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Standing Wave Oscillators Utilizing Wave-Adaptive
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Abstract—In this paper, we introduce a novel standing wave
oscillator (SWO) utilizing standing-wave-adaptive tapered trans-
mission lines. This structure enhances and lowers phase noise
through loss-reducing shaping of the transmission line, such that it
is adapted to the position-dependent amplitudes of standing waves.
Measurements validate the advantages of the proposed technique.
The phase noise of a MOS SWO with the tapered line is 5–10 dB
less than that of a uniform-line MOS SWO over a wide range
of offset frequencies, centered about 15 GHz. Demonstrating a
valuable exploitation of standing wave properties, the novel design
concept boosts the potential for the emergence of standing wave
oscillators as a useful alternative to the traditional lumped
oscillator.

Index Terms—Integrated circuits, oscillators, phase noise,
quality factor, radio-frequency (RF), standing waves, standing
wave oscillators, tapered transmission lines, transmission lines.

I. INTRODUCTION

WHILE a prevalent class of RF oscillators relies on
lumped resonators (e.g., [1]–[16]), recently there

has emerged an oscillator type that operates instead upon
wave behaviors. These wave-based oscillators are categorized
into traveling wave oscillators [17]–[20] and standing wave
oscillators [21], [22].

Wave-based oscillators strongly fulfill certain design criteria.
For instance, proper distribution of active gain elements along
a wave propagation medium facilitates oscillation frequencies
toward [17]–[19]. Also, wave-based oscillators may allow
low-skew, low-jitter clock distribution [20], [21]. But as of yet,
the advantages of wave behaviors in terms of resonator and
oscillator phase noise have not been readily apparent. This paper
addresses the issue and presents a case where exploitation of
standing wave behaviors enhances and lowers phase noise.

Standing waves have the unique property of position-depen-
dent voltage-current amplitudes. We demonstrate that one can
physically taper a transmission line such that it is adapted to the
standing wave amplitude variations to reduce loss in the line,
leading to improvement and significant phase noise reduc-
tion in standing wave oscillators (SWO). In the prototype ta-
pered-line MOS SWO presented in this paper, the simulated ef-
fective of the tapered line hosting standing waves is about 60,
which is a considerable improvement over the of 40 achieved
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before tapering. Measurements show 5–10-dB phase noise im-
provement due to the tapering, attesting to the validity of the
proposed technique.

This paper is organized as follows. Section II introduces a
standing wave oscillator as a demonstrational vehicle for

our new design technique. In Sections III, IV, and V, we present
the concept, theory, and design of the standing-wave-adaptive
tapered transmission lines, respectively. Measurements con-
firming the benefits of the proposed technique are presented
in Section VI. While Sections II–VI fully describe our work,
in Section VII, we provide comparisons with other types of
oscillators and discuss feasible frequency tuning schemes for
suggested future works.

II. STANDING WAVE OSCILLATOR

A. Operation Principle

Fig. 1(a) shows a quarter-wavelength standing wave
oscillator (SWO). This is the most compact SWO configuration
[23] based upon which a variety of other SWOs (e.g., [21]) can
be constructed. In this paper, the SWO will be used as a ve-
hicle to demonstrate the validity of our proposed technique even
though the technique can be applied to any SWO configuration.

In the SWO of Fig. 1(a), a differential transmission line is
connected to a pair of cross-coupled inverters at one end
and is shorted at the other end . The cross-coupled in-
verters may be realized using cross-coupled NMOS or CMOS
transistors as shown in Fig. 1(b). For silicon integration, the dif-
ferential transmission line may be implemented in the form of
an on-chip coplanar stripline (CPS) as shown in Fig. 2(a). In the
CPS two metals run in parallel with each other.

In the SWO of Fig. 1(a) energy injected by the cross-cou-
pled inverters propagates in forward waves along the transmis-
sion line toward the short, where the energy is reflected into
reverse waves. In steady state, the forward and reverse waves
superpose to form standing waves. While boundary conditions
allow standing wave modes at
where is the transmission line length, we will only consider the
fundamental mode since higher modes are of relative
insignificance due to substantial high-frequency loss.

In the fundamental mode, voltage amplitude and cur-
rent amplitude exhibit monotonic variations with position

as depicted in Fig. 1(a). At the short end the voltage is
minimum (zero) and the current is maximum. At where
the cross-coupled inverters are connected, the voltage is max-
imum and the current is minimum. The amplitude of this cur-
rent minimum at is slightly larger than zero due to tran-
sistor loading which alters the boundary conditions such that
is slightly smaller than . These position-dependent voltage
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Fig. 1. (a) �=4 standing wave oscillator (SWO) and voltage-current standing
wave amplitudes at the fundamental mode (l � �=4). The position-dependent
voltage and current amplitudes are the key signature of standing waves.
(b) MOSFET implementation of the cross-coupled inverters.

and current amplitudes are the key property of standing waves,
which makes possible the proposed technique of this paper as
will be seen in Section III.

B. Losses in Coplanar Striplines and - Tradeoff

To better understand our proposed technique, we need to
first discuss loss characteristics of the on-chip differential
transmission line of Fig. 1(a). As mentioned earlier, for silicon
integration, the on-chip differential transmission line may be
implemented as a coplanar stripline (CPS), composed of two
metals running in parallel above the silicon substrate as shown
in Fig. 2(a) (overhead view) and (b) (cross section). More
advanced CPSs can be constructed based upon the basic CPS of
Fig. 2(a). For instance, Fig. 2(c) is an overhead view of a CPS
underneath which floating metal strips are periodically placed.
These floating metal strips serve as a slow-wave structure (e.g.,
[23], [24]), which decreases the chip area, and also to reduce
the substrate effect shielding fields from the lossy substrate.1

1This substrate shield effect is similar to the effect of the patterned ground
shield for an on-chip spiral inductor introduced in [25], while in [25] the pat-
terned shield is not floating but grounded.

Fig. 2. (a) Overhead view of an integrated coplanar stripline (CPS).
(b) Cross-section view of the CPS. (c) Coplanar stripline (overhead view) with
floating metal strips underneath. (d) Differential LRCG model of the coplanar
striplines.

The CPS structures can be modeled using the familiar differ-
ential network as depicted in Fig. 2(d) where ,
and are inductance, capacitance, series resistance, and shunt
conductance per unit length, respectively. accounts for loss
within metals due to the skin and proximity effects. The skin
effect is the tendency for ac current to become concentrated at
the surface of a conductor at high frequencies, thereby reducing
the effective area of current flow. The proximity effect refers to
the phenomenon that when two ac currents flow in opposite di-
rections, the effective area of current flow is further squeezed
toward the proximate regions of the two conductors [26], [27].

, on the other hand, reflects loss outside metals, for instance,
substrate loss in the CPS of Fig. 2(a) and metal and substrate
losses in the CPS of Fig. 2(c). couples to current waves as

couples to voltage waves to cause respective series and shunt
losses. Smaller corresponds to less series loss; smaller cor-
responds to less shunt loss. The series and shunt losses due to
and directly affect CPS quality factor, . Phase noise of os-
cillators utilizing the CPS strongly depends on the CPS as is
well known from various phase noise studies (e.g., [28], [29]).

Metal width and separation are the two design parameters
of the CPS, where and are with reference to Fig. 2. Varying

and of the CPS is a means of modifying and . Obviously,
simultaneous minimization of and is desired, but this is usu-
ally impossible in the silicon design environment. Increasing
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decreases due to a reduced skin effect but increases due to
increased interaction between EM fields and lossy media out-
side the CPS metals (e.g., substrate, underlying floating metal
strips). Likewise, increasing mitigates proximity effects de-
creasing , but increases again due to increased interaction
between EM fields and lossy media outside the CPS metals. EM
simulation results presented in Section V will elucidate these
tendencies. This tradeoff between the series loss, , and the
shunt loss, , imposes a significant constraint in loss minimiza-
tion when the CPS carries a traveling wave. However, when the
CPS hosts a standing wave, the – tradeoff can be circum-
vented to reduce loss and enhance by exploiting the posi-
tion-dependent standing wave amplitudes. This is the basis of
our design technique, which is introduced in the following sec-
tion.

III. STANDING-WAVE ADAPTIVE LINE TAPERING—CONCEPT

This section introduces the key design concept of this paper:
standing-wave-adaptive transmission line tapering. This tech-
nique allows one to overcome the – tradeoff discussed in
the previous section to lower loss and enhance in the CPS,
leading to reduced SWO phase noise. The SWO of Fig. 1(a)
serves as a demonstrational vehicle.

As mentioned earlier, when the CPS hosts standing waves,
the voltage and current amplitudes in the CPS vary along with
position as shown in Fig. 1(a). Since the CPS of Fig. 1(a) has
large voltage amplitude and negligible current amplitude near

, the majority of loss is through shunt conductance to-
ward . Therefore, may be minimized to reduce loss
near while the unavoidable increase in due to the –
tradeoff is not detrimental because of the negligible current am-
plitude in this vicinity. Similarly, since the CPS of Fig. 1(a)
has large current amplitude and insignificant voltage amplitude
near , most loss occurs in the series resistance toward

. Therefore, may be minimized to reduce loss near
while the inevitable increase in due to the – tradeoff is
not harmful because of the locally negligible voltage. This vari-
ation of the loss parameters, and , with position, , to reduce
loss by circumventing the – tradeoff yields a tapered trans-
mission line. Note that the position dependence of the standing
wave amplitudes is what makes possible this tapering technique.

In order to prevent local reflections, the transmission line ta-
pering should be performed with attention to holding charac-
teristic impedance, , constant throughout the line. Details of
how and are varied with position for constant will be
fully discussed in Section V. Here we give a brief description
for the sake of completeness of this section. Comprehensive EM
simulations of various uniform transmission lines reveal the de-
pendence of , and on a wide range of and values.
Fig. 3(a) shows an example simulation-based contour of charac-
teristic impedance in - space in a standard CMOS technology.
As one simultaneously moves apart (increasing ) and widens
(increasing ) the CPS following this contour, remains con-
stant while decreases and increases. This - dependence
on and is the previously discussed – tradeoff. The CPS
of the SWO can be tapered along this contour as shown in

Fig. 3. (a) Simulation-based characteristic impedance contour and R-G
variations in w-s space. As one simultaneously increases metal width w and
metal spacing s of a CPS along the characteristic impedance contour, Z
remains constant while R decreases and G increases. (b) �=4 SWO using a
tapered CPS.

Fig. 3. The voltage maximum and current minimum at
yields minimum local loss with low despite high [point A
in Fig. 3(a)]. The current maximum and voltage minimum at

yields minimum local loss with low despite high
(point C). Outside the range from A to C, the – tradeoff de-
teriorates and it becomes difficult to improve either loss. There-
fore, no point outside the range from A to C is optimal for any
position along the standing wave.

Note that while transmission line tapering has been used in
the past, traditional line tapering has been solely focused on
variation of characteristic impedance with position [30]–[32]
for applications such as impedance transformation, to the best
of the author’s knowledge. The novelty of our line tapering lies
in producing variations of the loss parameters with position to
reduce line loss while keeping characteristic impedance uniform
throughout the line.

We will describe the details of the design procedure for our
tapered line in Section V, but before the design details, we will
present a theory that predicts loss reduction and enhancement
due to the line tapering in the following section.

IV. STANDING-WAVE ADAPTIVE LINE TAPERING—THEORY

This section theoretically predicts loss reduction and en-
hancement by transmission line tapering. We will find the min-
imum-loss tapered line and the minimum-loss uniform line, both
with the same characteristic impedance, , when each hosts a
single standing wave mode at an identical frequency. Compar-
ison of the two structures will quantify the improvement due to
the tapering.
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Fig. 4. Standing wave voltage amplitudeV (z) in the z-domain. It is a sinusoid
for a uniform line but is not a sinusoid for a tapered line.

The overall time-averaged loss, , in a general tapered
(position-dependent) transmission line with constant character-
istic impedance , when hosting a single standing wave mode,
is given by

(1)

where is the horizontal span of the line, and are po-
sition-dependent current and voltage amplitudes of the standing
wave mode, and and are the series resistance and
shunt conductance per unit length at . In order to obtain the
minimum-loss tapered line, we should find and that
minimize above under the constraint of the – tradeoff.
However, it is very difficult to evaluate the integration above
since and are not known a priori, as they depend on
the line structure, which has yet to be determined.

To appreciate the difficulty in evaluating (1), let us imagine
the following scenario. We start with a uniform line, in which

and are sinusoids (Fig. 4). We then find and
that minimize (1) for these sinusoidal amplitude varia-

tions. These and are -dependent and thus corre-
spond to a tapered line structure, upon which and are
no longer sinusoids (Fig. 4) because the wave velocity in a ta-
pered line is not uniform as and are not constants.
However, the and were based on the sinusoidal am-
plitude variations, and hence, this tapered line is not optimized
for the new nonsinusoidal amplitude profiles. Thus a time-con-
suming iteration process is required, making the optimization
procedure very involved.

Fortunately, evaluation of (1) is substantially simplified by
our novel transformation in which the integration variable, ,

Fig. 5. A tapered line can be thought of as constructed using infinitesimal
uniform transmission line segments, each of which has a length of dz and the
same characteristic impedance of Z . In the infinitesimal uniform transmission
line segment between z and z+dz, a traveling wave experiences an infinitesimal
phase change of d�.

of (1) is transformed to , the wave’s phase, as shown in the
following subsection.

A. – Transformation

A general tapered (position-dependent) transmission line
with a uniform characteristic impedance, , can be thought
of as a piecewise construction of infinitesimal uniform trans-
mission line segments as shown in Fig. 5. Each infinitesimal
uniform line segment has a length of and the identical
characteristic impedance of . Traveling down the infinites-
imal uniform line segment located between and , a
wave experiences an infinitesimal phase change of where

and are related through . Here is the
propagation constant of the traveling wave in the infinitesimal
uniform line segment and assuming weak loss,2 is given
by the familiar formula,
where is the wave’s phase velocity
in the infinitesimal uniform line segment, and are
inductance and capacitance per unit length in the infinitesimal
uniform line segment, and is the modal frequency. Com-
bining, we obtain the following relation between and :

(2)

or

(3)

These relations can be used for the transformation between
and .

2We use a weak loss approximation for the propagation constant and charac-
teristic impedance in this paper because loss is not severe enough to noticeably
influence these two quantities in our case.
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Since the characteristic impedance of each infinitesimal uni-
form line segment is identical, that is

constant (4)

there is no reflection when the traveling wave travels from one
infinitesimal uniform line segment to the next one. Therefore,
the phasor of the traveling wave at in the general tapered line
is simply where is the accumulation of the infinites-
imal phase changes from 0 to , which is given by (3). Hence-
forth, corresponding standing wave amplitudes formed on the
general tapered line are given by

(5)

(6)

where is the voltage maximum, is the current maximum,
and . As shown in Appendix I, equations (2), (3),
(5), and (6) can also be obtained by solving the wave equations
for the general tapered line whose characteristic impedance is
held constant.

As can be seen from (3), (5), and (6), the standing wave
voltage and current amplitudes in any general tapered transmis-
sion line with uniform characteristic impedance are very
complicated functions of , but are always sinusoids of the
phase, , regardless of the line shape. Therefore, transformation
of the integration variable from to using (3) will greatly
simplify (1) to

(7)

Here we have assumed that the line length is chosen as to pro-
duce phase shift ( SWO). and are series
and shunt loss per unit radian phase shift at , respectively, and
are related to and by the following relations:

(8)

(9)

Now one can easily obtain the minimum-loss tapered line in
the -domain, by finding and that minimize
in (7). The integration in (7) is easy since the current and the
voltage standing wave forms are always known sinusoids in the

-domain regardless of the line shape.

B. Optimization Constraint

Minimization of in (7) is to be performed under the
constraint of the – tradeoff. While the detailed behavior of
the – tradeoff is technology-dependent and analytically not
tractable in general, here we assume

(10)

as a hypothetical constraint where is a unitless constant. Al-
though here we use this – tradeoff for a hypothetical calcu-
lation, it roughly reflects the EM simulation results discussed in
Section V.

C. Minimum-Loss Tapered Line

Appendix II shows that under the constraint of (10), in
(7) is minimized to

(11)

when and . These
and are -dependent, and represent the minimum-

loss tapered line.

D. Minimum-Loss Uniform Line

To evaluate how much loss reduction the line tapering
achieves, we need to find the minimum-loss uniform line for
comparison purposes. To obtain the minimum-loss uniform
line, we treat and as constants independent of ,
i.e., (constant) and (constant),
and find and that minimize in (7) under the
constraint of (10). Appendix III shows that in (7) is
minimized to

(12)

when and , which represent the
minimum-loss uniform line.

E. Loss Reduction Due to Tapering

Comparison of (11) to (12) reveals that given the –
tradeoff of (10), the loss in the minimum-loss tapered line is
smaller by a factor of than the loss in the minimum-loss
uniform line. This loss comparison assumed that both of the
transmission lines host the same (in the -domain) standing
waves given by (5) and (6). The comparison is meaningful only
if the standing waves store the same amount of energy in both
transmission lines. We demonstrate that this is indeed the case
in the following subsection, leading to a quantitative prediction
of enhancement due to tapering.

F. Enhancement Due to Tapering

When hosting the standing waves given by (5) and (6), any
general tapered transmission line with constant characteristic
impedance stores a total time-averaged energy given by

(13)

where and are inductance and capacitance per unit
radian phase shift at , respectively, and we have chosen the line
length such that it produces phase shift. can be ex-
pressed as

where we have used (3) and (4). Similarly one can show
that is given by . Note that and

are independent of and solely determined by constants
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and , regardless of the line shape. Using these and
, one can reduce (13) to

(14)

As can be seen, any general tapered line (including the
uniform line) of the same characteristic impedance whose
length produces a phase shift stores the same amount of
energy when hosting the same standing waves given by (5) and
(6) with the same modal frequency . Hence the loss reduction
calculation in the previous subsection is meaningful since it
was performed when the minimum-loss tapered line and the
minimum-loss uniform line store the same amount of energy.
Moreover, the loss reduction by a factor of due to tapering
translates directly to a improvement in .

In this section, we presented a mathematical theory to ana-
lyze tapered transmission lines, serving to convey a quantitative
idea of loss reduction and enhancement owed to tapering. The
example calculation was based on the assumption of constant

which is approximate. The assumption also breaks
down eventually as the – tradeoff deteriorates outside a cer-
tain range making it difficult to improve either loss. Therefore
the real-world improvement due to tapering should be evaluated
from practical design. The following section details a practical
design procedure for the tapered transmission line. The theory
of this section will be crucial in developing the design proce-
dure.

V. STANDING-WAVE ADAPTIVE LINE TAPERING—DESIGN

In this section, we present a practical design procedure for the
minimum-loss tapered transmission line.

A. General Idea

The general idea of our design of the minimum-loss tapered
transmission line is the piecewise construction of the tapered
line using various uniform line segments of the same character-
istic impedance. While an ideal tapered line would consist of
a continuous set of infinitesimal uniform line configurations, in
reality we use a finite number of uniform line configurations.
To create the minimum-loss tapered line, we put segments of
the various uniform lines together in such a way that local loss
in every position is minimized. As explained in Section IV, loss
calculations are very difficult in the -domain but easy in the

-domain, so it is in the -domain that we first perform the piece-
wise construction of the tapered line. After the -domain con-
struction, we translate the design into the -domain using the
relation between and given by (2) or (3) to create the phys-
ical layout of the tapered structure. The following subsections
detail this design procedure step by step.

B. Step I: Selection and Characterization of Uniform Line
Segments

For the piecewise construction of the tapered line, we must
first select a finite number of uniform line configurations of the
same characteristic impedance and characterize their loss pa-
rameters. To this end, we perform comprehensive EM simula-

Fig. 6. Impedance and loss contours in w-s space based on EM simulation
data. While the R (series resistance per unit length) and G (shunt conductance
per unit length) contours do not exactly coincide, we unified them for the sake
of brevity keeping the essential dependence. R > R > R > R >

R ; G < G < G < G < G ; and Z < Z < Z . This figure
also illustrates how a tapered CPS with a constant characteristic impedance can
be constructed.

tions of various uniform transmission lines over a wide range of
and values where and are with reference to Fig. 2.

Of the two coplanar stripline (CPS) types shown in Fig. 2(a)
and (c), we chose the latter where the CPS metals run over
floating metal strips. As mentioned earlier, the floating metal
strips act as a slow-wave structure (e.g., [23], [24]) decreasing
overall layout area. They also reduce the substrate effect, im-
proving the intrinsic of the CPS. (Tapering will further im-
prove effective beyond this intrinsic .)

Fig. 6 captures the essential EM simulation results for var-
ious uniform transmission lines over a wide range of and
values. The impedance and loss contours in - space show how
loss parameters and characteristic impedance vary with
and . Even though the (series resistance per unit length) and

(shunt conductance per unit length) contours do not exactly
coincide, we unified them in Fig. 6 for the sake of simplicity,
without losing the essential dependence of the two loss param-
eters on and . As can be seen from the figure, increasing
either or results in a decreased and increased , con-
firming the previously mentioned – tradeoff. increases
with increasing because the capacitive coupling between the
two metals is reduced while the area of magnetic flux between
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TABLE I
SIMULATED LOSS PARAMETERS (PER UNIT PHASE SHIFT) FOR THE FIVE

UNIFORM LINE CONFIGURATIONS OF THE CHARACTERISTIC

IMPEDANCE OF 25 


The metal width variations are not as pronounced as metal spacing
variations because line properties are more sensitive to width and

thus less width variation is required.

the two metals is expanded. decreases with increasing be-
cause the metal-substrate-metal capacitance is increased while
inductance is decreased.

Fig. 6 shows that one can taper a line to vary and while
keeping constant by simultaneously increasing and along
a characteristic impedance contour. Note that the – tradeoff
holds true along contours. We arbitrarily chose the

contour for our tapered line.3 Near the voltage
maximum and current minimum in the SWO ( in the SWO
of Fig. 6) we choose the uniform line configuration of low and
high (point 1 on the 25- contour) while in the vicinity of the
voltage minimum and current maximum in the SWO
we choose the uniform line configuration of low and high
(point 5 on the 25- contour) to minimize loss. Between
and one can simultaneously widen and move apart the
CPS metals toward following the 25- contour as shown
in Fig. 6. Outside the range from point 1 to 5, the – tradeoff
deteriorates and improving either loss is difficult.

In reality, since one cannot simulate the uniform line config-
urations represented by every point along the chosen contour,
one must choose a finite set of uniform line configurations along
the contour for the piecewise construction of the tapered line.
Of course, using a larger number of uniform line configurations
along the contour will allow for a more accurate optimization.
In this paper, we will use five different uniform line configu-
rations with the same 25- characteristic impedance to show
the essential design procedure, although our actual design used
many more configurations. The five configurations are shown as
points 1 to 5 along the 25- contour in Fig. 6. Table I shows the
dimensions ( and ) and the loss parameters of the five uni-
form line configurations, where row 1 corresponds to point 1 in
Fig. 6, etc.

Note that the loss parameters in the table, and , are
resistance and conductance per unit radian phase shift. We use
these units because we will first perform the piecewise construc-
tion of the tapered line in the -domain as mentioned earlier.
and of a uniform line configuration can be easily obtained
using , and (resistance, conductance, inductance, and
capacitance per unit length) of the uniform line configuration
where the , and are known from the EM simulations.

3How the characteristic impedance influences the circuit performance is sub-
ject to further study.

Fig. 7. (a) Minimum loss tapered line in the �-domain. (b) Minimum loss
tapered line in the z-domain. (c) Minimum loss uniform line.

The conversion formulas from , and to and
are and , where these
two relations are derived from (8) and (9) in the uniform line
case.

C. Step II: Piecewise Construction of the Minimum-Loss
Tapered Line in the -Domain

In this second step, we perform a piecewise construction of
the minimum-loss tapered line in the -domain using the five
uniform line configurations of Table I, as shown in Fig. 7(a). To
this end, we have to determine how much of the line length in
the -domain that each uniform line configuration should con-
tribute. This can be done by finding, at each point in the -do-
main, which of the five configurations minimizes the loss per
unit phase shift at that local point, where the loss per unit phase
shift is the integrand of the loss integral in (7)

(15)

Practically, this second step is completed by finding the tran-
sition points, , and in Fig. 7(a). The transition points
can be calculated by equating the loss per unit phase shift of one
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configuration to that of the next configuration. For instance,
can be calculated by

(16)

where and are the series resistances per unit phase
shift for configurations 1 and 2, respectively, and and
are the shunt conductances per unit phase shift for configura-
tions 1 and 2, respectively. These loss parameters are given in
Table I. , and are determined similarly. This completes
the design of the minimum loss tapered line in the -domain
[Fig. 7(a)].

D. Step III: Transformation of the Minimum Loss Tapered
Line to the -Domain

Now we translate the tapered line designed in the -domain
[Fig. 7(a)] into the -domain [Fig. 7(b)]. This design translation
is necessary for the layout of the tapered line in physical space.
To this end, we need to convert the length of the -th uniform
line configuration in the -domain, ,
to the length in the -domain, , as illustrated in Fig. 7(a)
and (b). According to (2), these two lengths are related by

(17)

where and are the inductance and capacitance per unit
length for the th uniform line configuration, and are known
from the EM simulations of Step I. Using the above equation
we can determine the length of each uniform line configuration
in the -domain, completing the to design conversion. Note
that the transition points of the tapered CPS in the -domain
[Fig. 7(a)] are not aligned with those of the tapered CPS in the

-domain [Fig. 7(b)]. This is because the uniform line config-
urations have different phase velocities, making the conversion
factor in (17) different among the uniform line config-
urations.

The final layout step is to smoothen the transitions between
neighboring uniform line configurations so that the tapered line
becomes continuous. Values of and thus become interpola-
tions of the select few that were simulated. Of course, the more
configurations one directly simulates, the less smoothening is
required, hence reducing errors, so in our actual design, we used
many more than the five uniform line configurations.

E. Comparison With the Minimum-Loss Uniform Line

For comparison purposes, we designed a 25- minimum-
loss uniform CPS as well, which is illustrated in Fig. 7(c). The
minimum-loss uniform CPS uses configuration 3 for its entire
length. Configuration 3 was chosen because in the EM simula-
tions it produced the minimum total loss among all other pos-
sible uniform line configurations on the 25- contour of Fig. 6.

Calculation using simulated parameters shows that the loss of
the minimum-loss tapered CPS is 67% that of the minimum-loss
uniform CPS for the same standing wave energy stored. This
translates to a 50% improvement in . This is close to the the-
oretical improvement factor, %, of Section IV. The

minimum-loss uniform CPS has a simulated intrinsic of 40
at the design frequency of 15 GHz. This high achieved even
before tapering is owed to the floating metal strips mentioned
earlier. But the tapered CPS hosting the standing wave has an
even higher effective of , a considerable number
for an on-chip resonator implemented in a standard silicon tech-
nology.

F. Effect of Transistor Loading

If the transistor loading effect is large, then step II of Sub-
section V-C requires schematic simulation to determine how
to adjust the transmission line to account for the associated
boundary condition change. The transistors effectively intro-
duce additional phase shift to that of the transmission line.
Therefore, if the oscillator is simulated using a transmission
line spanning the length corresponding to phase shift at
the target frequency, the actual oscillation frequency will be
lower than this target. The line should be shortened until the
simulated oscillation reaches the target frequency. The amount
of phase shift by which the line in the schematic was shortened
should be subtracted from the length of configuration 1 in the

domain. This lowers the enhancement due to tapering
since we cannot take advantage of the full wave amplitude
variations. In our specific design, the loaded improvement
was about 40%. However, we sized the transistors very conser-
vatively to ensure oscillator startup. Also, for fair comparison
we made the tapered-line transistors the same size as those on
the uniform line, even though the tapered-line SWO requires
less gain to start up due to the reduced loss. In measurement
we confirmed that both oscillators started up easily due to high

, thus it is apparent that the tapered line could be redesigned
with smaller transistors such that the loading is small enough to
achieve close to a 50% improvement (simulation confirmed
this) over the optimum uniform line.

G. Phase Noise Improvement Due to Tapering

It is well established that higher resonator trans-
lates into lower oscillator phase noise (e.g., [28], [29]).
But quantitative prediction of the phase noise improve-
ment due to the enhancement from tapering is not
straightforward. Here, we use the familiar Leeson’s for-
mula [28] to roughly estimate the phase noise improve-
ment due to the enhancement. Leeson’s formula is

(18)

where is Boltzmann’s constant, is the ambient absolute tem-
perature, is the loaded resonator quality factor, is the signal
power at the oscillator core, is the oscillation frequency,
is the offset frequency, and is a fitting parameter. In the cur-
rent-limited regime [9] where resonator loss reduction propor-
tionally enhances signal power at the oscillator core for a
given current, the expected phase noise improvement cor-
responding to the loaded enhancement by 40% and loss re-
duction by the same percentage due to tapering (our conser-
vative design where the transistor loading effect is not negli-
gible.) is dB. In the weak transistor loading case
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Fig. 8. Complete schematic of a prototype MOS �=4 standing wave oscillator
utilizing the tapered CPS and the measurement setup.

Fig. 9. (Left) MOS SWO with uniform CPS. (Right) MOS SWO with tapered
CPS.

which is also feasible, where the improvement is 50% and
loss is reduced by this same percentage, the phase noise im-
provement due to tapering would be dB. This
phase noise improvement calculation serves to convey only a
rough idea of the phase noise improvement due to tapering. As
shown in Section VI, the measured phase noise improvement
due to the tapering varies from 5 to 10 dB depending on offset
frequencies.

TABLE II
MEASUREMENT RESULTS FROM THE SWOs

UNDER THE SAME BIAS CONDITION

H. MOS SWO Prototypes and Electrical Short Design

Fig. 8 shows a complete schematic of a prototype MOS
standing wave oscillator utilizing the minimum-loss tapered
CPS and the measurement setup. The right-hand side of the
figure shows the on-chip oscillator core. The cross-coupled
inverter is implemented using a cross-coupled NMOS transistor
pair. is supplied tapped at the electrical short. The left-hand
side of the figure depicts the on-chip open-drain buffer and the
off-chip measurement setup. As can be seen, the voltage outputs
of the SWO core where cross-coupled inverters are attached
are interfaced with a spectrum analyzer (Agilent E4448A) and
a 50- termination via the on-chip open-drain NMOS buffer,
RF probes/cables (not shown), and bias-Tees. The spectrum
analyzer has a built-in phase noise measurement system.

The right-hand side of Fig. 9 shows the die photo for the im-
plemented prototype SWO with the minimum-loss tapered CPS.
For comparison purposes, the SWO with the minimum-loss uni-
form CPS was implemented as well, and is shown on the left side
of Fig. 9. The design frequency for both oscillators is 15 GHz.
They were implemented in 0.18- m CMOS technology with a
top metal thickness of 2.34 m. They have exactly the same
design except for the CPS structures, and were implemented
adjacently on the same die. Each circuit occupies an area of
1.2 1.2 mm , but excluding the pads and on-chip intercon-
nects leading to the pads, they each occupy 1.0 0.8 mm . Both
CPS structures span about 420 m, and these relatively short
lengths of the CPSs for at 15 GHz are due to the slow-wave
structure utilizing the floating metal strips.

One perceivable problem with the tapered CPS layout in-
volves the design of the electrical short. The greater line separa-
tion around in the tapered CPS requires a proportionally
long “short,” as shown with the die photo of Fig. 9, increasing
series resistance where it is most detrimental and undermining
the benefits of tapering. To alleviate this problem, in our design
all underlying metal layers were added to the short (in both the
uniform- and tapered-CPS) to substantially reduce the series re-
sistance in the short. The resultant increase in capacitance and
substrate coupling is not detrimental due to the locally minimum
(zero) voltage at the short. To eliminate the need for an electrical
short, a SWO may be used. However, the superior phase
noise achievement of the tapered line, shown in the next sec-
tion, is evidence that the loss occurring in the short is insignif-
icant and that the precautions taken in our design are sufficient
to minimize its effect.
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Fig. 10. Measured phase noise versus offset frequency for the tapered- and
uniform-CPS SWOs.

VI. EXPERIMENTAL VERIFICATIONS

The tapered-CPS and uniform-CPS SWOs on the same die of
Fig. 9 were measured under the same bias condition to deter-
mine the phase noise improvement due to tapering. The mea-
surement results under one of the tested bias conditions are
summarized in Table II. The oscillation frequency is 14.2 GHz
for the tapered-CPS SWO, and 15.6 GHz for the uniform-CPS
SWO, both of which deviate slightly from our 15 GHz design
frequency. The noticeably low power consumptions are indi-
rect evidence of the high of the lines. The tapered-CPS SWO
has a reduced phase noise as compared to the uniform-CPS
SWO, e.g., 8 dB reduction at 1 MHz offset. The unexpected fre-
quency discrepancy between the two circuits could be partially
responsible for the improvement, but EM simulations combined
with phase noise simulation predicts that this accounts for no
more than 1 dB difference. Identically sized transistors were
used in each design for fair comparison, but the significantly
reduced loss in the tapered CPS allows one to shrink the transis-
tors in the tapered-CPS SWO as it needs less gain, which would
further benefit phase noise performance.

Fig. 10 shows measured phase noise versus offset frequency
for the uniform-CPS SWO and the tapered-CPS SWO over three
decades of offset frequencies. The phase noise improvement due
to the tapering is at least 5 dB between 10 kHz and 1 MHz where
the behavior is pronounced. At greater offset frequencies
where the white noise effect dominates and behavior is
apparent, the improvement is 8–10 dB. The increase in phase
noise improvement above the theoretically predicted 4.4 dB (see
Subsection V-G.) that occurs toward higher offset frequencies
is subject to further study.

Due to the loss difference between the uniform- and
tapered-CPS SWO, the identical bias condition may place
the two circuits in different regions of operation. In order
not to allow any advantage for the tapered-CPS SWO, the
uniform-CPS SWO was measured under various other bias
conditions, but the overall phase noise reduction of 8 dB
persisted in the white noise regime. Three more chip samples

Fig. 11. (a) Unloaded Q calculation setup over a range of frequencies around
the frequency, f , at which the tapering was performed. (b) Unloaded Q

improvement (due to tapering) versus frequency.

Fig. 12. (a) Lumped-varactor tuning scheme. (b) LoadedQ improvement (due
to tapering) versus frequency alteration for lumped-varactor scheme.

(each contains a tapered and a uniform circuit) were measured,
and the essential measurement results presented above occurred
consistently.
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Fig. 13. Distributed-varactor tuning scheme.

VII. RELATED DISCUSSIONS

Our work was entirely described in the previous sections. In
this section, we address the issue of frequency tuning that was
not incorporated in our first prototype design. Additionally, we
provide comparisons between the standing wave oscillator and
lumped oscillators as well as other types of wave-based os-
cillators to further aid understanding of the unique characteris-
tics of the standing wave oscillator.

A. Frequency Tuning Schemes and Effects

While the transmission line tapering is executed at a fixed fre-
quency, frequency tuning is required in most practical oscillator
design. This subsection discusses how to tune the frequency
in the standing wave oscillator and the effect of the frequency
tuning on of the tapered transmission line.

Let us first present how of an unloaded tapered transmis-
sion line designed at frequency, , changes when the frequency
deviates from . As depicted in Fig. 11(a), this unloaded of
the tapered transmission line is calculated via 1-port network
analysis in the range of input frequencies around . This of
the tapered line can be compared to the similarly-calculated
of the uniform line over the frequency range, leading to the un-
loaded- improvement (over the uniform line due to tapering)
versus frequency curve of Fig. 11(b). At at which tapering
was executed, the improvement due to tapering is about 50%,
as mentioned earlier in Subsection V-E. But as the input fre-
quency deviates from , the amplitude variation is no longer
that for which the line was tapered, and the improvement
factor is altered. Over 30% frequency variation above and below

, the improvement due to tapering varies from 40% to 53%.
While we presented the standing-wave-adaptive tapered trans-
mission line in the context of standing wave oscillator design,
it can be used as a stand-alone passive device for other appli-
cations, e.g., on-chip stub filters. For such applications, the un-
loaded improvement over frequencies of Fig. 11(b) can be
directly applied.

In the standing wave oscillator frequency can be tuned using
lumped varactors. By placing lumped varactors on the transmis-
sion line where the cross-coupled inverters are connected, as il-
lustrated in Fig. 12(a), and varying the degree of the varactor
loading via change of their capacitance, one can influence the
boundary condition, and in turn the frequency. The greater the
capacitive loading, the greater the phase shift introduced by the
varactors, and the lower the frequency. As compared to the un-
loaded case of the previous paragraph, tuning the frequency in
this manner results in lower improvement from tapering be-
cause the varactor loading introduces phase shift at the boundary
reducing the spatial amplitude variation that may be exploited.

Fig. 14. (a) Standing wave oscillators utilizing uniform and tapered
transmission lines. (b) Lumped LC oscillator with a single loop inductor.

When this loading is increased to tune the frequency downward,
the amplitude variation is further decreased, further reducing the

improvement factor. Fig. 12(b) shows calculated loaded
improvement (over the uniform line due to tapering) versus fre-
quency for the lumped-varactor scheme where the tuning range
is 20%. It is apparent that the loaded improvement is lower
overall than the unloaded improvement of Fig. 11.

To overcome this problem of lumped varactor loading, one
may alternatively resort to distribution of varactors along the
transmission line as conceptually shown in Fig. 13, where var-
actor parameters are absorbed into the transmission line and
hence the varactors can be thought of as parts of the trans-
mission line. This circuit modifies wave velocity as opposed
to boundary conditions for frequency tuning, and avoids any
loading-related problem mentioned earlier. The design proce-
dure for distributing varactors at various points in the tapered
CPS could be challenging as sizing of the distributed varactors
should be position-dependent. The details of a practical such de-
sign is subject to further study.

B. Comparison With Lumped Oscillators

While the difference between a lumped resonator and
a transmission-line resonator (a transmission line with a short
or an open termination) is well-known from basic electromag-
netism [30], the topological similarity between the standing
wave oscillator and the oscillator using a single-loop in-
ductor can be a potential source of confusion; see Fig. 14. Here
we clarify the physical distinction between the two types of os-
cillators.

In a transmission line the two metals comprising the line are
placed sufficiently close to each other such that the line can host
well-defined wave modes (close to the TEM wave modes) and
there is a distributed capacitive coupling between the metals. In
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Fig. 15. (a) Basic form of the traveling wave oscillator (TWO). (b) Rotary
traveling wave oscillator (RTWO).

contrast, the single-loop inductor, designed for optimum mag-
netic energy storage and thus maximal enclosed area, has little
metal-to-metal capacitive coupling. The distributed metal-to-
metal capacitive return paths of a transmission line are essen-
tial for the significant spatial variations in current amplitude,
and hence in the single-loop inductor the spatial current ampli-
tude variations are much less pronounced.4 Without significant
current amplitude variation, it is of course difficult to derive any
great benefit by adapting loss characteristics to these variations.
In addition, it is not clear to date if the loss characteristics of the
single-loop inductor would include any analogous phenomenon
to the – tradeoff of the transmission line.

The foregoing paragraphs discussed physical differences be-
tween single loop inductors and transmission line resonators.
While the physical distinctions are clear, it is not yet obvious
which of the two structures can achieve a better , apart from
the fact that the transmission line resonator allows -enhancing
tapering while tapering does not seem as feasible or effective in
the single loop inductor. Comparison between optimum of in-
ductors to optimum of transmission line resonators should be
further investigated. Our tapered transmission line structure has
a simulated of 60 and our uniform transmission line structure
has a simulated of 40 in a standard silicon technology. Up
to this point in time, typical of an on-chip inductor is typi-
cally below 10, and even at best about 20, in a standard silicon
technology. Whether further improvement above this value is
possible is subject to future theoretical and experimental study.

4In an ideal inductor, there is no spatial current variation.

C. Comparison of Wave-Based Oscillators

In this subsection, we provide a comparison between the two
types of wave-based oscillators, standing wave oscillators and
traveling wave oscillators, in terms of their phase noise perfor-
mance. Fig. 15(a) depicts a basic form of the traveling wave
oscillator (TWO) [17]–[19], which consists of a distributed am-
plifier [33] with positive feedback. In this circuit, the forward
wave in the gate line and the reverse wave in the drain line are
unnecessarily wasted in the termination resistors, and addition-
ally, the termination resistors are constant noise sources [34].
These two problems altogether compromise phase noise of the
circuit.

The rotary traveling wave oscillator (RTWO) of Fig. 15(b)
remedies these problems [20] by eliminating the termination
resistors and cross-coupling the output and input lines. It also
replaces the one-directional amplifiers of the TWO with cross-
coupled inverters, whose symmetry allows use of a single differ-
ential transmission line. The resultant differential line takes the
form of a Mobius strip where both forward and reverse waves
are recycled without unnecessary waste of energy. Therefore,
RTWO is a definite improvement over the TWO.

It is clear that the standing wave oscillator (SWO) is an al-
ternative solution to recycle both forward and reverse waves.
However what makes the SWO superior to the RTWO is the
possibility of tapering, which is not possible for any TWO be-
cause its amplitudes are not position-dependent.

VIII. CONCLUSION

We showed that a transmission line hosting standing waves
can be shaped according to the position-dependent standing
wave amplitudes to improve and phase noise of standing
wave oscillators, explicitly demonstrating the advantages of
standing-wave-based oscillators. We also presented the method-
ology to design the tapered line with a constant characteristic
impedance, including a novel transformation between the -do-
main (physical space domain) and the -domain (wave’s phase
domain). The on-chip tapered CPS presented has a simulated

of 60, enhanced by almost 50% as compared to the optimum
uniform CPS. In measurements of prototype MOS SWOs, the

improvement due to tapering was reflected in a remarkable
phase noise reduction of 5 to 10 dB in the tapered-line standing
wave oscillator in comparison to the uniform-line standing
wave oscillator. Although this demonstration involved a
standing wave oscillator, it may be applied to any form of
standing wave oscillators, and even to transmission-line-based
filters. Furthermore, this technique is appropriate for any de-
sign frequency, and may be increasingly essential as higher
frequencies, where loss is most severe, are targeted. This work
offers encouraging prospects for standing wave oscillators.

APPENDIX I
DERIVATION OF (2), (3), (5), AND (6) SOLVING

WAVE EQUATIONS

In Subsection IV-A, (2), (3), (5), and (6) were derived
by treating a general tapered transmission line with uniform
characteristic impedance as a chain of infinitesimal uniform
transmission lines and arguing physically how waves propagate
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through the system. Here, we provide mathematical derivations
of the equations by solving wave equations.

The voltage and current traveling waves, and ,
on a general tapered line with uniform characteristic impedance,

, satisfy the following wave equations:

(19)

(20)

where and are inductance and capacitance per unit
length at and loss-related terms are neglected assuming weak
loss. Additionally, the fact that the tapered line has uniform char-
acteristic impedance, , requires

for any and (21)

Now we seek traveling wave solutions of the form

(22)

(23)

where is the modal frequency and is the wave’s phase as
a function of . These two forms readily satisfy (21) as far as

. Plugging (22) and (23) into (19) and (20), we ob-
tain , leading
to

(24)

which is equivalent to (2) and (3). The position-dependent
standing wave amplitudes derived from the traveling waves of
(22) and (23) are

(25)

(26)

which are identical to (5) and (6).

APPENDIX II
DERIVATION OF THE MINIMUM-LOSS TAPERED LINE

IN SUBSECTION IV-C

To obtain the minimum-loss tapered line, we are to find
and that minimize the power loss expressed in (7) under
the constraint given by (10). The integrand of (7) for any sat-
isfies

(27)

where we have used in the second line, the well-
known inequality with and

to go from the second to the third line,

and the constraint of (10) to go from the third to the fourth line.
The integration in (7) then satisfies

and hence, the minimum power dissipation is given by
, the result mentioned in (11). This minimum power

dissipation occurs when the equality holds true in the third
line of (27), that is, when , or and

. These and represent the
minimum-loss tapered line, as mentioned in Subsection IV-C.

APPENDIX III
DERIVATION OF THE MINIMUM-LOSS UNIFORM LINE

IN SUBSECTION IV-D

For a uniform transmission line, and in (7) are
not functions of any more, that is, (constant)
and (constant). Therefore, for a uniform line, the
power dissipation expression in (7) reduces to

To obtain the minimum-loss uniform line, we are to find
and that minimize the above quantity subject to the con-
straint of (10). To this end, we again resort to the well-known
inequality, , to find

where and . As can be seen, the minimum
power dissipation is given by , the result mentioned
in (12). This minimum occurs when , or,
and , which represent the minimum-loss uniform
line, as mentioned in Subsection IV-D.
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