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ABSTRACT
Short-term wind power prediction is a primary requirement for efficient large-scale

integration of wind generation in power systems and electricity markets. The choice of an

appropriate prediction model among the numerous available models is not trivial, and has to

be based on an objective evaluation of model performance.

This paper proposes a standardized protocol for the evaluation of short-term wind-

power prediction systems. A number of reference prediction models are also described, and

their use for performance comparison is analysed. The use of the protocol is demonstrated,

using results from both on-shore and offshore wind farms. The work was developed in the

frame of the Anemos project (EU R&D project) where the protocol has been used to

evaluate more than 10 prediction systems.

Keywords: Wind power forecasting, prediction error, performance evaluation, evaluation

protocol.

NOMENCLATURE
Pinst, Wind farm installed capacity (in kW or MW)

k = 1, 2, . . . , kmax, Prediction time-step (also called lead time or look-ahead time)

kmax, Maximum prediction horizon

N, Number of data used for the model evaluation

P(t), Measured power at time t (in kW or MW), which usually corresponds to

the average power over the previous time period

P̂ (t + k|t), Power forecast for time t + k made at time origin t (in kW or MW)

e(t + k|t), Error corresponding to time t + k for the prediction made at time origin t

(in kW or MW)

ε(t + k|t), Normalized prediction error (normalized to the installed capacity)

χe, Random error

µe, Systematic error (bias)

BIAS(k), Systematic error (estimate) for the prediction horizon k.

MAE(k), Mean Absolute Error

MSE(k), Mean Squared Error

RMSE(k), Root Mean Squared Error

STD(k), Standard Deviation

NBIAS, NMAE, NMSE, NRMSE, NSTD. Normalized error measures. Calculated using the

normalized prediction error.
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1. INTRODUCTION
Short-term forecasting of windfarm power production, up to 48 hours ahead, is recognized as

a major contribution for reliable large-scale wind power integration. Increasing the value of

wind generation by improving the performance of the prediction systems is identified as one

of the priorities within wind energy research [1]. Especially in a liberalized electricity market,

prediction tools enhance the position of wind energy compared to other forms of dispatchable

generation. The increasing need for wind power has encouraged various industrial companies

and research organisations to produce such forecasting tools.

In the last decade, and particularly at conferences (e.g. Global Windpower 2002, EWEC

2003, etc.), several prediction tools have been presented [2–11]. This has enabled important

feedback from end-users showing the need for standardized methodology for evaluating the

accuracy of prediction models.

The performance of each prediction system depends on both the modelling approach and

the characteristics of the intended application. Nowadays, due to the cost of prediction

systems, and to the economic impact that their accuracy may have, there is a clear demand by

end-users for a standardized methodology to evaluate model performance.

This paper presents a complete protocol, consisting of a set of criteria appropriate for the

evaluation of a wind-power prediction system. This protocol is a result of the work performed

in the frame of the Anemos Project, where the performance of more than 10 prediction

systems were evaluated on several on-shore and offshore case studies [12]. The Anemos

project is a European R&D project on short-term wind power prediction. It aims at developing

accurate models for on-shore and offshore wind resource forecasting using statistical as well

as physical approaches. As part of the project, an integrated software system, ‘Anemos’, has

been developed to host the various models. This system will be installed by several utilities for

on-line operation at on-shore and offshore wind farms for both local and regional wind-power

prediction. The project includes 23 partners from 7 countries.

To develop this evaluation protocol, about 150 suitable references were studied in detail for

criteria on wind power prediction. Difficulties with some of the currently used error-measures

are briefly mentioned here. Recent examples have shown, especially when there is

commercial interest, that standard statistical criteria are often not used correctly, so, giving

erroneous conclusions about the accuracy of a given model [13].

Furthermore, a set of simple models is introduced for reference predictors. These, include

persistence, the global mean, and a new reference model. They provide a basis for comparison

with more advanced models. Example results are given on a real case study. Finally,

guidelines are produced for the use of the set of criteria proposed in this paper.

2. PROPOSED SET OF ERROR MEASURES
In this section, we introduce the notation that is commonly used in the wind power forecasting

community. Then, the reference models are presented and the definitions of the proposed set

of error measures are given.

2.1 Notation of this Section
Pinst : Wind farm installed capacity (in kW or MW)

k = 1, 2, . . . , kmax : Prediction time-step (also called lead time or look-ahead time)

kmax : Maximum prediction horizon

N : Number of data used for the model evaluation

P(t) : Measured power at time t (in kW or MW), which usually corresponds to the

average power over the previous time period
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P̂ (t + k|t) : Power forecast for time t + k made at time origin t (in kW or MW)
–
P (t) : average of all the available observations of wind power up to time t

e (t + k|t) : Error corresponding to time t + k for the prediction made at time origin t (in

kW or MW)

ε(t + k|t) : Normalized prediction error (normalized to the installed capacity)

2.2 Reference Models
It is worthwhile developing and implementing an advanced wind power forecasting tool if this

improves upon reference models, especially if by simple considerations and not by increase of

modelling effort. Probably the most common ‘reference model’ used for wind power

prediction and meteorology is ‘Persistence’. This naive predictor states that future wind

production remains the same as the last measured value of power, i.e. 

(1)

Despite its apparent simplicity, this model might be hard to beat for the first look-ahead

times (say up to 4–6 hours). This is due to the scale of changes in the atmosphere, which are in

general slow. A generalization of the Persistence model is to replace the last measured value

by the average of the last n measured values

(2)

Such models are sometimes referred to as ‘moving average predictors’. Asymptotically

(as n goes to infinity), they tend to the global mean

(3)

The Global Mean can also be seen as a reference model, but since it is not dynamic,

its performance may be very poor for the first prediction horizons. However, for longer

look-ahead times, its accuracy is much better than Persistence. The performance of

these two reference models has been analytically studied by Nielsen et al. [14].

Consequently, the authors proposed to merge the two models in order to get the best of their

performance over the whole range of prediction horizons. The merging yields a new

reference model

(4)

where ak is defined as the correlation coefficient between P(t) and P(t + k).

All the important statistical quantities, namely and ak (k = 1,2…, kmax), must be

estimated or fixed using the training set of data, c.f. also the discussion in the following Section.

2.3 Training and Test Data
When setting up a prediction model, the first step is to take decisions on the structure of the

model (e.g. how many neurons for a neural network) before estimating the model parameters

based on the available data. The next step should provide a measure for the model

performance that will characterize its quality. The quality of a model can be objectively

assessed only on a test set of data, which must be independent of the dataset previously used

for model building and training. The capability of a model to perform well when it predicts

new and independent data is defined as ‘generalization performance’. 
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It is thus essential to evaluate measures for the errors in prediction, as will be proposed in

the next section. The data used for evaluation must not have been used for setting up the

prediction model or for tuning its parameters. For this reason, the available data must be split

into a ‘training period’ and a ‘test period’, as illustrated in Figure 1. Some procedures for model

building need a validation set for decisions about the model structure, for instance by cross-

validation. Any such validation data are a part of the training set. Error measures resulting

from the training set are called ‘in-sample’ measures; error measures resulting from the test

set are called ‘out-of-sample’ measures.

It is emphasized that training (or estimation) error does not provide a good estimate of the

test error, which is the prediction error on new (independent) data. Training error

consistently decreases with model complexity, typically dropping to zero if the model

complexity is large enough. In practice, however, such a model is expected to perform poorly.

This can be concluded from the performance of the model on the test set.

Hence, it should be clear for model developers and for end-users that training data are only

dedicated for initially tuning the model, even if very good performance can be reported on

this set. Reported error measures must be based on the test period only. Furthermore, it should

be ensured that the evaluation made on this set mimics the operational application of the

model.

2.4 Definition of Error Measures
2.4.1 Prediction Error
In the field of time series prediction in general, the prediction error is defined as the difference

between the measured and the predicted value1. Therefore, since we consider separately

each forecast horizon, the prediction error for the lead time t + k is defined as

(5)

Often it is convenient to introduce the normalized prediction error, by the installed

capacity Pinst, for comparison among errors referring to different wind farms

e t k t P t + k P t k t( | ) ( ) ( | ) .+ = − +ˆ
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1Intuitively however a positive prediction error refers to over-prediction. The error is then defined as

. This can be used if one wants to monitor errors for visualization

purposess 

eI t k t P t k t P t + k( | ) ( | ) (   ).+ = + −ˆ
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Figure 1: A data set from the offshore wind farm Tunø Knob in Denmark, split into an initial training

period and subsequent test period.
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(6)

Any prediction error can be decomposed into systematic µe error and random error χe, viz.

(7)

where µe is a constant and χe is a zero mean random variable.

2.4.2 Definitions of Error Measures
The model bias, which corresponds to the systematic error, is estimated as the average error

over the whole evaluation period and is computed for each horizon

(8)

There are two basic criteria for illustrating a predictor’s performance: the Mean Absolute

Error (abbreviated MAE) and the Root Mean Squared Error (abbreviated RMSE). The Mean

Absolute Error is

(9)

Before introducing the RMSE it is useful to introduce the Mean Squared Error (MSE)

(10)

The Root Mean Squared Error is then simply

(11)

Notice that both systematic and random errors contribute to the MAE and RMSE criteria.

An alternative to the use of the RMSE is to consider the Standard Deviation of Errors (SDE):

(12)

where p denotes the number of estimated parameters using the considered data. Hence for

the test data p = 0. It is noted that similar correction with the number of parameters p should

be included in the previous criteria when they refer to the training set of data.

The SDE criterion is an estimate for the standard deviation of the error distribution, and

then only the random error contributes to the SDE criterion.

Statistically the values of BIAS and MAE are associated with the first moment of the

prediction error, and hence these are measures which are directly related to the produced

energy of the wind farm. The values of RMSE and SDE are associated with the second order

moment, and hence to the variance of the prediction error. For these latter measures, large

prediction errors have the largest effect.

All the error measures introduced above can be calculated using the prediction error 

e (t + k|t) or the normalized prediction error ε(t + k|t). The purpose of using normalized error

SDE k
N p

e t k t ek

t

N

( )
( )

( ( | ) )

/

=
− +

+ −










=
∑1

1
2

1

1 2

 ,

RMSE k MSE k
N

e t k t
t

N

( ) ( ) ( | )/

/

= = +










=
∑1 2 2

1

1 2

1
 ,

MSE k
N

e t k t
t

N

( ) ( | )= +
=

∑1 2

1

 .

MAE k
N

e t k t
t

N

( ) ( | ) .= +
=

∑1

1

 

BIAS k e
N

e t k te k

t

N

( ) ( | ).= = = +
=

∑µ
1

1

^

e e e= +µ χ  ,

ε( | ) ( / ) ( ( ) ( / )).t k t
P

e t k t
P

P t + k P t k t
inst inst

+ = + = − +
1 1 ˆ

WIND ENGINEERING VOLUME 29, NO. 6, 2005 479

01_S372.qxd  28/2/06  4:31 pm  Page 479



measures is to produce results independent of wind farm sizes. The resulting error measures

are then referred to as Normalized BIAS (NBIAS), Normalized MAE (abbreviated NMAE), and

so on. 

Here, the proposed normalization is made by the installed capacity, Pinst. This contrasts

with the possibility to provide the error as a percentage of measured (or predicted) power.

This alternative is not obviously feasible since a measured power value may equal zero.

Alternatively, if the prediction error is evaluated over a long period, it is then possible to

normalize the considered criterion by the average measured power production P over the

whole period. For the example of the MAE, this yields

(13)

This mode of normalization allows better assessment of the monetary consequences of the

model errors as a function of the capacity factor of the wind farm (e.g. of inaccurate forecasts

of electricity generation within a liberalised electricity market).

Some references use other definitions of error measures. One example is the so-called

‘power surplus’ for a given period, which is the sum of all positive prediction errors; likewise

the ‘power deficit’ is the sum of all the negative errors over the test period.

2.4.3 Comparison of Models
When evaluating an advanced model, it is important to quantify the benefit of the advanced

approach compared to the reference. This gain, denoted as an ``improvement'' with respect to

the considered reference model, is defined as follows for a given lead time:

(14)

where EC is the considered Evaluation Criterion, which can be either MAE, or, RMSE or,

even, SDE, or the equivalent normalized versions.

Another way to illustrate the skill of advanced forecasting methods is to compute the

coefficient of determination R2 for each look-ahead time:

(15)

where MSE0(k) is the Mean Squared Error for the global mean model (cf. eqn (3)) where

the average is estimated upon the available data.

The coefficient of determination represents the ability of the model to explain the

variance of the data. The value of R2 is between 0 for useless predictions and 1 for perfect

predictions.

The R2-value is designed for model selection using the training set, and we suggest

avoiding the use of this criterion as a main tool for performance evaluations. If, for instance,

the naive predictor is used for large horizons, the resulting R2-value will be negative! This is

because the asymptotic variance of the prediction errors for the naive prediction is twice the

variance of the global mean prediction defined by eqn (3) [14]. The R2-value can be considered

for comparing the performance of various models, and/or for various sites, but then it should

be remembered that this is out of the scope of its primary use.
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There exist several alternative definitions of the R2-value. One frequently used is based on

the correlation between the measured and predicted wind power. The problem of this

definition is that, even though the predictions might be biased both with respect to level and

scale, this definition may lead to R2 = 1. The definition given by eqn (15) does not pose this

problem, since both the systematic and random error are embedded in the MSE values. Thus,

if the R2-value is reported it is extremely important to describe exactly how it is calculated.

2.5 Factors Influencing the Value of Error Measures
Apart from the capacity of a forecasting method itself, both characteristics of the site and

period of time covered by the test set may also significantly influence the apparent

performance of a given forecasting system. Figure 2 illustrates that comment. It depicts an

evaluation of Persistence and of an advanced approach performances for 4 different sites. The

advanced approach is a state-of-the-art artificial-intelligence based forecasting method.

Performance is assessed with the NMAE criterion. The four windfarms span the various

possibilities for site characteristics: complex terrain (wf1), semi-complex terrain (wf2), flat

terrain (wf3) and offshore conditions (wf4). From the plot, one can notice that for wf3 and

wf4, which are both located in Denmark with similar meteorological conditions, the advanced

model performance differs by approximately 20% (i.e. ordinate scale, 2 percent points in 10).

In a recent paper, Kariniotakis et al. [12] compare, in a systematic way, the performance of

several prediction models for various case-studies with different characteristics. It is shown

how site characteristics, and more precisely terrain complexity, may affect the prediction

error, whatever the forecasting method used.

3. EXPLORATORY ANALYSIS
Several other criteria can be used for exploratory analysis. Here, we present some of the

methods which are found to be of particular interest in relation to wind power prediction.

These tools for exploratory analysis of the prediction errors provide deeper insight into the

performance of the methods.

A histogram plot showing the distribution of prediction errors is useful, since it contains

more information concerning the error dispersion than a single criterion like the SDE or RMSE.
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Figure 2: Performance in terms of NMAE of two predictors (Persistence and a state-of-art artificial-

intelligence based prediction method) for four different sites.
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Various conclusions can be derived from both preliminary observations based on visual

inspection (such as symmetry, skewness, tails/outliers) and from numerical treatment of

error distributions. It should, however, be noticed that the errors are not stationary, and hence

the histogram could be plotted as a function of the expected condition, e.g. strong wind speed,

summer, westerly wind, etc. This may permit to detect and analyse a model behaviour related

to specific conditions. An example of using the histogram will be shown for the case study

considered in Section 4. 

Another useful tool is a plot of the cumulated squared prediction errors. When using the

evaluation criteria (of the previous section) to estimate the general performance of a

prediction model over a given period, the cumulated squared errors exhibit the dynamical

behaviour of the model performance. For example, the method detects both (i) changes in the

Numerical Weather Predictions (NWPs) used as input, and (ii) problems with the model auto-

adaptation scheme. Also, if several models are compared with that measure, periods for

which certain models perform better than the others can be easily spotted.

For instance, Figure 3 depicts the cumulated measure for 6 hour predictions for the Tunø

offshore wind farm. The plot shows a clear change in the increment for the cumulated squared

prediction errors for the last two weeks of the considered period; recognising such a change

should lead to further investigations. 

4. APPLICATION TO A REAL CASE STUDY
As an illustration error measures, the case study of a real multi-MW wind farm located in

Ireland is considered. A state-of-the-art statistical prediction model is used to provide hourly

predictions for a two-day ahead horizon, using Hirlam NWPs and on-line production data as

input. NWPs are provided 4 times per day at the level of the wind farm as interpolated values.

The forecasting model is evaluated over a 3-month period corresponding approximately to

Winter 2003.

Figure 4 depicts the normalized bias (NBIAS) as a function of the look-ahead time, showing

values between −0.14% and 0.01% of the wind farm installed capacity. Practically, this means
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Figure 3: Cumulated squared prediction errors for the wind power production at the Tunø Knob

offshore wind farm.
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that for this case study, the model does not make any significant systematic error. This is

a desired property when using a prediction model. Nowadays, both statistical and

physical models enhanced with Model Output Statistics (MOS) are able to provide unbiased

forecasts.

Figure 5 illustrates the performance evaluation by the use of both the NMAE and the

NRMSE. The two error measures are computed for the advanced model and for the reference

one (Persistence is used here), for every prediction horizon. The NMAE can be interpreted:

straightforwardly; for instance, the advanced model made an average error representing 13%
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of the installed capacity for one-day ahead predictions, over the whole evaluation period.

Such information is not provided by the NRMSE because it considers squared errors and thus

gives more weight to large errors. The NRMSE measure is more relevant if the aim is to study

the impact of these large errors.

The model’s benefit is then assessed by calculating the error reduction it achieves against

a reference model (Figure 6). Persistence is considered here. An advanced prediction

approach should give significant improvement over simple reference models, in order to

justify the modelling efforts involved in their design. Here, the improvement for both criteria

ranges from −10% for the first look-ahead time, to almost 55% for longer-term predictions.

Beating Persistence for the first horizons is not easy, although for longer-term (12–48 hour

ahead), large improvements can be achieved. Then, in order to emphasise the difference

between various advanced approaches over the whole range of horizons, the new reference

model introduced above should be preferred.

Finally, more subtle information can be extracted from error distributions, as shown in

Figure 7. They are produced for the 1st and 24th lead times, with bins representing 5% of the

installed capacity. A first inspection at the histogram sharpness, skewness and inf/sup

bounds, already gives a good idea of the model’s performance. Comparing the two histograms

of Figure 7, notice that the error distributions are almost perfectly symmetric and centred

around 0, and that the error distribution of the one-hour ahead predictions is much sharper

than the other. During the evaluation period, the model never made errors greater than 40%

of the installed capacity for the first lead time. This is not the case for 24-hour ahead forecasts. 

Scott [15] suggested that the optimal range w for histogram bins is related to the range of

the data (range(e)) and the number of samples N as follows:

(16)

However, since this proposition may lead to large bins, it is recommended to define a bin

size representing 5% (like for the case of Figure 7) or 10% of installed capacity. All bins must

have the same size in order to avoid misleading interpretations of the error distributions.

w
range e

N
=

+
( )

log ( )2 1
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Histograms allow one to quantify the frequency of occurrence of errors below or above a

certain level. Examples of some conclusions that can be derived for the considered case study

are:

• Robustness

– 1 step-ahead predictions: errors are less than 7.5% of Pinst 68% of the times,

– 24 step-ahead predictions: errors are less than 7.5% of Pinst 24% of the times,

• Large errors 

– 1 step-ahead predictions: errors are more than 17.5% of Pinst only 3% of the times,

• etc.

One way to summarize such statistics is to plot the percentage of time that errors are

within a given margin. Figure 8 gives an example of that measure as a function of the look-

ahead time. Here, an error margin of +/-12.5% of the installed capacity is considered. The use
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of this measure allows one to estimate the loss in forecast accuracy as the lead time increases.

As shown in the figure, the forecast accuracy sharply decreases for the first lead-times and

then tends to stabilize. For high horizons, the predictions remain within the error margin with

a high probability (higher than 60%).

The combination of all these error measures gives a global view of the ability of a

prediction model. Characterization of the errors is not only a primary requirement for end-

users to select prediction systems, but also for modellers when developing research towards

the improvement of these models.

5. GUIDELINES AND RECOMMENDATIONS
This section contains guidelines and recommendations for providing error measures when

evaluating models for short term prediction of wind energy.

5.1 Recommendations
Regarding the performance measures, we have the following recommendations:

• Initially, define clearly the operational framework as discussed in the next section.

• Base performance evaluation on the test set only. The length and period

(beginning/end) of the test set should be clearly defined. Moreover, an assessment

of the quality of the considered data (i.e. detection of missing or erroneous data)

should be performed before starting with the performance evaluation.

• As a minimum set of error measures, the following should be used:

– NBIAS

– NMAE

– NRMSE

• Use the improvement scores for comparison between models.

This is a suggested minimum set of measures. Other measures and tools for exploratory

analysis might be used in addition. These measures should be given per time step. Given

the variability of the performance of a prediction model, it is useful to provide these

measures not only over the whole test set but also for sub-periods (i.e. per month). The values

of the measures should be given for both advanced methods and selected simple reference

models.

Finally, it should be realized that the most appropriate measure depends on the intended

application. Indeed, energy managers and energy traders do not use wind power forecasts in

the same way. Hence they often have different views on the cost of prediction errors. This

paper supports the analysis of prediction models in terms of power (MW). When this step is

rigorously performed following the proposed protocol, one can apply more criteria, based on

specific market rules to evaluate the monetary cost of prediction errors. Presenting such

criteria is out of the scope of this paper since they usually depend on the particular electricity

market.

5.2 Operational Framework
Before presenting any performance measure, it is very important to specify the operational

framework of a prediction model. A description of the operational framework includes a

specification of:

• Installed capacity. Number and type of wind turbines.

• Horizon of predictions (1, 2, ..., 48, .. hours ahead).
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• Use of on-line measurements as input. Specify which data are used (e.g. power

production, wind speed, etc.).

• Sampling strategy. Specify whether the measurements are instant readings or the

average over some time period, e.g. the last 10 minutes before the time stamp. This

should be specified for all observed variables.

• Characteristics of NWP forecasts (frequency of delivery, delay in delivery, horizon,

time step, resolution, grid values or interpolated at the position of the farm).

• Frequency of updates of the prediction model. Actually, some models only give

forecasts when new NWPs are delivered (i.e. every 6, 12 or 24 hours) while some

others operate with a sliding window (typically one hour) since they consider on-

line data as input.

6. CONCLUSIONS
Nowadays, there is a great need for standardizing error measures and reference models for

assessing the performance of advanced approaches for wind power prediction. Comparison

with Persistence does not give a fair measure of the performance of an advanced model, since

even the use of the global mean as predictor leads to a 50% reduction in the variance of the

error compared to the error obtained with Persistence [14].

This paper introduces guidelines for evaluating wind power predictions, as well as a

minimum set of suggested error measures. It is emphasized that a rigorous use of data is

required; both training and test sets should be clearly defined and separated. 

In the description above, we have focused on prediction models for single wind farms. The

modifications needed for considering the wind power predictions for larger areas are minor,

given that the relevant measurements are available.

Beside the set of recommended error measures, the researcher should perform

further (exploratory) analyses of the prediction errors, e.g. comparisons with other

(simple) predictors, histograms, plots of cumulated squared errors, etc. This allows a

deeper understanding of the limitations of a given method and indicates possible

improvements.

Also, when the performance of a prediction model is evaluated for a given application, it

should be specially tailored to the end-user needs. To complement the minimum set of error

measures described in this paper, additional criteria representing the monetary cost of the

errors may be considered.

The presented set of measures is mostly designed for off-line evaluations. Some of the

measures might also be used in on-line situations, e.g. for performance monitoring. The

performance measures presented here should be differentiated from methods recently

developed for on-line estimation of the uncertainty of wind power predictions [16–18]

(prediction intervals for instance). In the later part of the Anemos project, we will elaborate on

performance measures which focus on an evaluation of forecast uncertainty estimates. This

will be a subject of increasing interest for future research dealing with on-line wind power

predictions.

The sequence of prediction errors is obviously correlated, and the so-called

autocorrelation of such time-series might be of importance. This holds in particular for wind

power generators having auxiliary generation, e.g. from energy storage and able to use the

prediction models to schedule the auxiliary plant.. Hence, an operational approach for

presenting the autocorrelation of the error sequence is needed; this subject is also dealt within

the frame of the Anemos project.
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