480 

for all, satellite or airborne 3D-imaging. 481 

 482 

 483 



   
 
 

20 
 
 

TABLES 484 

Table 1. Summary of ecosystem characteristics relevant to EBVs that can be derived from 3D-imaging sources, with example references for different 485 

pathways for their retrieval. 486 

EBV class / 

subclass 

Ecosystem 

characteristic 

Requirements for assessing nationally  Requirements for assessing globally Suitable products or estimated variables 

ALS DAP SatL SAR MS Field Other ALS DAP SatL SAR MS Field Other  

Core traits (measured)                

Ecosystem 

structure / 

Habitat 

structure and 

condition 

Height [39] [38] [32] [58] [56] [14] [37] [40]  [42] [42]    Top or average height above ground. 

Cover  [36]   [58] [56]      [4]  [4]   Proportion of heights above thresholds. 

Estimates of LAI or gap fraction using 

ground data for calibration.  

Structural 

Complexity  

[35] [53]   [65]  G3D 

[23] 

[26] [16] [42] [42]   G3D Variability of LIDAR heights (rugosity), or 

leaf area density profiles. Estimates of 

biomass distribution using ground data for 

calibration. 

Derived traits (estimated)                

Ecosystem 

structure / 

Ecosystem 

extent and 

fragmentation 

Habitat area [39]      [37]     [1]   Area under certain characteristics, e.g. 

vegetation cover above threshold 

Habitat 

connectivity and 

fragmentation 

[31]              Combination: vegetation height, cover and 

vertical structure 

Ecosystem 

Function 

Carbon 

sequestration 

[40]  [46] [58]   G3D 

[49] 

[20]  [20]   [20] G3D 

[43] 

Estimates of above (or below) ground 

biomass using ground data for calibration 
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Decomposition [65]              Estimates of coarse woody debris using 

ground data for calibration  

 Disturbance 

regime 

[67]   [66]           Area affected by disturbances 

Ecosystem 

composition / 

Taxonomic 

diversity 

Species diversity 

/ Richness 

[33]      HS 

[13] 

[15]   [3] [44]  HS 

[15] 

Estimates of alpha/beta diversity and 

richness using presence/absence data for 

calibration 

Species 

populations 

Species 

distributions 

[52]     [55] [37] [51]     [8]  Estimates of habitat suitability for species 

using presence/absence data for calibration 

 Population 

abundance /   

Ecosystem 

classes 

[29]              Combinations of vegetation height, cover 

and structural complexity. Estimates of 

ecosystem classes using ground data for 

calibration 

 Population 

structure by size 

class 

[55]      G3D 

[61] 

[38]      G3D Combination of estimates of biomass and 

species distribution using ground data for 

calibration. 

ALS: airborne LIDAR; DAP: digital aerial photogrammetry; SatL: satellite LIDAR; MS: satellite multispectral; HS: hyperspectral; SAR: satellite 487 

synthetic aperture radar; Field: field data acquired on the ground; G3D; ground-based 3D-imaging (e.g. terrestrial LIDAR or proximal photogrammetry). 488 

Table 1 Legend: 489 

 Required: this data type alone could suffice for the retrieval of an EBV at national/global scale . 

 Required in combination: this data type requires combinations with other data sources for the retrieval of an EBV at 

national/global scale. See the publications cited for examples and details. 

 Useful but not required: while not essential, this data type can be helpful in improving the retrieval of an EBV from other data 

sources at national/global scale.  
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 Not required: this data is not informative for a given EBV, or the EBV can be more optimally attained from other data sources.  

 490 

Table 2. Recent 3D-RS studies on ecosystem structure for worldwide dominant vegetation types and/or involving change detection. 491 

Vegetation 

type 

Reference System      Multi-

temporal 

Ecosystem characteristics (see Table 1) 

Tropical 

rainforest 

      

Almeida et al. [14] Field measurements, airborne laser 

scanning and ground-based LIDAR   

1980-2008-

2015 

Changes in vegetation height, cover, structural complexity, and 

carbon sequestration 

Smith et al. [59]      Ground-based LIDAR 2010-2012-

2015-2017 

Changes in vegetation cover and structural complexity  

Shao et al. [63] Airborne laser scanning 2008-2017 Ecosystem structural complexity 

Tropical 

savannas 

Marselis et al. [34]      Full-waveform airborne LIDAR 

and ground-based LIDAR       

No Vegetation height, cover, structural complexity, and ecosystem 

classes 

      Ferreira et al. [38] Drone-based LIDAR and 

photogrammetry  

No Vegetation height 

      Gwenzi and Lefsky [32]           Satellite LIDAR            No Vegetation height and cover           

Mangroves Lucas et al. [58] Satellite SAR and drone-based 

photogrammetry 

1987-2016 Changes in vegetation height, cover, and carbon sequestration 

Sub-tropical 

forests 

Cao et al. [48] Airborne laser scanning 2007-2016 Changes in carbon sequestration 

Almeida et al. [23] Field measurements  and drone-

based LIDAR 

2004-2016 Changes in vegetation height, cover, structural complexity, and 

carbon sequestration 

Desert 

vegetation 

Sankey et al. [37] Ground-based LIDAR 2011-2012 Vegetation height and habitat area  

Mediterranean 

forests 

Lopatin et al. [33] Airborne laser scanning No Species richness and population abundance by size class 

Hu et al. [67] Airborne laser scanning 2013-2013 Changes in population structure by size class and vegetation cover  
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Temperate 

broadleaved 

Moeslund et al. [51] Airborne laser scanning No Species richness by functional type  

Hilmers et al. [64] Full-waveform airborne LIDAR 2006-2008 Changes in species abundances, richness, and composition 

Temperate 

coniferous 

McCarley et al. [66] Airborne laser scanning and 

satellite multispectral 

2009-2013 Disturbance regime in vegetation cover 

Shrublands Greaves et al. [49] Ground-based  LIDAR No Shrub biomass and leaf area index 

Grasslands Fisher et al. [60] Airborne laser scanning No Vegetation cover and ecosystem classes  

 Silva et al. [46]      Full-waveform airborne LIDAR 

and satellite LIDAR  
No Vegetation height and carbon sequestration      

Montane forest Duncanson and Dubayah 

[68] 

Airborne laser scanning      2008-2013 Changes in vegetation height, carbon sequestration, and 

disturbances 

 Kellner et al. [22] Drone laser scanning and satellite 

LIDAR  

No Vegetation height and carbon sequestration 

Boreal forests Matasci et al. [56] Airborne laser scanning and 

satellite multispectral 

1984-2016 Vegetation height, density, and carbon sequestration 

 Zhao et al. [47] Airborne laser scanning 2002-2006-

2008-2012 

Changes in vegetation height and carbon sequestration 

Tundra Maguire et al. [61] Terrestrial LIDAR No Vegetation structural complexity  

Wetlands Reddy et al. [69] Airborne laser scanning 2010-2012 Carbon sequestration (soil) 

Benthic 

habitats 

Ferrari et al. [53] Underwater drone photogrammetry  No Ecosystem structural complexity, community composition, and 

abundance 

Duvall et al. [25] Airborne topo-hydrographic 

LIDAR 

No Ecosystem structural complexity 

Urban forests Song et al. [70] Airborne laser scanning 2004-2008-

2010 

Change in vegetation height  

492 



   
 

24 
 
 

TEXT BOXES 493 

Box 1. 3D-imaging data sources: current availability and feasibility for assessing EBVs  494 

Satellite and airborne sources of 3D-imaging, both have capabilities for deriving similar 495 

information relevant to our ecosystem structural framework. (Figure I) [19]. Each of them, 496 

however, also has its own practical limitations for long term monitoring of EBVs.  497 

 498 

**** approximate position of Figure I **** 499 

 500 

Spaceborne platforms:  501 

There are two civilian spaceborne LIDAR sensors currently operational – NASA’s ICESat-2 502 

and GEDI [4] – which provide potential opportunities for deriving EBVs informed by LIDAR 503 

from space (Table I). These satellites have restricted operations though – three years for 504 

ICESat-2 and two for GEDI –, which limits their utility for long term monitoring of EBVs. 505 

Neither mission is designed to acquire laser pulses over the same location twice, and thus they 506 

are not designed to detect information on change, which is a key characteristic of any EBV [7]. 507 

While ICEsat-2 is global GEDI is limited to the orbit of the International Space Station (latitude 508 

limitation at 51.6º N and S). Satellite LIDAR systems obtain discrete pulses sampling a 509 

footprint of diameter 17-25 m on the ground (Figure I), which are separated by distances of 510 

around 0.6-2.5 km along track and 0.6-3.3 km across track making difficult to assess ecosystem 511 

traits involving neighbouring analyses, such as ecosystem extent and fragmentation (Table 1). 512 

GEDI datasets [2] and tools for easy derivation of ecosystem traits from them [27] are readily 513 

available. Overall, the greatest potential of satellite LIDAR for global EBV assessments is in 514 



   
 

25 
 
 

combination with optical sensors [4], or with SAR [42] (Fig. 1), with many relevant missions 515 

coming up in the next years (Table I). There are numerous synergies between missions, such 516 

as the possibility of using SRTM data to define the terrain elevation, whenever higher resolution 517 

topographic information is unavailable [58]. 518 

 519 

Airborne Laser Scanning (ALS):  520 

Several national / regional surveying programmes are producing ALS datasets covering entire 521 

countries (Table II), many of them with revisited coverages. These low-density datasets 522 

(typically 0.5-2 pulses·m2) are demonstrably useful for ecosystem characterization and 523 

ecological applications [29,35,39]. There is general consensus on methodologies employed to 524 

derive ecosystem morphological traits from these datasets [15,16,26], and they are increasingly 525 

becoming publicly-available along with free tools for data processing (see 526 

opentopography.org). These open up unique opportunities for generating habitat traits and 527 

classifications that can be consistently obtained throughout entire regions or countries. Using 528 

GEDI as a standard [2], the derivation of those same morphological traits from airborne LIDAR 529 

(Figure I) should follow Hancock et al.’s (2019) [19] processing steps to facilitate the 530 

homogenization of disparate airborne acquisition settings. 531 

 532 

Box 1 Table I. Satellite missions that may be used to support ecosystem structure assessments 533 

(Fig. 1) towards the UN Agenda’s 2030 Sustainable Development Goals. 534 

Sensor 
Satellite / Programme Agency Starting 

from Year 

Link 

LIDAR Global Ecosystem Dynamics Investigation (GEDI) NASA 2018  

http://www.opentopography.org/
https://science.nasa.gov/missions/gedi
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 Ice, Cloud and land Elevation Satellite-2 (ICESat-2) NASA 2018  

Optical Earth Observing System (Landsat, MODIS, etc) NASA 1972  

 Copernicus Global Monitoring (Sentinel) ESA 2014  

 High-Definition Earth Observation Sat. (HDEOS) CNSA 2015  

SAR BIOMASS ESA 2021  

 Phased Array type L-band SAR (PALSAR) JAXA 2006  

 NISAR NASA-ISRO 2022  

 TanDEM-X DLR 2014  

 TanDEM-L DLR 2022  

 Shuttle Radar Topography Mission (SRTM) International 2000  

NASA: US National Aeronautics and Space Administration; ESA: European Space Agency; 535 

CNSA: China National Space Administration; JAXA: Japan Aerospace Exploration Agency; 536 

ISRO: Indian Space Research Organization; DLR: German Aerospace Center 537 

 538 

Box 1 Table II. Examples of publicly available airborne ALS datasets from national / regional 539 

surveying programmes. 540 

Country / State Agency / Programme Link 

Canada Agriculture and Agri-Food Canada   

Australia GeoScience Australia &Terrestrial Environ. Research Network   

Denmark Kortforsyningen   

Finland Maanmittauslaitos / National Land Survey of Finland (NLSF)   

Germany / North Rhine-

Westphalia (NRW) 
OpenNRW 

 

Netherlands Actueel Hoogtebestand Nederland (AHN)  

Spain 
Instituto Geográfico Nacional (IGN) / Plan Nacional de 

Ortofotografía Aérea (PNOA) 

 

https://icesat-2.gsfc.nasa.gov/
https://eospso.nasa.gov/
http://www.copernicus.eu/
https://directory.eoportal.org/web/eoportal/satellite-missions/g/gaofen-1
https://earth.esa.int/web/guest/missions/esa-future-missions/biomass
https://www.eorc.jaxa.jp/ALOS/en/
https://nisar.jpl.nasa.gov/
https://tandemx-science.dlr.de/
http://www.dlr.de/hr/desktopdefault.aspx/tabid-8113/
https://www2.jpl.nasa.gov/srtm/index.html
http://open.canada.ca/data/en/dataset/a760f9e0-7013-4187-9261-2e69b01edd9a
https://www.tern.org.au/
http://download.kortforsyningen.dk/content/geodataprodukter?field_korttype_tid_1=440&field_aktualitet_tid=All&field_datastruktur_tid=All&field_scheme_tid=All
http://www.maanmittauslaitos.fi/en/e-services/open-data-file-download-service
https://open.nrw/
http://lists.osgeo.org/pipermail/dutch/2014-March/000864.html
http://centrodedescargas.cnig.es/CentroDescargas/buscadorCatalogo.do?codFamilia=lidar
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United Kingdom  UK Environment Agency   

United States of America US Geological Survey (USGS). US Department of Interior  

 541 

GLOSSARY 542 

• 3D-imaging: Also known as 3D remote sensing, the concept includes any RS method that 543 

detect 3D positions of ecosystem structural elements. LIDAR, SAR and digital 544 

photogrammetry are specific types of 3D-imaging data sources. 545 

• Airborne Laser Scanning (ALS): Airborne LIDAR systems fire discrete pulses of green 546 

and infrared light from the height of a flying aircraft, so that the beam widens to about 0.3-547 

0.5 m in diameter upon reaching the surface. When targeted on vegetation, only a portion 548 

of the laser pulse is backscattered from the upper crowns, while other components return 549 

off leaves and branches further down the canopy, understorey vegetation, and the ground 550 

(Box 1 Figure I). Thus multiple returns backscattered off the different elements of the 551 

targeted ecosystem are obtained from a single pulse, resulting in an informative 3D point 552 

cloud of scanned LIDAR returns. 553 

• Digital aerial photogrammetry (DAP): 3D information from stereoscopic restitution of 554 

two or more images acquired from an aerial platform. While digital photogrammetry can 555 

be obtained from a variety of platforms (close-range on the ground, or airborne/satellite 556 

imagery), the recent spread use of drones has popularised structure-from-motion (SfM) 557 

methods which deliver dense DAP data. 558 

• Ecosystem height: Average height of the highest ecosystem structural elements. 559 

Common terms employed are top of canopy height in forests [40] or reef elevation for 560 

corals [25]. 561 

https://data.gov.uk/dataset/977a4ca4-1759-4f26-baa7-b566bd7ca7bf/lidar-point-cloud
https://catalog.data.gov/dataset/lidar-point-cloud-usgs-national-map
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• Ecosystem cover: Percentage of a fixed area covered by the vertical projection the 562 

ecosystem structural elements. Common terms employed for vegetation is plant area 563 

index [13,34], or colony cover for corals [16]. 564 

• Ecosystem structural complexity: Variability in height and/or cover of the ecosystem 565 

structural elements. Standard deviation and coefficient of variation are common measures 566 

of ecosystem complexity [25,35,39]. Rugosity is a common term employed for both forest 567 

canopies and benthic habitats [53].  568 

• Essential Biodiversity Variables (EBV): Measurements required to report the status and 569 

monitor trends in biodiversity change globally, to inform decision makers in management 570 

and policy [7,24]. 571 

• Light detection and ranging (LIDAR): LIDAR systems scan targeted surfaces by 572 

emitting laser pulses and detecting their reflection. Ground based platforms are used to get 573 

an informative 3D cloud of scanned LIDAR returns over individual samples or transects. 574 

Airborne platforms obtain similar information over continuous swaths of land, with a trade-575 

off between the density of 3D information and its coverage: drones obtain denser data over 576 

limited extents and aircrafts acquire sparser data covering whole regions. LIDAR pulses 577 

emitted from satellites cover an entire plant community, thus delivering a whole waveform 578 

instead (Box 1 Figure I). Nonetheless, the information can be similarly utilised and the 579 

main difference is that satellite LIDAR provides global coverages but only at discrete 580 

samples (i.e., not spatially-continuous). 581 

• Remote sensing (RS): Methods acquiring information from ecosystems at a distance. RS 582 

may involve a variety of sensors (e.g., spectral cameras, lasers, radar) on a variety of 583 

platforms: ground-based, drones, airborne or spaceborne. The type of data collected 584 

depends on the sensor/platform combination, 3D-imaging is one specific type of RS in 585 

which the output information is 3D positions of objects. 586 
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• Structural elements: Sessile biological entities constituting the biophysical environment 587 

of an ecosystem (e.g. plants or corals). 588 

• Synthetic aperture radar (SAR): An extremely large antenna would be needed in order 589 

to detect objects through very long distances using radar wavelengths. To avoid this, SAR 590 

simulates a long aperture through the flight path of a moving side-looking platform, 591 

airborne or spaceborne. The outcome products provide 3D structure information of the 592 

targets, at 1-5 m spatial resolutions. SAR can penetrate clouds, which makes it a useful 593 

technique in rain forests and mountainous regions. Depending the wavelength (e.g. C-band 594 

or L-band) different ecological features can be recognised.   595 

 596 

 597 
 598 

HIGHLIGHTS 599 

• 3D-imaging data acquired from a variety of platforms has become critical for ecological 600 

and environmental management. However, the use of disparate information sources to 601 

produce comprehensive and standardised global products is hindered by a lack of 602 

harmonisation and terminology around ecosystem structure. 603 

• We propose a sensor- and platform-independent framework which effectively distils the 604 

wealth of 3D information into concise ecosystem morphological traits – height, cover and 605 

structural complexity – easy to conceptualize by ecologists and conservation stakeholders 606 

lacking remote sensing background.  607 

• The conceptual disaggregation of ecosystem structure would contribute to defining and 608 

monitoring Essential Biodiversity Variables obtained from 3D-imaging, that can be used 609 

to inform progress towards the UN 2030 Sustainable Development Goals and other 610 

international policy targets.  611 
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OUTSTANDING QUESTIONS 612 

• Robustness must be secured by researching on the reproducibility of GEDI workflows with 613 

other 3D-imaging sensors, through the derivation of physically-based spectrum-invariant 614 

radiative transfer models. 615 

• Sensitivity to change will differ from one RS derived product to another, and levels of 616 

uncertainty in the measurement of each morphological trait also differ. How can such 617 

differences be accommodated within the framework to allow for unbiased long-term 618 

monitoring of change with clearly stated degrees of uncertainty?  619 

• Global consistency needs to be further supported by research on the relationships of 620 

ecosystem morphological traits across different biomes and ecosystem types. 621 

• How do each of the ecosystem structure components relate to the different dimensions of 622 

biodiversity: taxonomic, phylogenetic or functional? Which are the relevant scales for 623 

those relationships and how are they affected by co-registration errors? 624 

• How can changes in these ecosystem structure components be relevant to biodiversity 625 

conservation policy and practice? How can the global community of remote sensing 626 

practitioners, ecologists and biodiversity policy experts work together to further the 627 

inclusion of the proposed framework in the policy-making decision process? We encourage 628 

engaging with The Group on Earth Observation Biodiversity Observation Network (GEO 629 

BON) to overcome these challenges.  630 

• Using 3D-imaging data to disentangle direct and indirect effects affecting the relationships 631 

between species distributions and ecosystem structure deserves further attention. Structure 632 

alone has some limited direct influence on species and their distributions, e.g. by providing 633 

cover from predators or providing nesting or hibernating sites. The disaggregation into 634 
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ecosystem structure components may enable us to analyse their separate influence on 635 

microclimates, and thus species distributions.  636 

• The biggest research gap is the marine and freshwater environments. Which tools are most 637 

appropriate for measuring morphological traits in marine ecosystems? What are their 638 

relationships to biodiversity? 639 


