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Abstract

Background: A significant reduction in parasite clearance rates following artesunate treatment of falciparum

malaria, and increased failure rates following artemisinin combination treatments (ACT), signaled emergent

artemisinin resistance in Western Cambodia. Accurate measurement of parasite clearance is therefore essential to

assess the spread of artemisinin resistance in Plasmodium falciparum. The slope of the log-parasitaemia versus time

relationship is considered to be the most robust measure of anti-malarial effect. However, an initial lag phase of

numerical instability often precedes a steady exponential decline in the parasite count after the start of anti-

malarial treatment. This lag complicates the clearance estimation, introduces observer subjectivity, and may

influence the accuracy and consistency of reported results.

Methods: To address this problem, a new approach to modelling clearance of malaria parasites from parasitaemia-

time profiles has been explored and validated. The methodology detects when a lag phase is present, selects the

most appropriate model (linear, quadratic or cubic) to fit log-transformed parasite data, and calculates estimates of

parasite clearance adjusted for this lag phase. Departing from previous approaches, parasite counts below the level

of detection are accounted for and not excluded from the calculation.

Results: Data from large clinical studies with frequent parasite counts were examined. The effect of a lag phase on

parasite clearance rate estimates is discussed, using individual patient data examples. As part of the World Wide

Antimalarial Resistance Network’s (WWARN) efforts to make innovative approaches available to the malaria

community, an automated informatics tool: the parasite clearance estimator has been developed.

Conclusions: The parasite clearance estimator provides a consistent, reliable and accurate method to estimate the

lag phase and malaria parasite clearance rate. It could be used to detect early signs of emerging resistance to

artemisinin derivatives and other compounds which affect ring-stage clearance.
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Background
Anti-malarial drug resistance is a major cause of preven-

table mortality [1] and poses the main threat to current

global efforts to control and eliminate malaria [2].

Replacement of failing mono-therapy with highly effec-

tive artemisinin combination therapy (ACT) and

increased delivery of effective vector control measures

have reversed the increasing malaria mortality trend

observed in the 1980s and 1990s. ACT has now become

the recommended first line treatment for falciparum

malaria in nearly all malaria affected countries [3].

The recent emergence of artemisinin resistance in

Plasmodium falciparum malaria in Western Cambodia

represents a considerable threat to global health [4-6]. A

significant reduction in the rates of parasite clearance

following treatment with artesunate and increased fail-

ure rates following artemisinin combination treatments

(ACT) provided definitive evidence of resistance in that

region [5,7,8]. There is increasing concern that
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artemisinin resistance has spread westwards [9]. No

molecular marker of artemisinin resistance has yet been

identified, and in vitro assessments have given contra-

dictory results [5-7]. The clinical phenotype of slow

parasite clearance remains to date the only way to

define artemisinin resistance reliably [10].

The unique ability of the artemisinin derivatives to

accelerate the clearance of ring stage infected erythro-

cytes is their pharmaco-dynamic hallmark [11,12]. Accu-

rate measurement of the rate of parasite clearance is

necessary to assess artemisinin susceptibility in vivo.

Most in vivo assessments measure parasitaemia either

daily, or only on days D0, D2 and D3, as recommended

in the current World Health Organization (WHO)

guidelines [6]. In most studies, the exact timing of the

parasite count is not recorded and could vary by several

hours depending on the timing of the visit to the clinic

at inclusion and during follow-up visits. The proportion

of patients with persistent parasitaemia at D3 after ACT

provides a useful indicator which can be used as a sim-

ple and readily obtained measure to exclude resistance,

but not to define resistance [13]. It is too inaccurate for

precise assessment as it is dependent on pre-treatment

parasite density, precise timing of the sample, and it

requires large sample sizes for precise estimates. In pre-

vious studies, with more frequent sampling, several dif-

ferent methods of analysing and measuring parasite

clearance have been employed but systematic analytical

approaches to measurement have not been taken.

The slope of the log-parasitaemia versus time relation-

ship is considered to be the most robust measure of

anti-malarial effect, but there are several potential

sources of error if a straight line is fitted to all log-

transformed parasite measurements, irrespective of the

shape of the relationship with time [14]. Changes in

parasitaemia, particularly during the first few hours after

anti-malarial drug administration, are affected by the

age distribution of the parasite population [15,16]. If the

majority of parasites in the peripheral blood film are

very young then it is likely that schizogony is still taking

place at the time of drug administration. Newly parasi-

tized erythrocytes will appear in the circulation shortly

afterwards. This may be reflected by a stable density or

even an increase in peripheral parasitaemia, despite

effective treatment. In these cases, the fitted line to the

log-parasitaemia versus time data will underestimate the

parasite counts at the initial time period and as a result

the slope of this line will underestimate the parasite

clearance. It is more appropriate to fit either a quadratic

model in the case where a lag phase is followed by a

rapid decline in parasite number or a cubic model in

the case where a rapid decrease in parasitaemia is fol-

lowed by a flattening off of the parasitaemia-time

profile. Figure 1 shows typical linear, quadratic and

cubic-shaped log (parasitaemia)-time profiles (polyno-

mial fits are shown in the pink line).

In an attempt to standardize parasite clearance assess-

ments from parasitaemia-time profiles in P. falciparum

malaria, and facilitate epidemiological investigations of

artemisinin resistance a method of identifying the initial lag

phase and calculating a slope of log-parasitaemia changes

over time after this lag phase has been developed and

implemented into the parasite clearance estimator (PCE).

The algorithm chooses between three models (log-linear,

log-quadratic and log-cubic) and also provides automation

of the “cleaning” of parasite count data before model fitting.

The PCE may be used for any anti-malarial drug assess-

ment, although it has been tested in data from patients trea-

ted with artemisinin derivatives and various ACT.

In this paper, the details of a simple calculator (PCE)

that provides measures of parasite clearance from serial

parasite count data are presented including the back-

ground, terminology, method of use, and examples of its

application to real data.

Methods
Parasite clearance following any effective anti-malarial

treatment is a first order process, resulting in killing of

a fixed fraction of the parasite population in each asex-

ual cycle, and can be considered as the reciprocal of

parasite multiplication [11,17]. The predominant rela-

tionship between log-transformed parasite density and

time is generally linear [14,18,19]. Key terminology in

relation to parasite clearance estimation is presented

below.

Detection limit - for low parasite densities the thick

blood smear is used and the number of parasites (asex-

ual forms only i.e. trophozoites) are counted against the

number of white blood cells (usually 200 or 500). The

detection limit obviously depends on the number of

white blood cells counted. To estimate parasitaemia per

microlitre the following formula is used:

If ω is the number of white cells counted then

Parasitaemia per microlitre = number of parasites per slide × white blood cell count / ω

Ideally the white blood cell (wbc) count is measured

by an automated cell counter or manually. If this is not

available then the counts are assumed to be 8,000/uL.

When the white blood cell count is assumed 8,000 for all

patients, then the detection limit will be 40/uL for count-

ing per 200 wbc and 16/uL for counting per 500 wbc.

Negative parasite slide - when no parasites are seen

while the full number of white cells have been counted

then the parasite count is recorded as zero. Of course this

means only that the count is below the limit of detection,

although it is often reported or modeled as 0/uL.

Outliers - parasite counts which are not biologically

possible or are highly unlikely based on other parasite

Flegg et al. Malaria Journal 2011, 10:339

http://www.malariajournal.com/content/10/1/339

Page 2 of 13



measurements in the same individual. These often result

from transcription errors.

Lag phase - initial part of the parasite clearance pro-

file which has a much flatter slope that the remaining

part of the profile. It is important to note that a lag

phase is not observed in all profiles.

Tail - terminal part of the parasite clearance profile

when parasitaemia remains close to the detection limit

(i.e. a few parasites per slide) and does not decrease

over a number of measurement time-points. Tails are

not observed in all profiles.

Clearance rate constant - the main part of parasitae-

mia clearance follows a first order process and therefore

the fraction by which parasite count falls per unit time

is constant. If parasitaemia at time t is given by Pt =

P0exp(-K×t), where P0 is the initial parasitaemia, then

the fractional reduction in a unit time is equal to (Pt =

1-P0)/P0 = 1-e-K. The parameter K is the clearance rate

constant and is equal to the minus slope of the loge

parasitaemia-time linear relationship (that is, K > 0) as

loge(Pt) = loge(P0) - K×time. The clearance rate constant

is calculated after the tail and lag phase have been iden-

tified and removed (see Figure 2).

Slope half-life - the time needed for parasitaemia to be

reduced by half during the log-linear phase of parasite

clearance. This is a constant independent of the starting

value of parasitaemia since reduction in parasitaemia fol-

lows the first order process (after excluding lag phase

and tail). Half life can be calculated from the formula

T1/2 = loge (2) /K = 0.692/K, where K is the clearance rate constant.

Serial parasitaemia-time data obtained from several pub-

lished studies carried out between 2001 and 2010, at sites

located in Tak province in north-western Thailand, Chit-

tagong and Bandarban in Bangladesh, Savannakhet pro-

vince in Laos, western Cambodia and Mali were used in

the analysis. All studies investigated the use of artemisinin

combination therapies. The algorithm was also tested on

Figure 1 Typical linear, quadratic or cubic-shaped log(parasitaemia)-time profiles (polynomial fit shown in pink line) in falciparum

malaria. Black points represent the data, green points represent censored values and red points represent points removed in the cleaning

process.
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data from patients treated with quinine, enrolled in a study

in Ho Chi Minh City, Vietnam between 1991-1996.

When there were no zero parasitaemias recorded, nor-

mal regression was used and all recorded measurements

were included in the analysis. When there were zero

parasitaemias recorded tobit regression [20] was used,

however only the first zero sustained (i.e. followed by

negative slides only) was included in the analysis. Briefly,

a tobit model is a censored regression model, where the

response variable Yi is related to a latent (and some-

times unobservable) variable Y∗

i by:

Yi = Y∗

i if Y∗

i > YL, Yi = YL if Y∗

i ≤ YL.

The latent variable is modelled in the standard way:

Y∗

i = Xiβ + ε. The regression model is solved using maxi-

mum likelihood techniques, however the likelihood

function is now a truncated normal distribution in the

case when Y∗

i ≤ YL.

For each patient’s parasitaemia data, the following

polynomial models of time were fitted:

loge(Pi) = Xiβ + εi

Where Pi is the parasite count per microlitre mea-

sured at time ti and εi is the corresponding error term

associated with this measurement. b is a vector of

unknown parameter values and Xi is a vector of covari-

ate values as follows:

1. Linear: Xi = [1, ti], b = [b0, b1]

2. Quadratic: Xi = [1, ti, t2
i ] , b = [c0, c1, c2]

3. Cubic: Xi = [1, ti, t2
i , t3

i ] , b = [d0, d1, d2, d3]

For subjects with only four positive parasite measure-

ments, the cubic regression model could not be fitted so

a linear regression model starting from the second para-

site measurement was fitted if this second measurement

exceeded the first measurement (at time 0) by more than

25%. These “maximum regression” models often fitted

better than the quadratic models that typically do not fit

well for data with a steep increase in parasitaemia.

Linear, quadratic and cubic models fitted to the same

data were compared using Akaike Information Criterion

(AIC) [21] and the model that minimised the AIC was

selected as best describing changes in log-parasitaemia

over time. For subjects with a “maximum regression”

model fitted, the sum of the squared residuals for the

observations common to all three models (RSSshared) was

used instead and the model that minimised the RSSshared
was selected. From the selected best fitting model the lag

phase was identified and the clearance rate constant was

estimated using the algorithm described below.

A sensitivity analysis was also performed to assess the

effect of parasite sampling times, the exclusion of lag-

phase from the estimation, and the use of tobit regres-

sion on estimates of the slope half-life. In order to do

this, slope half-life estimates were also calculated using

the following methods:

1. as described in this paper on a subset of patients

with measurements taken every six hours in the first

two days; with every second data-point excluded

from the estimation;

2. linear regression (tobit or normal regression as

appropriate), i.e. ignoring the lag phase;

3. normal regression where all zero-counts were

excluded from the estimation, but the lag-phase was

evaluated as described.

Each of the results from the above models (denoted

here by B) were compared with results from fitting

models using the methodology described in this paper

(denoted here by A). The relative difference in slope

half-life was calculated as:

(Slope half-lifeB − Slope half-lifeA)/Slope half-lifeA × 100%

Algorithm

Before model selection and fitting, the data are checked

for problem data points, possible outliers, and persistent

parasite tails in an automated fashion. The data cleaning

process is outlined briefly in Additional File 1. Having

determined that it is appropriate to fit a model to the

subject’s parasite count data, the model fitting and esti-

mation of the clearance rate constant (K) and duration

of lag phase (tlag ) is performed. The methodology is

summarized in the following steps:

Figure 2 The effect of lag phase and tail exclusion on the

calculation of the clearance rate constant.
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For each patient separately:

Step 1: Perform data cleaning, as described in Addi-

tional File 1. All further steps are performed on data

with outliers, tails, extreme values and trailing zeros

removed. For convenience of notation, if there is a

zero parasitaemia that directly follows the last posi-

tive parasitaemia, it is replaced with the detection

limit. This data point is subsequently counted as a

non-zero parasite count.

Step 2: Perform checks to see if the clearance rate

constant cannot be estimated:

(i) Number of non-zero parasite measurements

(including a zero replaced with the detection limit)

less than three

(ii) Initial parasitaemia too low: initial parasitaemia

< 1,000 parasites per microlitre

(iii) Final recorded parasitaemia too high: final para-

sitaemia ≥ 1,000 parasites per microlitre

(iv) A zero parasitaemia has been recorded, but the

last positive parasitaemia is too high and the zero

count is uninformative: last non-zero parasitaemia

≥ 1,000 parasites per microlitre

A zero parasitaemia is defined to be uninformative if

the normal linear regression fitted to all the data

points (excluding the zero count) gives a confidence

interval for the time when the parasitaemia is below

the level of detection which includes the time-point

when the zero parasitemia was recorded.

Step 3: Perform additional check to see if there are

not enough data to estimate a lag phase

(v) There are fewer than three measurements in the

first 24 hours or a time difference between measure-

ments in the first 24 hours is more than 14 hours;

Step 4: Perform model fitting.

If none of the exclusion criteria (i)-(iv) in Step 2 and (v)

in Step 3 are satisfied, fit polynomial models to the natural

log-parasitaemia versus time data as described in Figure 3.

If none of the exclusion criteria (i)-(iv) in Step 2 are

satisfied but exclusion criterion (v) in Step 3 is satisfied

fit tobit linear regression if a zero parasitaemia has been

recorded or linear regression otherwise.

If one or more of the exclusion criteria are satisfied in

Step 2, the clearance rate constant and duration of lag

phase cannot be estimated so proceed to Step 6.

Step 5: Estimate clearance rate constant (K) and dura-

tion of lag phase (tlag ) as described in Figure 4.

Step 6: END

Estimation of clearance rate constant and duration of lag

phase

The procedure to estimate the parasite clearance rate

constant depends on the shape of the parasite profile, i.

e. the shape of the best polynomial model fitted and the

amount of data available. For profiles with only three

parasite counts, infrequent parasite measurements in the

first 24 hours, profiles which are linear or exhibit con-

cave curvature, the minus slope of the linear regression

model or tobit linear model (where appropriate) is used

as an estimate of the clearance rate constant. Profiles

which exhibit convex curvature are examined further to

define the lag phase. If a lag phase is not identified in

the profile, then the minus slope of the linear regression

model or tobit linear model is used as an estimate of

the clearance rate constant.

For profiles with convex curvature the assessment is

performed on the best model predicted values with

respect to changes in pair-slopes - slopes calculated

between two neighbouring data points. Most pair-slopes

are negative since the parasitaemia is decreasing and the

smallest slope corresponds to the fastest parasite clear-

ance. First, the minimum possible pair-slope is found

for the entire profile within the time interval of detect-

able parasite measurements. If the profile is linear then

all pair-slopes would be similar to this minimum slope,

but if there is pronounced curvature in the profile, then

there would be pair-slopes which are near to zero (cor-

responding to the flat part of the curve). If this flat part

of the curve occurs at the initial time-points then it is

called the lag phase and is excluded from the estimation

of the parasite clearance rate constant. However the

data-point which is the upper limit for the lag phase

period is included in calculations (i.e. if the duration of

lag phase is 12 hours then the data-point at 12 hours is

included in the final estimation of the clearance rate

constant).

Results
The algorithm was tested on a large data set, consisting

of 4,236 individual patient parasite-time profiles from

clinical studies of ACT: artesunate monotherapy, artesu-

nate and mefloquine, artemether and lumefantrine, arte-

sunate and amodiaquine. The median number (range) of

positive parasite slide readings was seven (three-33) per

patient. The detection limit was 16 (in 81% of patients),

25 (in 4% of patients) or 40 (in 15% of patients) para-

sites per microlitre. Within this large data-set, 4,008

profiles had their parasite clearance rates calculated, of

which 294 profiles were best fitted with a quadratic

model and a non-zero lag phase, 883 profiles were best

fitted with a cubic model (and non-zero lag phase), and

2,821 were best fitted with a linear model (either

directly (1,146 profiles), or by a quadratic model with

zero lag phase (704 profiles) or by a cubic model with

zero lag phase (971 profiles)). The breakdown of fitted

models is provided in Table 1. We note that of the

2,831 fitted with a linear model, 55 of these had only 3

Flegg et al. Malaria Journal 2011, 10:339

http://www.malariajournal.com/content/10/1/339

Page 5 of 13



time points (in which case the only option was to fit a

linear model).

Of the 228 profiles that did not pass the requirements

for clearance rate estimation, 112 were not fitted

because of a lack of data (< 3 positive parasite readings),

27 because the initial parasitaemia was too low, and 89

because the parasitaemia was not cleared (last recorded

parasitaemia was above 1,000 parasites per microlitre).

Among 4,008 patients for whom estimation could be

performed, tails were identified in 1,070 profiles (27%).

In the automated cleaning process, a total of 31 outliers

were identified. These points were not included in any

subsequent clearance rate calculations. A lag phase was

estimated in 30% (1,187/4,008) of profiles; the median

(IQR; range) duration of lag phase was six (6-9; 1-60)

hours.

Summary of model outputs and examples of fit

For the 4,008 profiles fitted, the median (IQR; range)

parasite clearance rate constant was 0.22 (0.16-0.30;

0.02-1.18) per hour. The corresponding slope half-life

had a median (IQR; range) of 3.11 (2.33-4.24; 0.59-

34.28) hours. It should be noted that the data used in

this paper has come from multiple study sites, across a

 

 

 

          Yes, last point replaced                                                    No, last point not replaced 

 

 

 

 

Has zero parasitaemia been replaced by the detection limit?  

1. for 3 data points - fit linear 

curve 

 

2. for 4 data points fit tobit linear 

regression 

 

3. for 5 data points - fit linear 

and quadratic tobit regression 

 

3.1  when parasitaemia 

increases at second point by 

more than 25% - fit linear 

tobit regression from the 

second point 

 

4. for 6 or more data points - fit 

linear, quadratic and cubic tobit 

regression 

1. for 3 data points - fit linear 

curve 

 

2. for 4 data points fit linear, 

quadratic regression 

 

2.1  when parasitaemia 

increases at second point by 

more than 25% - fit linear 

regression from the second 

point 

 

 

3.  for 5 or more data points - fit 

linear, quadratic and cubic 

regression

Figure 3 Flow chart showing the models tested during the process of finding the best model representing parasite clearance over

time for an individual patient.
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range of patient demographics and, as such, should not

be used as a reference point for comparison to other

parasite clearance data.

Figure 5 shows examples of individual log-parasitae-

mia - time profiles, with linear and polynomial fits to

the data. The clearance rate constants calculated by a

linear fit applied to all data points were consistently dif-

ferent to the clearance rate constants calculated by

accounting for the lag phase (detailed comparisons

between the slope half-life calculated using the lag

regression technique to those calculated by fitting a lin-

ear model to the data are presented below).

Goodness of fit

Agreement between predicted and measured log-parasi-

taemia was better for the final linear models derived

F #47/ 68/05

68/05 4< /01470/ ,< =30 68/05 @4=3 =30 <6,550<= % 8; )**<3,;0/ ,6872 14==0/ 68/05<D @30;0
,99;89;4,=0G

%/07=41B 68/05<
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=460 /86,47G

%1 68/05 4< '(+ F

& Q I-ME tlagQLE $( +(

F %1 68/05 4<

PGM #8; 0,.3 582I9,;,<4=,064, 9;0/4.=0/ -B =30 68/05 J->= 0A.5>/472 ,7B
60,<>;0/ C0;8 9,;,<4=,064,<KD .,5.>5,=0 <5890 -0=@007 =34< 9847= ,7/ =30
9;0.0/472 9;0/4.=0/ ?,5>0

PGN #47/ =30 68<= 702,=4?0 <5890D *6,A
PGO  ,5.>5,=0 78;6,54<0/ <5890< *7 Q * H *6,A
PGP #47/ .50,;,7.0 ;,=0 .87<=,7= ><472 =30 .3,;= -058@

"'!

Any of  Sn negative or < 1/5? 

Are they at the beginning of the 

profile only

K = -b1 

tlag=0  

 

 

 tlag

Figure 4 Diagrammatic representation of the process of estimating the clearance rate constant (K) and the duration of lag phase (tlag )

from individual patient parasite counts measured over time.
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from the polynomial models than for the linear regres-

sion models fitted to all data points: the residuals had

smaller variation over the data used to calculate the

clearance rate constants: their mean (standard deviation)

for the time points included in estimation of the clear-

ance rate constant was 0.00 (0.42) for the polynomial

models and 0.09 (0.80) for the corresponding linear

models. Figure 6 shows a plot of the standard deviation

of the residuals for all profiles fitted versus the number

of data points used to calculate the slopes of the linear

part of the parasite clearance profiles. Overall, as

expected, there is a decrease in the variability of stan-

dard deviation of the residuals as the number of parasite

counts in the linear part of the parasite clearance profile

increases, although the median value of the standard

deviation of the residuals remains the same as sample

size increases.

Comparison between lag regression and linear regression

Among profiles with a lag phase (30%; n = 1187) identi-

fied, the linear regression models tended to overestimate

the slope half-life; the median (IQR; range) of the rela-

tive difference in slope half-life was -18% (-28% to -11%;

-397% to 35%). The differences decreased with the

increased duration of the lag phase (Figure 7). For the

subset of data where a lag phase of approximately six

Table 1 Breakdown of models fitted.

Number of models fitted (% of total)

Linear fit 1146 (28.6%)

Max reg fit 10 (0.3%)

Quadratic fit (total) 998 (24.9%)

tlag = 0 704 (17.6%)

tlag > 0 294 (7.3%)

Cubic fit (total) 1854 (46.2%)

tlag = 0 971 (24.2%)

tlag > 0 883 (22.0%)

Figure 5 Linear and polynomial fits to the quadratic or cubic -shaped log(parasitaemia)-time profiles shown in Figure 3. Black points

represent the data, green points represent censored values and grey points represent points identified as being part of the lag phase. Pink line

shows cubic fit to the data, red line shows linear fit the data and blue line shows the linear fit to the identified ‘linear part’ of the profile.
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hours duration was estimated, the median (IQR; range)

relative difference in the slope half-life was -15% (-22 to

-10%; -102% to 35%) as compared to -76% (-114% to

-52%; -397% to 6%) for a lag phase of approximately 18

hours or more.

Frequency of sampling

Among all patients for whom estimation was performed,

1,715 had parasite counts taken at regular six-hour

intervals in the first 48 hours. In order to assess whether

less frequent sampling would be adequate for slope esti-

mations, the clearance rate constant and slope half-life

were estimated after removal of every second data point

(i.e. including only parasite counts taken every 12 hours)

and compared with the estimates based on all data

(Figure 8). The agreement between estimates was better

for profiles without a lag phase and with a minimum of

four counts in the linear segment of the profile (after

excluding lag phase and tail) (Figures 9 and 10). Slope

half-life tended to be overestimated when 12 hourly

measurements were used. The median (IQR; range) rela-

tive difference in slope half-life was -4.8% (-17.3% to

1.2%; -190.9% to 50.9%). The difference in slope half-life

was mostly due to (a) unidentified lag phase when 12

hourly measurements were used and (b) delayed record

of zero parasite count. In both situations a line with a

flatter slope was fitted compared to the fit with six

hourly data.

Figure 6 The standard deviation of the residuals versus the

sample size of the linear part of the parasite clearance profile.

Figure 7 The relative difference in slope half-life rate

comparing the final slope half-life to that calculated by fitting

a linear model to all the data. (Note that only those profiles for

which tlag > 0 were used here, for comparison purposes). Relative

difference in slope half-life is calculated as the slope half-life from

lag regression minus the slope half-life from linear regression,

divided by the slope half-life from lag regression.

Figure 8 The comparison between slope half-life estimated

from parasite measurements taken every six and 12 hours in

the first two days.
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For profiles with no lag phase identified by six-hourly

measurements, the percentage of profiles with an abso-

lute relative difference in slope half-life above 10% was

19% for sample size of four or more counts (of the lin-

ear part of the 12 hour data), decreasing to 7% for a

sample size of at least six and 0.6% for nine or more

data points. The corresponding figures for an absolute

difference of 20% or more were 7%, 3% and 0.3%.

If a lag phase was identified using six-hourly measure-

ments, the relative differences in slope half-life was

greater; 21% of profiles with a sample size of four or

more in the linear segment of the 12-hour data were

different by more than 30%. The estimated duration of

lag phase did not change in 1,204 of the 1,696 profiles

(71%). However, of these 1,204 profiles 1,167 (97%) were

profiles with no lag phase identified by both models

(Table 2).

Of 517 profiles with a lag phase detected by the six-

hourly measurements, the majority (79%) had the esti-

mate of the duration of lag phase shortened when 12-

hourly measurements were used, resulting in a systema-

tic overestimation of the slope half-life. The median

(IQR; range) relative difference in slope half-life for

those profiles that had both a lag phase detected with

the six-hourly measurements and this lag phase shor-

tened under the 12-hourly measurements was -25.1%

(-40.2% to -16.0%; -190.9% to 28.8%). Overall this analy-

sis indicates that parasite clearance profiles with a lag

phase are poorly characterised if the first parasite count

after baseline is taken at 12 hours.

Use of tobit regression

The algorithm was tested on the 2,401 profiles which

required tobit regression. The median relative difference

in slope half-life between tobit regression and normal

regression was -0.01% with a range of (-134% to 71%).

Overall 14.4% of slopes had an absolute difference of

more than 10% and only 4.4% of profiles had a differ-

ence of more than 30% (Table 3). Even though there is

little overall difference between estimates when normal

regression was used instead of the tobit regression, in

Figure 9 Relative difference in slope half-life estimated from

six-hourly and 12-hourly measurements, by sample size. Left

panel shows results for profiles with no lag phase identified based

on six-hourly measurements; right panel shows results for profiles

with lag phase. Sample size is equal to number of measurements at

12-hourly intervals in linear part of profile (after excluding lag phase

and tails). Relative difference in slope half-life is calculated as the

slope half-life from six-hourly measurements minus the slope half-

life from 12-hourly measurements, divided by the slope half-life

from six-hourly measurements.

Figure 10 Box-plots of relative difference in slope half-life

estimated from six-hourly and 12-hourly measurements,

stratified by lag phase (tlag). Relative difference in slope half-life is

calculated as the slope half-life from six-hourly measurements minus

the slope half-life from 12-hourly measurements, divided by the

slope half-life from six-hourly measurements.

Table 2 Summary of changes in lag phase when 12-

hourly parasite counts were used instead of six-hourly

counts.

Duration of lag phase (hours)a

Change in tlag 0 hoursb 6 hours 12 hours 18 hoursc

Decreased 0 (0%) 354 (84%) 42 (53%) 12 (80%)

Remains unchanged 1167 (99%) 0 (0%) 37 (47%) 0 (0%)

Increased 12 (1%) 69 (16%) 0 (0%) 3 (20%)

Values presented in brackets is the percentage of the column sum.
anumber of patients (%) given
bno lag phase was identified
cduration of lag phase of 18 hours or longer
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cases when the last recorded parasitaemia is high the

difference could be substantial.

Different anti-malarial drug treatments

The algorithm was tested on data from a study of 382

patients investigating the effect of quinine on parasite

clearance. The median number (range) of positive para-

site counts from slide readings was seven (three-30) per

patient. Overall, 285 profiles were suitable for estimation

of parasite clearance rates, of which 36 profiles were

best fit with a quadratic model and a nonzero lag phase,

70 profiles were best fit with a cubic model and nonzero

lag phase, and 179 were best fit with a linear model

(either directly, or by a higher order model with zero

lag phase). Of the 97 profiles that did not pass the

requirements for clearance rate estimation, four were

not fitted because of lack of data (< 3 positive parasite

counts), 15 because the initial parasitaemia was too low,

and 78 because the parasitaemia was not cleared (last

recorded parasitaemia was above 1,000 parasites per

microlitre). Among the patients for whom estimation

could be performed, tails were identified in 45 profiles

(16%) and 106 had a non-zero lag phase (37%).

Overall, the median (IQR; range) slope half-life for

patients treated with quinine was 5.15 (3.83-6.68; 0.86-

105.5) hours and, as expected, was longer than for ACT.

Median (IQR; range) slope half-life for ACT was 3.11

(2.33-4.24; 0.59-34.28) hours. Patients treated with qui-

nine were more likely to have a lag phase (37% versus

30% in the ACT group) and the duration of lag phase

was significantly longer: median (IQR; range) of 10.0

(6.31-18.13; 0.5-81.97) hours as compared to six (6-9; 1-

60) hours in ACT group.

For the quinine data-set, as with the data-set from

patients treated with ACT, the agreement between the

predicted and measured log-parasitaemia was better for

the final linear models derived from the polynomial

models than for the linear regression models fitted to all

data points: the residuals had smaller variation over the

data used to calculate the clearance rate constant: the

mean (standard deviation) for the time points included

in estimation of the clearance rate constant was 0.00

(0.39) for the polynomial models and 0.17 (1.08) for the

corresponding linear models.

Conclusions
Prolonged parasite clearance is the only way artemisinin

resistance can be identified currently. In this paper a

new standardized approach to the estimation of the

malaria parasite clearance rate has been presented. The

algorithm takes into consideration the potentially con-

founding effects of the lag phase and removes these

initial data before calculating the rate constant of the

log-linear phase of parasite clearance. An outline of the

algorithm is presented and its use has been evaluated

with a large series of serial parasite counts from treat-

ment studies in patients with acute falciparum malaria.

Current evidence suggests that the main effect of arte-

misinin resistance is on the slope of the log-linear

decline and for this reason this paper has focussed on

characterizing this variable. The slope measure which

may be most readily interpreted by malariologists is the

half-life (which is inversely proportional to the first

order rate constant).

The clinical phenotype of delayed parasite clearance is

likely to remain the main proxy of artemisinin resistance

until molecular markers are identified or in vitro meth-

ods adapted which provide better characterization. Para-

site clearance rates are affected by drug blood

concentration profiles as well as their pharmaco-

dynamic properties. Immunity also increases parasite

clearance rates. Other factors such as splenic function,

age, anaemia and co-infections may also affect parasite

clearance and require further investigations.

Whilst artemisinin resistance in P. falciparum is con-

fined to a relatively small geographic area in SE Asia, it

is important to establish in other areas baseline parasite

clearance data for the different ACT provided through

the public sector, so trends can be followed prospec-

tively across malaria endemic countries. The accurate

assessments of parasite clearance in this “early warning

system” require frequent blood sampling and accurate

counting and the additional workload and the necessary

quality assurance of such monitoring measures will

undoubtedly raise serious operational challenges.

How frequent do parasite counts need to be to pro-

vide reliable calculation of estimates is still unclear.

Measuring parasitaemia every 12 hours after starting

treatment until counts are below the level of detection,

allows the calculation of parasite clearance rates but sys-

tematically overestimates the slope half-life compared to

measurement every six hours. The difference observed is

greater when there is a lag phase, and is more evident

with certain anti-malarials, e.g. quinine compared to

artemisinin derivatives.

Table 3 Agreement between tobit regression and linear

regression estimates of slope half-life.

Relative Difference in Slope half-lifea

Sample sizeb < 10% < 30% < 50%

3 < N ≤ 5 620 (90%) (26, 44) 669 (97%) (9, 12) 683 (99%) (5, 2)

5 < N ≤ 10 1104 (81%) (19, 242) 1281 (94%) (2, 82) 1352 (99%) (1, 12)

10 < N ≤ 15 331 (96%) (7, 8) 346 (100%) (0, 0) 346 (100%) (0, 0)

The two numbers in brackets represent the percentage within the threshold

and the number of cases below and above the margin respectively.
a Number of patients (%) within margin and (number of patients below

margin, number of patients above margin) are given
b Number of observations in the linear part of the parasite clearance profile
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More data are needed to estimate the optimal sam-

pling design for parasite clearance characterisation.

However, considering the field challenges of performing

systematic measures of parasitaemia more frequently

than 12-hourly, this sampling interval could be consid-

ered as the minimum.

The WorldWide Anti-malarial Resistance Network

(WWARN) has developed the Parasite Clearance Esti-

mator or PCE (see http://www.wwarn.org/research/para-

site-clearance-estimator for details), which uses the

methodology described above to estimate parasite clear-

ance measures. WWARN aims at providing a platform

of partnership, which facilitates gathering the necessary

data across endemic countries, needed to answer to the

different methodological questions raised above.

Identifying the clearance rate constant and lag phase

with the improved method outlined here will provide

necessary standardized information in order for warning

signs of resistance to be detected, so that appropriate

actions to contain resistance can be initiated [6].

Additional material

Additional file 1: Data cleaning process for the parasite clearance

estimator. The cleaning process implemented in the algorithm is

described, including removal of recurrence parasitaemia, trailing zeros,

tails, replacement with the detection limit, extreme values and outliers.
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