
Standardizing the Interface Between Applimtions And CIMSs

Pedro Sxekely*

~~SC/Information Sciences Institute
4676 Admiralty Way,

Marina de1 Rey, CA 90292
(213) 822-1511

Abstract

The user interface building blocks of any User Interface
Management System (UIMS) have built-in assump-
tions about what information about application pro-
grams they need. and assumptions about how to get.
that information. The lack of a standard to represent
this information leads to a proliferation of different
assumptions by different building blocks, hampering
changeability of the user interface and portability of
applications to different sets of building blocks. This
paper describes a formalism for specifying the infor-
mation about applications needed by the user interface
building blocks (i.e. the UIh4SApplication interface)
so that all building blocks share a common set of as-
sumptions. The paper also describes a set of user in-
terface building bloclcs specifically designed for these
standard UIMS/Application interfaces. These building
blocks can be used to produce a wide variety of user
interfaces, and the interfaces can be changed without
having to change the application program.

* The initial research was sponsored by the Defense Advanced
Research Projects Agency (DOD), ARPA Order No. 4976,
Amendment 20, under contract number F33615-87-C-1499, mon-
itored by the: Avionics Laboratory, Air Force Wright Aero-
nautical Laboratories, Aeronautical Systems Division (AFSC),
Wright-Patterson AFB, Ohio 45433-6543. Further work has been
supported in part by the D.A.R.P.A. under contract number
MDA 903-86-C-0178 and in part by the Air Force Logistics Com-
mand under contract number F33600-87-C-7047. The views and
conclusions contained in this document are those of the authors
and should not be interpreted as representing the office policies,
either expressed or implied, of the Defense Advanced Research
Projects Agency, the Air Force Logistics Command, or the US
Government.

Permission to copy without fee alI or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Asociation for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1989 ACM O-89791-335-3/89/001 l/O034 $1 SO

1 Introduction

The main goals of user interface management sys-
tems (UIMS) are t.o provide reusable interface huild-
ing blocks that can be used t.o construct a wide va.ri-
ety of interfaces, and t.o facilitate composing and refin-
ing user interfaces using these building blocks. These
building blocks have built-in assumptions about ruhat
information about application programs they need, and
assumptions about how to get that information. The
lack of a standard to represent t,his information leads
to a proliferation of different assumptions by different
building blocl+, hampering changeability of the user in-
terface and portability of applications to different sets
of building blocks.

Most modern UIMSs communicate with application
programs using external control[4, 7. 10. 111. This
means that the UIMS receives all input events, dis-
patches them to the appropriate user interface building
block, which then calls application procedures when
a response from the application is required. For in-
stance, if the user clicks the mouse over a menu item,
the UIMS sends the click event, to the relevant menu
building block, which highlights, and then calls an ap-
plication procedure to execute the relevant action.

The procedures called by the user interface buiid-
ing blocks are usually called call-back procedures, be-
cause once an application program starts, it gives con-
trol to the UIMS, which then calls the application back,
when appropriate. The set of all call-back procedures
is called the UIiVS/Application interface. There are
some variants of the UIMS control technique in which
the user interface building blocks can directly access
application data structures. Since the call-back proce-
dure method is the most popular, straight forward and
efficient technique [9], this paper assumes that UIMS/-
Application interfaces consist solely of call-back proce-
dures.

Writing an application for a UIMS that uses UIMS
control consists of choosing the building blocks that will
be used for the various user interface features, and then

34

writing the call-back procedures [7]. The call-back pro-
cedures are dependent on the particular building block
which will use them. Each kind of building block spec-
ifies how many call-back procedures it has, what the
parameters for these procedures should be, and IThat
the procedures should do when called.

VIMS/Application interfaces become highly depen-
dent on the particular set of building blocks used in a
program’s user interface. Changing a building block for
another (e.g. a pop up menu by a row of command but-
tons) could be troublesome because different building
blocks could have different expectations about the re-
sults or parameter interpretation of their call-back pro-
cedures. Changing building blocks could require mod-
ifying the call-back procedures to fit the expectations
of the new building block. This impedes the iterative
refinement cycle required to build good interfaces. and
hampers portability of applications to different sets of
building blocks.

The dependencies between application programs and
user interface building blocks can be minimized by
standardizing the characteristics of the procedures in
a program’s UIMS/Application interface. It is proba-
bly impossible to define a standard for UIMS/Appli-
cation interfaces that supports every imaginable style
of user interface. However, this paper shows that a
surprisingly simple standard supports a wide variety of
graphical interface features. The standard for UIMSJ-
Application interfaces presented here is based on repre-
senting as objects the operations of a program, which
are typically represented as procedures. The object
representation of operations makes it easy to associate
with the operation a variety of information needed for
the user interface.

This paper is based on a new UIMS called
Nephew [13], which is a descendent of Cousin [3] The
paper has two main parts. The first part (section 2) de-
scribes the Nephew UIMS/Application interface, which
defines a set of conventions for standardizing UIMS/-
Application interfaces so that they can be used by a
large variety of interface components. The second part
(section 3) describes the interface components provided
by Nephew. The components are structured so that
they all use the same call-back procedures, but they
can produce a wide variety of graphical interfaces. Sec-
tions 4: 5, and 6 contains some examples of Nephew
interfaces, related work and conclusions.

2 The Nephew UIMS/Applica-
tion Interface

The UIMS/Application interface for an application
program defines the procedures that the user interface

building blocks need to acquire t.he necessary informa-
tion to display. procedures to inform the program about
user actions, and type declarations that define the pa-
rameters of the procedures.

Nephew UIMS/Application interfaces are simiIar.
Nephew provides two construct called def-operation and
def-object to specify the procedures and objects of the
application.

The def-object construct to define the application ob-
jects is similar to that of any object-oriented language,
and hence is not discussed here. The only point worth
mentioning is that objects only provide procedures to
read the state of the object. The procedures to change
objects are defined with def-operation.

The def-operation construct, is different from the tra-
ditional facilities to declare procedures. Def-operation
requires. in addition to the tradit.ional declaration of
the parameter types, the declaration of a host of other
attributes that define the information needed by the
user interface. Here is a detailed description of the def-
operation construct:

:precondition - a function of no parameters that re-
turns nil when the precondit,ion is satisfied, or an
object describing why the precondition is violated.
The default returns nil (i.e. precondition satis-
fied).

:cancelable - a function of no parameters that returns
nil if the operation can be canceled, or an object
describing why the operation cannot be canceled.
The default returns t (i.e. operation cannot be
canceled).

:preview - a function that takes as many parameters
as the operation has inputs. and returns an ob-
ject, which the user interface interprets as an ap-
proximation of the effects of the operation, if the
operation was called with the given set of inputs.
The default returns nil.

The following information must be supplied for each
operation input:

:type - the type of value acceptable as input.

:validation - a function of two parameters. The first
one is the value to be validated and the second
one is an object that can be queried for the val-
ues of the other operation inputs. The function
should return nil when there are no errors, or a
value describing the error. The default returns nil
(i.e. valid input).

:transformer - a function of two parameters, the value
to be transformed, and an object that can be
queried for the values of the other operation in-
puts. The function returns the object into which

35

(def-operation move-piece-op

:precondition is-game-not-over

:inputs ((piece :type Piece
:validation is-movable-piece

:generator movable-pieces)

(location :type Location
:validation is-valid-location

:generator landing-locations))
“body of move-piece-op”)

(def-operation quit-op . . .)
(def-operation save-op . . .)

. .

Table 1: Fragment of the Nephew UIMS/Application
interface of a chess program. Move-piece-op moves a.
piece to a new location, and computes the program’s
response move. quit-op quits the program. and save-op

saves the state of the game so that it can be resumed
later. Other operations provided are not shown in the
figure.

the parameter value is transformed. The default
is the identity function.

:generator - a function of one parameter, an object
that can be queried for the values of the other
operation inputs. The function returns either a
list of objects that are legal values for the input,
or a function of no parameters that returns the
next legal value each time it is called. The default
returns nil.

:request - a boolean value. True means that this in-
put should be supplied before the operation is ex-
ecuted, and nil means that the input might be re-
quested during the execution of the operation.

Note that the Nephew UIMS/Application interface de-
fines the parameters and return values for the pro-
cedures that fill the various attributes. This ensures
that all user interface components will be able to use
these procedures, and also allows the programmer to
write these procedures before the user interface de-
signer chooses the user interface compqnents.

The type is the only attribute specified in traditional
UIMS/Application interfaces. The other attributes, if
specified at all, are specified as top-level procedures,
at the same level of the operations. Since traditional
UIMS/Application interfaces do not enforce any reg-
ularity in the specification of these procedures, there
is no assurance that different user interface building
blocks will be able to use the procedures.

Table 1 shows a fragment of the UIMS/Applica-
tion interface for a chess program implemented with

Nephew. The first call to def-operation defines the
move-piece-op operation, which moves a piece to a new
location, and computes the program’s reply to the
move. Piece and location are the inputs to move-piece-

op. The specification of the inputs includes a type dec-
laration, and validation and generator procedures, which
t,he user interface building blocks need (see section 3).
For instance, the is-valid-location procedure is called by
the mouse handler to check whether the current piece
can be moved to a location, so that the location can be
highlighted accordingly.

Another benefit of the Nephew UIMS/Application
interface is that it forces the programmer to declare the
purpose of each procedure (e.g. is-movable-piece is used
to validate the piece input to the move-piece-op). These
declarations allow the user interface building blocks to
automatically find the procedures needed to perform
specific tasks. The procedures do not have to be explic-
it.ly stored by the programmer in each building block,
as is necessary in traditional UIMSs.

The next sections describe the user interface com-
ponents of Nephew. The components are designed to
construct graphical interfaces to applications specified
with def-operation and def-object. The sections illus-
trate how the components make use of the Nephew
UIMS/Application interface to support different styles
of graphical interfaces and different kinds of semantic
feedback.

3 The Nephew Interface Build-
ing Blocks

The building blocks of Nephew are designed to be
used with programs defined with the def-object and
def-operation described above. Nephew provides three
kinds of building blocks:

Commands. A command is an object that manages the
dialogue for one operation. Each command stores
the operation’s inputs, their state and other infor-
mation relevant to the invocation of an operation
(see section 3.1). Commands manage dialogues by
interacting with recognizers, which are the objects
that receive events from the input devices, and
presenters, which display objects to the user.

Recognizers. A recognizer is parser for a complete in-
put gesture such as a mouse click or a mouse drag.
While parsing a gesture, recognizers send messages
to commands, for instance to set the value of in:
puts or to invoke the operations.

Presenters. Presenters are similar to Smalltalk
Views [5]. They are used to display application
objects, commands, and even other presenters.

36

Commands, presenters and recognizers are imple-
mented as classes in the Lisp Flavors object-oriented
programming package. Nephew provides default im-
plementations of these classes, and programmers can
define their own subclasses to modify the default be-
havior.

Figure 1 illustrates the architecture of Nephew appli-
cations, by using a chess program as an example. The
chess program, like any other program implemented
with Nephew, consists of four kinds of building blocks,
called commands, recognizers. presenters, and the ap-
plication objects.

Quit-command and save-command are commands for
the quit-op and save-op operations provided by the
chess program. The quit-presenter and savcprcscnter
presenters display these commands as icons on the
screen. Input events directed at these presenters are
handled by’ the quit-recognizer and save-recognizer. For
instance, if the user clicks the mouse over the quit-
presenter. then quit-recognizer sends a message to quit-
command to execute the quit-op.

The move-command manages the dialogue to invoke
the move-piece-op, which allows the user to make a
move. The figure shows a board with two pieces, dis-
played by the two piece-presenters. Each piece-presenter
has a move-recognizer to handle drag gestures that start
at the piece. While dragging a piece, move-recognizer
sends messages to move-command to set the values of
the piece and location inputs, and to execute the move-
piece-op. Move-command also causes the locations un-
der the mouse to be highlighted when the piece being
dragged could be legally moved to that location. The
details of how this works are described in section 4, fol-
lowing a more in depth discussion of commands, pre-
senters and recognizers.

3.1 Commands

The structure of command objects is shown in Fig-
ure 2. All commands have this structure, but differ-
ent classes of commands can manage the information
in different ways in order to implement different user
interface features. The difference between operations
and commands is that operations just provide the rele-
vant information (call-back procedures), and the com-
mands manage this information. Commands decide
when, how often, and what information to use. Dif-
ferent commands can implement different policies for
using this information. In fact, many instances of com-
mands for the same operation can be used simultane-
ously, each one keeping track of a different invocation
of the operation. This is usefu1, for example, to im&
ment interfaces where the user is allowed to first anno-
tate many objects (e.g. messages) with commands to
be performed on them (e.g. move to folder, delete), and

then issue a single “execute” request to execute all the
commands.

The command slots have the following meaning:

name - identifies the operation for this command.

active - either true or false. When a command is ac-
tive, its recognizers are also active, allowing them
to compete for input events that can affect the
command. When the command is inactive, its rec-
ognizers are also inactive (except for the recognizer
that activates the command). So, activation is a
weak form of prompting, since it. just enables the
command’s recognizers to acquire input,. Several
commands can be active simultaneously as long as
the recognizers do not compete for events in the
same area of the screen.

Consider a drawing editor that has a command to
draw each type of shape (line. rectangle. polygon.
circle, etc). When a drawing command is acti-
vated, it activates its recognizers, thus controlling
how input events are interpreted over the draw-
ing area. For example, the draw-line command
would have a recognizer that waits for two click
events, while the draw-polygon command would
have a recognizer that waits for several clicks fol-
lowed by a double cbck. Since only one drawing
command can be active at a time, only one kind
of recognizer will be active over t.he drawing area.
So, events over the drawing area are interpreted
differently depending on the active command.

executing - is true while the command’s operation is
executing, otherwise it is false. A presenter can use
the information in this slot, for instance, to display
an hour glass cursor while a lengthy operation is
executing.

preview - the preview contains a value that represents
an approximation of the effect that executing the
operation would have given the current setting of
the inputs. It is computed using the :preview at-
tribute of def-operation.

In interfaces where the inputs to a command are
specified. by dragging the mouse, the preview can
be used to display feedback about what would hap-
pen if the operation was executed with the current
input values. The preview is useful because, being
just an approximationt it can be computed and
displayed faster than the actual operation results.
For instance, in a drawing editor the shapes might
have to be drawn under other shapes, with fancy
borders, etc., but the preview could be drawn with
xor mode, with thin lines, and hence would be
drawn and erased very quickly.

presenters - the presenters displaying this command.

37

move-command

\ ‘

.
quit-command

\

save-command

quit-presenter 1

piece-presenter

I
save-presenter

piece-presenter

I

board-presenter

Figure 1: The architecture of a chess program implemented wit.h Nephew.

Input Name

value

planned value

status

alternatives

executing executing

preview preview

inputs inputs - -
- -

recognizers recognizers

presenters presenters

Figure 2: The structure of commands.

38

They are asked to update their display whenever
the command state changes.

recognizers - the set of recognizers that interpret input
events to change the information in this command.

inputs - the inputs store information for each of the
operation’s inputs. Their attributes are the fol-
lowing:

name - identifies an operation input.

value - stores the current value of the input.

status - specifies whether the value is valid. as
defined by the :validation attribute of def-
operation.

planned value - stores a value that is being con-
sidered as a possible filler for the value slot.
The planned value is used to provide feedback
while the user is specifying inputs.

planned status - stores the status of the planned
value, which is also computed with the :vali-
dation attribute of def-operation.

alternatives - stores the possible fillers for this in-
put that are consistent with the values of
the other command inputs. The alternatives
are computed using the :generator attribute
of def-operation.

The alternatives can be used, for instance, to
display a menu of the values to fill a field in
a form.

Commands classes provide two sets of methods. One
set is for recognizers to set the value and planned value
of inputs, and to activate, deactivate, execute and can-
cel (stop execution) commands. The other set of meth-
ods is for presenters to query the information in the
other slots. Presenters use this information to display
semantic feedback during the invocation of an opera-
tion.

The Nephew UIMS/Application interface contains
all the information needed to compute the slots of com-
mands. Commands determine when the information is
used, and presenters determine how it is displayed. As
will be illustrated below, by changing when, how and
which command slots are displayed it is possible to con-
struct a wide variety of interfaces styles.

The different behaviors of commands are pro-
grammed by defining subclasses of the basic command
class provided in Nephew, and overriding methods and
defining presenters and recognizers for it. For instance,
to cause a menu of alternatives to appear after the user
specifies an input incorrectly, the method to set that
input is overridden. The new method first calls the de-
fault one, then tests the status slot, and if it is invalid,
tells a presenter that displays the alternatives to dis-
play itself. Additional examples of how commands are

used appear throughout the rest of the paper.

3.2 Recognizers

A recognizer is a parser for a complete input gesture
such as a mouse click or a mouse drag. Nephew im-
plements recognizers as classes, one class for each kind
of recognizer. The behavior common to all recognizers,
which includes activating and deactivating recognizers.
connecting recognizers to presenters, and getting input
events from a global event queue. is implemented in a
class called Recognizer-Basic. The response to the input
events is implemented by the subclasses listed below:

Click-Recognizer - implements the click gesture. The
user interface implementor must specify in the
handle-event method the messages to send to its
command when t,he click starts and terminates.

The most common messages are to activate
and execute commands, and to set input val-
ues. For example, in t.he chess program the
quit-recognizer and save-recognizer are instances of
Click-Recognizer. When the user clicks over the
quit-presenter, the quit-recognizer sends an activate
message to the quit-command.

Drag-Recognizer - implements the drag gesture. The
default Drag-Recognizcr is programmed to drag
an outline of its presenter while the gesture is in
progress. The implementor must specify in the
handle-event method the messages to send to the
command when the drag gesture begins, each time
the mouse moves, and when the gesture termi-
nates.

For example, in the chess program the move-
recognizers are instances of Drag-Recognizer. Their
behavior is described in detail in section 4.

Recognizers are programmed by defining subclasses of
the above recognizers and overriding their handloevent
method. The code to map screen coordinates into the
objects used as input values is included in this method.
These values are a function of the object displayed by
the recognizer’s presenter.

3.3 Presenters

A presenter displays objects, which can be application
objects, commands, or other presenters. Nephew im-
plements presenters as classes, one class for each par-
ticular way of displaying each class of object. Nephew
provides presenter classes to display a variety of generic
application classes such as lists, structures and arrays,
and also to display commands and even presenters
themselves.

39

In Nephew complex presentations are constructed by
connecting several presenter instances to form a tree.
Presenters which are children of other presenters are
called sub-presenters. For instance, in the chess exam-
ple the pieces are sub-presenters of the board presenter.

The following are the presenter classes in Nephew’s
library:

Presenter-Basic provides the basic facilities to link pre-
senters to the objects they present, and all the
hooks into the graphics package. Presenter-Basic
displays its object as a string identifying the type
of object (e.g. a chess-piece). This is useful in the
initial stages of the implementation of a user in-
terface.

Borders-Mixin provides the facilities to define the bor-
ders, background and foreground of presenters.

Structured-Presenter provides the facilities for a presen-
ter to have sub-presenters.

Record-Presenter, List-Presenter, Array-Presenter are
sub-classes of Structured-Presenter that can present
records. lists and arrays. They provide the meth-
ods that know how to construct and update sub-
presenters for their respective data structures.

Rectangular-Alignment-Mixin provides definitions t.o
align sub-presenters in columns or rows.

String, Icon, Bitmap and Color-Presenter provide com-
monly used presentations.

The chess program uses many of these classes. For
example, the piece-presenters are instances of Icon-
Presenter, board-presenter is an instance of Array-
Presenter, and it uses the Borders-Mixin to define the
borders of the board. The menu containing the save
and quit commands is presented using a List-Presenter
to present the list of save-command and quit-command,
and uses the Rectangular-Alignment-Mixin to align the
presentations in a column, left aligned, and with some
space between the items.

Redisplay is handled as in Smalltalk, by sending a
changed message to changed objects, which causes an
update message to be sent to the presenters attached
to those objects.

4 An Example

This section contains a detailed example to illustrate
how different interface features can be implemented
with the Nephew components. The example describes
how the dragging of a chess piece in the chess program
is implemented, and how semantic feedback is provided
while the piece is dragged.

The movtrecognizer, which is used to drag a piece is
implemented as follows:

Mouse button press - when the mouse is pressed over
the piece presenter, move-recognizer sends move-
command a message to set the value of the piece
input. If the value is invalid move-recognizer waits
for the mouse button release, clears the piece in-
put and exits. if the value is valid. move-recognizer
handles the next events, mouse movement and
mouse button release.

When the piece input of the move-command is set,
the piece-presenter is asked to update its display,
which it does by highlighting the piece to show
whether it is a valid input or not.

Mouse movement - each time move-recognizer detects
that the mouse crosses from one board square to
another, it sends a message to move-command to
set the planned-value slot of the location input to
the board location under the mouse.

The board-presenter is asked to update its display
to show whether the location is a valid one. The
net effect is that as the user drags a piece around,
the locations under it highlight when they are a
valid landing location. This is an example of the
kind of semantic feedback that Nephew can gen-
erate based on the information in the UIMS/Ap-
plication interface.

Mouse button release - when the mouse button is re-
leased, movtrecognizer sends move-command a
message to set the value of the location input the
location under the mouse. Then move-recognizer
sends a message to execute the command, and ex-
its.

If the value of the location input is valid, move-
command executes the movtpiece-op, and clears
the inputs. If the value is invalid, the operation is
not executed, and the bell is sounded to inform the
user about the error. When the piece is moved, the
piece-presenter is asked to update its display, which
causes the piece to he shown at its new location.

The interface to the chess program can be easily modi-
fied so that rather than highlighting the legal locations
while dragging a piece, all the legal locations are high-
lighted when the piece to be moved is initially selected.
The modification involves changing movtrecognizer so
that it does not send messages to move-command when
the mouse moves, and changing move-command so that
when the piece input is set, the board-presenter is asked
to display the alternatives for the location input.

5 Related Work

In the Seeheim Workshop on UIMSs it was determined
that no notations existed for specifying the application

40

interface model [2]. The Nephew UIMSf Application
interface is one such notation with features that go be-
yond most of the requirements outlined by Green [2].
Nephew does not address the problem of representing
global state and sequential relationships between oper-
ations. UIDE [l] provides good solutions to these two
problems. UIDE explicitly represents global state, and
defines transformations to transform a program into
an equivalent one that does not use global state. The
problem of sequential relationships between operations
is addressed by defining pre- and post-conditions on op-
erations, which give UIDE the ability to reason about
the effect of a sequence of operations.

Several systems define richer UIMS/Application in-
terfaces than traditional application interfaces. Reid
G. Smith et. al. [12] developed a system that uses a
frame-based knowledge representation system to rep-
resent information about objects needed for the user
interface. They represent information such as defaults,
number of inputs, data types, validation predicates, er-
ror messages and order in which inputs should be re-
quested. In Nephew, the error messages and the order
in which to request inputs are considered user interface
attributes, and are specified in commands. In addition,
the Nephew UIMS/Application interface provides ad-
ditional information needed to support graphical inter-
faces and semantic feedback.

The Cousin UIMS [3] enforces a strict separation
between user interface and application. The Cousin
UIMS/Application interface does not support the rep-
resentation of all the information needed to provide
semantic feedback in direct manipulation interfaces.
Cousin only supported coarse-grained interfaces, where
the application and user interface communicate infre-
quently (e.g. form-based interfaces).

The object-oriented architecture of some toolkits
such as the X Toolkit [7] alleviates the proliferation of
call-back procedure conventions because similar build-
ing blocks are defined as subclasses of a common class,
and thus share some of their call-back procedure con-
ventions. However, building blocks with radically dif-
ferent appearance are not defined under the same class
and thus do not necessarily share call-back procedure
conventions. In addition, since the purpose of the
different call-back procedures in not declared in the
UIMS/Application interface, the building blocks can-
not automatically find the relevant call-back proce-
dures.

Nephew presenters, commands and recognizers are
similar to Smalltalk’s views and controllers [5]. The
main difference is that the role of the controllers is
played by commands and recognizers in Nephew. By
separating gesture handling (recognizers) from dialogue
control (commands), Nephew simplifies the design of

the controllers.
Presenters, controllers and recognizers are also simi-

lar to MacApp’s [IO] views and commands. The role of
commands in both systems is similar, serving to collect
the inputs for the program operations. Nephew takes
the idea one step further by using commands as object
representations of the program operations, and allow-
ing commands to be used anywhere where objects can
be used. For example, the commands can be displayed
with a presenter. Separating out the recognizers is ad-
vantageous because the recognizers are hard to write,
and if separated they can be reused [S].

The EZWin system [S] provides presentations, com-
mands and trackers, which are similar to Nephew com-
mands, presenters and recognizers. The main differ-
ence is that EZWin has no UIMS/Application inter-
face. All the information contained in the Nephew
UIMS/Application interface is spread out in the meth-
ods of the various components, thus making it harder
to change the interface for the application.

6 Final Remarks

Three applications where implemented using the
Nephew protot,ype, the chess program used as an exam-
ple in this paper, an icon editor, and a Macintosh-like
interface to the Symbolics file system. The experience
with these applications, although limited, suggests that
the Nephew UIMS/Application interface indeed pro-
vides the information needed to support a wide variety
of interface features and semantic feedback.

The interfaces for these programs featured menus
and various kinds of buttons with non-selectable items
dimmed, dragging with semantic feedback (appropriate
highlighting of objects under mouse), gridding, rubber-
banding. All these made use of the application-specific
information contained in the UIMS/Application inter-
face. The author’s dissertation [13] describes in greater
detail the Nephew UIMS/Application interface, com-
mands, presenters and recognizers, and how they are
put together to construct a variety of interfaces.

A new implementation of Nephew is currently un-
derway that will allow interface designers to specify the
interface by interactively connecting the various com-
ponents, rather than by writing code as was necessary
in the implementation described here. The goal is to
allow designers to specify interfaces with diagrams like
the one in Figure 1.

This Nephew UIMS/Application interface is better
that traditional UIMS/Application interfaces from the
modularity and code reusability point of views. The
user interface can be changed without affecting the
application portion of the program, and the interface

41

building blocks can be reused because they are plug- [12] R. Smith, G. Lafue, and S. Vestal. Declarative task
compatible with the application portion of the pro- description as a user-interface structuring mecha-
gram. nism. Computer. pages 29-38, September 1984.

Acknowledgments I wish to thank Bob Neches,
Neil Goldman, John Granacki and Brian Harp for use-
ful comments on previous drafts of this paper.

[13] P. Szekely. Separating the user interface from the
functionality of application programs. Ph.D. the-
sis CMU-CS-88-101, Carnegie-Mellon University,
January 1988.

References

[l] J. Foley, C. Gibbs, W. C. Kim, and S. Kovace-
vie. A knowledge-based user interface manage-
ment system. In CHI’88 Conference Proceedings,
pages 67-72. ACM, May 1988.

[2] M. Green. Report on dialogue specification tools.
In G. E. Pfaff, editor, User In2erface Management
Systems, pages 9-20. Springer-Verlag, 1983.

[3] P. Hayes, P. Szekely, and R. Lerner. Design al-
ternatives for user interface management systems
based on the experience with COUSIN. In CHI’85
Conference Proceedings, April 1985.

[4] K. Kimbrough and L. Oren. Clue: A common lisp
user interface environment. In Proceedings of the
ACM SIGGRAPH Symposium on User Interface
Software, pages 85-94, October 1988.

[5] G. E. Krasner and S. T. Pope. A cookbook
for using the model-view controller user inter-
face paradigm in smalltalk-80. Journal of Object-
Oriented Programming, 1(3):26-41, 1988.

[6] H. Lieberman. There’s more to menu systems than
meets the screen. In ACM Computer Graphics,
pages 181-189. ACM, July 1985.

[7] J. McCormack and P. Asente. An overview of the
x toolkit. In Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software, pages 46-
55, October 1988.

[8] B. A. Myers. Encapsulating interactive behaviors.
In CHI’89 Conference Proceedings, April 1989.

[9] B. A. Myers. User-interface tools: Introduction
and survey. IEEE Software, pages 15-23, January
1989.

[lo] K. J. Schmucker. Object-Oriented Programming
for the Macintosh. Hayden Book Company, 1986.

[ll] A. Schulert, G. Rogers, and J. Hamilton. ADM -
a dialog manager. In CHI’85 Conference Proceed-
ings, April 1985.

42

